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Abstract 25 

Human activity has fundamentally altered wildfire on Earth, creating serious consequences for human 26 

health, global biodiversity, and climate change. However, it remains difficult to predict fire interactions 27 

with land use, management, and climate change, representing a serious knowledge gap and vulnerability. 28 

We used expert assessment to combine opinions about past and future fire regimes from 98 wildfire 29 

researchers. We asked for quantitative and qualitative assessments of the frequency, type, and 30 

implications of fire regime change from the beginning of the Holocene through the year 2300. 31 

Respondents indicated that direct human activity was already influencing wildfires locally since at least 32 

~12,000 years BP, though natural climate variability remained the dominant driver of fire regime until 33 

around 5000 years BP. Responses showed a ten-fold increase in the rate of wildfire regime change during 34 

the last 250 years compared with the rest of the Holocene, corresponding first with the intensification 35 

and extensification of land use and later with anthropogenic climate change. Looking to the future, fire 36 
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regimes were predicted to intensify, with increases in fire frequency, severity, and/or size in all biomes 37 

except grassland ecosystems. Fire regime showed quite different climate sensitivities across biomes, but 38 

the likelihood of fire regime change increased with higher greenhouse gas emission scenarios for all 39 

biomes. Biodiversity, carbon storage, and other ecosystem services were predicted to decrease for most 40 

biomes under higher emission scenarios. We present recommendations for adaptation and mitigation 41 

under emerging fire regimes, concluding that management options are seriously constrained under higher 42 

emission scenarios. 43 

 44 

Introduction 45 

Human alteration of land cover and climate is reshaping wildfire on Earth (Bowman et al., 2020; Davis, 46 

2021; T. M. Ellis et al., 2022; Pereira et al., 2022). Most terrestrial ecosystems have coevolved with fire 47 

over millions of years and many require periodic disturbance to maintain ecosystem structure and 48 

function (Bond et al., 2005; Harris et al., 2016). Yet, when fires exceed their historical patterns of 49 

intensity, extent, severity, seasonality, and frequency (hereafter fire regime; Figure.1a), they can 50 

deleteriously influence biodiversity (Feng et al., 2021; Kelly et al., 2020), climate (IPCC, 2021), and 51 

societies (Doerr & Santín, 2016; Johnston et al., 2021; Jones, 2017). In some regions, recent state changes 52 

in fire regime have reduced ecosystem services, including air quality, water availability, habitat, and 53 

ecosystem carbon storage (Collins et al., 2021; Crandall et al., 2021; McClure & Jaffe, 2018; Pausas & 54 

Keeley, 2019; Xie et al., 2022). These changes in disturbances can cause loss of life and property, 55 

degradation of health, acute risk to fire managers, emergency evacuations, and other socioeconomic 56 

impacts (Balch et al., 2020; Raymond et al., 2020). 57 

In the past and across large spatial scales, the dominant driver of fire regime has been the interaction 58 

between climate and vegetation (Abbott et al., 2016; Girardin et al., 2013; Harris et al., 2016; McDowell et 59 

al., 2020; Molinari et al., 2020). All aspects of climate, but especially patterns of precipitation and 60 

temperature influence vegetation composition and its moisture content. Climate and weather also control 61 
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ignition sources, with lightning being the most common natural source of wildfire. Consequently, climate 62 

lays the foundation for fire regimes through fuel availability, flammability, and ignition likelihood 63 

(Bowman et al., 2009; Chen et al., 2021; Scholten et al., 2021). As humans modified global patterns of 64 

vegetation, ignition, and climate over the past several millennia (Abbott et al., 2019; E. C. Ellis et al., 2021; 65 

McDowell et al., 2020; Watson et al., 2018), fire disturbance became progressively more 66 

anthropogenically influenced across local to global scales (Figure. 1a).  For example, humans have directly 67 

modified vegetation type and density for 77% of the Earth’s terrestrial surface, primarily through 68 

agriculture, with myriad consequences for fuel characteristics and ignition sources (Balch et al., 2017a; 69 

Bowman et al., 2011; Marlon et al., 2008; Słowiński et al., 2022; Watson et al., 2018). Understanding the 70 

characteristics and sensitivity of fire regime change is crucial for sustainable land management as well as 71 

climate change mitigation, adaptation, and planning (Cochrane & Bowman, 2021). However, knowledge 72 

of thresholds and tipping points in the relationships linking climate, land use, and fire regimes is lacking. 73 

In this context, we conducted an assessment of scientific opinion about the drivers and consequences of 74 

fire regime change in the Holocene and near future. Combining assessments from multiple sources allows 75 

an integrative evaluation of the range of possible futures complementary to numerical model projections 76 

