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Abstract:  

Objective:  Memory-associated neural circuits produce oscillatory events within single-

channel sleep electroencephalography (EEG), including theta bursts (TBs), sleep 

spindles (SPs) and multiple subtypes of slow waves (SWs). Changes in the temporal 

“coupling” of these events are proposed to serve as a biomarker for early stages of 

Alzheimer’s disease (AD) pathogenesis.  

Methods: We analyzed data from 205 aging adults, including single-channel sleep 

EEG, cerebrospinal fluid (CSF) AD-associated biomarkers, and Clinical Dementia 

Rating® (CDR®) scale. Individual SW events were sorted into high and low transition 

frequencies (TF) subtypes. We utilized time-frequency spectrogram locations within 

sleep EEG to “map” the precision of SW-TB and SW-SP neural circuit coupling in 

relation to amyloid positivity (by CSF Aβ42/Aβ40 threshold), cognitive impairment (by 

CDR), and CSF levels of AD-associated biomarkers.  
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Results: Cognitive impairment was associated with lower TB spectral power in both 

high and low TF SW-TB coupling (p<0.001, p=0.001). Cognitively unimpaired, amyloid 

positive aging adults demonstrated lower precision of the neural circuits propagating 

high TF SW-TB (p<0.05) and low TF SW-SP (p<0.005) event coupling, compared to 

cognitively unimpaired amyloid negative individuals. Biomarker correlations were 

significant for high TF SW-TB coupling with CSF Aβ42/Aβ40 (p=0.005), phosphorylated-

tau181 (p<0.005), and total-tau (p<0.05). Low TF SW-SP coupling was also correlated 

with CSF Aβ42/Aβ40 (p<0.01).  

Interpretation: Loss of integrity in neural circuits underlying sleep-dependent memory 

processing can be measured for both SW-TB and SW-SP coupling in spectral time-

frequency space. Breakdown of sleep’s memory circuit integrity is associated with 

amyloid positivity, higher levels of AD-associated pathology, and cognitive impairment.   

 

 

Introduction: 

Sleep dysfunction is hypothesized to share a bidirectional relationship with Alzheimer’s 

disease (AD) pathology1,2, and there is growing interest in understanding the 

neurophysiological properties of sleep that are most strongly associated with 

neurodegeneration. Among many putative neuroprotective attributes of sleep, slow 

wave activity (SWA) stands out for both the robust data supporting plausible 

neuroprotective mechanisms2,3, and the readily quantified SWA metrics that can be 

obtained from widely available single-channel electroencephalography (EEG)4-6. Loss of 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted February 16, 2023. ; https://doi.org/10.1101/2023.02.15.528725doi: bioRxiv preprint 

https://doi.org/10.1101/2023.02.15.528725


SWA correlates with age7-11 and neurodegenerative processes including Alzheimer’s 

and Parkinson’s disease2,12. Further, in preclinical AD, SWA loss occurs in association 

with amyloid deposition rates13, and the presence of tau pathology4.  

There are extensive data supporting SWA’s role in synaptic homoeostasis14, and 

regulation of synaptic plasticity is thought to support SWA’s role in sleep-dependent 

memory consolidation15,16. Within SWA, multiple types of oscillatory events occur in 

association with replay of memory sequences, mirroring wake-like experiences in the 

patterns of neuronal activity17-23. Oscillatory components of SWA’s memory playback 

include slow waves (SWs), theta bursts (TBs), and sleep spindles (SPs), and together 

they form nested, or “coupled”, complexes with one another during SWA24-29. 

Experiments in preclinical models have further demonstrated that memory processing 

can be disrupted or enhanced via specific modulation of SW and SP events30-32.  

Timing irregularities of SW and SP coupling have been correlated with amyloid33 and 

tau34 in positron emission tomography (PET) imaging studies. Further, subpopulations 

of SW and SP oscillatory events demonstrate unique properties, and distinct 

relationships exist within SW events defined by either high versus low transition 

frequencies in the context of aging35, amyloid positivity33, and cognitive processes33,36. 

Theta burst events are detectable prior to the troughs of SWs5,6,25,26,37 and play a role in 

normal sleep-dependent memory processing37,38, although their relationships to SW 

subpopulations, and their potential changes in aging and neurodegenerative processes, 

have yet to be formally assessed. 

