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Abstract 

Changes in estrogen levels in women have been associated with increased risk for age-related 

neurodegenerative diseases, including Alzheimer’s disease, but the impact of exogenous estrogen 

exposure on the brain is poorly understood. Oral contraceptives (OC) and hormone therapy (HT) 

and are both common sources of exogenous estrogen for women in reproductive and post-

menopausal years, respectively. Here we examined the association of exogenous sex hormone 

exposure with the brain’s white matter (WM) aging trajectories in postmenopausal women using 

and not using OC and HT (HT users: n=3,033, non-users n=5,093; OC users: n=6,964; non-users 

n=1,156), while also investigating multiple dMRI models. Cross-sectional brain dMRI data was 

analyzed from the UK Biobank using conventional diffusion tensor imaging (DTI), the tensor 

distribution function (TDF), and neurite orientation dispersion and density imaging (NODDI). Mean 

skeletonized diffusivity measures were extracted across the whole brain, and fractional polynomial 

regressions were used to characterize age-related trajectories for WM microstructural measures. 

Advanced dMRI model NODDI revealed a steeper WM aging trajectory in HT users relative to non-

users, and for those using unopposed estrogens relative to combined estrogens treatment. By 

contrast, no interaction was detected between OC status and age effects on the diffusivity 

measures we examined. Exogenous sex hormone exposure may negatively impact WM 

microstructure aging in postmenopausal women. We also present normative reference curves for 

white matter microarchitectural parameters in women, to help identify individuals with 

microstructural anomalies. 
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INTRODUCTION 

 

There are known sex differences in the risk for age-related neurodegenerative diseases 

such as Alzheimer’s disease (AD) (see Salminen et al., 2022 for review). On average, women over 

the age of 40 are at a greater risk of developing AD than age-matched men, and endogenous and 

exogenous estrogen levels also influence this risk in women (Shumaker et al. 2003; Savolainen-

Peltonen et al. 2019; Song et al. 2020). Sex, as well as age, affects many aspects of grey and white 

matter (WM) microstructure across the lifespan (Cox et al. 2016; Nir et al. 2017; Ritchie et al. 2018; 

Toschi et al. 2020; Lawrence et al. 2021). Additionally, AD incidence and the menopause transition 

have frequently been linked, especially when the transition is induced surgically, or occurs at a 

younger age (Costantino et al. 2022)  

Despite this evidence, women's brain health is historically understudied (Covan 2005), and 

we know little about brain mechanisms underlying the reported sex differences in risk for 

degenerative diseases and how female-specific factors may influence women's brain health 

throughout life. Given the growing population of older adults and the high percentage of females 

taking exogenous sex hormones worldwide, this is a major gap in the literature that requires 

immediate attention (Boyle et al. 2020). 

Population based observational studies, as opposed to clinical trials, offer the large sample 

size, diversity, and statistical power required to investigate factors that influence aging trajectories 

across the lifespan. The UK Biobank is currently the largest prospective study of aging, gathering 

extensive questionnaires, physical and cognitive measures, neuroimaging data and biological 

samples in a population-based cohort of middle- to older-aged adults living in the United Kingdom 

(UK). Such large-scale population-based studies can identify subtle effects that could go 

undetected in smaller samples. Factors that modulate aging processes could inform future clinical 

trials and clinical decisions and guide recommendations for women at risk for age-related 

neurodegenerative disorders.  

Some prior neuroimaging studies report relationships between levels of endogenous sex 

hormones - such as estradiol - and developmental processes, lifespan trajectories of aging 

(Salminen et al. 2022) and brain plasticity (Boyle et al., 2020; Galea et al., 2014; Simerly, 2002). 

Several brain structural changes have been associated with estrogen fluctuations in pregnant 

women (Hoekzema et al. 2017) and in pre-menopausal women across the menstrual cycle (Barth 

et al., 2016). Beneficial effects of endogenous estrogen levels have been reported generally for 

gray matter, with larger brain volumes for women during the reproductive years (den Heijer et al. 

2003; Lisofsky et al. 2015). Even so, negative effects of endogenous estrogen levels on brain 

regional volumes have been reported in menopausal women (Resnick et al. 2003).  

While evidence suggests that estrogen exerts a neuroprotective effect in reproductive and 

pre-menopausal women and unfavorable effects post-menopause, whether post-menopausal 

exogenous estrogen exposure is beneficial or detrimental for cognition is still an open question 

and warrants further investigation. Hormone therapy (HT) is a common source of exogenous 

estrogen in women menopausal years. A large randomized, double-blind, placebo-controlled 

clinical trial (N=4,894, Women’s Health Initiative Memory Study, WHIMS) of post-menopausal 
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women (≥65 years) receiving estrogen plus progestin therapy reported for the first time that 

postmenopausal HT exposure may be detrimental for cognition (measured through 4 phases of 

neuropsychological and psychiatric assessments) and may increase their risk for probable 

dementia (Shumaker et al. 2003). A subsequent study using the WHIMS cohort reported greater 

brain atrophy in post-menopausal women treated with unopposed and conjugated estrogens 

(Resnick et al. 2003). Estrogen therapy is also called unopposed estrogen therapy because a 

second hormone (progestin) is not used along with the estrogen, whereas conjugated estrogen 

therapy includes a second hormone in addition to estrogen. A longitudinal study (Kantarci et al. 

2016) reported increasing ventricular enlargement over 4 years in recently menopausal women (5-

36 months past menopause) following conjugated estrogens. More recently, a large-scale UK 

Biobank population study of 16,854 middle to older-aged women (de Lange et al. 2020) reported 

that higher cumulative sex hormone exposure was associated with more adverse effects on the 

brain’s gray matter (i.e., more advanced brain age, a biomarker for aging); no information on HT 

treatment type was reported. In APOEK4 carriers, conjugated estrogens were found to reduce 

amyloid-β deposition (Kantarci et al. 2016), and higher levels of estradiol following HT were 

associated with less pronounced brain aging (de Lange et al. 2020); all relative to non-carriers. 

Other neuroimaging studies report a neuroprotective effect of unopposed estrogen treatment on 

WM (Ha et al. 2007).  