(Morgan, 2014; Sayedi et al., 2020; Schuur et al., 2013). These assessments can address the current needs 77 

of decision-makers and ecosystem managers to better understand and apply the consensus view from the 78 

research community. Using the collected informed opinion from experts, we evaluated centennial to 79 

millennial-scale state changes (Figure.1a) in past, present, and future fire regimes at both regional and 80 

biome levels through four questions: 1. How have fire regimes varied during the Holocene (the last 81 

~11,700 years); 2. How likely are fire regime state changes under different future climate change 82 

scenarios; 3. What component of ecosystems will be affected by potential future fire regimes; and 4. 83 

What types of human activities could be the most effective for mitigation and adaptation under future fire 84 

regimes?  85 
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We asked experts from around the world (included here as co-authors) to respond to these questions for 86 

terrestrial ecosystems in seven biogeographic realms and 14 biomes (Figure1.b) that reflect global 87 

bioclimatic, socioeconomic, and fire regime characteristics (Olson et al., 2001). Each expert responded for 88 

a biome-scale fire regime within a biogeographic realm (we define this unit “a fire region”) of their 89 

expertise. We received responses for 70% of flammable land area worldwide (total land surface excluding 90 

rock, ice, and lakes; Figure1.b, S1, Table S2).  91 

Methods and materials 92 

We used expert assessment to evaluate the risk of fire regime change and its consequences in the future. 93 

After a literature review of both scientific and policy related documents about wildfires and fire regime 94 

change, we designed a questionnaire to gather scientific opinion on changes in fire regimes and their 95 

effects on ecosystems, climate, and societies (see Supplementary Information). The focus was specifically 96 

on centennial-to-millennial changes in past, present and future fire regimes by biogeographic realms and 97 

biome to consider long-term processes beyond observational and instrumental records. After two 98 

pretesting rounds, the finalized questionnaire was distributed to 430 scientists with fire related expertise. 99 

The list of experts was developed based on publications and referees from respondents. We received 123 100 

filled surveys from 98 respondents (46% female, 45% male, 9% unspecified) (Table S2) from 23 countries 101 

(Figure.S24). The primary research disciplines as self-identified by the respondents were 55% 102 

paleoecology, 17% ecology, and 28% other fields such as geography or geosciences. 103 

The questionnaire included background information on the concept of fire regime and state change to 104 

delineate a standardized definition for this study for experts to use and a description of RCP scenarios and 105 

predicted temperature and precipitation (see Supplementary Information). The question section focused 106 

on four key topics: 1) past fire regimes, 2) current fire regime states, 3) future fire projections, and 4) 107 

interventions and management. For each section, a self-reported expertise, confidence level, sources 108 

used to generate estimates (e.g., published or unpublished empirical data, professional opinion) 109 
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(Table.S3), along with a list of sources of uncertainty were provided (Table.1). The questionnaire was a 110 

combination of quantitative and qualitative questions (full questionnaire included in the Supplementary 111 

Information). The qualitative questions included both open-ended questions and numerical responses. 112 

The open-ended questions were analyzed using thematic analysis method by coding the responses into 113 

categories after reviewing the responses.  114 

For some of the quantitative questions, three quantiles (5% lower, 50% central and 95% upper) were 115 

provided to build a credible range of 90% for each question. We primarily used median central estimates 116 

for the main manuscript; though full ranges are shown in the Supplementary Information. We used 117 

nonparametric boxplots to evaluate the range of responses for each question, with descriptive statistics 118 

calculated in R version 3.6.1. We used ArcGIS Pro 3.0 for spatial analyses and visualizations.   119 

Results and discussion  120 

In the following subsections, we present estimates and suggestions based on experts’ responses and we 121 

compare these opinions of estimates and projections with relevant literature. We focus on general 122 

patterns and trends among biomes and biogeographic realms (the comprehensive expert responses by 123 

fire region are available in the Supplementary Information). For the purposes of our study, we defined 124 

state change broadly as a large and sustained departure from a set of specific system behaviors (details in 125 

Supplementary Information-questionnaire). Fire regime state changes can be triggered by pulse or press 126 

disturbances, including internal and external drivers (e.g. climate change, vegetation shifts, human 127 

behavior), and can be reversible or permanent. For example, a state change in fire regime may be 128 

expressed as a shift in the central tendency (a decrease in mean annual area burned), overall variance (an 129 

increase in inter-annual variability of area burned), or frequency of events that exceed an ecological 130 

threshold (a change in the return interval of crown fires)(Scheffer et al., 2009; Seddon et al., 2014). 131 

Past to present drivers of fire regime 132 
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The median estimated number of fire regime state changes during the Holocene ranged from seven 133 

(Temperate grasslands, savannas, and shrublands) to two (Tundra) across biomes (Figure. S2). Regarding 134 

the timing of the three largest fire regime state changes, 16% of respondents identified the early 135 

