In search of the Goldilocks zone for hybrid speciation II: hard times for hybrid speciation.

Alexandre Blanckaerta,b,c,*, Vedanth Srirama and Claudia Banka,d,e

a Instituto Gulbenkian de Ciência, Oeiras, Portugal
b Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI, USA
c cE3c - Centre for Ecology, Evolution and Environmental Changes & CHANGE - Global Change and Sustainability Institute, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, Portugal
d Institute of Ecology and Evolution, University of Bern, Bern, Switzerland
e Swiss Institute of Bioinformatics, Lausanne, Switzerland

Corresponding author *: blanckaert.a@gmail.com

Author contribution: AB and CB designed the study, AB wrote the simulation code, AB and VS conducted the analysis. AB wrote the manuscript with contributions of VS and CB.

Acknowledgments: We thank the Bank lab for discussion of the project. This study was funded by an ERC Starting Grant 804569 (FIT2GO) and HFSP Young Investigator Grant RGY0081/2020 to CB. The research was partly supported by National Institutes of Health (NIH) grant R35 GM139412 to Bret Payseur.

Conflict of interest: The authors declare no conflict of interest.

Data availability statement: Source code for the simulation program is currently on github (github.com/banklab/DMI-hybrid-extinction).
Abstract

Hybridization opens a unique window for observing speciation mechanisms and is a potential engine of speciation. One controversially discussed outcome of hybridization is homoploid hybrid speciation by reciprocal sorting, where a hybrid population maintains a mixed combination of the parental genetic incompatibilities, preventing further gene exchange between the newly formed population and the two parental sources. Previous work showed that, for specific linkage architectures (i.e., the genomic location and order of hybrid incompatibilities), reciprocal sorting could reliably result in hybrid speciation. Yet, the sorting of incompatibilities creates a risk of population extinction. To understand how demographic consequences of the purging of incompatibilities interact with the formation of a hybrid species, we model an isolated hybrid population resulting from a single admixture event. We study how population size, linkage architecture and the strength of the incompatibility affect survival of the hybrid population, resolution/purging of the genetic incompatibilities and the probability of observing hybrid speciation. We demonstrate that the extinction risk is highest for intermediatively strong hybrid incompatibilities. In addition, the linkage architecture displaying the highest hybrid speciation probabilities changes drastically with population size. Overall, this indicates that population dynamics can strongly affect the outcome of hybridization and the hybrid speciation probability.

Keywords: Hybrid speciation; Extinction; Genetic incompatibilities; Model;

Introduction

The role of hybridization remains a central theme in the study of adaptation and speciation [Barton and Bengtsson 1986, Buerkle et al. 2000, Barton 2001, Mallet 2007, Servedio et al. 2013, Schumer et al. 2018, Butlin et al. 2021]. Hybridization can play an instrumental role in adaptive introgression [Hedrick 2013, Seehausen 2013, Meier et al. 2019] and promotes speciation through the subsequent increase in genetic variability [Marques et al. 2019]. However, it can also increase the amount of genetic admixture to the point of reversing the speciation process [Seehausen et al. 2008] or lead to genetic or demographic population swamping [Todesco et al. 2016]. These different consequences highlight the need to understand better the role of hybridization from both an evolutionary and ecological point of view.

Hybrid speciation is an additional outcome of hybridization; it refers to the formation of a new species upon admixture between two incipient species that subsequently become reproductively isolated from both parent species [Buerkle et al. 2000, Runemark et al. 2019]. We distinguish between allopolyploid and homoploid hybrid speciation depending on whether or not the ploidy of the newly formed population differs from the parental populations. Contrary to the polyploid case, reproductive isolation between homoploid hybrid and parental populations cannot be formed in a single step but rather has to evolve over time. For homoploid hybrid speciation to be possible, the parental populations must be genetically isolated, but the extent of this isolation must allow for hybridization events to still occur. Despite this catch 22 situation, several cases of homoploid hybrid speciation have been reported [Mavárez et al. 2006, Yakimowski and Rieseberg 2014, Lamichhaney et al. 2018], and the matter has been extensively debated in the literature [Nieto Feliner et al. 2017, Schumer et al. 2018].
The *a priori* contradictory effects of reproductive isolation on hybrid speciation have been investigated through theoretical models (Buerkle et al., 2000; Schumer et al., 2015; Comeault, 2018; Blanckaert and Bank, 2018). Most of these models focus on the role of post-zygotic reproductive isolation. One classical model to explain the evolution of this type of genetic barrier is the classical Bateson-Dobzhansky-Muller model (Bateson, 1909; Dobzhansky, 1936; Muller, 1942). A (Bateson-)Dobzhansky Muller incompatibility (DMI) consists of two alleles at different loci whose mutual interactions are negatively epistatic and therefore deleterious when they occur in the same genome. A classical DMI can only isolate the hybrid population from a single parental source. As a consequence, a hybrid population can form its own reproductively isolated population only through the reciprocal sorting of multiple DMIs. Most previous models have focused on the population genetics of the newly formed hybrid population and its fate, assuming that the population sizes remained constant (with the exception of Buerkle et al. (2000), where population dynamics were included) and therefore ignoring the consequences of the genetic incompatibilities on the population dynamics of the hybrid population.