Remarkably, a simple single channel of EEG recording is sufficient to probe the integrity 

of memory-associated oscillatory events, thus opening the door to deploy inexpensive 
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“wearable” devices in the home setting for monitoring brain health and early signs of 

neurodegenerative disease. Nonetheless, translation of this technology into clinical 

application will require significant additional work, including steps to better characterize 

the various subtypes of SWA-associated oscillatory events in both normal and 

pathological processes. Here we sought to make such advancements by innovating 

signal processing methods to map the spectral coordinates of individual oscillatory 

events in time-frequency space, thus providing a metric of both temporal and frequency 

precision of the neural circuits underlying sleep-dependent memory consolidation.  

In this study, we utilized this novel time-frequency spatial mapping to examine the 

properties of several key oscillatory events (including high and low transition frequency 

SW subtypes, SPs, and TBs) within a large and well-characterized cohort of older 

adults. We hypothesized that the time-frequency precision and event-specific EEG 

power of SW-coupled oscillations would correlate with amyloid positivity and cognitive 

impairment. We further assessed correlations between metrics of oscillatory event 

coupling and cerebrospinal fluid (CSF) levels of core AD biomarkers.  

 

Methods: 

Participant Sample 

Community-dwelling participants from a longitudinal cohort at the Knight Alzheimer 

Disease Research Center (ADRC) at Washington University in St. Louis were selected 

for analysis (n=205). All data were collected with written informed consent under 

research protocols approved by the Washington University in St. Louis Institutional 
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Review Board. Participants were selected for this study if they had completed at least 3 

nights of single-channel EEG recording, 1 night of monitoring with a home sleep apnea 

test, genotyping for APOE4 status, one lumbar puncture for Alzheimer’s biomarkers 

within 1 years of sleep recordings, anda Clinical Dementia Rating® (CDR®)39 within 2 

years of sleep recordings. All participants were either cognitively unimpaired (CDR 0) or 

very mildly cognitively impaired (CDR 0.5) with the exception of one participant who was 

mildly cognitively impaired (CDR1).  

 

EEG and Apnea Data Acquisition  

Overnight EEG recordings were acquired as previously described40. Briefly, longitudinal 

EEG recordings were obtained from participants at home up to 6 nights using a single-

channel EEG device worn on the forehead (with sensors at approximately AF7, AF8, 

and Fpz) and with a sampling rate of 256 samples per second (Sleep Profiler, Advanced 

Brain Monitoring). Resulting EEG were visually scored by registered polysomnographic 

technologists using criteria adapted from the American Academy of Sleep Medicine 

guidelines41. An additional a one-night home sleep apnea test was utilized as previously 

described36 to measure hypopneas greater than 4% oxygen desaturation criteria and 

compute an apnea–hypopnea index (AHI) for each participant (HSAT; Alice PDx, Philips 

Respironics Inc, Murrysville, PA). 

 

Slow Wave Detection  
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Raw EEG timeseries data was processed with MATLAB R2021b (MathWorks, Inc., 

Natick, MA, USA.). Slow waves were identified via automated zero-crossing detection 

as previously described6. Briefly, slow wave detection was performed from forehead 

electrodes, roughly FP1-FP2 montage, from sleep stages N2 and N3. Epochs with un-

scorable data were excluded from analysis. Automated management of high amplitude 

artifacts was accomplished via exclusion of EEG segments exceeding 900 µV after 

detrending data with sliding window of three seconds across raw data. A high 

amplitude, repeating artifact from the recording device was also excluded by 

thresholding. Discrete Fourier transform (DTF) was computed using a fast Fourier 

transform (FFT) algorithm for the affected frequency region (15hz - 17hz) and artifact-

containing regions were removed if the DFT vector values exceeded 8 µV. EEG data 

was subsequently detrended and band-pass filtered in a forward and backward direction 

using a 6th-order Butterworth filter between 0.16-4 Hz. Zero crossings were identified to 

detect negative and positive half-waves, and slow wave events were identified when the 

half-wave pairs approximated a frequency range of 0.4 to 4 Hz. Minimal and maximal 

half-wave amplitudes were measured, and slow waves with both positive and negative 

maximum amplitudes in the top 50% of all waves were selected for subsequent coupling 

analysis. An upper threshold of +/- 200 µV for zero crossing pairs was utilized to reduce 

misidentification of non-slow wave events. A further reduction of false identifications 

was accomplished by rejecting all zero crossing pairs with peak/trough amplitudes 

exceeding four standard deviations from the mean min/max zero crossing pair values 

for each subject.  
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Spindle and Theta Burst Identification 