Holocene (ca. 11,700–8,200 BP), 27% the mid Holocene (ca. 8,200–4,200 BP), and 57% the late Holocene 136 

(ca. 4,200–0 BP). A temporal acceleration of state change occurred after the Industrial Revolution (1760 137 

A.D.), which included 20% of the fire regime changes (Figure. S3). This represents a ~10-fold increase in 138 

the rate of fire regime changes over the last 250 years. The Nearctic and Australasia showed even 139 

stronger recent changes in fire regime, with 30% and 36% of the identified fire regime changes occurring 140 

in the past 250 years, respectively. 141 

Climate was identified as the main driver of fire regime changes during the Holocene (47% of responses), 142 

especially in the early and mid-Holocene. Direct human activity was the second most identified driver 143 

(32%). However, the onset of strong human influence on fire regime occurred at different times in 144 

different regions (Figure. 2), with the greatest influence during the late Holocene. However, for the post-145 

industrial period (1950 A.D.-present), climate change and direct human activity were mentioned equally 146 

often (40% and 46%, respectively). Vegetation and fuel were the least mentioned drivers for each time 147 

interval (Figure. S4), likely because these factors respond to climate on centennial timescales, illustrating 148 

the importance of temporal scale when considering drivers.  149 

Respondents identified several dimensions of fire regime altered over the past 250 years, including fire 150 

frequency, extent, and severity (Figure. S5). A wide range of human-wildfire interactions specific to fire 151 

regions were identified. For example, in Indo-Malayan Tropical forests, deforestation due to economic 152 

development has changed the fuel structure and ignition sources, increasing fire activity in an ecosystem 153 

where it was historically rare. Other fire management strategies such as increased fire suppression and 154 

exclusion of Indigenous or traditional prescribed burning practices were recognized as drivers of increased 155 

fire severity, especially when coupled with recent temperature increases. In seven biomes it was 156 

suggested that a change in fire regime occurred since the industrial revolution (Figure. S3), with the 157 
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median estimate of current fire regime duration less than 200 years (Figure.S6). For Tundra, 158 

Mediterranean forests, woodlands, and scrub; Tropical and subtropical moist broadleaf forests, and 159 

Tropical and subtropical grasslands, savannas, and shrubs, this duration was less than 70 years (Figure. 160 

S6). 161 

Timing and type of future fire regime change 162 

Respondents provided estimates of fire regime change for their fire region in 2050, 2100, and 2300 based 163 

on the IPCC representative concentration pathways (RCP) 2.6, 4.5, and 8.5, representing increasingly 164 

severe climate change scenarios. Most respondents projected that the likelihood of fire regime change 165 

increased with time and climate change severity (Figure. S9-10). Under RCP8.5, nine biomes were 166 

projected to have more than 50% chance of experiencing a fire regime change by 2050, compared to one 167 

biome for RCP2.6. By 2100 and 2300 even under RCP2.6, five biomes were predicted to have a ≥50% 168 

likelihood of fire regime change (Figures. 3a, S9-10). The climate sensitivity (amount of increase in the 169 

likelihood of a fire regime change across RCP scenarios) varied substantially among biomes. For example, 170 

for Tundra, RCP2.6 was enough to initiate a fire regime change, while the projected likelihood of fire 171 

regime change was much lower under RCP2.6 than RCP8.5 for Boreal forests (Figure.3b, S11-12). Analysis 172 

for all scales, years, and scenarios are presented in the Supplementary Inforamtion. 173 

The climate sensitivity estimates from this study were in agreement with many modeling studies 174 

projecting future changes in fire activity (Bowman et al., 2020). Climate drivers such as fire weather and 175 

fire danger days are predicted to increase in many areas of the globe (IPCC, 2021), particularly in fire-176 

prone regions such as the Mediterranean basin, southwestern USA, and subtropical regions of the 177 

Southern Hemisphere (Bowman et al., 2017; Cook et al., 2022). An increase in extreme fire behavior is 178 

also predicted in many regions such as the Amazon, western USA, Mediterranean and southern Australia 179 

(Bowman et al., 2020). Substantial intensification of fire behavior is projected for higher latitudes through 180 
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the end of the 21st century (Abbott et al., 2021; Flannigan et al., 2013; Talucci et al., 2022), though local 181 

fire patterns are expected to be heterogeneous (McCarty et al., 2021). 182 

Respondents projected an intensification of fire regime across biomes, with burned area, frequency, and 183 

severity increasing for all but a few biome-time-step combinations (Figure. 4). The magnitude of change 184 

generally increased with time and with higher emission scenarios (Figure. S13-16). These predictions are 185 

consistent with other studies, suggesting a substantial intensification of fire regimes with greater 186 

warming. For example, panarctic wildfire emissions have been predicted to increase by 250% by 2100 187 

under RCP8.5 (Abbott et al., 2016). Similarly, fire emissions in Finnish Boreal forests have been predicted 188 

to experience a 190% increase, even under RCP4.5 (McCarty et al., 2021). In Europe, burned area is 189 

predicted to increase between 180% to 360% until the end of the century under RCP8.5, but less than 190 