The role of population dynamics, and the choice to include or ignore them in evolutionary modeling, has been well studied and documented (for a review, see Ravigné et al. (2009)), with the two modeling regimes being named hard and soft selection, respectively. The terms were initially coined by Wallace (1968) and more formally defined by Christiansen (1975) (however these two regimes are not complementary (Wallace, 1975)). In the soft selection regime, selection acts locally on smaller subpopulations. Survival of a genotype is linked to the presence/absence of other genotypes, so soft selection is a frequency- and density-dependent process (Wallace, 1975). The number of adult individuals in each generation is fixed and always equals the population’s carrying capacity. Conversely, under a hard selection regime, selection operates at a global level, and the population size is variable, depending on the viability of individuals of the population. The viability is determined solely by the individual genotype and is both density and frequency independent (Wallace, 1975). While more complex than their soft selection counterparts, hard selection models capture both ecological and evolutionary dynamics of a population instead of just the evolutionary dynamics, allowing us in particular to investigate extinction events.

Here, we use a hard selection approach to determine whether conditions favorable to hybrid speciation are also favoring population extinction. Building upon previous soft selection models (Schumer et al., 2015; Blanckaert and Bank, 2018), we modeled both the demographics and evolutionary dynamics of a newly formed hybrid population following admixture. Reproductive isolation is caused by (intrinsic) post-zygotic genetic incompatibilities (DMIs). We tracked the fate of the newly formed population, as well as the genes responsible for reproductive isolation. We found that survival of the population was strongly influenced by the linkage architecture (*i.e.*, the order and distance of genes along the genome) and the initial population size of the hybrid population. Hybrid speciation was also possible under a hard selection regime. As seen previously, the linkage architecture had a large impact on the hybrid speciation probability (Blanckaert and Bank, 2018). However, which linkage architectures facilitate hybrid speciation and which
architectures ensure higher survival was different and depended on the initial population size of the hybrid population. We also quantified the impact of both co-dominant and recessive epistasis and discussed the implications of these results on the study of hybrid speciation.

Method

We model the evolution of a hybrid population in discrete, non-overlapping generations. We assume that the hybrid population is formed through a single admixture event of two parental populations with a proportional contribution of \(i_p\) and \((1 - i_p)\) (a hybrid swarm scenario), after which the hybrid population remains isolated. Initially, this newly formed population is assumed to have a total number of individuals of \(N_{\text{init}}\). Different from Blanckaert and Bank (2018), the size of the newly formed population evolves in response to selection and genetic drift.

We study evolution at four diallelic loci, \(A_1, A_2, B_1\) and \(B_2\), with the derived allele denoted by an uppercase letter and the ancestral by a lower-case letter. We assume that selection affected viability and model fitness of an individual as its probability to reach adulthood. All surviving individuals (i.e., adults) contribute equally to the gamete pool. Zygote formation is random. Therefore, ancestral alleles are under single-locus selection, with a fitness disadvantage \(\alpha_k\) of allele \(a_k\) compared to \(A_k\). Similarly, allele \(b_k\) suffers from a fitness disadvantage \(\beta_k\) compared to allele \(B_k\). In addition, alleles \(A_k\) and \(B_k\) are epistatically interacting, forming a DMI, with a fitness cost \(\epsilon_k\) associated with the interaction. Accordingly,

\[
\omega^{ij} = \prod_{k=1}^{2} \left(1 + \alpha_k \right)^{2 - \left(X^i_k + X^j_k\right)} \left(1 + \beta_k \right)^{2 - \left(Y^i_k + Y^j_k\right)} \left(1 + \phi_k^{i} \left(Y^i_k + Y^j_k\right) \cdot \epsilon_k \right)^{(X^i_k + X^j_k)(Y^i_k + Y^j_k)} , \tag{1}
\]

where \(X^k_i\) denotes the number of alleles \(k\) in haplotype \(i\) and \(\phi^k_n\) is a placeholder for the dominance of epistasis. If the DMI is codominant then \(\forall n \in \{0, 1, 2, 4\}, \phi^k_n = 1\); if the DMI is recessive, then \(\forall n \in \{0, 2, 4\}, \phi^k_n = 1\), but for \(n = 1\), \(\phi^k_1 = 0\).