The inconsistency of HT neuroimaging markers highlights the fact that there is still much to 

learn about the therapeutic potential of exogenous estrogen use. This variability and lack of 

consensus regarding HT effects on brain structure in women is a major gap in the literature. Large 

clinical trials suggest that the duration of HT and age of onset may be key factors in estrogen-

mediated effects on the brain; the timing of the initiation of HT relative to menopause, age, or 

both, may relate to the health of the underlying vascular tissue and to other factors such as 

reduction in or down-regulation of estrogen receptors. Several clinical studies of HT exposure 

effects on the brain led to the critical period hypothesis, which states that HT may be 

neuroprotective if initiated near the time of cessation of ovarian function – that is, within around 5 

years of menopause (MacLennan et al. 2006; Espeland et al. 2015). Consistent with the critical 

period hypothesis, in 65 women (63% receiving unopposed estrogen), Erickson and colleagues 

(2010) suggested that there is a limited window of opportunity for HT at the time of menopause, 

whereby shorter intervals between menopause and the initiation of treatment were associated 

with larger hippocampal volumes compared with longer intervals (Erickson et al. 2010). Other 

studies in favor of this hypothesis, such as KEEPS (a randomized double-blind placebo-controlled 

study; Gleason et al., 2015) indicated no adverse effects on measures of cognition in recently 

menopaused women, beneficial mood effects up to 4 years using conjugated estrogens, but not 

using estrogen only (oral 17β-estradiol). The ELITE study (randomized double-blind placebo-

controlled study; Hodis et al., 2016) also indicated that women prescribed HT (oral 17β-estradiol) 

much later (>10 years after menopause) may be at higher risk of AD, as opposed to commencing 

therapy within 6 years after menopause. Findings by Gleason et al., (2015) and Hodis et al., (2016) 

were perhaps mediated by women’s cardiovascular risk profiles (Gleason et al. 2015; Hodis et al. 

2016). In the UK Biobank genetic factors were also found to contribute to how timing of treatment 
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initiation influenced women’s brain aging trajectories (de Lange et al. 2020); indicating beneficial 

effects of HT initiation before onset of menopause in APOEK4 carriers, relative to non-carriers. 

However, a study using the WHIMS data (conjugated estrogens; (Espeland et al. 2015) showed that 

conjugated therapy delivered near the time of menopause provided no detectable cognitive 

benefit or detriment. 

Traditionally, research on steroid actions in the brain has focused mainly on 

postmenopausal HT and has rarely controlled for the use of hormonal oral contraception (OC). The 

effects of synthetic steroids contained OC on brain and cognitive abilities is understudied, despite 

the increasing use of OC globally (World Health Organization 2019). OC have been on the market 

for over 50 years and used by 100 million women (Christin-Maitre 2013; Pletzer and Kerschbaum 

2014; Daniels and Abma 2019; World Health Organization 2019). Contemporary OC literature has 

focused mainly on comparing cognitive performance in users and non-users across the menstrual 

cycle of pre-menopausal women (Mordecai et al. 2008; Gogos 2013). Even so, these studies are 

inconclusive due to the small sample sizes considered. One study in postmenopausal women 

indicates that OC usage was not associated with more evident brain aging (de Lange et al. 2020).  

There is a need for large-scale studies to expand on previous research and further evaluate 

sex-hormone factors specific to women in the context of aging on the brain. Here, for the first 

time, we set out to measure and model age-associated effects on WM microstructure to infer 

possible effects of exogenous sex hormones on the brains of postmenopausal women by using 

multiple diffusion MRI (dMRI) models.  

Diffusion MRI is an in vivo imaging technique that allows quantitative investigation of 

microstructural differences in WM tracts by exploiting the Brownian motion of water molecules, 

and the dependency of this diffusion process on the cellular environment (Jones 2008). Late-life 

cognitive decline may be caused, in part, by microstructural deterioration in the brain’s neural 

pathways. Processes such as neuronal and glial cell loss, impaired myelin production, and axonal 

demyelination, may impair information transfer efficiency in the brain’s WM networks. The WM 

disconnection theory is largely supported by emerging data from dMRI studies of the brain, in both 

healthy and diseased subjects (Bennett and Madden 2014; Pievani et al. 2014; Lawrence et al. 

2021). Thus, an accurate characterization of how and where the brain’s WM microstructure 

changes with age is a vital goal in brain aging research.  

Here, we aimed to address the gap in variability and lack of consensus regarding exogenous 

sex hormone effects on brain structure in women by examining the association of HT and OC 

exposure with the brain’s white matter aging trajectories in postmenopausal women. We explored 

this association using different dMRI models and accounting for several clinical variables and 

confounding factors. Drawing on the existing literature on sex hormone effects on the brain, we 

hypothesized that sex hormone therapy would negatively impact women’s WM aging. We 

followed up with exploratory analyses to evaluate differences in HT regimen type (unopposed or 

conjugated estrogens), as these were hypothesized to differentially impact WM aging trajectories 

in women based on previous literature (Gleason et al. 2015; Savolainen-Peltonen et al. 2019). 

Further analyses were carried out to evaluate how WM aging relates to the duration of therapy, 

age at therapy onset and age at menopause, in women. We analyzed single- and multi-shell dMRI 
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brain data from the UK Biobank (Miller et al. 2016a) and processed them using 3 increasingly 

complex dMRI models. We hypothesized that more sophisticated dMRI models that relate the 

signals from diffusion MRI to geometric models of tissue microstructure, as opposed to traditional 

tensor-based methods, will estimate more sensitively the microstructural complexity of aging WM 

trajectories in women using sex hormone therapy. Diffusion indices were extracted and averaged 

across a whole brain WM skeleton. We used fractional polynomial (FP) regression to characterize 

sex hormone effects on age-related trajectories for WM metrics. We also computed normalized 

centile curves to visualize WM aging trajectories for the major diffusivity metrics.   
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MATERIALS & METHODS 

Sample 

Our sample was drawn from the UK Biobank
 

(Miller et al. 2016b) and included 

postmenopausal women aged 45-80 years old. We focused on the subsample of the overall UK 

Biobank that had neuroimaging data available for download at the time of writing. Exogenous sex 

hormone exposure in women was estimated from the HT and OC variables. Our primary analyses 

involved HT exposed women (N=3,033; Table 1), where age effects on WM measures were 

compared to those in women who never took HT (N=5,093). Subsequently, we investigated age 

effects on WM measures in OC users (N=6,964, Table 2), relative to those who never took OC 

(N=1,156). There was an overlap of N=748 women between HT and OC non-users; HT and OC 

models were run separately.  

We note that hormone exposure and hormone treatment are not randomized across 

individuals, as would be the case in a randomized clinical trial; instead, the study is a naturalistic 

epidemiological study of a large population (for assumptions and limitations of this approach, see 

Discussion). 

Analysis of Aging Trends 

We modeled the effect of age on diffusion metrics (described in Table 3) in HT and OC 

users using higher order polynomial (FP) regressions (Royston and Altman 1994; Sauerbrei et al. 

