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Abstract:  

Brain structure and function are intimately linked, however this association remains poorly 

understood of the complexity of this relationship has remained understudied. Healthy aging is 

characterized by heterogenous levels of structural integrity changes that influence functional 

network dynamics. Here, we used the multilayer brain network analysis on structural (diffusion 

tensor imaging) and functional (magnetoencephalography) data from the Cam-CAN database. 

We found that the level of similarity of connectivity patterns between brain structure and 

function in the parietal and temporal regions (alpha frequency band) was associated with 

cognitive performance in healthy older individuals. These results highlight the impact of 

structural connectivity changes on the reorganisation of functional connectivity associated with 

the preservation of cognitive function, and provide a mechanistic understanding of the concepts 

of brain maintenance and compensation with aging. Investigation of the link between structure 

and function could thus represent a new marker of individual variability, and of pathological 

changes. 

Keywords: Multilayer network analysis; MEG; DTI; Connectivity; Healthy aging; Cognitive 

variability 
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Introduction 1 

The brain is one of the most complex biological systems. One of its fascinating aspects, which 2 

remains largely unknown, is how wide varieties of brain rhythms and temporally-specific 3 

activity patterns1 can emerge from a static network architecture2. Addressing this issue is a 4 

major fundamental endeavor for cognitive neuroscience, which can also improve our 5 

understanding of brain changes across the lifespan, and our ability of detecting pathological 6 

processes. Previous work has mostly focused on characterizing brain structure (i.e., grey matter 7 

and white matter), or brain function (i.e., memory, motor function or cognitive control). These 8 

unimodal studies greatly advanced our understating of brain networks and of their associations 9 

with cognition3. However, brain network analysis methods, such as graph theory, have more 10 

recently been applied across modalities to study the interaction between structure and function, 11 

showing strong associations between these dimensions4,5. Since these seminal studies, the 12 

relationship between brain structure and function has been the focus of intense reflection and 13 

methodological development, since this relationship is central to many cognitive domains, 14 

evolves with age and is affected by pathologies4. Here, we investigate these issues in light of 15 

age-related brain changes, associated with changes of brain structure that influence neural 16 

dynamics6, which could further our understanding of the large heterogeneity of individual 17 

cognitive trajectories observed during this life period. In particular, structure-function 18 

interactions could be central to further understand the preservation (i.e. maintenance7 or 19 

compensation8) or the decline of cognitive performance during aging. 20 

Studying the relationships between white matter fibers (acquired by DTI -diffusion tensor 21 

imaging) and Blood-Oxygen-Level-Dependent (BOLD) signal (acquired by fMRI -functional 22 

magnetic resonance imaging), previous studies have shown correlations between brain structure 23 

and function throughout the lifespan, and particularly across development9,10, and during the 24 

performance of cognitive tasks11. Also, in a healthy older population, Burzynska et al.12 showed 25 

that individuals with preserved white matter fiber integrity had a higher BOLD signal associated 26 

with better cognitive performance (see also13,14). Many studies have thus focused on this link 27 

between structure and function using high-spatial-resolution techniques such as fMRI. 28 

However, due to their constrained temporal resolution, age-related changes in the dynamics of 29 

the involved networks remain largely understudied. 30 

Previous work has also demonstrated interactions between brain structure and function using 31 

high temporal resolution techniques, such as magnetoencephalography (MEG) or 32 

electroencephalography (EEG). Indeed, fluctuations in the synchrony and directionality of 33 

brain activity have long been considered as noise to be controlled, whereas today they have 34 

been reappraised as a fundamental aspect of brain communication15,16. These studies have 35 

notably highlighted that EEG connectivity is associated with structural connectivity measures 36 

in young adults17. With healthy aging, Hinault et al.18,19, showed that a decrease in white matter 37 

fiber integrity negatively impacts the neural synchronization between brain regions. However, 38 

for all these studies, the interpretation of these interactions is limited as it is based on 39 

correlational evidence, which does not account for the full complexity of such a relationship.  40 

A recent approach enables evaluating the relationships between different neuroimaging 41 

modalities by constructing a multiplex network model of the brain20. This approach allows the 42 

creation of a network in which each region is connected to itself across different layers21. This 43 

technique has already been used in pathology, such as schizophrenia22 and Alzheimer's 44 
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disease,23,24 allowing to highlight brain changes that were not detected in unimodal analyses. 45 