Selection (hard selection) happens in the diploid phase of the life cycle and affects the survival probability of juveniles to adulthood, therefore impacting the number of adult individuals \(N(t)\) of the population at generation \(t\). More precisely, the number of adult individuals of genotype \(ij\), at generation \(t + 1\), is drawn from a Poisson distribution, with parameter \(\lambda^{ij}(t) = \omega_{\text{off}} \cdot \omega^{ij} \cdot f^{ij}(t+1) \cdot N(t)\). The term \(\omega_{\text{off}}\) corresponds to the mean number of offspring produced by the ancestral genotype (per default, \(\omega_{\text{off}} = 1.01\)) and \(\omega^{ij}\) to the fitness of genotype \(ij\) as defined above. The number of adult individuals at generation \(t\) is given by \(N(t)\) and \(f^{ij}(t+1)\) represents the frequency of genotype \(ij\) in the juvenile pool (produced by the adults from generation \(t\)) assuming Hardy Weinberg equilibrium. The parameter \(\lambda^{ij}(t)\) represents the expected number of surviving juveniles carrying genotype \(ij\) at generation \(t + 1\).
Parameters	Notation	Default value
Hybrid population size at the time of the admixture event | N_{init} | *5,000
Contribution of population A to the admixture event | i_p | 0.5
Selection coefficient for allele a_k | α_k | -0.001
Selection coefficient for allele b_k | β_k | -0.001
Epistasis between allele A_k and B_k | ϵ_k | *-0.2
Mean number of offspring of the ancestral genotype | ω_{off} | 1.01
Carrying capacity | K | 10^6
Recombination rate between loci X and Y | r_{XY} | *0.5
Number of replicates | n_{rep} | *1,000

Table 1: Parameters of the model and their default values. Parameters that varied in the main text are indicated with a *.

Both the resolution of the genetic incompatibilities as well as the survival of the population are determined during the initial phase following admixture, when population sizes are small, and therefore when density regulation is most ineffective. As a consequence, we do not model a population density regulation mechanism for simplicity; however, the population could only grow up to a carrying capacity of K.

The parental populations are assumed to be fixed for the following genotypes: $A_1b_1A_2b_2/A_1b_1A_2b_2$ and $a_1B_1a_2B_2/a_1B_1a_2B_2$, respectively. We are particularly interested in two specific long-term outcomes of the eco-evolutionary dynamics: extinction, and hybrid speciation. We define hybrid speciation as the reciprocal sorting of the genetic incompatibilities (Schumer et al., 2015; Blankaert and Bank, 2018). More precisely, it corresponds to the fixation of a haplotype that is incompatible with both parental haplotypes, without carrying an incompatibility itself (i.e. either haplotype $A_1b_1A_2b_2$ or $a_1B_1a_2B_2$). For consistency, we always use the same nomenclature to refer to haplotypes, even if it does not match the physical order of the loci along the chromosome. There are a total of six possible linkage architectures (since A and B are interchangeable, see Fig. 1).

Recombination between two adjacent loci is given by r_{XY} ($0 \leq r_{XY} \leq 0.5$). Here, $r_{XY} = 0.5$ corresponds to a scenario in which the two loci are located on different chromosomes. Recombination between non adjacent loci X and Y, separated by a third locus Z, is given by $r_{XY} = r_{XZ}(1-r_{ZY}) + r_{ZY}(1-r_{XZ})$.

Results

The hybrid population is at highest risk of extinction for intermediate values of epistasis or recombination

Compared to the soft selection regime, an additional evolutionary outcome arises when population sizes are dynamic: extinction of the newly formed hybrid population. First, we consider the case of unlinked loci (Fig. 2). The presence of genetic incompatibilities puts the newly formed hybrid population at risk of extinction, especially in small populations (see Fig. 2 and Fig. S1); the stronger the epistasis and the smaller the population, the higher the risk of extinction. This is true both for recessive and codominant incompatibilities (Fig. 2 A-B). A sufficiently large initial population size ($N_{\text{init}} > 1,000$) can be
Figure 1: All 6 possible linkage architectures. Each architecture is illustrated for an F1 hybrid individual. Derived alleles are given in orange (A_k) and blue (B_k); their ancestral counterparts are depicted in black. Red arrows indicate the epistatic interactions between derived alleles A_k and B_k. This figure is adapted from Figure 1 in [Blanckaert and Bank (2018)](https://doi.org/10.1101/2023.02.15.528680), using the same naming convention.
Figure 2: The risk of extinction is maximized at intermediate strength of epistasis and with low initial population size, when multiple DMIs are involved. Here, all loci are freely recombining ($r = 0.5$). Lines serve as a guide for the eye. A) A single recessive DMI. B) A single codominant DMI. C) Two recessive DMIs. D) Two codominant DMIs. Survival probabilities are computed from 1,000 independent replicates. Other parameters are given in Table [1].
sufficient to prevent extinction in the case of a recessive incompatibility (Fig. 2A). For a
codominant DMI, even large populations \(N_{\text{init}} = 10^4 \) have an approximately 25% risk
of extinction when the incompatibility is almost lethal \((\epsilon = -0.99; \text{ Fig. } 2B) \).

