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Abstract
Temporally evolving neural processes maintain working memory (WM) representations of
information no longer available in the environment. Nonetheless, the dynamics of WM remain
largely unexplored in the human cortex. With fMRI, we found evidence of both stable and
dynamic WM representations in human cortex during a memory-guided saccade task. The
stability of WM varied across brain regions with early visual cortex exhibiting the strongest
dynamics. Leveraging population receptive field modeling, we visualized and made the neural
dynamics interpretable. Early in the trial, neural responses in V1 were dominated by narrowly
tuned activation at the location of the peripheral target. Over time, activity spread toward foveal
locations and targets were represented by diffuse activation among voxels with receptive fields
along a line between the fovea and the target. We suggest that the WM dynamics in early visual
cortex reflects a transformation of sensory inputs into abstract task-related representations.

(147/150 words)
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Working memory (WM) allows us to store information over a brief period of time, increasing the
duration of neural representations available to support computations and decisions. Early
studies on the neural mechanisms of WM focused on the prefrontal cortex (PFC) of non-human
primates 1,2,reviewed in 3, and demonstrated that neurons in PFC exhibit elevated and sustained
activity during memory delays suggesting a mechanism by which stimulus information is
maintained 4–11.

Implicit in the studies of persistent activity is the idea that the population neural response that
encodes a specific feature value is stable through memory delay. However, later empirical
studies reported that during memory delays, some neurons in PFC exhibit temporal dynamics
more complicated than those predicted by stable persistent activity 12–16. Recent multivariate
analyses revealed that both stable and dynamic codes of WM coexist in the macaque PFC at
the population level 17,18. Fewer studies have investigated the dynamics of WM in the human
brain. By measuring the responses evoked by task-irrelevant stimuli presented during memory
delay, previous human EEG studies inferred that the neural code of WM exhibited dynamics
19,20.

Here we address several open issues regarding the neural code of WM and its dynamics in the
human brain. First, going beyond a single region of interest and leveraging the findings that the
content of WM can be decoded from fMRI voxel activity patterns across widespread brain
regions 21–43, we quantified and compared the stability of WM codes across multiple brain
regions. Second, we aim to elucidate the driving factors of WM dynamics by projecting
population neural response into the visual field by population receptive field (pRF) mapping 44,45,
making the neural dynamics of WM interpretable.

To preview, we found that stable and dynamic codes coexist in most of the brain regions, and
most importantly, the stability of WM varied across brain regions with the early visual cortex
exhibiting the strongest dynamics while the high-level visual and the parietal cortex showed
higher stability. In V1, where we observed prominent dynamics, neural activation was limited to
the location of the peripheral target early in the delay, and over time, spread toward the foveal
visual field along the polar angle of the target. These results demonstrate how WM dynamics
can be driven by different temporal dynamics among neural populations with different selectivity
(eccentricity in this case) and may reflect a recoding of sensory inputs into a format most
proximal to the demands of the task.

Results
To facilitate direct comparisons with the existing monkey neurophysiological studies e.g.,

4,6,9,17,18,46, we used a memory-guided saccade task to study spatial WM. In each trial, a brief
(500 ms) target dot was presented in the periphery, followed by a 12 s delay period. The polar
angle of the target was chosen pseudo-randomly from 1 of 32 positions spanning the full circle.
After the delay, participants reported the remembered location with a memory-guided saccade
(Fig. 1A). Participants were able to make precise memory reports close to the target locations
(Fig. 1B). In addition to the memory-guided saccade experiment, participants underwent a pRF
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mapping session 44,45, which allowed us to define four retinotopic visual (V1, V2, V3, and V3AB)
and four parietal (IPS0, IPS1, IPS2, and IPS3) areas as the regions of interest (ROIs).

Coexistence of stable and dynamic WM codes. We first characterized the dynamics of the
WM neural code by a temporal generalization analysis 18,47,48, in which we tested whether the
decoder trained by the voxel activity pattern at one time point can be generalized to decode the
location (polar angle) of the WM target using the voxel activity at other time points. We found a
stable WM code in all the ROIs (pink dashed lines in Fig. 1C), quantified by the above-chance
decoding performance among the off-diagonal elements of the cross-decoding matrices. That is,
the location of the WM target remained decodable even when the training data and the testing
data came from different time points. In addition, across all the ROIs, WM content was present
shortly (about 1 to 2 sec) after the delay onset (or target offset), and remained decodable
throughout the delay period. We next asked if WM representations changed over time by testing
if the off-diagonal elements showed worse decoding performance than their corresponding
diagonal elements. In most ROIs (V1, V2, V3, V3AB, IPS0, IPS2 and IPS3), we observed
clusters of off-diagonal elements exhibiting reduced decoding performance, indicating a
dynamic WM neural code (light blue lines in Fig. 1C), which coexisted with the stable neural
code.