Recently, the study by Battiston et al.25, investigating network connectivity by combining fMRI 46 

and DTI data in a two-layer multiplex network revealed relevant relationships between 47 

structural and functional brain networks, showing that this technique is an appropriate choice 48 

for the study of brain network connectivity. Thus, multiplex brain networks can be used to study 49 

the structure-function relationship in healthy aging. To our knowledge, no study has 50 

investigated the changes of structural and functional connectivity with increasing age using a 51 

multiplex approach applied on DTI and MEG (or EEG) data. However, previous work26 52 

suggested that alterations in brain structure can lead to delayed and/or noisier brain 53 

communications. Such combination of DTI (structural) and MEG (functional) data in a 54 

multiplex connectome in healthy aging is therefore important to identify markers of individual 55 

differences and early brain aging effects, preceding major structural changes and loss of 56 

functional communications. These changes can lead to deleterious functional consequences19,27 57 

or compensatory functional adjustments28. This method therefore appears ideal to clarify the 58 

association between brain structure and cortical dynamics, to identify the mechanisms 59 

underlying cognitive heterogeneity with aging, and the functional adjustments allowing the 60 

maintenance of cognitive function. 61 

Here, we  propose a multiplex network approach with MEG and DTI data in the context of 62 

healthy aging and the associated non-lesional brain changes29 (see Figure 1). We used the 63 

multiplex participation coefficient as an indicator of similarity of connectivity between brain 64 

structure and function: a high level of this coefficient corresponded to a similarity of 65 

connectivity patterns between these modalities whereas a low level corresponded to a 66 

divergence of connectivity patterns between these modalities. We investigated changes in brain 67 

structure and function over time in young and older healthy participants from the Cam-CAN 68 

database (Cambridge Center for Aging and Neuroscience30,31). This database includes 69 

multimodal neuroimaging data (MEG, MRI, DTI) as well as cognitive performance evaluation 70 

for each individual. Our objectives were two-fold: i) To investigate changes in the interaction 71 

between structural integrity levels and synchronized functional networks between young and 72 

old individuals, with the underlying hypothesis that a decrease in white matter integrity could 73 

negatively impact brain function.. ii) To study the impact of such structure-function relationship 74 

on participants' cognitive performance, where we expected that these changes would be 75 

associated with cognitive performance and reveal unique individual differences therein. 76 

Compensatory adjustments or maintenance of brain function at the same level as young adults 77 

would result in preservation of cognitive performance. Such results could clarify and better 78 

characterize maladaptive and compensatory brain communication changes in the presence of 79 

aging structural networks.   80 
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Results 81 

Two groups of participants (20-30 years for the younger group and 60-70 years for the older 82 

group) were formed from the Cam-CAN30,31 database. Connectivity analyses were performed 83 

on MEG data, and in particular, two measures were studied: phase locking value (PLV), which 84 

measure synchrony between regions, and transfer entropy (TE), which measure the 85 

directionality of the coupling between brain regions. The data from these two measures were 86 

combined with DTI data to form two multiplex structure-function networks (see Figure 1). 87 

From these networks, the multiplex participation coefficient could be calculated. This 88 

coefficient was then studied to determine the level of similarity of connectivity between the two 89 

layers (structural and functional) of the network. The different phases of data processing, 90 

creation of multiplex networks and statistical analysis are described in the materials and 91 

methods section. 92 

Multiplex network: PLV/DTI 93 

Positive association between multiplex participation coefficients and cognitive 94 

performance in older adults 95 

Our main objective was to study the effect of healthy aging on structural and functional 96 

connectivity, and its association with cognitive abilities (measured with neuropsychological 97 

tests assessing working and short-term memory, reasoning ability, executive functions and 98 

general cognitive functions, see materials and methods for more information). Thus, we 99 

determined which region and which frequency bands age-related changes in multiplex 100 

participation coefficient could be associated with cognitive performance. First, we identified 101 

the regions and frequency bands that differed between age groups and were associated with 102 

cognition: the left temporal and right parietal regions in the alpha frequency band (these two 103 

regions showing, respectively, a decrease or an increase in participation in the older individuals 104 

compared to the younger). For other regions and frequency bands showing differences not 105 

associated with cognitive performance, see Figure 1s in supplementary. We found that, for both 106 

of these regions, increased multiplex participation coefficient levels were positively associated 107 

with cognitive performance in older adults (left temporal/MMSE test, r= 0.313, p= 0.034; right 108 

parietal/MMSE test, r= 0.393, p= 0.007; Figure 2). No association was found in young adults. 109 