60% under RCP2.6 (Wu et al., 2015). In another study in southern Europe, burned area is projected to 191 

increase 5–50% per decade under high emission scenarios (Dupuy et al., 2020). Another study projected a 192 

40–100% increase in burned area with a 1.5° to 3°C warming for Mediterranean Europe (Bowman et al., 193 

2020). An increase in burned area is likewise predicted for the Amazon and western USA (Abatzoglou et 194 

al., 2021; Bowman et al., 2020). In the grasslands of central Asia, the potential burned area is expected to 195 

increase 13% by 2080 (Zong et al., 2020).  196 

Contrary to most regions, less burning was predicted by experts in some parts of Africa under warmer 197 

scenarios, consistent with observations (Andela & Van Der Werf, 2014) that reveal a more intense fire 198 

regime under cooler and wetter climates that favor fuel build up in these dry regions (Daniau et al., 2013). 199 

More generally, fire frequency and severity are expected to decrease in fuel-limited ecosystems under 200 

drier conditions, while they should increase in ecosystems with ample humidity (Rogers et al., 2020).  201 

When interpreting these survey results, it is important to recognize that within a single fire region, 202 

different ecological communities may experience divergent future fire trajectories (Moritz et al., 2012). 203 

For example, the risk of fire-climate interactions can vary in different type of conifer forests of western 204 
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North America (moist-dry-subalpine) based on their elevation (Halofsky et al., 2020). This community-205 

dependence was mentioned by respondents for most fire regions in this study. For example, substantial 206 

differences exist between eastern and western Boreal forests of the Nearctic, with the latter experiencing 207 

increasing trends in burn rates(Chavardès et al., 2022a). Although with projected climate change, 208 

convergence towards increasing burn rates is possible for eastern and western Boreal forests of the 209 

Nearactic during the mid- to late-21st C.(Chavardès et al., 2022b). 210 

Consequences of fire regime change  211 

Biodiversity, carbon stocks, and ecosystem services were anticipated to decrease with future fire regime 212 

change. Respondents estimated that the magnitude of change will increase for more extreme warming 213 

scenarios and longer timeframes in most biomes (Figure. 5, S17-20). However, the respondents suggested 214 

a general increase in albedo in the time frame 2050-2100, which could exert a transitory stabilizing effect 215 

on climate, and a further change in direction for some biomes through 2300 (Figure. 5, S21). Analysis for 216 

all scales, scenarios, and years are presented in the Supplementary Inforamtion. 217 

While it is difficult to assess agreement between respondents and the broader wildfire literature for such 218 

diverse fire regions, the overall results were generally aligned with the literature. It is anticipated that 219 

progressive increases in fire activity will impact biodiversity and ecosystem services in most regions, 220 

notably because ecosystem response to change and disturbance takes centuries to millenniums to reach 221 

equilibrium (Carcaillet et al., 2010, 2020). Local ecosystem services can be substantially altered by novel 222 

fire regimes. For example, in the Indian tropical dry forests, an increase in fire activity may negatively alter 223 

forest potential for water regulation by changing soil characteristics (Schmerbeck & Fiener, 2015), and 224 

atmospheric moisture recycling (Abbott et al., 2019). Similarly, changes in fire regime may also affect 225 

forest ecosystems and species that have historically been less affected by fire, as for beech forests (Fagus 226 

sylvatica L.) of Central Europe (Maringer et al., 2012). 227 
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In tropical biomes, an increase in extreme wildfires where fires are rare could affect tree mortality leading 228 

to habitat loss (Deb et al., 2018; Silveira et al., 2016). In the Mediterranean, an increase in fire events can 229 

create favorable conditions for some understory vegetation by temporarily reducing tree cover (Connor et 230 

al., 2019; Fournier et al., 2020). In savannas, longer fire intervals and elevated CO2 may create favorable 231 

conditions for woody vegetation (Sage, 2020), which can have a negative impact on biodiversity (Veldman 232 

et al., 2015). New fire regimes can also be favorable to some introduced and invasive taxa, including 233 

cheatgrass in some desert environments of the USA, tussock grass and pampas grass in Spain, and 234 