Spindle and theta burst event identification was performed using established 

methods.5,6 Briefly, EEG data was detrended and bandpass filtered in a forward and 

backward direction using a 3rd-order Butterworth filter between 10-13.5 Hz for late-fast 

spindles and 4-8 Hz for theta bursts. Note that early-fast spindles are more prominent in 

central recording locations5 and were not consistently detected in the FP1-FP2 channel, 

and therefore were excluded from analysis. Maximum spindle envelopes were 

calculated and an amplitude threshold of 75% percentile of the root mean squared value 

with a length window of 0.5 sec to 3.0 sec was used to define spindle events and theta 

bursts. An absolute threshold of 40 µV in range was used to eliminate artifacts and only 

spindle/theta burst envelopes within 8 standard deviations from the mean amplitude 

values were selected for analysis. 

 

Separation of Slow Wave by Transition Frequency 

Slow wave events were categorized as high versus low transition frequency in 

accordance with previously published methods33,35. The distance between the trough 

and peak of each slow wave was calculated and resultant halfwave was converted into 

a frequency value in Hertz. A cutoff of 1.2 Hz was then used to separate all detected 

slow waves into two populations, as previously described (Figure 1)33,35. 

 

Detection of Slow Wave Coupling with Spindles and Theta Bursts 
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Individual SW events were sorted by their co-localization with SPs and TBs in the time 

domain as previously described5,6. Spindles occurring within 0 sec to 1.5 sec from the 

trough of each SW were classified as a coupled event. Theta bursts occurring within -

0.5 sec to 0.2 sec from the trough of each slow wave were classified as a coupled 

event.  

 

Time-Frequency Spectrogram Analysis:  

Time-frequency wavelet spectrograms of slow wave-coupled spindles and theta bursts 

were created via established methods.5,6 Briefly, troughs of each slow wave were 

centered in 5-second intervals of EEG data and matched to 5-second baseline intervals 

immediately preceding slow wave events (excluding baseline segments containing slow 

wave events). A Morlet-wavelet transformation (65 cycles from 4 Hz to 10 Hz) was 

applied to the unfiltered EEG for slow wave and baseline segments between 4 Hz and 

20 Hz in steps of 0.25 Hz with varying wave numbers (65 cycles from 4 Hz to 10Hz with 

a step size of 0.0938 to match the frequency step size). The mean of baseline regions 

was used to normalize the amplitude of the mean Morlet-wavelet transformation of all 5-

second slow wave-adjacent regions. Time-frequency (TF) windows were defined within 

time-frequency spectral space for quantification of baseline-normalized EEG power. 

Theta bursts were defined by a TF-window between 4 Hz and 6.5 Hz at −0.5 s to 0.2 s 

from the average slow wave trough. Spindle TF-window normalized EEG power was 

measured between 10 Hz and 13 Hz at 0.3 s to 1.3 s from the average slow wave 

troughs.   
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Precise Event Topographical Localization Analysis:  

Time-frequency wavelet spectrograms of normalized EEG power were utilized to 

perform precise event topographical localization (PETL) to determine the location of 

each TB and SP event in time-frequency space. Briefly, the individual spectrogram 

images for each SW-TB and SW-SP event were processed via the MATLAB image 

processing toolbox to detect oscillatory events within a time-frequency space of 10-18 

Hz and 0-1.4 sec from the SW trough. Each spectrogram was converted into a binary 

image using the ‘imbinarize’ MATLAB function, where pixels above an intensity 

threshold of 0.65 were set to 1 and all other pixels were set to zero. Subsequently, 

centroids of round-shaped oscillatory events (each exceeding >0.4 roundness factor; 

>1000 pixels/499,850 total pixels) were mapped within two circular target zones with 

radii spanning 4 Hz and 2 Hz in frequency space, respectively. A precision metric was 

calculated by dividing the number of event centroids within the inner circular target zone 

by the total number of event centroids in the inner and outer circular target zones 

(expressed as a percentage of events within the inner circle target zone; Figure 1) 

[Figure 1] 

 

CSF Biomarker Acquisition and Thresholding: 

CSF collection was performed as previously described in a standardized protocol42. 

Briefly, lumbar punctures were performed at 8:00 a.m. with a 22-gauge Sprotte spinal 

needle and aliquoted into polypropylene tubes after low speed centrifugation. Samples 
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were stored at -800C until analysis. Concentrations of amyloid-β42, amyloid- β40, t-tau, 

and p-tau 181 were obtained using previously described protocols via automated 

electrochemiluminescence immunoassay (LUMIPULSE G 1200, Fujirebio), and 

thresholding for amyloid positivity was performed as previously described43,44. 