Figure 1. Overview of the creation of the multiplex network from MEG and DTI data. This 

multiplex network was built with two layers: one representing functional connectivity (FC) 

from MEG data, either PLV or TE data; the other layer representing structural connectivity 

(SC) from DTI (anisotropic fraction) data, i.e. FA data. MEG: Magnetoencephalography, 

DTI: Diffusion Tensor Imaging, PLV: Phase Locking Value, TE: Transfer Entropy, FC: 

Functional Connectivity, SC: Structural Connectivity 
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Maintaining a lower level of multiplex participation coefficient than younger adults is 110 

positive for the older population 111 

To further analyze these results, subgroup analyses were performed for these two regions. To 112 

do this, participants were grouped according to the level of participation coefficient in each 113 

region, forming two groups of older individuals. The older subgroups (i.e., Low participation, 114 

High participation; see Table 1s to Table 4s in supplementary data for the characteristics of 115 

each subgroup) did not differ on any measure (e.g., age, gender ratio, level of education, general 116 

cognitive performance) other than the level of multiplex participation coefficient (left temporal 117 

and right parietal regions). For the left temporal region, young adults differ from both older 118 

subgroups, and both subgroups also significantly differ from each other: the level of the 119 

participation coefficient was significantly higher for the High participation subgroup than the 120 

younger group (p=0.009). The Low participation subgroup showed lower multiplex 121 

participation levels than both younger individuals and the High participation subgroup (p<0.001 122 

for both comparison). The Low participation subgroup showed better cognitive performance on 123 

the VSTM test than the High participation subgroup (r= 0.584, p= 0.009; Figure 3A).  124 

 125 

For the right parietal region, young adults differ from the High participation subgroup, but not 126 

with the Low participation subgroup. We observed that the Low participation subgroup (with 127 

similar low participation as younger individuals, p=0.962) showed better cognitive performance 128 

Figure 2. (A) Distribution of the young and old groups in left inferior temporal region (t-

test) for the multiplex participation coefficient in alpha frequency band for the measure of 

synchrony (PLV) and positive association between this level of multiplex participation 

coefficient and MMSE score. (B) Distribution of the young and old groups in right parietal 

region (t-test) for the multiplex participation coefficient in alpha frequency band for the 

measure of synchrony (PLV) and positive association between this level of multiplex 

participation coefficient and MMSE score, in older adults. *p<0.05 **p<0.01 
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on the VSTM test (r=0.475, p= 0.040; no association with cognition for the high participation 129 

older subgroup; Figure 3B).  130 
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Multiplex network TE/DTI 131 

Age-related changes in network couplings directionality are positively associated with 132 

cognitive performance  133 

Following these results, we examined aging effects and individual differences in these regions 134 

using directed functional couplings. For the right parietal region only, in the alpha band, we 135 

observed an increase in inward directionality (i.e., directed towards the right parietal region) in 136 

older individuals compared to younger individuals (t-test, p=0.038; Figure 4A). See 137 

Supplementary Figure 2s for consistent results involving gamma frequency bands. This 138 

increased participation in the inward direction for the right parietal region with aging was 139 

positively associated with performance in the VSTM test (r= 0.314, p= 0.034; Figure 4C).140 

 141 

Figure 3. (A) Distribution of young adults and older adults’ subgroups for the multiplex 

participation coefficient in the left temporal region for the measure of synchrony (PLV) in 

the alpha frequency band. Positive association between participation in the left temporal 

region and VSTM scores for the Low participation subgroup (regression test; no association 

with cognition for the High participation older subgroup). (B) Distribution of the young 

adults and older adults’ subgroups for the multiplex participation coefficient in the right 

parietal region in alpha frequency band. Positive association between participation in the 

right parietal region and VSTM scores for the Low participation older subgroup (regression 

test; no association with cognition for the high participation older subgroup). (C) 

Distribution of young adults and older adults’ subgroups for the multiplex participation 

coefficient in the right parietal region in alpha frequency band for the measure of 

directionality (TE). Positive association between the participation of the right parietal region 

and VSTM scores for the Low participation subgroup (regression test; negative association 

with cognition for the High participation older subgroup: r= -0.491, p=0.033). All results 

were adjusted for multiple comparisons using FDR corrections at q < 0.05. 