Robinia, Ailanthus in Portugal (Maringer et al., 2012). These species exploit novel disturbance niches to 235 

outcompete native vegetation during post-fire recovery. Consequently, both direct and indirect effects of 236 

fire regime change can alter plant community structure and composition with amplifying feedbacks on 237 

different aspects of fire regimes including frequency and extent (Bishop et al., 2020; Wan et al., 2014).  238 

The consequences of fire regime change for ecosystem carbon balance are diverse. Novel climatic 239 

conditions in peatlands can slow their recovery from disturbances, decreasing carbon stocks (Loisel et al., 240 

2021). More severe and frequent fires can threaten legacy carbon in Boreal forests (Walker et al., 2019), 241 

though changes to successional trajectories may offset or negate these losses in some cases (Mack et al., 242 

2021). Respondents in this study projected a net decrease in Boreal carbon stocks under warmer 243 

scenarios. Another indirect effect of wildfire on carbon balance is local air pollution. For example, ozone 244 

produced during combustion can damage plant tissues, potentially doubling carbon losses by reducing 245 

photosynthesis post fire (Lasslop et al., 2019). Because human land use and fire regime are so closely 246 

linked, human actions such as deforestation coupled with cropland development can decrease carbon 247 

stocks at the same time as they modify the fire regime (Bowman et al., 2011; Cochrane & Bowman, 2021). 248 

In other studies, it has been suggested that  increased vegetation cover in higher latitudes will lead to 249 

decreased of albedo, which can have a more pronounced warming effect than greenhouse gases (Field et 250 

al., 2007). Not only can fires directly change the albedo of the region by altering land characteristics, but 251 

they also affect albedo by the pollutants they produce. For example, enhanced black carbon and soot 252 
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deposition associated with increased fire disturbance will contribute to accelerated ice melting and 253 

decreased albedo (Aubry-Wake et al., 2022; McCarty et al., 2021). Conversely, increased tropical peatland 254 

fire can increase albedo (Ohkubo et al., 2021). Albedo may be reduced in the immediate aftermath of fire 255 

in sub-Saharan Africa, but it returns to pre-fire conditions within a few years (Gatebe et al., 2014). 256 

Perhaps because of the spatiotemporal complexity of the wildfire-albedo interaction, most respondents 257 

predicted little change in albedo.  258 

Our capacity to prevent, control, or adapt to future fire regimes  259 

Respondents identified different fire regime drivers depending on the warming scenario and fire region. 260 

Under higher emissions (i.e., RCP4.5 and RCP8.5), most experts suggested that climatic factors would be 261 

the dominant driver of fire regime change. Conversely, under RCP2.6, only about half of the responses 262 

indicated that climatic factors would be the most important driver. Within Australasia and Nearctic fire 263 

regimes, climatic factors were identified as the most important driver for all scenarios. On the other hand, 264 

in the Neotropic, Afrotropic, and Indo-Malayan biogeographic realms, human activities were identified as 265 

most important. While vegetation and fuel were also frequently mentioned, these factors were never 266 

suggested as the most important driver of future fire regime changes (Figure. S22), highlighting the 267 

complex interplay amongst climate, fuel, and fire, especially on centennial timescales. 268 

Survey results suggest that human actions for the next 20-50 years will be highly influential in determining 269 

how different ecosystem values (e.g., biodiversity, carbon stocks) are likely to change. Only 14% of the 270 

respondents indicated human actions have no effect, primarily in the case of albedo (Table. S1). Only 10% 271 

of responses recommended non-intervention, which instead was rated as a negative or unhelpful 272 

approach, though there were mixed opinions across and within fire regions. 273 

 About half of the respondents considered direct land management as an important approach for 274 

mitigating impacts of changing fire regime. In particular, fuel treatment, vegetation management, 275 

urban/suburban landscaping, and agriculture were identified as potentially useful mitigation approaches. 276 
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There was high agreement that prescribed burning would help biodiversity and ecosystem services, but 277 

there were mixed opinions about its effect on carbon stocks, potentially because the area subject to 278 

prescribed burning is relatively small compared to the total burned area each year. There was less 279 

agreement about other fuel management techniques such as forest clearing or thinning, potentially 280 

because of the variety of vegetation types under consideration, and the lack of consensus in the literature 281 

on mechanical treatments. Even though activities such as clear-cutting reduce fuel, fire activity may 282 

increase due to the effects on microclimate and residual biomass, therefore changing fuel structure and 283 

composition (Bergeron et al., 2010; Cyr et al., 2009; Lindenmayer et al., 2009, 2020; Maxwell et al., 2019; 284 