2006). Specifically, we used the multivariate fractional polynomial (mfp) package implemented in R 

(R Core Team, 2016). The mfp package used a predefined set of power terms (-2, -1, -0.5, 0.5, 1, 2, 

3) and the natural logarithm function, and up to two power combinations to identify the best 

fitting model. FP for age was written as age
(p0.5, p1, …)

 where p in age refers to regular powers, and 

age
(o)

 refers to ln(age). Classic multiple regression models assume a linear relationship between 

the independent and dependent variables. However, age effects on the brain may be nonlinear; 

effects are the aggregate of a vast number of cellular processes, each with potentially different 

profiles of acceleration and decline. As the age effects are likely highly nonlinear, with a functional 

form that is not known a priori, fractional polynomials may offer a more adaptive modeling 

approach (Royston and Altman 1994). These have been used to chart age trajectories for 

volumetric and other structural measures by the ENIGMA Lifespan group (Dima et al. 2022; 

Frangou et al. 2022).  

Main nuisance covariates included years of education, waist/hip ratio, population 

structure, measured using the first four genetic principal components, and the Townsend index. 

These covariates were also used in recent UK Biobank structural investigations (Lawrence et al. 

2021; Salminen et al. 2022). In detail, educational attainment was assessed using a 

sociodemographic questionnaire in which participants reported their completed qualification level 

(UK education system). These results were generalized beyond the UK education system and 

converted to the corresponding number of years using ISCED harmonization guidelines (Goujon et 

al. 2016) and dichotomized into ‘high school’ versus ‘college’ (>=17 years) education. Waist-to-hip 

ratio is a common index of central fat distribution (Gadekar et al. 2020) and used as a proxy of 

atherosclerotic burden in overweight individuals and postmenopausal women (Lee et al. 2015; 
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Scicali et al. 2018). Population structure was obtained from the UK Biobank’s genetic ancestry 

analyses (Bycroft et al. 2017). The first four genetic principal components were regressed out to 

account for differences in ethnicity within the sample. Participants’ socioeconomic status (SES) was 

measured using the Townsend Index (Townsend et al. 2012), a British measure of societal 

deprivation based on the postal code of each participant – this index has been often used as a 

proxy measure of SES (Smith et al. 2001). For any of the variables of interest, women who had 

missing data, responded ‘do not know’ or ‘preferred not to answer’ were excluded from each 

analysis. 

Our primary hypotheses include a hormone by age interaction on advanced diffusivity 

metrics (ISOVF
NODDI

, OD
NODDI

, and ICVF
NODDI

). A previous investigation of age and sex effects on 

microstructure in the UK Biobank reported the highest effect sizes for advanced NODDI metrics in 

sex by age interactions on full white matter (Lawrence et al. 2021). False discovery rate (FDR) was 

used to account for multiple comparisons (corrected at p<.05) (Benjamini and Hochberg 1995). 

Secondary hypotheses include age by treatment type interaction on the advanced diffusivity 

NODDI metrics and a steeper aging trajectory for women taking unopposed estrogen treatment 

relative to combination estrogen users; additionally, a significant association between duration of 

hormone use, age at therapy onset and age at menopause for women taking hormones. 

Post-hoc exploratory investigations considered the effects of HT compound composition 

(combined vs unopposed estrogen treatment) on WM aging trajectories; data was available for 

only a subset of the UK Biobank participants in the sample (unopposed estrogen users, n=300; 

combination users, n=98).  

Supplemental analyses included Spearman’s correlations to investigate a potential 

association between significant dMRI measures and duration of HT and OC usage, age at which the 

participant began HT or OC therapy, and age at menopause in HT and OC users. For any significant 

association, these variables were additionally covaried for in our fractional polynomial analyses. 

Furthermore, centile curves (Bethlehem et al. 2018; Nobis et al. 2019; Lv et al. 2020) for 

each diffusion metric with respect to age were calculated and plotted in R; kernel density plots, 

indicating the degree of data point overlap (and sampling density across the age range), are 

included in the plots. 

 

 

MRI processing 

 For detailed descriptions of the UK Biobank data acquisition, neuroimaging protocol, and 

validation, see work by Miller (Miller et al. 2016b) and Alfaro-Almagro and colleagues
 
(Alfaro-

Almagro et al. 2018). In brief, dMR images were acquired at b=1000 and 2000 s/mm
2
 along with 50 

non-coplanar diffusion directions per shell with 5 b=0 s/mm
2 

(and 3 b=0 blip-reversed) using a 

standard (‘monopolar’) Stejskal-Tanner pulse sequence (voxel dimensions: (2 mm)
3 

isotropic, field 

of view: 104x104x72 mm; gradient timings: small delta=21.4 ms, big delta=45.5 ms) for a total 

imaging time of 7 minutes. All images underwent pre-processing, involving noise correction 

(Veraart et al. 2016), Gibbs-ringing correction
 
(Kellner et al. 2016), estimation of echo-planar 

imaging distortions, motion and eddy current and susceptibility distortion corrections (Andersson 
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and Sotiropoulos 2016), spatial smoothing (fslmaths in FSL) with Gaussian kernel (1 mm FWHM)
3
 

and diffusion metric estimation. Diffusion tensor (DTI) and Neurite Orientation Dispersion and 

Density Imaging (NODDI) diffusion maps (Zhang et al. 2012) were computed by UK Biobank, while 

the tensor distribution function (TDF) (Leow et al. 2009; Nir, Jahanshad, Villalon-Reina, Isaev, 

Zavaliangos-Petropulu, Zhan, Leow, Jack  Jr, et al. 2017) was computed locally using code available 

at https://git.ini.usc.edu/ibagari/TDF. Diffusivity indices considered by this study are detailed 

below and summarized in Table 3. For more details on these methods, please refer to the 

Supplemental Material. 

Diffusion tensor imaging (DTI) fitting was performed on the b=1000 s/mm
2
 shell (50 

diffusion-encoding directions) using the DTI fitting (DTIFIT, FSL) tool to create maps of the 

following tensor-derived measures: fractional anisotropy (FA
DTI

), representing the degree of 

anisotropic diffusivity - often considered to be sensitive to the density of white matter fibers and 

the degree of directional coherence within a fiber bundle (Pierpaoli et al. 1996; Jones and 

Cercignani 2010). Other DTI indices included mean diffusivity (MD
DTI

), describing the molecular 

diffusion rate in a fiber bundle, radial diffusivity (RD
DTI

), reflecting diffusivity perpendicular to the 

axonal fibers (or the principal direction of diffusion), and axial diffusivity (AD
DTI

) describing the 

magnitude of diffusion parallel to fiber tracts.  