*p<0.05; **p<0.01; ***p<0.001 
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To further analyze these results, we investigated differences in the same subgroups as in the 142 

first part (PLV/DTI) of the results.  143 

We observed that the Low participation subgroup, showing increased inward-directed 144 

couplings in right parietal region, also showed better cognitive performance on the VSTM test 145 

(r= 0.463, p=0.046; Figure 3C) than the High participation subgroup. Supporting these results, 146 

the High participation older subgroup showed lower cognitive performance on the VSTM test 147 

(r= -0.491,  p= 0.033; Figure 3s in supplementary data). 148 

Respective contribution of each network layer in younger and older adults 149 

Degree analyses (number of connections) were performed on the respective contribution of 150 

each layer, and suggest that the structural layer makes the largest contribution to the reported 151 

results, as degree was larger in the structural layer (DTI) than in the functional layer (PLV/TE) 152 

for the right parietal region (difference between DTI/PLV and DTI/TE layers, p=.001; see 153 

Figure 3s in supplementary data). The left temporal region follows this trend as well (difference 154 

between DTI/PLV layers, p=0.086; difference between DTI/TE layers, p=0.001). 155 

Interestingly, we examined the contribution of the different layers of connectivity within both 156 

older subgroups compared to the younger group for alpha temporal and parietal functional 157 

activity (see Figure 4s). We observed that the older subgroup that showed lower cognitive 158 

performance (High participation) did show difference in contribution between the two 159 

functional layers (differences between PLV and TE, p<0.001), in contrast to the Low older 160 

subgroup that did show better associations with cognitive performance (p<0.05). These results 161 

were found only for the left temporal region. 162 

Unique detection of subgroups relative to unimodal network analyses  163 

Finally, we performed unimodal analyses (DTI, MEG) to determine the added value of 164 

multiplex analyses relative to functional or structural network investigations. Regarding the 165 

structural layer, we replicated the significant difference in white matter integrity between young 166 

and old groups (p<0.001) on global connectivity data. Regarding the functional layer, we did 167 

not find a significant difference between younger and older adults at the global matrix level, in 168 

the alpha frequency band. At the nodal level, no difference between subgroups was observed in 169 

functional or structural networks, in contrast with multilayer analyses. 170 

Discussion 171 

In this study, we have showed the importance of integrating functional and structural 172 

information together to better understand aging effects. Our objectives were two-fold: to 173 

investigate changes of the brain structure-function association with age, and to determine the 174 

Figure 4. (A) Increased inward directionality (i.e., directed towards the right parietal region) 

in older adults relative to younger adults (t-test) for the right parietal region in alpha 

frequency band. (B) Preserved outward direction (i.e., directed towards other regions of the 

network) in older adults relative to the younger group for the right parietal region in the 

alpha frequency band. (C) Positive association between the increased multiplex 

participation coefficient in the inward direction for the right parietal region in alpha 

frequency band and VSTM test scores (regression test) in the older group. 

*p<0.05 
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impact of changes of this association on cognitive performance in older individuals. Our 175 

approach relied on two-layer multiplex network, with a structural layer based on DTI data and 176 

another layer based on resting-state MEG data, to identify changes between younger and older 177 

healthy individuals from the Cam-CAN repository and to further understand maintenance7 and 178 

compensation8 phenomena observed in aging. Two aspects of functional network connectivity 179 

were studied: phase synchrony and directed connectivity. We showed the existence of inter-180 

individual variability at the functional level in older individuals at rest that was associated with 181 

cognitive performance. Low structure/function multiplex participation coefficient for 182 

structure/synchrony and structure/information transfer in temporal and parietal regions in the 183 

alpha frequency band, similar to young adults in parietal region, was associated with preserved 184 

cognitive performance in older individuals. These results highlight the impact of fine structural 185 

alterations on functional connectivity changes with aging, and provide a better understanding 186 

of the relationship between brain structure and function. 187 

The multiplex participation coefficient can be considered as an indicator of co-dependence 188 

between modalities: a high level of this coefficient would indicate a high similarity of 189 