Stephens et al., 2020). Conversely, traditional or Indigenous practices, such as cultural burning, were 285 

suggested as beneficial in reinforcing fire regime resilience and reducing damage by preventing extreme 286 

wildfire events (Christianson, 2015; Fernandes, 2020; Fletcher et al., 2021). There was a high level of 287 

agreement among experts who mentioned restoring vegetation (i.e., native habitat conservation and 288 

restoration) as a positive impact on all ecosystem values. There were mixed opinions about introducing 289 

fire resilient plants, but agreement on the positive effect of reducing flammable invasive plants. The 290 

natural or artificial selection of nonflammable species was mostly considered to have a negative effect on 291 

biodiversity and ecosystem services but variable effects on carbon and albedo.  292 

Several landscape management strategies had general support, including increasing landscape 293 

heterogeneity, diversification, and reduction of landscape flammability by targeted land use, as well as 294 

creating buffer zones around primary and old-growth forests (Barredo et al., 2021). Attention to the 295 

human-wildfire interface was a common recommendation, as certain levels of population (housing) 296 

density, wildland-urban interface, and landscape connectivity can dramatically affect the characteristics 297 

and societal consequences of fire (Archibald et al., 2012; Kelley et al., 2019; Moritz et al., 2014; Syphard et 298 

al., 2007).    299 

Direct fire management was recommended in 17% of expert responses. In the case of fire suppression as 300 

a direct fire management strategy, there was less agreement about the direction of effects on different 301 
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factors. In some studies, it has been shown that fire suppression had a negative impact on fire-dependent 302 

ecosystems. Such policies have led to fuel accumulation and increased flammability that has contributed 303 

to today’s extreme wildfire events (Marlon et al., 2012; Parisien et al., 2020; Schoennagel et al., 2017; 304 

Valese et al., 2014). A greater proportion of respondents (23%) indicated the importance of social or 305 

political awareness and action. These included climate mitigation, education of the public regarding fire 306 

danger and ignitions, direct or indirect conservation policies, and incorporation of Indigenous or 307 

traditional knowledge (Table. S1). Although we have summarized and combined all the management 308 

suggestions from experts of different fire regions, we remind the reader that suitable management 309 

applications can significantly vary between and within biomes based on various factors (detailed 310 

responses for each fire region can be found in the Supplementary Information). 311 

There was strong agreement among experts, except for the Afrotropic and the Indo-Malayan 312 

biogeographic realms, that under RCP8.5, humans will have a decreasing capacity to control wildfires. This 313 

was most obvious for the Neotropic and Nearctic, and Australasia for the later years (2100 and 2300). 314 

Experts on Neotropic and Nearctic fire regimes indicated that this same decreased capacity was likely to 315 

apply under RCP4.5. 70% of the respondents indicate that under RCP2.6, humans will maintain some 316 

ability of managing fire-impacts (Figure. S23). 317 

Charting a course in a world of uncertainty  318 

For each question, respondents identified the main sources of uncertainty (Table 1), which included 319 

limited observational data, inadequate modeling frameworks, and system complexity, particularly social 320 

dimensions. Respondents emphasized that the impact of different human activities is not completely 321 

understood for the past or present and that untangling different fire drivers can be difficult due to 322 

multiple interactions and feedbacks, which are often not represented in coupled models. Respondents 323 

also mentioned that the unprecedented rate of climate change and diversity of human activity made 324 

estimations of fire return intervals and other dimensions of fire regime uncertain. Respondents were 325 

uncertain about emergent economic and policy direction, beliefs, and technologies as tools to combat 326 
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changing fire regime. Additional sources of uncertainty included the exclusion of small fires below the 327 

detection of satellite census and a lack of information about fire severity impacting ecological succession, 328 

albedo, and carbon-climate feedbacks. 329 

While our study may have limited application in many specific management contexts, there were some 330 

general patterns that could be informative for policymakers, managers, and researchers. First, there is a 331 

high level of agreement across regions that the risk of damaging fire characteristics will be greater under 332 

higher emissions. While the specific consequences will vary by fire region and habitat type, the overall 333 

message is clear: rapid reduction of greenhouse gas emissions is needed to restore Holocene-like climate 334 

conditions. Otherwise, the emergence of novel climates and fire regimes outside of the range of Holocene 335 

variability, will complicate our ability to conserve habitats, ensure healthy communities, and preserve 336 

terrestrial carbon uptake and storage. Without a reduction in emissions, changes in fire regime could 337 

eclipse climate mitigation policies such as negative emissions through reforestation and afforestation 338 

(Anderegg et al., 2020; Veldman et al., 2019). Any carbon uptake from recovered or cultivated forests 339 

could be negated by the increased fire frequency or intensity projected for many regions (Hammond et 340 

al., 2022; Smith et al., 2020). 341 

A second overall lesson is that knowledge of past fire regimes provides perspective on how climate, 342 

vegetation, and human actions interacted to shape fire in the Earth system (Marlon et al., 2008; Molinari 343 

et al., 2018; Pechony & Shindell, 2010). For example, paleo-ecological knowledge about vegetation 344 

community and historical amplitude of fire regime change in a given biome can provide estimates of 345 

historical thresholds and optimal vegetation structure for management purposes (Hennebelle et al., 346 