Note that the decodable signals we observed throughout the delay do not merely reflect a slow
decay of sensory-evoked response, but rely on WM maintenance. A subset of the subjects
(n=6) participated in a passive viewing experiment in which they were asked to perform a task at
central fixation while a high-contrast flickering peripheral ‘WM target’, treated as an irrelevant
stimulus, was present continuously throughout the delay. In this case, we only observed a stable
code without significant dynamics, and the peripheral ‘WM target’ was only decodable for a
much shorter period of time early in the delay without sustaining through the delay (Fig. 1D).
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Figure 1. Behaviors and temporal
generalization analysis. (A) Procedures.
Participants maintained fixation while
remembering the location of a target dot
presented at a pseudorandom polar angle
and at 12° eccentricity from fixation. At the
end of each trial, participants made
saccadic eye movements to report their
memory, and adjusted the length of an arc
for uncertainty report. (B) The mean
magnitude (absolute value) of memory
error of each participant. The horizontal
line represents the group mean with ±1
s.e.m. (C) The temporal generalization
analysis. Decoders were trained to
decode the target location from the
fMRI BOLD response. The temporal
generalizability of the decoders trained
with voxel activity patterns of each time
point were tested with the data of all the
time points. Pink dashed lines: the
stable clusters, the cluster that
exhibited above-chance decoding
performance. Blue solid lines: the
dynamic clusters, the off-diagonal
elements that exhibited lower decoding
performance than (both of) their
corresponding diagonal elements. (D)
Same as (C) but for the passive viewing
experiment. Only stable clusters were
observed.

Neural subspaces. We used principal component analysis (PCA) to visualize the neural
subspaces that best explain the variance of voxel activity across different target locations. As an
approach complementary to temporal generalization, PCA allows us to further (1) inspect
whether target locations are encoded topologically, reflecting their relationships in the visual field
space (2) investigate the geometry underlying the dynamics (3) quantify and thus compare the
stability across brian regions.

The existence of a stable code indicates a coding subspace within which target locations are
stable and maintain their relative positions throughout the delay. We characterized such a stable
subspace by applying PCA on time-averaged BOLD responses, discarding the dynamical
aspect of the data 17. We focused on a subspace defined by the top two principal components
that maximized the variance explained. We projected the data of each single time point during
the delay into this stable subspace and found that in this subspace, target locations were
topologically organized, preserving their spatial relationships in the visual field, and the neural
activity remained stable across time in this subspace (Fig. 2).
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We next investigate the dynamical aspect of the neural code by dividing the 12-second delay
into three—the early, middle and late—time windows with equal length and computing their
corresponding neural subspaces. A potential source of the dynamic code is rotational dynamics
where targets move in a subspace across time but maintaining their relative positions 49–51. We
did not observe such rotations when projecting data of individual time points (Fig. 3A), or of
each time window (Fig. 3B; also see Supplementary Fig. 1), into the early, middle or late
subspace. We did observe that the variance of data was best explained by the neural subspace
derived at the same time points. Overall, these results indicate that the WM dynamics is driven
by changes of neural subspace where different neural populations were used to represent the
targets at different time points (Fig. 3D).

Figure 2. Stable subspaces. The
stable coding subspaces were
identified by applying PCA to
time-averaged voxel activity patterns.
(A) V1’s response at each time point
during the delay period was projected
into the stable subspace, the top two
principal components (x-axis and
y-axis) obtained from PCA. The z-axis
represents time from delay onset.
Each curve represents one bin of
target location. The legend indicates
the location, in the visual field,
represented by each of the eight
colors. (B) Same as (A) but for V3AB.
(C) Similar to (A) and (B) but without
visualizing the time axis (z-axis);
thereby is equivalent to the bird-eye’s
view of (A) and (B). Each dot
represents data from one time point
during the delay, with more saturated
colors representing later time points.