connectivity between brain structure and function, whereas a low coefficient would indicate a 190 

dissociation of structure and function connectivity. Subgroup analyses based on this coefficient 191 

allowed the detection of heterogeneity within cognitively healthy older individuals. First, we 192 

showed that lower levels of structure/synchrony participation relative to younger adults might 193 

be beneficial for cognitive performance. Second, using multiplex structure/directed 194 

connectivity network analyses, we showed that low levels of participation in the inward 195 

direction (i.e., corresponding to couplings directed towards a given region), to a similar level 196 

than young adults, for the regions investigated was beneficial for cognitive performance. In 197 

contrast, an increase in this coefficient was found to be negatively associated with cognitive 198 

performance. These subgroups were not found in unimodal analyses.  199 

The inferior temporal and supramarginal parietal gyri are both considered to be brain structural 200 

cores32. They are also both part of the default mode network33 (DMN), a network activated at 201 

rest, and whose activity has been associated with memory and executive performance34. 202 

Moreover, the alpha frequency band is involved in the structuring of neural rhythms and has 203 

notably been associated with attention allocation and the inhibition of couplings not required 204 

for the task35,36. By assessing the interaction between brain structure and the alpha frequency 205 

band, the present results contribute to existing frameworks about this central brain rhythm35, as 206 

they did not considered such association. Thus, the disengagement of the DMN, as well as the 207 

posterior alpha reduction, are critical for cognition and are impacted by aging37,38. Age-related 208 

structural changes would be central to these changes and would impact brain function. Our 209 

results could indicate that following fine changes in brain architecture, some older individuals 210 

will show a lower level of participation coefficient (i.e., a dissociation of connectivity patterns 211 

between brain structure and function) than others, which may be due to compensatory 212 

functional readjustments involving the alpha frequency band. These changes would enable 213 

better cognitive performance than individuals who will not make these functional 214 

readjustments, with higher levels of participation coefficient (i.e., a stronger association of 215 

connectivity patterns between brain structure and function). Future, longitudinal investigations 216 

remain important to further clarify this association. 217 

Our results also reveal that the subgroup of older individuals who showed lower 218 

structure/function multiplex participation coefficient, and for whom these changes were 219 
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positively associated with cognitive performances, showed no difference in contribution 220 

(calculated by measuring connectivity levels in each layer) between the phase synchrony (PLV) 221 

and information transfer (TE) layers. Conversely, an increase in the contribution of the phase 222 

synchrony layer compared to information transfer was found for the group without association 223 

with cognition. These results were only observed in the left inferior temporal region. These 224 

results could indicate inefficient connectivity in these individuals (i.e., synchronized couplings 225 

with little to no information exchange). The observation of synchronized activity may therefore 226 

be related to cognitive function, but may also be dissociated from it. Thus, considering 227 

synchrony in association with information transfer seems important to clarify age-related 228 

changes and to distinguish efficient communications from inefficient/maladaptive network 229 

couplings. These communications are highly dependent on the integrity of the underlying 230 

structural network, and investigating the respective contribution of structure and function 231 

through a multiplex network could also allow distinguishing these functional connectivity 232 

patterns in pathologies. Indeed, an increase in neuronal synchrony can be observed in 233 

neurodegenerative pathologies and has been considered as maladaptive changes (for a review, 234 

see39). Further investigations of this distinction could lead to the identification of new markers 235 

of subsequent decline and progression of neurodegenerative pathologies. 236 

Several methodological considerations should be discussed regarding the reported results. First, 237 

the study of resting-state activity partly limits the direct investigation of the neural bases of 238 

cognitive processes, as it might be less directly associated with cognitive functioning than task-239 

related activity40. Second, the analysis of layer contributions only showed results for the left 240 

inferior temporal region, which does not allow us to generalize our interpretations to the entire 241 

brain. Thus, the pattern of layer contributions may be different in other regions and frequency 242 

bands2, although the reported changes were central in the context of healthy aging. Longitudinal 243 

studies could further validate our interpretations and improve our knowledge of other brain 244 

regions.  245 

Several questions remain about the association between brain structure and function6,2. Indeed, 246 

this relationship undergoes crucial changes throughout the lifespan, as well as following several 247 

pathologies. The structure-function coupling also appears to fluctuate both over time and 248 