2018). Likewise, fire histories show human-vegetation-climate linkages, such as decreasing tree cover 347 

creating microclimates favorable to the encroachment of flammable vegetation in the understory 348 

(Feurdean et al., 2020). An overarching lesson learned from looking at Holocene fire histories is that 349 

projected conditions are generally unprecedented, meaning that human-fire interactions could have 350 

extreme and unexpected consequences (Bova et al., 2021). We should not assume that historical 351 
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management practices will suffice (Crandall et al., 2021; E. C. Ellis et al., 2021; Pyne, 2007) given 352 

accelerated rates of vegetation change since c. 4000 BP (Mottl et al., 2021), the emergence of novel biotic 353 

and abiotic conditions (Burke et al., 2019; Finsinger et al., 2017; Ordonez et al., 2016), and increasing 354 

populations. For example, the expansion of human development in fire prone areas in the western US is 355 

increasing both wildfire incidence and cost of suppression (Balch et al., 2017a, 2017b).  356 

Third, despite the substantial uncertainties associated with fire regimes, mitigation efforts such as 357 

allowing some fires to burn to reduce fuel loads, prescribed burning, and fuel treatments will help limit 358 

fire impacts and cost (Harris et al., 2016; Mietkiewicz et al., 2020; Moritz et al., 2014; Radeloff et al., 359 

2018). Likewise, the conservation of large, contiguous ecosystems allows the use of more effective 360 

wildfire management tools such as prescribed burning and increases resilience when unexpected wildfire 361 

behavior emerges (Bentley & Penman, 2017; Driscoll et al., 2016; Miller, 2020). 362 

While this study brought together a diverse group of paleo and present fire researchers, we point out that 363 

our group is not geographically balanced. Despite invitations to several hundred researchers, we only 364 

received a few responses for some fire regions (Figure. 1b), including the African subtropical and tropical 365 

grassland region, which accounts for a large portion of global area burned (Ramo et al., 2021). This 366 

reflects the broader geographical and cultural bias in ecological research generally and wildfire research 367 

specifically (Bradstock et al., 2002; Hantson et al., 2016; Metcalfe et al., 2018), highlighting the need for 368 

more diverse research networks.  369 

We also point out a potential bias in climate scenarios. Low emissions scenarios such as RCP2.6 or SSP1 370 

are sometimes omitted from model inter-comparisons because they are often deemed unfeasible 371 

(McGuire et al., 2018). In reality, it is the more extreme warming scenarios that are becoming less likely 372 

(Hausfather & Peters, 2020; Lovins et al., 2019). We found substantial differences in fire regimes between 373 

RCP2.6 and higher emission scenarios. Given the current rate of the global transition to renewable 374 
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energies (Breyer et al., 2022; Hausfather & Peters, 2020; O’Neill et al., 2020), it is important to understand 375 

both the “low ” as well as the “high range” of climate change futures. 376 

Expert assessment application in fire management  377 

Decision-making in landscape and fire management requires a great understanding of complex human 378 

and natural systems and their interactions with fire. Currently, policymakers and managers working on 379 

fire issues are operating in a complex environment with sometimes conflicting traditional, scientific, and 380 

political information and priorities. As the physical, biological, and human factors controlling wildfire 381 

behavior change rapidly in the Anthropocene, improving science-policy-management integration would 382 

be highly beneficial for human wellbeing and ecosystem function. The primary scientific knowledge that is 383 

used by decision-makers regarding the future is based on models or single expert advice. As several 384 

respondents mentioned in this study, quantitative models cannot capture all the factors influencing the 385 

evolution of fire behavior. Various types of expert elicitations can complement quantitative models to 386 

generate more robust and reliable guidance that allows adaptive management. This could range from 387 

informal interpretation of model outputs by expert panels to iterative combinations, such as expert input 388 

on supervised and unsupervised machine learning models. These approaches should be  (and already are 389 

in some cases) used in various aspects of fire management, from detecting fires to planning and policy, by 390 

providing a benchmark or improving the initial parameters and weights (Jain et al., 2020).  391 

At some level, we are not proposing a new role for experts in policymaking and management, but we are 392 

suggesting that the integration of local expert knowledge be done in a more rigorous and robust way. 393 

Policymakers and managers are making decisions based on available information that is often filtered 394 

through informal information networks, especially trusted relationships and professional networks. By 395 

involving more independent experts to inform policy, it is possible to limit the “one-expert syndrome”, 396 

where the opinions or a single knowledge holder dominate the decision-making process, whether that 397 

view represents the broader consensus.  398 
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Our study shows that experts have different views about different aspects of wildfires (i.e., there is not 399 

strong consensus on several dimensions of current and future fire behavior). These biases come from 400 

various sources, including scientific background and study methodology (Oppenheimer et al., 2019). 401 