To compare the stability of neural code across brain regions, for each ROI, we quantified how
much the neural subspace changed across time by the principal angle between the subspaces
of the early and the late time windows (see Methods) 52–54. We found that the stability of WM
representations, quantified by principal angles, varied across ROIs (F(7, 91) = 3.88, p < .00).
WM representations underwent greater changes in early visual cortex, and were more stable in
higher-level visual cortex and parietal cortex. (confirmed by pairwise comparisons in Fig. 3G).
We obtained similar results when using the ratio of variance explained (Supplementary Fig. 2).
We also computed the principal angles between two subspaces that were estimated by the data
resampled from the same time window (dashed lines in Fig. 3E). As expected, these baseline
values were smaller than the angle computed between time windows, and more importantly,
they did not show variation across ROIs like what we observed for the principal angles
computed across time (Fig 3F). Thus, the stability of WM differed across ROIs, which cannot be
explained by factors such as the reliability of subspace estimation.
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Figure 3. Dynamic subspaces. Early, middle and late neural coding subspaces were identified by
applying PCA to voxel activity patterns in three different time windows. (A) V1’s response of each time
point during the delay was projected into the early, mid and late subspaces, where the top two principal
components (x-axis and y-axis) were derived from PCA. The z-axis represents the time from delay
onset. Each curve represents one bin of the target locations. (B) Projections of the early, mid and late
(data points connected with areas with three different gray levels) voxel activity patterns of V1 into the
early, mid or late subspaces (from the late to right panel). (C) Same as (B) but for V3AB. See
Supplementary Fig. 1 for the projections of other ROIs. (D) Cartoon illustration of two subspaces from
different time points that encodes the WM target locations in the high dimensional space. (E) The dark
blue data points represent the principal angle, between the early and late subspaces, of each ROI
(group mean with ±1 s.e.m.). The dashed lines represent 95% confidence intervals of the distribution of
the principal angles computed between the two subspaces estimated by resampling the data from
either the same early (light gray dashed lines) or the late (dark gray dashed lines) time windows. (F)
The main effect of ROI on the principal angle between the late and the early subspaces is larger than
that predicted by the principal angle within the same time window. Top: by a bootstrapping procedure,
in each iteration, we resampled the data, estimated two early subspaces and computed the principal
angle between them. We then computed the main effect of ROI on the principal angle by ANOVA,
leading to a bootstrapped distribution of the F values (blue histograms). P value was computed by
comparing the bootstrapped distributions with the empirical F value computed using the principal angle
between the early and the late subspaces (orange vertical lines). Bottom: same as the top figure, but
the bootstrapped distribution was computed by resampling the late subspaces. (G) Pairwise
comparisons of the principal angles between ROIs.

Factors driving WM dynamics. To understand and interpret the WM dynamics we observed,
we utilized the voxels’ pRF (center and size) to compute activation maps by projecting voxel
activity patterns into the coordinates of two-dimensional visual field space (Methods). Here, we
focus on two ROIs—V1 and V3AB—where we observed the strongest and the weakest
dynamics (see Supplementary Fig. 3 to 8 for other ROIs).

6

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 10, 2023. ; https://doi.org/10.1101/2022.09.23.509245doi: bioRxiv preprint 

https://doi.org/10.1101/2022.09.23.509245
http://creativecommons.org/licenses/by-nc-nd/4.0/


In V1, the spatial pattern of the population neural response showed clear changes across time.
The response first emerged at the target's polar angle and eccentricity, consistent with previous
fMRI studies that visualized neural responses in the visual field space 35,43,55–57. After about 4.5
seconds, the response at the target’s eccentricity declined, and spread across eccentricity,
spanning the visual field between the target and the fovea (Fig. 4A and 4B). Toward the end of
the delay, activity peaked at the foveal region with a tail pointing toward the target. We observed
sequential activity when binning the locations on the activation maps (at target’s polar angle) by
eccentricity—response at the target’s (far) eccentricity exhibited the earliest peak, followed by
intermediate locations, while the foveal locations peaked at the latest time points (Fig. 4C).
Overall, the neural representations for the WM target changed from a bump at the target into a
more diffuse line-like pattern over time (Fig. 4B). In V3AB, the ROI with the greatest stability, we
found that the peak of activation remained at the target’s peripheral location over the course of
the trial (Fig. 5). Notably, when visualizing the activation maps for V1 during the passive viewing
experiment, we did not observe dynamics like those in the WM experiment. The response
emerged at the target’s polar and eccentricity at the early time points, and diminished in the
middle of the delay (Fig. 6).