 

Statistical Analysis: 

Statistical analysis was performed with SAS v9.4 (SAS Institute Inc., Cary, NC, USA). 

Demographics and other subject level variables were compared among groups, using 

ANOVA type models for continuous or scale variables, and chi-square/Fisher’s exact 

association test for categorical variables.  Logarithmic transforms were considered for 

right skewed distributions.  Negative binomial count rate models, with robust standard 

errors, were considered for counts of sleep events. 

EEG variables were logarithmically transformed and analyzed with mixed models to 

compare cognitive groups, adjusted for age, sex, years of education, APOE 4 (yes vs 

no), and AHI.  A random intercept was invoked for repeated measures on a subject 

across multiple nights.  Different residual variances were allowed for different treatment.  

An omnibus F test for performed for differences among the cognitive groups, followed 

by pair-wise comparisons with the Tukey-Kramer adjustment.  Additive differences on 

the logarithmic scale were back transformed into ratios and percent differences on the 

original scale.  Estimates, 95% confidence intervals, and p-values for testing the null 

hypothesis of no difference were reported. 
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Partial Spearman correlations were run for the relationships between EEG variables 

(subject averaged on the logarithmic scale) and biomarkers, adjusted for age, sex, 

years of education, APOE 4 (yes vs no), and AHI.  The p-values for the hypothesis test 

of no correlation were obtained, and confidence intervals were calculated using the 

Fisher Z transform.  Sample correlations, 95% confidence intervals, and p values were 

reported.  A Benjamini-Hochberg procedure was used to control the false discovery rate 

(FDR) among biomarker correlation with the EEG precision variables for the different 

spectra and select the ones which remained statistically significant. Two-sided alpha = 

0.05.   

 

Results: 

A total of 205 participants met criteria for analysis. Subdividing the participants by 

amyloid positivity and CDR status resulted in 105 participants who were cognitively 

normal by CDR testing and amyloid negative by Aβ42/40 CSF cutoff (herein referred to 

as the Aβ-CU group). An additional 69 participants were cognitively normal by CDR 

testing and amyloid positive by CSF cutoff (herein referred to as the Aβ+CU group), and 

31 participants were cognitively impaired by CDR testing and amyloid positive by CSF 

cutoff (herein referred to as the Aβ+CI group). Demographics and sleep study metrics 

are provided in Table 1. Age was not significantly different between Aβ-CU and Aβ+CI 

individuals, although the Aβ+CU individuals were on average ~2 years older than Aβ-

CU individuals (p<0.05). There were no statistically significant differences in education, 

sex, or AHI between the groups. The APOE4 allele demonstrated an expected higher 
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prevalence among Aβ+CU and Aβ+CI adults, compared to Aβ-CU adults (p<0.001). 

Sleep staging metrics were similar across groups, with no significant differences 

observed (Table 1). 

[Table 1] 

 

Detection of Memory-Relevant Events from Sleep EEG 

We observed similar numbers of overall SW, TB, and SP events between Aβ-CU, 

Aβ+CU, and Aβ+CI adults (Table 2). Slow wave events were sorted into subtypes of 

high and low transition frequency at 1.2 Hz cutoff, and no significant differences in event 

counts were identified between groups. Temporal coupling of SWs to both SPs and TBs 

was also comparable between groups, without any significant differences identified 

(Table 2).   

[Table 2] 

 

Event-Matched Time-Frequency Spectrograms of Theta Bursts 

Theta burst coupling to both high and low transition frequency SWs was appreciable 

with a distinct TB spectral event in averaged time-frequency spectrograms (Figure 2). 

The normalized (SW coupling specific) TB power was quantified from a TF-window 

(region of time-frequency space) surrounding the TB spectral event for each individual 

and averaged to make group comparisons after controlling for co-variables and multiple 

comparisons (Table 3). Quantifying the normalized EEG power of TBs nested with high 
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transition frequency SWs demonstrated ~ 6.56% less normalized power among the 

Aβ+CI group, compared to the Aβ-CU [95% CI: (-2.83, -10.15%), adjusted p < 0.001].  

The high transition frequency SW-coupled normalized TB power was also ~6.14% lower 

comparing Aβ+CI to Aβ+CU groups [95% CI: (-2.62, -9.54%), adjusted p < 0.001].   