Diffusion MRI data (b=1000 s/mm
2
, 50 diffusion-encoding directions) was also used as 

input data to estimate the tensor distribution function (TDF) at each voxel in the (Leow et al. 2009; 

Nir, Jahanshad, Villalon-Reina, Isaev, Zavaliangos-Petropulu, Zhan, Leow, Jack  Jr, et al. 2017). This 

approach extends multi-tensor models of diffusion to describe intravoxel fibers mathematically as 

a probabilistic collection of tensors, or, alternatively, a continuous mixture of Gaussian densities. 

The fitted TDF function was employed to create diffusion maps of FA, based on the mixture of 

tensors (FA
TDF

). This approach overcomes some known limitations of the single diffusion tensor 

model in regions of fiber mixing or crossing and has been shown in other datasets to boost effect 

sizes for associations with external variables of interest, such as age, Alzheimer’s disease, or 

clinical measures of dementia severity (Nir, Jahanshad, Villalon-Reina, Isaev, Zavaliangos-

Petropulu, Zhan, Leow, Jack  Jr, et al. 2017; Villalon-Reina et al. 2018; Lawrence et al. 2021).  

In addition to TDF and DTI models, the dMRI data (all shells) were input into Neurite 

Orientation Dispersion and Density Imaging (NODDI) (Zhang et al. 2012) biophysical models, using 

the AMICO (Accelerated Microstructure Imaging via Convex Optimization) tool (Daducci et al. 

2015), to obtain the following voxel-wise microstructural parameters: ODI
NODDI

 (orientation 

dispersion index, a measure of within-voxel white matter tract disorganization), ICVF
NODDI

 

(intracellular volume fraction, and index of white matter neurite density) and ISOVF
NODDI

 (isotropic 

or free water volume fraction). These metrics have been shown to be sensitive to aging effects in 

smaller samples than that analyzed here (Thomopoulos et al. 2020), including measures of brain 

amyloid burden measured with PET (Thomopoulos et al. 2021).  

Voxel-wise statistical analysis of the images was performed using Tract-based Spatial 

Statistics (Smith et al. 2006) (TBSS; Figure 1) using the ENIGMA-DTI processing pipeline, with the 

following steps: FA
DTI

 images were non linearly registered to a standard-space white matter 

skeleton, the ENIGMA FA
DTI 

white matter template, representing the center of all white matter FA 
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voxels in MNI space using ANTs symmetric image normalization (SyN) method (Avants et al. 2009). 

The resulting transformation was applied to the maps of each metric (TDF and NODDI). White 

matter metrics were projected onto the ENIGMA template skeleton based on the FA
DTI 

metric 

using FSL’s TBSS. Average whole-brain measures of FA
DTI

,
 
MD

DTI
,
 
RD

DTI
,
 
AD

DTI
, FA

TDF
, ODI

NODDI
, 

ISOVF
NODDI

, ICVF
NODDI

 were extracted for each participant. As part of the quality control processes, 

2D images of the output from each processing step in the dMRI pipeline were visually reviewed. 

Careful visual checks were performed for individuals whose derived data were flagged as outliers. 

Prior to any group-level analysis, participants with low-quality data (such as gross visual artifacts) 

were eliminated. A total of N=114 subjects were excluded from our analyses.  
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RESULTS 

 

Age-related trajectories in HT 

There was a significant interaction between age and HT status on diffusion metrics 

ICVF
NODDI

; (decreased intra-cellular volume fraction with age; p=.0009; age
(p0.5)

) when including the 

main nuisance covariates (Figure 1). We did not detect significant interactions between age and HT 

status on diffusion metrics DTI or TDF. Age effects on ICVF
NODDI

 were confirmed when adjusting for 

history of OC (decreased with age; p=.001; age
(p0.5)

). Supplemental analyses also adjusting for 

surgical history (hysterectomy and oophorectomy), cancer history, and number of childbirths as 

nuisance covariates did not confirm the significant age effect seen on diffusivity metric ICVF
NODDI

 in 

HT users and non-users. Within the group of HT users (N=3,033), no association was found 

between the significant dMRI measures and duration of HT use, age at HT initiation and age at 

menopause (all p>.05). 

Follow-up post-hoc exploratory analyses in the HT users group – examining unopposed 

(N=300, age (mean±SD)=61.1±7.4) and combined (N=90; age (mean±SD)=58.4±6.2) estrogen 

treatments – revealed a significant age interaction on diffusion metric ISOVF
NODDI

 (increased free 

water with age in both groups; p=.033; age
(p1)

; Figure 2). No significant interaction was found on 

diffusion metrics DTI or TDF. Adjusting for history of OC confirmed findings on ISOVF
NODDI 

(increased with age; p=.034; age
(p1)

). Additionally adjusting for duration of HT, age at HT onset and 

age at menopause, did not alter age effects seen on ISOVF
NODDI 

in HT users using unopposed and 

combination estrogen treatments (p=.01; age
(p1)

, p=.01; age
(p1)

, and p=.02; age
(p1)

, respectively). 

Specifically, in combination HT (estrogen + progestin) users, later age at HT onset (left panel Figure 

1 Supp Material), prolonged duration of HT therapy (middle panel), and later age at menopause 

(right panel), were associated with higher ISOVF
NODDI

, relative to estrogen only HT users. In the 

estrogen only HT group, no significant association was found between clinical variables duration of 

use, age at initiation and age at menopause and ISOVF
NODDI 

(r=0 to 0.1, p=.9 to 1.0). In the 

combination HT group, a weak positive correlation was found between duration of HT and 

ISOVF
NODDI

 (r=.2, p=.04), while no significant association was found between ISOVF
NODDI 

and age at 

HT initiation (r=.15, p=.16), or age at menopause (r=.18, p=.13) in this group (Figure 1 Supp 

Material).  

Representative centile curves for each significant diffusion metric are presented in Figures 

1 and 2 with colored lines indicating 5th (black), 25th (blue), 50th (red), 75th (green), and 95th 

(purple) centiles, and kernel density maps indicating the degree of data point overlap. Curves show 

age-dependent trajectories for ICVF
NODDI

 (Figure 1), and ISOVF
NODDI

 (Figure 2). In summary, all the 

HT status effects on the diffusion metrics were in the direction of ‘more aging’ – decreased 

ICVF
NODDI

, and increased ISOVF
NODDI

.  
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Figure 1. Normative centile reference curves for ICVF
NODDI

 in HT users and non-users. Whole brain 

white matter averages for ICVF
NODDI 

are shown for HT (middle panel) and non-users (right panel), and 

collectively (left panel). Solid colored lines, bottom-up, indicate the following centiles: 5th, 25th, 50th, 75th, 

95th. Kernel densities indicating the degree of data point overlap (and sampling density across the age 

range), are shown in grey.  