Besides eccentricity, changes of neural population’s selectivity for polar angle could also
contribute to WM dynamics. We computed polar angle response functions by collapsing the two
dimensional activation maps across eccentricity (Fig. 7A and 7B). We fitted von-Mises functions
to the response at each time point with the center, gain and width as the free parameters. All
ROIs had response functions that peaked around the target's polar angle. For both V1 and
V3AB, the gain of the response function peaked at about 4-5 seconds and remained above zero
throughout the delay. The width of the functions showed different dynamics between the two
ROIs (Fig. 7E). In V3AB, the width remained stable once it reached its lowest level (similar
patterns were observed in all the ROIs in IPS, Supplementary Fig. 9 ). In contrast, the width in
V1 first reached a lower value than V3AB, which is expected as V1 has a smaller pRFs when
measured by retinotopic mapping procedures 45,58, but increased afterward and became as wide
as the width in V3AB. This dynamics may indicate that the neural activity observed in V1 reflects
feedback signals during the later time points during the delay (see Discussions).
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Figure 4. Visualization of WM dynamics in V1. (A) Activation maps visualize the projection of voxel
activity patterns onto two dimensional visual field space. Each image represents the activation map
reconstructed for each TR during the delay. (B) The horizontal slice over the activation map at vertical
location = 0° for each time window (5 TRs per time window. TR at 0 sec was not included). For
comparisons, the activity of the early time window was plotted as dashed curves in the middle and late
time windows. Data represents mean ± s.e.m. (C) Population response for different eccentricities as a
function of time, computed by averaging over the activation maps constrained within a sector spanning
± 30° centered the target’s polar angle and segmenting the sector into bins from far to near eccentricity
in steps of 1°.
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Figure 5. Visualization of WM dynamics in V3AB. (A) to (C) plotted in the same format as those in
Figure 4A to 4C, but for V3AB.

Neural code during WM is stable in PFC. Previous studies of the neural population codes
during WM in nonhuman primates have largely focused on the neural activity in PFC. Here, we
extended our analyses above to two frontal regions, iPCS and sPCS, the regions where we
previously observed topographic organization in the pRF mapping session consistent with 45. We
found decodable WM content in both frontal regions but their decoding errors were larger than
all the other ROIs (Fig. 8A). In the temporal generalization analysis, we found a stable cluster
throughout the memory delay in each of the ROIs, without significant dynamical clusters (Fig. 8B
and 8C). Projecting the voxel activity pattern of each time point into the stable subspace
extracted by PCA, we found that the locations of the targets remained largely stable and
separable within the stable subspace (Fig. 8D and 8E). However, their spatial topology (in the
visual field space) was not well-maintained like those observed in the visual and the parietal
cortices.
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Figure 6. Visualization of neural dynamics in V1 during passive viewing experiment. (A) to (C) plotted in
the same format as those in Figure 4A to 4C, but for the passive viewing experiment.

Figure 7. Polar angle response
functions. (A) V1’s polar angle
response functions as a function
of time from delay onset. (B)
Same as (A), but for V3AB. (C)
The center of the response
functions. (D) The gain of the
response functions. (E) The
width of the response function.
Data represents mean ± s.e.m.
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Figure 8. WM decoding
in PFC. (A) Decoding
error of each ROI
including two ROIs in the
prefrontal cortex. These
data are equivalent to
the diagonal elements of
the decoding matrices
from the temporal
generalization analysis
(Figure 1C and 8B-C).
Data points represent
group mean with ±1
s.e.m. (B-C) Temporal
generalization analysis
for iPCS and sPCS.
Plotted in the same
format as Figure 1C.
(D-E) Stable subspaces.
Plotted in the same
format as Figure 2C. The
stable coding subspaces
were identified by
applying PCA to

time-averaged voxel activity patterns. Voxel activity pattern of each time point during the delay period
was projected in the stable subspace, the top two principal components (x-axis and y-axis) obtained
from PCA.

DISCUSSION
To summarize, in the human brain, we found evidence of both stable and dynamic WM
representations in a simple memory-guided saccade task (Fig. 1). By dimension reduction and
analyzing the geometry of neural subspaces, we showed that the dynamics of WM varied
across brain regions, with the early visual cortex exhibiting the greatest changes across time
(Fig. 3). Projections of the voxel activity on visual field space revealed that the dynamics of WM
in early visual cortex involves a propagation from neural populations selective for the peripheral
location of targets to locations near the fovea (Fig. 4), accompanied by a decrement in polar
angle selectivity (Fig. 7).