With two codominant DMIs, the population is at highest risk of extinction for inter-
mediate values of epistasis (Fig. 2D). Here, the survival probability is non-monotonic
because epistasis affects the hybrid population in two ways. On the one hand, epistasis
initially reduces the population size due to the production of unfit individuals. More
precisely, the growth rate of the population initially decreases below 1 as the strength
of epistasis increases (see Fig. S2A for the F1 and F2 generations), which leads to a
population size decline. This decline is the less severe, the weaker the DMIs are. On the
other hand, the time to resolution of the genetic incompatibilities, at constant population
size, decreases with the strength of (codominant) epistasis \(\text{(Blanckaert and Bank, 2018)} \).

The resolution of the genetic incompatibilities relieves the population from the deleteri-
ous effects of the DMIs and the risk of extinction. Here, strong epistasis is favorable for
survival. In summary, strong epistasis results in a short strong bottleneck, whereas weak
epistasis results in a weak bottleneck of long duration. Populations with intermediate
epistasis fall in between these two regimes, which leads to a longer period of time at a
rather small population size (see Fig. S3). The longer time spent at low population sizes
makes them more susceptible to extinction through drift. For recessive DMIs, the extinct-
ion probability strictly increases with the strength of the incompatibility (Fig. 2C). Since
recessive DMIs are resolved much more slowly \(\text{(Blanckaert and Bank, 2018)} \), the regime
of strong bottlenecks and fast resolution of the conflict does not exist here. The role of
the size of the hybrid population at the time of the admixture event is independent of the
dominance of the DMI: the smaller the population, the higher the risk of extinction (Fig.
2C-D).

In the absence of recombination or when it is rare, the linkage architecture does not
affect the survival of the population (Fig. 3). Here, the initial population is at an unstable
equilibrium at which only three genotypes exist: the two parental genotypes and the F1
hybrid genotype. Selection against F1s leads to a reduction in the population size until
drift creates a sufficient frequency difference for selection to act against the rarer parental
genotype. If F1 hybrids are (almost) non-viable, (Fig. S4), this regime of competition
between the two parental genotypes always holds, regardless of the recombination rate and
linkage architecture. This regime has three possible outcomes: the extinction of the hybrid
population or the return to one of the two parental genotypes. The cost of producing F1
offspring drives the population towards extinction. Because epistasis creates positive
frequency-dependent selection, departure from symmetry, generated by drift, ultimately
leads to the resolution of the genetic incompatibilities, the fixation of one parental type
(usually the more frequent), and the survival of the population. It is important to remark
that the frequency dependence only applies to the marginal fitnesses of the alleles (and
haplotypes); the fitness of the genotypes remains frequency-independent. If epistasis is
recessive, the system is fully neutral in the absence of recombination. In this case, the
presence of genetic incompatibilities, regardless of their strength, does not induce a risk of
extinction. In the recessive scenario, a larger recombination rate increases the extinction
Figure 3: The survival probability is often minimal for intermediate recombination rate and varies greatly between linkage architectures. We show the survival probability of the hybrid population as a function of recombination for the 6 different linkage architectures, for a pair of codominant DMIs of intermediate strength ($\epsilon_k = -0.2$) and an initial population size $N_{\text{init}} = 5,000$, estimated over 10,000 replicates. Lines serve as a guide for the eye. The equivalent recessive case is shown in Fig. S4. Corresponding (both codominant and recessive) cases for lethal DMIs are shown in Fig. S5 and S6.
probability, because recombination results in the formation of unfit genotypes. There is one notable exception (Fig S5 and S6, “Nested ABAB” architecture) where this effect is not monotonic, which we discuss below.