regionally. Although structural changes appear to drive changes in coupling between regions, 249 

brain functions are not solely determined from brain structure. Decreased integrity impacts 250 

neuronal synchrony and information exchange, and these changes are distinctly associated with 251 

cognitive performance in individuals. Here, we defined multiplex structure-function models in 252 

the context of healthy brain aging to better understand the heterogeneity of these changes across 253 

individuals (see Figure 5 for a schematic representation of this model). In particular, we show 254 

its impact on cognitive performance, which improves our knowledge on different theoretical 255 

models of aging such as concepts of cognitive maintenance7 and compensation8. Maintenance 256 

would thus be characterized by an imbalance in the contribution of phase synchrony and transfer 257 

information: with a higher level of contribution from PLV than from TE. Moreover, the level 258 

of similarity of connectivity between brain structure and function would be very low. Cognitive 259 

decline would also be associated with an imbalance in the contribution of phase synchrony and 260 

transfer information. However, in contrast to maintenance, the level of similarity of 261 

connectivity between brain structure and function would be very high. Finally, Compensation 262 

would be characterized by a balance in the contribution of phase synchrony and transfer 263 

information. The level of similarity of connectivity between structure and brain function would 264 

be very low, in the same way as in the maintenance concept. Indeed, a dissociation of 265 
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connectivity pattern between structure and function has been associated with the preservation 266 

of cognitive performance. Importantly, these individual markers were not found in unimodal 267 

analyses. This new approach might yield a better understanding of the brain, which could be 268 

useful in clinical applications to better understand certain pathologies such as 269 

neurodegenerative diseases, and more generally to further our understanding of the link 270 

between structure and function in the brain. 271 

  272 

Figure 5. Schematic representation of the proposed model for the left inferior temporal 

region. (A) Level of contribution for PLV and TE. (B) Participation coefficient for PLV/DTI 

and TE/DTI multiplex network. (C) Summary of the relation between the level of similarity 

of contribution from PLV/TE, participation coefficient and concepts of aging. DTI: 

Diffusion Tensor Imaging, PLV: Phase Locking Value, TE: Transfer Entropy, FC: 

Functional Connectivity, SC: Structural Connectivity 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 15, 2023. ; https://doi.org/10.1101/2023.02.15.528643doi: bioRxiv preprint 

https://doi.org/10.1101/2023.02.15.528643
http://creativecommons.org/licenses/by-nc-nd/4.0/


11 
 

Materials and Methods  273 

Participants 274 

All participants aged 20-30 years and 60-70 years were selected from the Cam-CAN 275 
database30,31, in line with demographic characteristics of individuals recruited in previous 276 
work41,18. Thus, we analysed data from 46 young (29 women and 17 men; aged 22-29 years) 277 
and 46 older healthy adults (29 women and 17 men; aged 60-69 years) (Table 1). All 278 

participants were right-handed, showed normal cognitive functioning42 (Montreal Cognitive 279 
Assessment (MoCA) score >26), and no neurological or psychiatric conditions.  280 

Table 1. Demographics and scores for both groups younger and older participants 281 

 282 

Behavioural measures 283 

A detailed description of behavioural measures can be found in supplementary materials (see 284 
also Refs. 30,31). Cognitive performance was assessed with the Mini-Mental State Evaluation43 285 
(MMSE) as a measure of general cognitive functioning, the Visual Short-Term Memory44 286 
(VSTM) as a test of short-term memory and working-memory maintenance, the Cattel test45 287 

measuring reasoning ability, and the Hotel Test46 assessing executive functions (notably 288 

planning abilities). Despite significant differences between the two groups, all participants had 289 

normal cognitive function. These variables were added as covariates in statistical analyses. 290 

MEG, structural MRI and DTI data acquisition 291 

Resting MEG activity was measured for 10 minutes (sampling rate: 1kHz, bandpass filter: 0.03-292 
330 Hz) with a 306-channel MEG system. Participants' 3D-T1 MRI images were acquired on a 293 
32-channel 3T MRI scanner. The following parameters were used: repetition time = 2250 ms; 294 
echo time = 2.99 ms; inversion time = 900 ms; flip angle = 9 degrees; field of view = 256 mm 295 