The first part of our results—temporal generalization and PCA—show striking similarities, but
also differences, to those observed in neurophysiological recordings in monkey PFC. Applying
the same temporal generalization analysis to data from Watanabe and Funahashi 59, Spaak et
al. 18 also reported the coexistence of stable and dynamic coding in monkey’s PFC for spatial
WM. In both ours and their results18, in the cross-decoding matrices, the dynamic code exhibited
as a horizontal elongated cluster (and a vertical mirrored version). Similarly, in a reanalysis of
Constantinidis et al., 60 and Romo et al., 8, Murray et al. 17 reported that a stable subspace
explained a comparable amount of stimulus variance relative to a dynamic subspace during the
delay. Only around the time of stimulus presentation did the stable subspace show a
disadvantage compared to the dynamic subspace. Together, these results underscore that the
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strongest dynamics of WM occurred during the transition between a brief perceptual encoding
phase and a longer mnemonic maintenance phase, and they are in line with the notion that
mnemonic codes are somehow different from perceptual codes given that classifiers trained on
fMRI patterns during visual stimulation often showed lower decoding performance during WM
maintenance 22,42,43. Moreover, WM representations remain decodable in the presence of visual
distractors 37,40,42 suggesting that because these representations do not cause catastrophic
interference, they perhaps have unique representational formats 61.

Despite the similarities between our findings and the neurophysiological results from monkey
PFC regarding the information at the population level, we find evidence for coexisting stable and
dynamic WM codes in early visual cortex, not PFC. While we cannot know whether these
differences are due to differences in species or differences in measurements of neural activity,
they parallel a vast literature in humans demonstrating the importance of early visual cortex for
WM 3.

Our results revealed that even under the simplest spatial WM task, different brain regions
represent WM content in different formats. Neural response in higher-level visual cortex and
parietal cortex almost exclusively represented the memorized locations, peaking at the target’s
polar angle and eccentricity throughout the delay. In contrast, the early visual cortex seems to
concurrently reflect the immediate task demand that requires observers to concurrently hold
fixation and the memorized target at far eccentricity, leading to an activity with a peak at more
foveal locations with a tail pointing toward the target. Additionally, the activation we observed in
early visual cortex during the late time points of the delay might represent the planned trajectory,
or the rehearsal, of the memory-guided saccade. In this case, the sensory properties of the
visual target were reformatted into a mnemonic code more proximal to the response required by
the task. Recently, we demonstrated that voxel activity patterns in visual cortex are recoded into
a line-like spatial coding scheme when subjects are asked to remember and estimate the
orientation of a grating or direction of moving dots 43. As a summary statistic of each stimulus
type, a line is both efficient and useful when behaviorally estimating memorized angles. These
findings together with our current findings indicate that WM representations are surprisingly
flexible. Within early visual cortex, sensory representations appear to transform into
representations that depend on the type of memory-guided behavior. By implementing different
task demands under the same sensory inputs, future studies can investigate how the dynamics
of WM neural code are affected by the level of abstraction or reformation of the perceptual
inputs required in memory-guided behavior.

When quantifying the polar angle response function evoked by the WM target, the widths of the
functions in early visual cortex widened over time once it reached a dip at the early time points
(Fig. 7), and in contrast, the width was constant throughout the delay in higher-level cortical
regions. These results suggest that WM-related activation in early visual cortex may rely on
feedback signals originating from the downstream regions. During target encoding, polar angle
response function in early visual cortex was narrow, owing to the small receptive field sizes in
these areas. Feedback signals originating from higher-level cortical areas, with larger receptive
fields, might broaden the widths of the response functions in early visual cortex during WM. A
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shift from bottom-up sensory signals to top-down WM-related feedback may contribute to the
dynamics in early visual cortex. These results are consistent with laminar recording in macaque
V1 62 and fMRI measurements of human V1 35,43,63 showing that the persistent activity during
WM in V1 has top-down origins. Beyond WM, two recent studies also employed top-down
feedback signals to explain the decline of the precision of spatial representations in early visual
cortex during mental imagery 64 and episodic memory, relative to stimulus encoding.