 

Figure 2. Normative centile reference curves for ISOVF
NODDI

 in unopposed and combination 

estrogen users. Whole brain white matter averages for ISOVF
NODDI

 shown for estrogen users and 

combination users, collectively (left panel) and separately for unopposed estrogen (middle panel) and 

combination (right panel) users. Unopposed estrogen users (N=300) displayed a steeper ISOVF
NODDI

 aging 

trajectory compared to combination users (N=98). Solid colored lines, bottom-up, indicate the following 

centiles: 5th, 25th, 50th, 75th, 95th. Kernel densities indicating the degree of data point overlap (and 

sampling density across the age range), are shown in grey.  
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Age-related trajectories in OC 

There was no significant interaction between age and OC status on any of the diffusion 

metrics assessed when including the main nuisance covariates (p>.05). Supplemental analyses 

including surgical history (hysterectomy and oophorectomy), cancer history, and number of 

childbirths as nuisance covariates confirmed no significant interaction between diffusion metrics 

and age in OC users and non-users (p>.05).  
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DISCUSSION 

We examined the association between exogenous sex hormone exposure and the brain’s 

WM aging trajectories in post-menopausal middle aged and older women with and without 

hormone therapy (HT), as well as oral contraceptives (OC). To thoroughly examine microstructure, 

we used 3 increasingly sophisticated diffusion models, from single-shell tensor-based (DTI and 

TDF) to multi-shell (NODDI) methods. We also present normative reference curves for various 

aspects of white matter microarchitecture in women, which may one day allow us to identify 

individuals with the most severe neural pathology.  

As a whole, age and sex hormone exposure usage were both statistically associated with 

WM metrics, with advanced dMRI model NODDI capturing these differences most sensitively. We 

found that HT usage was associated with less favorable aging patterns, observed as more 

pronounced white matter changes on advanced white matter metrics, relative to those who did 

not use HT (Figure 1). The observed less favorable aging trajectories in this sample were 

independent of previous OC usage; however, history of pregnancies, surgeries, or cancer were 

found to influence these trajectories. Furthermore, accounting for differences in hormone therapy 

formulation, we showed that not all HT formulations may exert a detectable neuroprotective 

effect, at least on the white matter measures we examined here. Hormone replacement therapy 

containing conjugated estrogens may be associated with marginally more beneficial aging patterns 

(less pronounced white matter changes) than formulations containing estrogen alone (Figure 2). 

These aging effects on white matter metrics were independent of the duration of hormone 

therapy, the age at which hormone therapy was initiated and the age at which women entered 

menopause (Figure 1 Supp). Moreover, OC was not found to alter the derived white matter 

measures considered in this study, nor did clinical factors modulate white matter aging trajectories 

in OC users and non-users. To the best of our knowledge, the current work is the first study of the 

associations between exogenous hormone exposure effects on aging in white matter in a 

population-based cohort.  

HT usage was associated with a steeper WM aging trajectory, and this was evidenced by 

lower neurite density (ICVF
NODDI

) in the HT user group relative to non-users (Figure 1). 

Furthermore, unopposed estrogen usage was associated with a steeper WM aging trajectory, and 

this was evidenced by increased isotropic volume fraction (ISOVF
NODDI

) relative to combination 

estrogen usage. NODDI is a multi-shell model of tissue microstructure developed to better 

describe the underlying WM tissue structure than traditional diffusion-tensor models like DTI or its 

mathematical extension TDF. While tensor-based models assume that each voxel comprises of a 

single tissue compartment, NODDI directly models multiple aspects of the cellular environment 

(Zhang et al., 2012). Notably, the NODDI model can remove the effect of CSF contamination (e.g., 

following cortical atrophy due to aging processes), increasing the specificity to the cytoarchitecture 

subjected to investigation. The diffusion metric ISOVF
NODDI

 represents the fraction of water 

molecules that are not restricted or directed and is also described as ‘free water’. Higher free 

water may also be an index of neuroinflammation as neuroinflammatory processes can increase 

the proportion of water molecules diffusing freely in the extracellular space. Thus, the observed 
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increase in circulating sex-hormone levels following HT use in postmenopausal women, and 

specifically in women taking HT formulations containing estrogen alone, may suggest increased 

susceptibility to mechanisms of neuroinflammation or neuronal loss in this group. These findings 

are in line with our hypothesis that sex hormone therapy would negatively impact women’s WM 

aging. This corroborates prior reports of negative effects of exogenous sex hormones on brain 

structural measures and expands them to include WM microstructural deficits. Prior aging and AD 

research has implicated the progression of tau protein to neurofibrillary tangles and the resulting 

destabilization of axonal microtubules (Spillantini and Goedert 2013), as well as cortical grey 

matter volumetric reductions and neuronal dispersion (Colgan et al. 2016). It is possible that in 

postmenopausal women, with age, as the cortical structure atrophies, the space becomes 

occupied by CSF (or free water), which is reflected by higher isotropic volume fraction values. 

While further clinical measures and investigations at the microstructural level are necessary, our 

findings may suggest increased susceptibility to developing tau-dependent pathologies such as AD 

later in life in middle- and older-aged women with a history of HT use, specifically in estrogen-only 

HT users. Conversely, our findings are consistent with a neuroprotective effect of sex hormones 

during normal development but a subsequent deterioration in WM metrics in later life in women 

using combination HT.  

We failed to detect changes in WM aging trajectories in middle- and older-aged women 

following OC treatment. Prior investigations in the UK Biobank reported reductions in cortical gray 

matter volume in OC users relative to never-users, worsening by duration of OC treatment (de 

Lange et al. 2019). To the best of our knowledge, this is the largest investigation of OC effects on 

white matter aging trajectories in middle-aged to older women. While it is possible that chronic 

ovarian hormone suppression (induced by OC treatment) may progressively affect WM 

microstructure (as well as cortical volume) later in life, longitudinal studies are needed to draw 

further conclusions. We cannot exclude that the lack of detectable effects in OC users on the 

brain’s WM in this sample may depend on the type of OC formulation, which was not possible to 

assess in the current study with the currently available data in the UK Biobank. Birth control 

formulations vary from ethinylestradiol-only formulations to those with added concentrations of 

progestin, and we may expect that differences in formulation may exert a differential effect on 

diffusion metrics. With this in mind, future studies should disentangle effects of birth control 

formulation on aging trajectories in women. There are also changes occurring in the societal use 

and duration and timing of OC use. The number of women availing of OC treatment is increasing, 

while the age of first contraceptive use is constantly decreasing to sensitive neuroplastic periods 

during puberty. Given these factors, future research efforts are warranted to investigate OC 

effects on the brain longitudinally across the lifespan. 