Variables Young adults Older adults p-value 

Number of participants 46 46 1.000 

Number of women 29 29 1.000 

Age 26.5 (2.01) 64.5 (2.85) 0.001 

Years of education 22.2 (2.873) 19.1 (3.262) 0.001 

MMSE 29.5 (0.863) 28.9 (1.173) 0.013 

VSTM 0.5 (0.088) 0.4 (0.069) 0.001 

Cattell 37.8 (3.628) 30.5 (6.285) 0.001 

Hotel_Num_rows 4.7 (0.585) 4.3 (1.008) 0.018 

Hotel_Time 227.7 (119.796) 326.9 (194.305) 0.005 

Table 1. Demographics and scores for both groups younger and older participants. MMSE: 

Mini-Mental State Evaluation; VSTM: Visual Short-Term Memory; Hotel_num_rows: 

corresponding to the number of rows performed by the participant; Hotel_Time: 

corresponding to the time used to performed all rows by the participant. Differences 

between the two groups were calculated using t-test. 
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x 240 mm x 192 mm; voxel size = 2 mm isotropic; GRAPPA acceleration factor = 2; acquisition 296 

time = 4 minutes and 32 seconds. DTI data were obtained with the following parameters: 297 
repetition time = 9100 ms; echo time = 104 ms; inversion time = 900 ms; field of view = 192 298 

mm x 192 mm; 66 axial slices; voxel size = 2 mm isotropic; B0 = 0.1000/2000s/mm2; 299 
acquisition time = 10 minutes and 2 seconds, readout time 0.0684 (echo spacing = 0.72ms, EPI 300 
factor = 96). See https://camcan-archive.mrc-cbu.cam.ac.uk/dataaccess/ for more information. 301 

MEG data pre-processing 302 

The Elekta Neuromag MaxFilter 2.2 has been applied to MEG data (temporal signal space 303 
separation (tSSS): 0.98 correlation, 10s window; bad channel correction: ON; motion 304 

correction: OFF; 50Hz+harmonics (mains) notch). Afterwards, artifact rejection, filtering (0.3-305 
100 Hz bandpass), temporal segmentation into epochs, averaging and source estimation were 306 
performed using Brainstorm47. In addition, physiological artefacts (e.g., blinks, saccades) were 307 
identified and removed using spatial space projection of the signal. In order to improve the 308 

accuracy of the source reconstruction, the FreeSurfer48 software was used to generate cortical 309 
surfaces and automatically segment them from the cortical structures from each participant's 310 
T1-weighted anatomical MRI. The advanced MEG model was obtained from a symmetric 311 
boundary element method (BEM model49; OpenMEEG50), fitted to the spatial positions of each 312 

sensor51. A cortically constrained sLORETA procedure was applied to estimate the cortical 313 

origin of the scalp MEG signals. The estimated sources were then smoothed and projected into 314 
standard space (i.e., ICBM152 template) for comparisons between groups and individuals, 315 

while accounting for differences in anatomy (i.e., gray matter). This procedure was applied for 316 
the entire recording duration.  317 

Connectivity analyses 318 

Phase-locking value analyses52 (PLV) were used to determine the functional synchrony 319 
between regions of interest. PLV estimates the variability of phase differences between two 320 

regions over time. If the phase difference varies little, the PLV is close to 1 (this corresponds 321 

to high synchronisation between the regions), while the low association of phase difference 322 
across regions is indicated by a PLV value close to zero. To ensure PLV results did not reflect 323 
volume conduction artefacts, additional control analyses were conducted using phase lag index 324 

(weighted PLI analyses). Because PLV is an undirected measure of functional connectivity, and 325 
to investigate brain dynamics with complementary metrics, analyses of transfer entropy (TE) 326 

have also been conducted. TE measures how a signal can predict subsequent changes in another 327 
signal53. It thus provides a directed measure of a coupling’s strength. If there is no coupling 328 
between regions, then TE is close to 0, while TE is close to 1 if there is a strong coupling 329 

between two regions.  330 

The range of each frequency band was based on the frequency of the individually observed 331 
alpha peak frequency (IAF), measured as the average of peaks detected from both 332 
occipitoparietal magnetometers and gradiometers. In line with previous work54 the following 333 

frequency bands were considered: Delta (IAF-8/IAF-6), Theta (IAF-6/IAF-2), Alpha (IAF-334 