METHODS
Procedures. The details of the main experiment, the passive viewing experiment and the
retinotopic mapping sessions have been previously reported in 41. In the main experiment,
participants performed a memory-guided saccade task in the fMRI scanner. Each trial started
with the onset of the WM target, a light gray dot (0.65° diameter) with a duration of 500 ms. The
target was at 12° eccentricity and the polar angle of the target was pseudo-randomly sampled
from 1 of 32 locations evenly tiling a full circle. The target was followed by a 12-second delay
period, during which the participants were required to maintain their gaze at the fixation point
while remembering the location of the target dot. After the delay, the fixation point changed from
a light gray circle into a gray filled dot, serving as the response cue. In addition, an black ring
whose radius matches the eccentricity of the target was presented. Upon the onset of the
response cue, participants reported the location of the target by making a saccadic eye
movement onto the black ring. The reported location was first read out by the eye tracker, and a
dot was presented at the reported location. Participants were allowed to further use a manual
dial to adjust the reported location, and they pressed a button to finalize the memory report.
Upon the button press, an arc centered at the reported location appeared on the ring. The
participants were asked to use the manual dial to adjust the length of the arc in a
post-estimation wager, in which they should reflect the uncertainty of their WM by the length of
the arc, the longer the arc the more uncertain. Participants finalized the uncertainty report by a
button press, after which a white dot was presented at the true target location as the feedback.
Participants could earn points if the true target location fell within the arc (see details in Li et al.,
2021). The results of uncertainty reports are detailed in an earlier study 41.

A subset of participants (n=6) joined an additional passive viewing experiment. The timing of
this experiment was similar to the main experiment. Instead of a brief and dim WM target
stimulus, we presented a salient high-contrast flickering checkerboard (0.875 deg radius; 1
cycle/deg spatial frequency; 8 Hz flicker) at the same locations as the main experiment. The
checkerboard was presented for 12.5 seconds (throughout the WM target period and the delay
in Figure 1A), during which the fixation point, a ‘+’ symbol, changed its weight-height ratio, and
the participants were asked to attend to the fixation and detect the changes by button presses.

Each participant was scanned for a 1.5-2 hour retinotopic mapping session. The procedures of
the retinotopic mapping session followed those used in Mackey et al 45. In short, during the
retinotopic mapping session, participants maintained their gaze at the fixation point while a bar
sweeping across the screen 12 times per run in various directions. Participants were required to
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attentively track the bar and perform a motion discrimination task based on the random dot
kinematograms presented within the bar apertures see details in 45. We fit a pRF model with
compressive spatial summation to the BOLD time series of the retinotopic mapping session 44,65.
We projected the voxels’ preferred phase angle and eccentricity on the cortical surface and
defined ROIs by visual inspection (primarily based on the reversal of voxels’ preferred phase
angle). We define bilateral dorsal visual ROIs V1, V2, V3, V3AB, IPS0, IPS1, IPS2, IPS3 and
two frontal ROIs, iPCS and sPCS.

Setup and eye tracking. Visual stimuli were presented by an LCD (VPixx ProPix) projector
located behind the scanner bore. Participants viewed the stimuli through an angled mirror with a
field of view of 52° by 31°. We presented a gray circular aperture (30° diameter) on the screen
throughout the experiments. Eye position was recorded with a sampling rate at 500 Hz using an
EyeLink 1000 Plus infrared video-based eye tracker (SR Research) mounted inside the scanner
bore. We monitored gaze data and adjusted pupil/corneal reflection detection parameters as
necessary during and/or between each run.

Behavioral data analysis. As participants were allowed to manually adjust the reported
location after the saccades, the final dot location after the manual adjustment was used as the
participants’ memory report. Eye position was analyzed offline. The raw eye position data were
first smoothed with a Gaussian kernel, and was converted into eye velocity using the eye
positions of the five neighboring time points. Saccades were detected when the eye velocities
exceeded the median velocity by 5 SDs with a minimum duration of 8 ms. Trials with ill-defined
primary saccade, or with the magnitude of memory error or uncertainty report (arc length) larger
than mean 3 standard deviations were excluded from analyses.