With codominant DMIs, a higher recombination rate can either increase the survival probability of the hybrid population (Fig. 3 “Crossed AABB” and “Crossed ABBA” architectures) or decrease it (“Adjacent ABAB” and “Nested AABB” architectures). Interestingly, Blanckaert and Bank (2018), in their soft selection model, observed a similar pattern for the probability of hybrid speciation, but for different sets of linkage architectures. To elucidate this architecture-dependent role of recombination, it helps to understand the dynamics in the absence of genetic drift. We first focus on the “Adjacent ABAB” and “Crossed AABB” architectures (Fig. 3 black and green dots). Both architectures generated similar strong probabilities of hybrid speciation for intermediate recombination rate in the soft selection regime (Blanckaert and Bank, 2018). In the present study, these two architectures behave very differently from each other (Fig. 3): the “Crossed AABB” architecture generates the highest chance of survival, and the “Adjacent ABAB” architecture the second lowest. One key difference between these two linkage architectures is the much higher frequency of the ancestral haplotype for the “Crossed AABB” architecture compared to the “Adjacent ABAB” architecture in the first generations of hybridization (Fig. S7). A higher frequency of the ancestral haplotype slows down the sorting of the DMIs, because parental haplotypes paired with the ancestral haplotype are safe from epistasis. When computing the marginal fitness of all 16 haplotypes (in the deterministic case, Fig. S8) for these two architectures, all but the ancestral haplotype show a higher marginal fitness for the “Crossed AABB” architecture case than in the “Adjacent ABAB” case. The initial higher frequency of the ancestral haplotype arises because the ancestral haplotype can be generated in the F2 breakdown with a single recombination event (see Fig. 6 in Blanckaert and Bank (2018)). Conversely, it requires three recombination events to generate the ancestral haplotype (from the parental haplotypes) for the “Adjacent ABAB” architecture – a property that this linkage architecture shares with the “Nested ABAB” architecture, which displays the lowest survival rate. An excess of unfit genotypes, generated through the first recombination events, explains the low survival probability for specific architectures at intermediate recombination rates.

The F2 breakdown, which explains the difference between the two best and the two worst architectures in the codominant case, also sheds light on why only the “Nested ABAB” architecture displays a non-monotonic survival probability in the recessive case (Fig. S5 and S6). For all 6 linkage architectures, a single crossover forms two haplotypes that contain three ancestral alleles and one derived allele. For “Adjacent ABAB” and “Crossed AABB”, which have the highest survival probabilities for intermediate recombination rates, the emerging haplotypes, $a_1A_2b_1b_2$ and $a_1a_2B_1b_2$, are interaction-free because the two derived alleles stem from different DMIs. Conversely, for the two “Nested” architectures, the emerging haplotypes $a_1A_2b_1b_2$ and $a_1a_2b_1B_2$ contain an interaction between A_2 and B_2. This DMI generates a fitness cost for the hybrid population, which leads to a lower initial growth rate and, as a consequence, a lower survival probability. Interestingly, only the “Nested ABAB” architecture displays a minimum survival probability.
for intermediate recombination in the recessive case (Fig. S5 and S6). Here, the F3 recombining haplotype $a_1A_2b_1B_2$ is deleterious if homozygous, whereas its counterpart for the "Crossed AABB" architecture, $a_1A_2B_1b_2$ is always advantageous during the early generations of hybridization. Although this difference matters little for the codominant case, as the F1, as well as the F2 recombining haplotypes, are already expressing the incompatibilities, it becomes important in the recessive case, when the incompatibilities are not yet expressed. This difference leads to the distinct behaviors observed between the "Crossed AABB" and "Nested ABAB" architectures in the recessive case. Overall, the differences in survival probability highlight the influence of the linkage architecture on the effective strength of selection. Indeed, selection here is mainly epistatic and therefore frequency-dependent, and the linkage architecture controls which haplotypes initially form and at which frequencies.

Finally, in very small populations, recombination almost always reduces the probability of survival (in the codominant case; Fig. S9) and the difference between linkage architectures are far less pronounced. Drift erases most of the variance in model behavior that may arise from small differences in fitness, such as the small fitness advantages generated by forming “good” haplotypes in the F2 generation. In addition, the intrinsic disadvantage of the ancestral alleles over their derived counterpart barely changes the qualitative patterns (Fig. S10). The overall survival probability is increased when setting α_i and β_i to 0 (compared to $\alpha_i = \beta_i = -0.001$), since the initial bottleneck is then less severe. Here, the effects of linkage architecture and recombination are slightly more pronounced than in the presence of direct selection. Both for the “Adjacent ABAB” and “Nested ABAB” architectures (and only these two), the pattern observed for larger populations is different from the others: the lowest survival probability is obtained for intermediate recombination rates in the codominant case.