The female immune system changes significantly during pregnancy and menopause (Mor et 

al. 2011; Mishra and Brinton 2018), and evidence suggests that immune regulation during these 

major transitional phases may influence women's brain aging trajectories later in life (Ding et al. 

2013; Mosconi et al. 2017; Fox et al. 2018). Hormonal fluctuations and their interactions with 

immune processes play a role in maternal brain adaptations, but their long-term effects on brain 
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aging in women are unknown (Barth and de Lange 2020). Pregnancies are associated with 

alterations in microglia density, number, and activity which could modulate neuroplastic 

compensation in response to perimenopausal inflammation processes (Barth and de Lange 2020). 

The E2 receptor is a key neuroplasticity regulator in the female brain (Barha and Galea 2010), and 

it has been suggested that neuroplasticity may be important in understanding the boundaries 

between normal aging and the early stages of Alzheimer's disease (Fjell et al. 2014). In our 

analyses, the number of childbirths may modulate the age effects on neurite density (a steeper 

aging WM trajectory) in HT users relative to non-users. Pregnancy-related immune adaptations, in 

conjunction with endocrinological modulations, may influence maternal brain plasticity during 

pregnancy and post-partum, potentially influencing the course of neurobiological aging later in life. 

In this study women had on average ~2 children, thus we cannot exclude that a higher number of 

childbirths, alongside other clinically relevant factors (such as number of abortions and 

miscarriages), may differentially influence aging trajectories on WM metrics. Prior investigations 

within the UK Biobank have shown that subjects with two or three offspring had significantly 

reduced brain age compared to those without offspring (Ning et al., 2020). Although beyond the 

scope of this analysis, irrespective of HT, we found that parity affected the dispersion of intra-voxel 

freely diffusing water molecules (ISOVF
NODDI

) overall in the brain, which may corroborate our study 

findings and findings by Ning et al., (2020) on apparently reduced brain aging and altered cognitive 

function in subjects with two or three offspring (Ning et al. 2020).  

The ‘healthy cell bias of estrogen action hypothesis’ (Brinton 2008) suggests that neuronal 

viability and general health - before starting hormone therapy - might be of importance for 

exogenous estrogens to exert therapeutic effects. This hypothesis may be relevant for women 

undergoing surgeries that can cause a drop in circulating estrogen levels such as hysterectomy 

and/or oophorectomy and lead to early menopause.  A history of hysterectomy and/or 

oophorectomy was accounted for in the present study and was found to influence age effects on 

neurite density seen in HT users relative to non-users. Our results support the ‘critical period 

hypothesis’ for estrogens, as an early initiation of (combination) HT was associated with less 

evident white matter aging (particularly before menopause, as findings did not change when 

covarying for age at menopause). Of note, HT can be also used to slow or stop the growth of 

cancers that use hormones to grow, such as some breast cancers. In this study, age effects on 

neurite density seen in HT users relative to non-users were influenced by cancer history in women 

(also including breast, womb, and ovarian cancers). 

The second theory regarding hormone therapy effects is known as the ‘critical period 

hypothesis’ (Maki 2013), whereby HT may be neuroprotective if initiated soon after cessation of 

ovarian function (<5 years from menopause; (MacLennan et al. 2006; Erickson et al. 2010; 

Espeland et al. 2015), but carry detrimental effects if initiated much later (>10 years from 

menopause, (Hodis et al. 2016). Substantial evidence suggests that HT formulation, administration, 

dosage, compound composition, and mode of administration are clinically relevant to the course 

of aging in women (Gleason et al. 2015; Savolainen-Peltonen et al. 2019). Within the groups of HT 

and OC users, we failed to detect any meaningful association between the significant dMRI 

measures and duration of HT use, age at HT initiation and age at menopause (all p>0.05). We 
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observed a weak positive association between duration of HT and ISOVF
NODDI

, whereby later 

commencement of therapy was associated with higher volume fraction of extracellular isotropic 

free water
 
in the combination estrogen group (trends depicted in Figure 1 Supp). Even so, 

controlling for duration of treatment in our analyses did not alter age effects on ISOVF
NODDI

 in this 

treatment group. We cannot exclude that later commencement of HT may be associated with 

greater reductions in age-dependent metrics of WM microstructure beyond those assessed by the 

present study, and that other clinical factors (e.g., examining genotype interactions) not 

considered by the present study may further explain this association. Observing the effects of HT 

on brain aging in women within such a short interval (within 5 years from menopause) could have 

implications for understanding hormone-related dementia pathogenesis in women. Future studies 

should account for such differences to disentangle effects of HT treatment regime on WM 

microstructural decline in women and identify other vulnerability factors and critical age windows 

for administering HT in women. 

Estrogens interact with multiple neurotransmitter systems in our brain to modulate mood 

and cognition (Barth et al. 2015); in particular, the interaction with dopamine might be of interest 

considering its role in pathophysiological processes of neurological, as well as psychiatric disorders, 

and its modulation of executive functions such as working memory and reward processing which 

are often impaired in subjects with dementia or AD (Reeves et al. 2009). Estrogen receptors (ERs) - 

ERα and Erβ – are widely distributed in the brain and found in subcortical limbic gray matter and 

basal ganglia areas, as well as prefrontal and temporal cortices (Barth et al. 2015). Studies focusing 

on the role of estrogen receptors and endogenous estrogen signaling have reported 

neuroprotective effects on the brain, via their effect promoting synthesis of neurotrophins and 

protecting the brain from inflammation and stress (Brann et al. 2007). The expression of the ERs 

can be overlapping or distinct, dependent upon brain region, sex, age, and exposure to hormones. 

During the time of menopause, there may be changes in receptor expression profiles, post-

translational modifications, and protein-to-protein interactions that could lead to a very different 

environment for estrogen to exert its effects (Mott and Pak 2013).  These effects have been 

considered in clinical trials of those suffering from psychiatric disorders where estrogen-signaling 

pathways have been shown to be compromised (Hwang et al. 2021). Changes in circulating 

estrogen levels may modulate the microstructure of WM and contribute to pathophysiological 

processes of neurological and psychiatric disorders in women with a history of HT.  