Temporal generalization. We decoded the location (polar angle) of the target from the BOLD
response. We focused on the BOLD response measured from 0 to 13.5 second from the delay
onset (18 TRs in total). Here, decoding is a regression problem where we aimed to predict the
target location from single-trial BOLD response (an matrix) by estimating
weights . As polar angle is a circular variable, we trained two regressions to predict

and , and the predicted target location was computed as
. We used support vector regression (with linear kernel) in the scikit-learn

Python library to estimate the weights. In a 10 fold cross-validation procedure, all the trials from
a subject were separated as the training set (9/10 of the trials) and the testing set (1/10 of the
trials). Regression weights were estimated using the training set’s BOLD response of a
particular time point. The weights were then applied to predict the target location using the
testing trials’ BOLD response. Note that the testing was not only applied to the time point same
as the time point of the training data, but was applied to all the time points of the data of the
testing trials to investigate the generalizability of the decoders. The performance of the decoder
was quantified as (the absolute value of) decoding errors averaged across all the trials for each
participant. In FIgure 1C, we report the mean decoding error averaged over participants.

Statistical tests for the stable and dynamic code. The stable code was represented by
above-chance decoding even when the training and the testing data were from different time
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points. Thereby we defined the stable code as the elements in the cross-decoding matrix where
the decoding error was smaller than 90° (the mean decoding error under the null hypothesis that
the decoder generates random predictions uniformly distributed across the entire polar angle
space). We first applied t-test for each element in the cross-decoding matrix, and the t-scores
were subject to cluster-based permutation test for identifying clusters exhibiting above-chance
decoding performance. The permutation test was done by randomly permuting the decoders’
predicted target location and computing the t-scores summed over the element in the
most-significant cluster. This procedure was repeated 1000 times resulting in a null-hypothesis
distribution of the summed t-scores, which was used to decide whether a cluster was statistically
significant in the cross-decoding matrix see details in 66. The dynamic code was defined as the
off-diagonal elements whose decoding performance was significantly poorer than their
corresponding on-diagonal elements. Note that for an off-diagonal element to be included in a
cluster, its decoding performance had to be lower than both of its corresponding on-diagonal
elements. The cluster-based permutation test was done by randomly permuting the locations of
the on- and off-diagonal elements. Overall, the definitions and the statistical tests for the stable
and dynamic code were similar to those used in a previous monkey neurophysiological study 18.

Stable and dynamic subspaces. We used PCA (principal component analysis) to define
low-dimensional subspaces that encode target locations. We defined a data matrix with a
size of by , which represented the voxel activity patterns averaged across all the
trials from the same stimulus location. For all the PCA conducted in this study, for the purpose of
higher signal-to-noise ratio, we binned four neighboring target locations together resulting in 8
stimulus locations for the data matrix ( ). was the number of voxels of each
ROI. had column-wise zero empirical mean, as the mean of each column was removed.
When visualizing the subspaces (Figure 2, 3E and 3G), for each ROI, we concatenated the
voxels across all participants, and applied the PCA on the participant-aggregated ROI. When
computing the indices that quantified the stability of the subspaces—the principal angle and the
ratio of variance explained—PCA was applied to individuals’ ROIs and the indices were
computed for each participant.

For the stable subspaces, we disregarded the time-varying information by averaging the data
across all the time points that fell within the stable cluster during the delay (pink dashed lines in
Figure 1C). Overall, all the time points within the delay were included except the first 2 or 3 TRs
depending on the ROI. To obtain the principal components (PCs), we applied
eigendecomposition on the covariance matrix , where each column of was a
unit-length vector, with a size of by , representing the weights of each PC and was a
diagonal matrix containing the corresponding eigenvalues. Throughout this study, we used the first
two PCs with the largest eigenvalues to define the subspaces; thereby we focused on the weight
matrix with a size of by 2. To visualize the dynamics of population neural responses in the
stable subspace, we projected the data of each time point into the stable subspace by computing

, where was the data matrix of a single time point and , with a size of 8 by 2, was
the projection of the voxel activity pattern of each stimulus location in the subspace defined by the
top two PCs, PC1 and PC2. is often referred to as PC scores in the context of PCA.
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To investigate the dynamical aspect of the neural subspaces, we binned the BOLD response during
the delay into three time windows: early, middle and late time windows, each with 5 TRs (Fig. 3A and
3B). We then estimated the subspace for each time window by applying PCA to the data matrices,

, and , which were the BOLD response averaged over each of the  time windows.