Resolution of the DMIs and survival probability

Both the strength of the bottleneck and its duration, caused by the resolution of the genetic incompatibilities, play a large role in the fate of the hybrid population. Figure 4 displays the relationship between the minimum population size and the survival probability. Here, the linkage architecture has little impact on the survival of the population. Although the linkage architecture determines the effective strength of selection (since it influences haplotype frequencies, and epistatic selection is frequency-dependent) and therefore the strength of the bottleneck, it does not impact the survival probability directly. In addition, for a given minimum population size, faster resolved incompatibilities are associated with an overall higher survival probability of the population, but the effect is marginal compared to the effect of the minimum population size itself (see also Fig. S11). The observed relationship between minimum population size and survival probability is similar between recessive and codominant incompatibilities (Fig. S12). We found a similar relationship between minimum population size and survival probability in a classical evolutionary rescue scenario without incompatibilities (Fig. S13). More precisely, we considered a population doomed to extinction because of a negative
Figure 4: The probability of survival is dictated by the minimum population size reached during the sorting of the (codominant) genetic incompatibilities. We show the survival probability for all 6 linkage architectures, for various initial population sizes, recombination rates and epistasis strength as a function of the minimum population size reached during the evolution. The black line is a visual guideline ($y=-1/59+x/590$) to facilitate comparison. Color indicates the recombination rate between loci (from $r = 0$ in orange to $r = 0.5$ in magenta; the equivalent recessive scenario is illustrated in Fig. S12.)
Figure 5: The hybrid speciation probability, given survival, is maximized at intermediate recombination rates for specific linkage architectures. We represent here the probability of hybrid speciation, conditioned on survival, as a function of the genetic distance between loci for all linkage architectures, with an initial population size $N_{\text{init}} = 5,000$ measured over 10,000 replicates. Panel A) corresponds to codominant DMIs ($\epsilon_k = 0.2$) and panel B) to recessive DMIs ($\epsilon_k = -0.2$). The unconditioned cases can be found in Figure S15.

growth rate, which could be rescued by a single beneficial mutation (Orr and Unckless 2008). We set the growth rate \bar{r} to that of the hybrid F1 population, and the selection coefficient s was chosen such that the growth rate of the final genotype matched that of the incompatibility-free population (Fig. S14). The survival probability for a given minimum population size is minimally higher in the classical evolutionary rescue scenario than in the hybrid population case (Fig S13). This is likely due to the difference in dynamics between the two scenarios: in the evolutionary rescue scenario, the mean growth rate increases over time, whereas it initially decreases during the sorting of the DMIs (as illustrated in Fig S2).

Recombination (still) generates a Goldilock zone for hybrid speciation

We next address the probability of hybrid speciation in the hard selection model. We recover qualitatively the main result observed for hybrid speciation with soft selection (Blanckaert and Bank 2018): specific linkage architectures make hybrid speciation much more likely (Fig. 5). This holds independently of whether we do (Fig. 5) or do not condition on survival (Fig. S15). For intermediate recombination rates, and for 2 specific
linkage architectures, hybrid speciation becomes a highly likely outcome. The underlying mechanism is identical to the soft selection regime. For intermediate recombination rates, these two architectures, “Adjacent ABAB” and “Crossed AABB” allow for allele B_1 and A_2 to escape into the ancestral background through a single crossover. The early formation of these haplotypes gives alleles, B_1 and A_2, a marginal fitness advantage over A_1 and B_2. These fitness differences, generated by the F2 breakdown, lead to a preferential reciprocal sorting of the DMIs towards A_2 and B_1 and therefore, per our definition, to hybrid speciation.

Although we have established that the minimum population size is a good predictor of the survival of the hybrid population, it is a very poor predictor of hybrid speciation. More precisely, it is an unreliable predictor since a given value for minimum population size corresponds to multiple hybrid speciation probabilities (Fig. S16). In particular, for the “Adjacent ABAB” and the “Nested ABAB” linkage architecture, both hybrid speciation (Fig. 5) and minimum population size (Fig. S17) are non monotonic functions of recombination: hybrid speciation is maximized for intermediate values of r and survival probability is minimized for similar intermediate values of r, creating a bifurcation pattern. This pattern was also observed for recessive DMIs (Fig. S18 and Fig. S19), indicating that the minimum population size is unrelated to the probability of hybrid speciation.