Moreover, studies in experimental animal models have established a role for sex hormones 

including estrogen in WM abnormalities and have provided a convincing rationale for HT in 

prevention and treatment of dementia (Birge 1996; Cerghet et al. 2009). Interventional trials of 

estrogen and its analogs (often in conjunction with other adjuvants) are ongoing to investigate the 

long-term safety and efficacy of these compounds to restore structural integrity and related 

cognitive function of the brain in participants with dementia and early-stage AD. A comprehensive 

and integrated understanding of estrogens and estrogen signaling across multiple levels of the 

brain system architecture, from cellular to molecular to systemic, is key to elucidate the 

mechanisms involved in its effects in diseased brains. Future studies are warranted to examine 

longitudinal white matter changes in women following sex-hormone therapy – both HT and OC.  
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There are some methodological considerations in this study. Besides using multiple 

statistical approaches, a strength of the current work was the inclusion of multiple diffusion 

metrics, from tensor-based to “beyond-tensor” models to provide a richer understanding of the 

underlying WM structure than traditional diffusion metrics alone. Besides the tensor-based metric, 

FA, we considered the estimated number of crossing fibers, fiber complexity, neurite dispersion 

and estimated numbers of fiber compartments. Diffusion metric FA can lack specificity as it does 

not directly delineate changes in tissue microstructure – for example a reduction in FA can be 

associated with different types of microstructural changes, such as demyelination, or a reduction 

in axonal density. A decline in FA with age could result from many cellular factors, including 

decreases in the density or an increase in the dispersion orientation of neurites (Pines et al. 2020). 

Multi-compartment models such as NODDI attempt to overcome this by modeling diffusion data 

using a set of indices that are more directly related to WM microstructure.  

Moreover, TBSS is a widely used method for whole-brain voxel-based analysis but has some 

limitations. TBSS reduces individual white matter tracts to a skeleton, delineating the center of the 

tracts and projecting onto it only the highest value of FA along the projection. This may result in 

loss of microstructural information and potential artifacts (Bach et al. 2014), some due to 

misregistration. In this study, we carried out careful qualitative and quantitative assessments of 

registration for each subject’s diffusion metric. Additionally, while we measured diffusivity indices 

on the FA skeleton, some of these indices may not have a local maximum at the exact same 

location as FA. Future studies should investigate if findings hold without white matter 

skeletonization, i.e., without warping images into a predefined template, but by averaging values 

within regions of interest (ROIs) in native space (Nir et al. 2021). TBSS has limited anatomical 

specificity (adjacent tracts may not be distinguished) and thus may be susceptible to false positives
 

(Bach et al. 2014). Also, while these limitations may arise for tract-specific diffusion metrics, we 

chose to focus our analyses on whole-brain diffusion averages.  

Unlike a randomized clinical trial, where treatments are randomized to individuals, and the 

effects are studied longitudinally, the current design is a naturalistic study of people using 

medications. As such, we report associations that may still be important in understanding brain 

aging trends in a broad and inclusive population and suggest mechanisms that could be tested in a 

causally informed design (such as an RCT). To further understand confounders in the population, 

future studies could seek demographic, educational, or cultural factors that might affect HT/OC 

use or access, and test if such factors might mediate any detected effects.    

We also note that the meaning of the term “trajectories” may differ when inferred from 

cross-sectional rather than longitudinal data, as individuals at different parts of the age range may 

differ from each other in their childhood developmental experiences, environments, and health 

risks throughout life. As the participants range in age by almost 40 years, any interactions with age 

could also be due to societal changes in the incidence of use, duration of use, and breadth and 

diversity of access to HTs and OCs. Also, attrition of individuals late in life (due to mortality, or ill 

health) means that older individuals who participate in the study may show less steep aging 

trajectories than a typical individual in the population (due to selection bias, or survivor bias).   
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This study shows the value of testing alternative models for lifespan trajectories beyond 

popular linear and quadratic models, especially when dealing with large samples. The fractional 

polynomial approach may offer a more flexible alternative to linear or quadratic models and may 

be useful for estimating age effects on health outcomes. Large scale datasets such as the UK 

Biobank offer the opportunity to test alternative models for lifespan trajectories beyond 

traditional statistical models. Studies with a large number of data points may benefit from 

evaluating findings across alternative explanatory models to understand the robustness of 

findings.  

The cross-sectional nature of this study does not enable causal inference, so future studies 

should use longitudinal designs – ideally randomized – which are vital to fully understand how 

estrogen exposure influences brain aging across the lifespan. The various effects of exogenous sex 

hormones on brain function deserve greater critical observation to unravel possible pathogenetic 

mechanisms, as well as to identify individuals at high risk of hormone therapy-related adverse 

consequences such as dementia or AD. Future studies may benefit from including further clinical 

and plasma measures and examining genotype interactions (e.g., with apolipoprotein E genotype) 

to better understand how estrogen exposure influences brain aging and genetic predisposition for 

neurological disorders in women. Such studies have long-term public health implications and may 

eventually improve early detection, clinical intervention, and quality of life for individuals at risk 

for age-related neurodegenerative disorders.  
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  HT users non-users t-test p 

Sample, N 3,033 5,093     

Age at scan [years]  

mean±SD 

range 

 

65.4±6.5 

45.5-80.7 

 

60.3±7.1 

45.2-79.6 

32.1 <0.001 

Age at Menopause  

mean±SD 

 

49.1±5.9 

 

51.0±4.1 14.6 <0.001 

Number of live births  

mean±SD 

median 

range 

 

1.81±1.1 

2 

0-7 

 

1.72±1.2 

2 

0-9 

 

3.7 

 

<0.001 

Waist-to-hip   

mean±SD 

 

1.6±0.5 

 

0.81±0.5 3.4 <0.001 

Education [N]  

high school / college 

 

1290 / 1743 

 

1713 / 3380 64.6 <0.001 

 χ2-test p 

Menopause [N, %] 

yes 

 

2,998 (98.9%) 

 

4,508 (88.5%) 250.5 <0.001 

Hysterectomy [N, %] 

yes 

 

404, 13.3% 

 

210, 4.1% 677.7 <0.001 

Oophorectomy [N, %] 

yes 

 

535, 17.6% 

 

175, 3.4% 491.4 <0.001 

Age at HT onset  

mean±SD 

 

47.8±5.6 
- - - 

Duration of HT therapy [years] 

mean±SD 

median 

range 

  

7.1±6.2 

5 

0.3-38 

- - - 

Diabetes 

yes 

 