To quantify how the early and the late subspaces oriented in the high-dimensional neural space, we
computed the principal angle, which measured the alignment between two subspaces 52–54. The
principal angle was computed using the method proposed by Björck and Golub 52: We applied

singular decomposition to the inner-product matrix , where and , both
had a size of by 2, were the weighting matrices of the early and the late subspaces obtained
by PCA. The matrix was a diagonal matrix whose diagonal elements were the ranked (from small

to large) cosines of the principal angles and : . The first principal
angle was reported in Figure 3B. We also computed the principal angle for two subspaces from the
same time window (dashed lines in Figure 3B). This was achieved by a bootstrapping procedure
with 1000 iterations. In each iteration, we resampled the trials twice, computed two subspaces using
the data of the same time window and calculated the principal angle between them, resulting in a
bootstrapped distribution of the principal angle within the early (or the late) time window. In addition
to the principal angle, we further computed the ratio of variance explained (RVE), which quantified
how much the variance explained decreased when the data of a time window was projected to the
subspace of a different time window. For example, for the data of the early time window , the

RVE was computed as (Supplementary Fig. 2).

Visualizations of WM representations. We used voxels’ pRF parameters to visualize how neural
populations represent remembered locations. To compute the activation maps (Fig. 4 to Fig. 6), a
grid was positioned in the visual field, centered at the fixation. The grid points evenly sampled the
visual space with a step of 0.5° and the entire grid covered ±18° in both horizontal and vertical
directions from the fixation point. We computed the neural activity for the grid point , whose

coordinate in the visual field was , as the weighted sum of voxel responses

. Here, was the response of voxel . All the voxels within an ROI were
included except the voxels whose responses in the retinotopic mapping session can not be
well-fitted by the pRF model (thresholding at variance explained by the pRF model = 10%).
was the weight of voxel at grid point , which was determined by the density function of a

bivariate circular gaussian distribution , in which was the voxel’s pRF center
and was the voxel’s pRF size. To compute an activation map for a time window and an ROI,
we did the following steps: We computed an activation map for each trial, rotated the map of
each trial to align the target at 0° polar angle, averaged map over all trials for each participant,
and lastly we subtracted the grand mean from the activation map.

We computed each ROI’s polar angle response function from the activation maps. The cartesian
coordinates of each grid point were first converted to phase angle and eccentricity .
We then binned the grid points based on their phase angle ranging from -180° to +180° with a
step of 8°. We included the grid points with eccentricity smaller than 15°. The polar angle tuning
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function was computed as the activity averaged over the grid points within each bin. To quantify
the dynamics of polar angle response functions, the tuning function of each time point was fitted

by von Mises distributions , where was the modified Bassel function of order 0.
We reported the gain of the tuning function defined as the difference between the maximum and
the minimum value of the best-fit tuning function, and the tuning width represented by the fitted

value, converted to have a unit in polar angle degree (Fig. 7 and Supplementary Fig. 9).
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Supplementary Fig. 1: Projections of the early, mid and late (data points connected with areas
with three different gray levels) voxel activity patterns of each ROI into the early, mid or late
subspaces (from the late to right panel).
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Supplementary Fig. 2: Ratio of variance explained. To quantify the reduction of the variance
explained when the data of the early time window was projected into the late subspace (or vice
versa), we computed the ratio between the variances explained by each of the two subspaces
(RVE, dark blue data points; see Methods). We also computed the RVE within time windows by
resampling the trials and computing the subspace twice using the data from the same time
window (dashed light blue lines represent the 95% confidence intervals of the baseline values).
The RVEs computed across time windows were smaller than the RVEs within the time windows
indicating a significant reduction of variance explained when the data of one time window were
projected to the subspace of the other time window. Similar to the principal angle, the
(across-time) RVE varied across ROIs for both the data of the early (main effect for ROI, F(7,
91) = 2.25, p < .05) and the late time window (main effect for ROI, F(7, 91) = 2.98, p < .01).
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Supplementary Fig. 3: Visualization of WM dynamics in V2.
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Supplementary Fig. 4: Visualization of WM dynamics in V3.
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Supplementary Fig. 5: Visualization of WM dynamics in IPS0.
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Supplementary Fig. 6: Visualization of WM dynamics in IPS1.
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Supplementary Fig. 7: Visualization of WM dynamics in IPS2.
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Supplementary Fig. 8: Visualization of WM dynamics in IPS3.
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Supplementary Fig. 9: Parameter fits of the polar angle response functions. For each ROI, the
fitted center, gain and width are plotted as a function of time (from delay onset). Data represents
mean ± s.e.m.
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