Population size: beyond the effect of stochasticity

The hybrid speciation probability, given survival, is not always a monotonic function of the initial population size (Fig. 6 for codominant DMIs and Fig. S20 for recessive DMIs) for specific linkage architectures. First, we consider cases in which the probability of hybrid speciation, given survival, increases monotonically with the initial population size. To obtain reciprocal sorting of the two genetic incompatibilities, the initial parental haplotypes need to be broken down by recombination, which is unlikely to happen in very small populations. For these populations, the main two possible outcomes are the fixation of either parental genotype (Fig. S21). An increase in population size provides more opportunities and more time for the relevant haplotypes to appear and spread in the population. However, an increase in population size also reduces the effect of stochasticity and leads to the convergence of the hybrid population towards its deterministic final state. For the two linkage architectures, “Adjacent ABB” and “Crossed ABB”, which display this non-monomorphic behavior, the deterministic outcome is the fixation of the parental haplotype $A_1 A_2 b_1 b_2$. Hybrid speciation is therefore extremely unlikely for large populations. Consequently, this dual effect of population size leads to a maximum hybrid speciation probability reached at intermediate initial population sizes. To obtain reciprocal sorting, the population size needs to be large enough for the hybrid speciation haplotypes to form and invade. Alternatively, resolution of the genetic incompatibilities can happen first through the spread of two one-derived-allele haplotypes (e.g. $A_1 a_2 b_1 b_2$ and $a_1 a_2 b_1 B_2$), that can form the hybrid speciation haplotype by recombination. Yet reciprocal sorting is not the deterministic outcome, thus drift needs to remain strong enough for hybrid speciation to occur.
Figure 6: A larger initial population does not always favor hybrid speciation. We represent the probability of hybrid speciation, conditioned on survival, as a function of the initial population size for all linkage architecture for two pairs of codominant DMI ($\epsilon = -0.2$) for intermediate recombination rates ($r = 0.1$) estimated from 10,000 replicates here. Lines serve as a guide for the eye. The underlying survival probabilities are illustrated in Figure S23.
The optimal linkage architecture to generate hybrid speciation changes depending on the influence of drift (Fig. 6 and Fig. S22). For small population sizes the two “Adjacent” linkage architectures display a higher probability of hybrid speciation given survival, whereas for large population “Adjacent ABAB” offers the best chance of observing hybrid speciation, whereas this outcome becomes impossible for “Adjacent ABBA”. We also observe this effect at low recombination rate for recessive DMIs (Fig. 6B).

Finally, the carrying capacity of the environment (K) neither alters the survival probability nor does it affect the hybrid speciation probability. We assumed that the carrying capacity of the environment was always quite large ($K = 10^6$). As illustrated in the supplement (Fig S24-S26), reducing the carrying capacity of the environment to $K = 5000$ or even $K = 500$ does not alter the survival probability or the hybrid speciation probability given survival. Furthermore, removing the intrinsic advantage of the derived allele over their ancestral counterpart ($\alpha_k = \beta_k = 0$) does not change the hybrid speciation probabilities given survival (Fig. S27).

Discussion

We investigated how the demographic and evolutionary dynamics of an admixed hybrid population impacted its fate. In particular, we were interested in two specific outcomes: the possibility of survival of the population and the reciprocal sorting of genetic incompatibilities, a mechanism suggested to initiate hybrid speciation. We focused on the role and effect of population size and linkage architecture on these two outcomes. We established that when multiple incompatibilities were involved, an intermediate strength of epistasis generated the highest risk of extinction for the newly formed population. Interestingly, the survival probability can be directly linked to the demographic dynamics of the population regardless of the linkage architecture or the parameters of the model. However, the demographic dynamics were affected by the underlying evolutionary parameters. The linkage architecture, i.e. the order of the incompatible loci along the genome, played a large role in determining the survival of the admixed population. It also had a considerable impact on the outcome of the reciprocal sorting of genetic incompatibilities and the possibility of hybrid speciation, as previously found in the soft selection scenario (Blanckaert and Bank, 2018). Yet, which linkage architectures were most favorable towards survival and reciprocal sorting was different. Linkage architectures favoring survival and hybrid speciation were different, suggesting that the probability of hybrid speciation is likely to be overestimated by models that ignored demographic dynamics. Finally, we highlighted the critical role of population size at changing the possible evolutionary outcomes: which linkage architecture was the most likely to generate hybrid speciation critically depended on the population size at the admixture event.