113, 3.7% 

 

159, 5.2% 

 

101.7 

 

<0.001 

Hypertension 

Heart attack 

Angina 

Stroke 

High blood pressure 

 

15 

29 

20 

447 

 

17 

24 

19 

515 

 

48.9 

 

<0.001 

Diagnosis of Major Depression Disorder 

Probable recurrent major depression (severe) 

Probable recurrent major depression (moderate) 

Single probable major depression episode 

 

73 

160 

92 

 

93 

237 

116 

101.1 <0.001 

Table 1. Sample demographics for HRT users and non-users. Data shown as Mean ± standard 

deviation (SD), % for each variable in each of the groups, N = sample size; BMI = body mass index; 

HT = hormone replacement therapy; χ
2
-test = chi-squared test. 
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  OC users non-users t-test p 

Sample, N 6,964 1,156 - - 

Age at scan [years]  

mean±SD 

range 

 

61.8±7.1 

45.2-80.7 

 

65.1±7.9 

46.1-79.6 

14.6 <0.001 

Age at Menopause  

mean±SD 

 

50.3±5.0 

 

50.3±5.1 

 

0.27 

 

0.79 

Number of live births  

mean±SD 

median 

range 

 

1.8±1.1 

2 

0-9 

 

1.7±1.4 

2 

0-8 

 

2.03 

 

0.04 

Waist-to-hip   

mean±SD 

median 

 

0.81±0.7 

0.80 

 

0.81±0.07 

0.81 

0.26 0.797 

Education [N]  

high school / college 

 

2,495 / 4,468 

 

507 / 649 27.4 <0.001 

 χ2-test p 

Menopause [N, %] 

yes 

 

5,327, 76.5% 

 

926, 80.1% 4.1 0.04 

Hysterectomy [N, %] 

yes 

 

496, 7.1% 

 

118, 10.2% 13.4 <0.001 

Oophorectomy [N, %] 

yes 

 

599, 8.6% 

 

111, 9.6% 1.2 0.23 

Age at OC onset  

mean±SD 

 

20.8±4.3 
- - - 

Duration of OC therapy [years] 

mean±SD 

median 

range 

  

11.7±8.4 

10 

1-46.6 

- - - 

Diabetes 

yes 
232, 3.3% 40, 3.5% 101.4 <0.001 

Hypertension 

Heart attack 

Angina 

Stroke 

High blood pressure 

 

28 

48 

32 

791 

 

4 

5 

7 

172 

48.9 <0.001 

Diagnosis of Major Depression Disorder 

Probable recurrent major depression (severe) 

Probable recurrent major depression (moderate) 

Single probable major depression episode 

148 

350 

182 

18 

47 

27 

86.0 <0.001 

Table 2. Sample demographics for OC users and non-users. Data shown as Mean ± standard 

deviation (SD), % for each variable in each of the groups, N = sample size; BMI = body mass index; 

OC = oral contraceptive; χ
2
-test = chi-squared test.
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Method Metric Description Advantages Limitations Reference 

Diffusion-

tensor 

imaging (DTI) 

FA
DTI

 

Fractional anisotropy. 

Describes the level of anisotropy in a 

diffusion process 

• Diffusion-tensor metrics are widely used as 

surrogate measures of microstructural tissue 

change during normal brain development and 

aging, or during the onset and progression of 

neurological disorders. DTI provides 

sensitivity to tissue microstructure 

 

• It is a widely used scalar measure to 

characterize tissue microstructure 

 

• Short acquisition protocols 

 

• It can only model a single fiber population, 

with a single dominant orientation, at every 

voxel. Limited in crossing and curving areas, 

cannot model dispersing, crossing or kissing 

fibers 

 

• Assumes that each voxel comprises a single 

tissue compartment, which creates a partial 

volume effect due to the presence of 

extracellular free water, such as the CSF 

 

• The biological interpretation of its 

microstructural parameters can be often 

equivocal 

 

• Cannot be used on multi-shell data 

(Pierpaoli et al. 
1996; Jones and 
Cercignani 2010) 

MD
DTI Mean diffusivity.  

Describes the mean rate of diffusion 

RD
DTI 

Radial diffusivity. 

Measures diffusivity across the principal 

tensor direction 

AD
DTI

 

Axial diffusivity. 

Measures diffusivity along the principal 

tensor direction 

Tensor 

distribution 

Function (TDF) 

FA
TDF

 

Fractional anisotropy. 

Describes the level of anisotropy in a 

diffusion process 

• Reconstruct multiple underlying streamlines 

by representing the diffusion profile as a 

probabilistic mixture of Gaussian tensors 

• Increased sensitivity compared to DTI 

measures. Resolves more complicated white 

matter configurations, e.g., crossing fiber 

tracts,  relative to corresponding DTI-derived 

measures 

• Remains a diffusion-tensor model with 

limitations in areas where fibers are crossing 

and curving; can reconstruct only one fiber 

direction 

• Cannot be used on multi-shell data 

(Leow et al. 2009; 
Isaev et al. 2017; 
Nir, Jahanshad, 
Villalon-Reina, 
Isaev, Zavaliangos-
Petropulu, Zhan, 
Leow, Jack, et al. 
2017) 

Neurite 

Orientation 

Dispersion 

and Density 

Imaging 

(NODDI) 

OD
NODDI

 
 

Orientation dispersion. 

Describes the angular variation and 

spatial configuration of neurite 

• Multi-shell model of tissue microstructure 

developed to better describe the underlying 

tissue structure than diffusion-tensor models.  

 

• Greater biophysical specificity, compared to 

tensor-based models: accounting for different 

• Absence of any direct diffusivity estimation. 

Cannot evaluate the complex neurite 

anisotropic dispersion as it models only the 

isotropic dispersion of neurite.  

 

(Zhang et al. 2012) 
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ICVF
NODDI

 

Isotropic volume fraction. 

Describes the amount of neurites within 

a voxel 

tissue compartments.  

 

• Ability to disentangle the contributions of 

axonal/dendritic density and fiber orientation 

to microscopic changes. 

 

• Ability to provide the characteristics of 

angular variations of neurites in each voxel.  

 

• Can be used on multi-shell data.  

 

• Requires multi-shell data (ODI can be 

performed on single-shell data). 

ISOVF
NODDI

 

Isotropic volume fraction. 

Measures the volume fraction of the 

isotropic compartment (free-water, or 

CSF). 

Table 3. Diffusivity indices considered by this study.  Diffusivity indices investigated in this study are described, alongside their advantages 

and limitations.  
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