The TF-windows for TBs matched to wide low transition frequency SWs demonstrated 

similar group comparisons, with ~6.45% less EEG power among the Aβ+CI group 

compared to the Aβ-CU group [95% CI: (-2.24, -10.47%), adjusted p < 0.002].  The 

Aβ+CI group was ~6.36% lower in TB power compared to the Aβ+CU group as well 

[95% CI: (-2.37, -10.18%), adjusted p = 0.001].  

 [Table 3] 

[Figure 2] 

 

Event-Matched Time-Frequency Spectrograms of Spindles 

Time-frequency spectrograms for SPs matched to both high and low transition 

frequency SWs demonstrate a clear SP spectral event (Figure 2). As with TBs, 

normalized (SW-coupling specific) SP EEG power was quantified from a TF-window 

surrounding the SP spectral event for each individual and averaged to make group 

comparisons after controlling for co-variables and multiple comparisons (Table 3). 

Comparisons between groups demonstrated no statistically significant differences in SP 

TF-window normalized EEG values for either high or low transition frequency SWs. 
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Event-Matched Precise Topographical Theta Burst Localization 

The precision of SW-TB coupling for high transition frequency SWs demonstrated a 

modest, but statistically significantly ~2.57% lower precision between Aβ+CU individuals 

compared to Aβ-CU individuals [95% CI: (-0.08, -4.99%), adjusted p<0.05] (Table 3). 

Additional group comparisons of precision of SW-TB coupling did not reach statistical 

significance after controlling for multiple comparisons (Table 3; Figure 3).   

[Figure 3] 

 

Event-Matched Precise Topographical Spindle Localization 

The low transition frequency SW-SP coupling demonstrated ~5.10% lower precision 

between Aβ+CU individuals compared to Aβ-CU individuals [95% CI: (-1.28, -

8.77%), adjusted p<0.01] (Table 3). Additional comparisons of precision within high and 

low transition frequency SW-SP coupling were not statistically significant between 

groups after controlling for multiple comparisons (Table 3; Figure 3) 

 

Correlations with CSF AD Biomarker Levels 

We next performed an analysis of the relationships between SW-TB and SW-SP 

precision with concentrations of CSF biomarkers, controlling for age, sex, education, 

APOE4 gene status, AHI, and false discovery rate for multiple comparisons (Table 3). 

High transition frequency SW-TB coupling precision and low transition frequency SW-

SP coupling precision were significantly correlated with CSF Aβ42/Aβ40 ratios 
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(rho=0.197, 95% CI: (0.060 – 0.327), p=0.005; rho=0.183, 95% CI: (0.046 – 0.314), 

p<0.01). Neither low transition frequency SW-TB or high transition frequency SW-SP 

coupling precision were significantly correlated with Aβ42/Aβ40 levels. With regard to CSF 

p-tau and total-tau, high transition frequency SW-TB precision was the only coupling 

metric significantly correlated with CSF p-tau levels (rho=-0.201, 95% CI: (-0.330 – -

0.064), p<0.005) and with CSF total-tau levels (rho=-0.175, 95% CI: (-0.306 – -0.037), 

p<0.05). The correlations remained significant under a false discovery rate (alpha = 

0.05) for all SW-TB and SW-SP precisions with Aβ42/Aβ40, p-tau, and total-tau. 

Given the significant AD biomarker correlations observed with high transition frequency 

SW-TB precision and low transition frequency SW-SP precision, we performed an 

additional exploratory analysis to observe whether combining these two distinct metrics 

might provide a better gauge of memory-associated neural circuit integrity. Here we 

combined these SW-TB and SW-SP metrics into one summed precision value (log 

scale precision values were summed for each participant to create a hybrid precision 

metric that incorporates both their SW-TB and SW-SP precision; Table 3; Figure 4). The 

covariate-adjusted correlations with this hybrid metric were statistically significant for 

CSF Aβ42/Aβ40 ratios (rho=0.266, 95% CI: (0.132, 0.390), p<0.001), p-tau (rho=-0.210, 

95% CI: (-0.339, -0.073), p<0.003), and total-tau (rho=-0.182, 95% CI: (-0.313, -0.044)) 

p<0.010). The correlations remained significant under a false discovery rate (alpha = 

0.05) for these summed precision values with Aβ42/Aβ40, p-tau, and total-tau. 

 

Discussion 
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Our study examined the properties of key brain communication events that are 

associated with memory replay sequences during slow wave sleep as an assessment of 

the potential biomarker properties of single channel sleep EEG in early stages of AD. 