Therefore, developing methods to transfer group expertise to decision-makers is critical. Even though our 402 

study has been done on a global scale to identify large patterns, this method can be beneficial for local 403 

management by bringing local expertise (that in many regions is not represented in scientific publications 404 

that are mostly produced in developed countries), such as indigenous knowledge, into the decision-405 

making process (Christianson, 2015). 406 
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 924 

Figure1. a) Conceptual diagram of fire regime characteristics and state changes for three example 925 
biomes. Fire regime is defined in terms of spatial (e.g., extent, type, patchiness), temporal (e.g., 926 
frequency, interval, seasonality), and physical (e.g., intensity, severity) fire characteristics. The size of 927 
flame in the Figure represents fire extent, and the vertical placement of the flame represents fire type 928 
(e.g., surface vs. crown). The green and brown bands represent above- and below-ground biomass, 929 
respectively. The vertical black dashed lines represent fire regime state change. The gray wedges 930 
represent fire seasonality before fire regime change: W: winter, Sp: Spring, S: summer and F: fall/autumn. 931 
Red dashed lines inside wedges represent new fire regime seasonality after state change b) The location 932 
of the fire regions used in this study (Olson 2001) with the number of respondents per fire region. 933 
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 934 
 935 

Figure 2. Estimates of when the earliest human-driven fire regime state changes occurred during the 936 
Holocene as estimated by respondents. a)  75th percentile values of the earliest time humans were 937 
identified as a major driver of fire regime change by respondents. b) Points represent individual 938 
responses, while box plots represent the median, quartiles, most extreme points within 1.5-times the 939 
interquartile range (IQR), and points beyond 1.5times the IQR. 940 
  941 
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a) Likelihood of fire regime change by 2100 

 
 
                                                                                                  
Figure 3.  Likelihood of fire regime 
change under different RCP 
scenarios as estimated by 
respondents a) Median of central 
values of the likelihood of fire 
regime change for year 2100 
under three RCP scenarios. b) 
Magnitude of fire regime change 
for each biome was based on the 
slope between the estimated 

likelihood of a fire regime change (%) and the amount of radiative forcing for the three RCP scenarios 
(W.m-2). The higher values represent a higher magnitude of fire regime likelihood change moving from 
RCP2.6 to RCP8.5.  
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 942 
 

 943 
Figure 4. Direction and magnitude of change of fire regime characteristics as estimated by respondents. 944 
Median estimates of changes in fire extent (area), frequency, and severity  for global warming scenarios 945 
RCP2.6, RCP4.5 and RCP8.5 in 2050, 2100, and 2300.  946 
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Figure 5. The net effect of predicted fire regime changes on ecosystem values in the future as estimated 
by respondents. a) The maps show the median value of experts estimate under RCP4.5, year 2100 (see 
Figures S18-21 for changes in RCP2.6 and RCP8.5). b) Average values and standard error for year 2100 
under three RCP scenarios. The full names of the biomes can be seen in Figure1-b. Experts responded on a 
-5 to 5 scale for how strongly the future fire regime of the three RCP scenarios would affect the indicated 
parameters in the year 2100 (-5 = strong net decrease, 0 = no net effect, 5= strong net increase). 
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Table 1. Sources of uncertainty identified by respondents 
 

 
947 

Past  Current  Future  Management  
Sources of uncertainty % Sources of uncertainty % Sources of uncertainty % Sources of uncertainty % 

Limited proxy-
paleo data 

23 Spatial variability   31 Vegetation shift 12 Political and socio-
economic 

22 

Spatial variability 17 Limited data  17 Ecosystem 
interactions and 

feedbacks2 

12 Capacity and 
effectiveness of 

management and 
intervention 

13 

Proxy resolution 15 Combustion/severi
ty  

8 Climate change 10 Climate change 11 

Model limitation 11 Small fire 
detection/remote 

sensing  

7 Political and socio-
economic 

8 Ecosystem 
interactions and 

feedbacks 

10 

Human influence1 11 Human activity  8 Model limitation 7 Technology 
developments 

6 

Proxy reliability 8 Recent changes  4 Fire management an
d intervention 

7 Science and 
management 
connection 

4 

Temporal variability 6   Land use change 6 Vegetation state 4 

Chronological 5   Precipitation  6   
1E.g., Fire management history, land use history, etc. 
2E.g., Climate-vegetation dynamics, albedo and new vegetation, vegetation-fire interaction, fuel-ignition relationships, 
climate-human intervention, climate-vegetation feedbacks. 
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