2/IAF+2), Beta (IAF+2/IAF+14), Gamma (IAF+15/IAF+80). To reduce the dimensionality of 335 

the data, the first component of the principal component analysis (PCA) decomposition of the 336 
time course of activation in each of the 68 regions of interest (ROI) from the Desikan-Killiany 337 

brain atlas. The first component, rather than the average activity, was chosen to reduce signal 338 
leakage55. 339 

DTI data pre-processing 340 
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Pre-processing of the diffusion data was performed using ExploreDTI56 and included the 341 

following steps: (a) images were corrected for eddy current distortions and participant motion; 342 
(b) a non-linear least squares method was applied for diffusion tensor estimation, and (c) 343 

deterministic DTI tractography was applied using the following parameters: uniform resolution 344 
of 2 mm, fractional anisotropy (FA) threshold of 0.2 (limit: 1), angle threshold of 45°, and fibre 345 
length range of 50 to 500 mm. The network analysis tools in ExploreDTI were used to quantify 346 
the FA value of the fibres connecting the regions of the Desikan atlas, to obtain similar matrices 347 
to MEG data, using Freesurfer's individual cortical parcellation. 348 

Multiplex Network construction and measures 349 

Using BRAPH57 software (http://braph.org/), a multiplex network was defined for each subject, 350 
with two layers: one “structural” layer with DTI tract FA data, and one “functional” layer with 351 
PLV or TE MEG data (in this study, a simplification of TE was used to determine whether a 352 
region was a receiver or sender). TE analyses were performed on each region and distinguished 353 

coupling directed from the network towards a given region (i.e., the inward direction), or from 354 
a given region towards the rest of the network (i.e., the outward direction). In each layer, brain 355 
regions from the Desikan-Killiany atlas58 are represented by nodes connected by edges (see a 356 
method’s summary in Figure 1). A binary multiplex matrix was calculated from the individual 357 

matrices of DTI and MEG data of each participant. Auto-correlations between regions were 358 

excluded from the analyses. 359 

To evaluate across-layer integration, the multiplex participation coefficient59 was investigated, 360 
allowing the quantification of the connectivity similarity of a node across the different layers. 361 

The multiplex participation coefficient of a node i is defined as59: 𝑝𝑖 =  
𝑀

𝑀−1
[1 −  ∑ (

𝑘𝑖
[∝]

𝑜𝑖
)

2
𝑀
∝=1 ] 362 

where M is the number of layers, 𝑘𝑖
[∝]

 the degree of node i at the  ∝ −𝑡ℎ layer and 𝑜𝑖 is the 363 

overlapping degree of node i, 𝑜𝑖 =  ∑ 𝑘𝑖
[∝]

 ∝ . This coefficient measures how similar the 364 

connectivity patterns are in both layers of the multiplex network. Values range between 0 and 365 

1. In particular, value of 1 means that the node makes the exact connections in both layers, 366 
while a value of 0 means that the nodes connections in both layers are different from each other. 367 

A large participation value indicates that the node may be central or a hub. To determine which 368 

layer is driving the observed results, the degree (i.e., number of connections of each layer of 369 

the multiplex network for a given region) was also calculated for each group as: 𝑑[𝛼] =370 

 ∑ 𝑎𝑖𝑗
[𝛼]𝑁

𝑗=1 ; where 𝑎𝑖𝑗
[𝛼]

is the link between node i and j in layer 𝛼. 371 

Statistical tests 372 

To assess differences between age groups in multiplex participation for different brain regions, 373 

t-tests were applied using the Jamovi software (https://www.jamovi.org/; version 1.6.23). 374 

Regression analyses were performed in the older adults’ group to assess whether the level of 375 

participation coefficient for a region was associated with cognitive performance. Afterwards, 376 

participants were grouped according to the level of participation coefficient for each region. 377 

Two subgroups were then formed: one corresponding to individuals with a high participation 378 

coefficient called "High participant group" and another with a low participation coefficient 379 

called "Low participant group". The median individuals (four from each group) were removed 380 

from subgroup analyses to reduce median split bias. As a result, each subgroup was composed 381 

of 19 individuals. Subgroups were also found in young adults but due to the large variability in 382 

young individuals, were considered as a single group. T-tests were also performed to determine 383 
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differences between subgroups. Original degrees of freedom and corrected p-values are 384 

reported. Results were FDR corrected for multiple comparisons60. 385 

  386 
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