Admixed populations and their parental sources

The genetic divergence between populations/species has long been suspected to play a large role in the fate of the hybrid population, and its possibility to evolve towards
homoploid hybrid speciation \cite{Abbott2013, Comeault2018} or recombinatorial speciation \cite{Meier2019}. The distribution of this divergence along the genome during the speciation process has also been largely debated, (islands of divergence \cite{Via2012, Feder2012}) and whether reproductive isolation, in general, results from a few strongly differentiated regions or the resulting sum of many small effects \cite{Flaxman2013, Flaxman2014}. \cite{Blanckaert2018} highlighted that reciprocal sorting of codominant DMIs may become the more difficult the more incompatibilities there are, due to the need of uncoupling the fate of different loci. Here, we add another consideration: the survival of the newly formed population during this sorting. The presence of multiple DMIs, both recessive and codominant, increases the risk of extinction of the population. This effect is magnified at intermediate strength of genetic incompatibilities. With regards to islands of divergence, this result reinforces the idea that having multiple unlinked islands is unlikely to yield hybrid speciation. Indeed, the accumulation of weak DMIs around a central mutation of intermediate strength (i.e. the gradual build-up of an island of divergence) corresponds to conditions more likely to lead to extinction than hybrid speciation. The addition of the demographic dynamics to the evolutionary dynamics in our model strengthens the view that only recently diverged parental species may give rise to hybrid species following admixture. This result is different from the one obtained by \cite{Comeault2018}, but it is important no consider that mechanisms of reproductive isolation considered are different, assortative mating versus intrinsic incompatibilities, leading to this possible discrepancy. It was recently argued by \cite{Servedio2020} that partial reproductive isolation may not only be a transient state, as it often assumed, but a possible evolutionary outcome itself. In such a scenario, partial reproductive isolation may help maintain the parental populations in a genetic and phenotypic state of “distant enough but not too distant”, making both hybrid speciation or even recombinatorial speciation more likely than expected.

Role of linkage architecture

The inclusion of the demographic dynamics of the hybrid population in our study further highlighted the importance of the linkage architecture, i.e. the order of loci along the chromosome. Previously, we found that 2 out of 6 linkage architectures were extremely favorable to reciprocal sorting at intermediate recombination distance between loci \cite{Blanckaert2018}. This result remains valid under a hard selection regime, but one of the two linkage architectures also resulted in one of the lowest survival probabilities. This phenomenon happens at the same genetic distance between loci that maximizes the chance of hybrid speciation. These patterns explain why hybrid speciation is repeatable in some lineages and impossible in others, and makes hybrid speciation an odd outcome: a “high risk, high reward” scenario. Overall, after including the demographic dynamics into our model, we suggest that hybrid speciation will happen for organisms that can generate rare but large bursts of migration, such that admixed populations quickly colonize new environments - yet without permanent gene flow. As such the formation of the Italian sparrow species \cite{Runemark2018} could fit into this category. Also, the
iconic adaptive radiation of cichlid fish observed in Lake Victoria was suspected to emerge from specific hybridization events, although further crosses between other sister species yield no hybrid species [Meier et al. (2019)]. Despite many additional factors at play (e.g., local adaptation, niche availability), such observations are in agreement with our results.

Are recessive DMI the key to hybrid speciation?

For recessive DMIs (i.e. no fitness cost for F1 hybrids), the presence of DMIs reduces the chance of survival of the population. However, this effect is generally much weaker than for codominant DMIs, and monotonic with the strength of the genetic incompatibilities. The monotonic relationship between survival and epistasis indicates that intermediate-strength barriers can contribute to hybrid speciation as suggested by [Comeault and Matute (2018)]. Furthermore, the linkage architecture most likely to generate reciprocal sorting and hybrid speciation in the minimal model presented here (“Adjacent ABAB”) does not suffer from excess mortality (as opposed to the codominant case, where the “Adjacent ABAB” has a lower survival probability than most others linkage architectures). Overall, this suggests that any successful reciprocal sorting event is more likely to involve recessive DMIs than codominant DMIs. Given that there is both theoretical and empirical evidence, that most DMIs should be recessive [Orr 1993; Presgraves 2003], reciprocal sorting of multiple recessive DMIs may be the path to homoploid hybrid speciation.

Yet, recessive incompatibilities form poor barriers to gene flow, as shown for the soft selection regime [Blanckaert and Bank (2018)]. In the model investigated here, a population will either go extinct or reach the carrying capacity of the environment. Unless this carrying capacity is really low, all final hybrid populations are equivalent to those in a soft selection scenario. Therefore, measures of reproductive isolation should be qualitatively equivalent to those obtained in [Blanckaert and Bank (2018)]. The effective migration rate is only reduced for almost lethal epistasis and when the different loci are located far apart from each other. Overall, including the effect of hard selection reinforces the dichotomy already observed with soft selection. Reciprocal sorting of codominant DMIs, while quite unlikely, can effectively isolate a hybrid population from its parental sources. On the contrary, reciprocal sorting of recessive DMIs is far more likely but creates poor barriers to gene flow.

Conclusion

The role of hybridization as source of potential adaptation has recently been highlighted [Marques et al. 2019]. We demonstrated here the importance of considering both the demographic and evolutionary dynamics to study the fate of these admixed populations, since their actions can be antagonistic and the evolutionary outcomes strongly dependent on the population size. Overall, our results further confirm the importance of the linkage architecture, i.e. the order of the different loci along the genome, for hybrid speciation and also for the survival probability.
References