Our results demonstrate distinctions between high and low transition frequency 

subtypes of SW events and the precision of neural circuits that control coupling of SWs 

to both TBs and SPs. Analysis of normalized SW-coupled TB EEG power among Aβ+CI 

individuals demonstrated significant differences in TB power coupled to both high and 

low transition frequency SWs, compared to both Aβ-CU and Aβ+CU individuals. 

Amyloid positivity and ratios of CSF Aβ42/Aβ40 were associated with loss of precision in 

the circuits controlling high transition frequency SW-TB coupling and low transition 

frequency SW-SP coupling. Loss of high frequency SW-TB precision was also 

correlated with CSF p-tau and total-tau levels (see Figure 5 for an illustrative summary). 

An exploratory analysis further enhanced these correlative relationships by combining 

the high transition frequency SW-TB and low transition frequency SW-SP metrics, 

suggesting that these separate neural circuit metrics jointly contribute to each 

individual’s statistical relationship with AD core biomarkers. Taken together, our 

analyses reveal distinct abnormalities in memory-associated oscillatory events of SWA 

in association with both CSF biomarkers of Alzheimer’s disease and clinical symptoms 

of mild cognitive impairment as measured by CDR. 

[Figure 5] 
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Our analyses focused on subtypes of SWs, defined by their transition frequencies, as 

well as TBs and a lower frequency (late-fast) subtype of SPs (higher frequency, early-

fast spindles were not reliably measured from the single frontal channel). Notably, there 

were no significant differences in the average number of detected events between 

participant groups, nor were there significant differences in the number of detected 

coupled event pairs between participant groups. Sleep staging further demonstrated no 

significant differences between groups. Together, this suggests that that the production 

of the SWA-associated oscillatory events examined herein is not significantly impacted 

by amyloid positivity and/or symptoms of mild cognitive impairment, and instead 

implicates imprecision in the timing and frequency characteristics of these oscillatory 

events as early signs of neurodegenerative change. 

Distinct oscillatory events found within SWA are generated in conjunction with replay of 

memory sequences, mirroring wake-like experiences in the patterns of neuronal 

activity17-23. Our work builds on previous reports that have described changes in these 

oscillatory events in conjunction with specific neuropathologies, including age-related 

atrophy and Alzheimer’s disease pathology4,8,13,33,34,45-47. Notably, measurement of 

oscillatory event coupling in these foundational studies relied on simple timing metrics, 

while our analyses deployed novel signal processing methods to calculate both time 

and frequency “drift” in the underlying SW-SP (and SW-TB) neural circuits for both high 

and low transition frequency SW coupling. Our study represents, to the best of our 

knowledge, the first formal description of this technique in sleep EEG analysis and is 

also the first study to expand coupling analyses to include SW-TB relationships.  
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The rationale for our approach rests on previously reported correlations between tau34 

and amyloid33 PET positivity with SW-SP timing and on advances in signal processing 

that differentiated high versus low transition frequency SW-SP coupling in the context of 

aging35, amyloid positivity33, and cognitive impairment33,36. Our analyses corroborate 

these distinctions between high versus low transition frequency SW coupling precision 

both in association with CSF threshold-based amyloid positivity and in correlative 

relationships with Aβ42/Aβ40, p-tau and total tau, suggesting that SW-TB and SW-SP 

coupling differ in high versus low transition frequency categories. Conversely, utilizing a 

different metric of normalized EEG power in both high and low transition frequency SW-

TB coupling resulted in similar distinctions among the individuals with mild cognitive 

impairment, while normalized EEG power for SW-SP coupling did not differ in group 

comparisons. These results suggest that measuring normalized EEG power versus the 

precision of event coupling quantify different neurophysiological processes. 

Distinctions between SW-TB and SW-SP coupling are apparent in intracranial recording 

analyses, wherein the TB events are observed to initiate SWs and precede 

hippocampal sharp wave ripples, while SPs seem to coordinate high frequency gamma 

activity following the TB and sharp wave ripple events25,26,37. Notably, in the wake state, 

theta oscillations and sharp wave ripples are mechanistically linked to hippocampal 

pattern completion and reinstatement of memory tracings during recall of memory48,49. 

Further, theta oscillations appear to play a similar role in both wake and sleep in 

coordinating the reactivation of recently learned memory sequences38. While 

speculative, it is possible that the same memory-reinstating theta circuits of wake-state 

are responsible for producing TBs during memory replay cycles within NREM sleep. 
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This connection between wake-state memory performance and sleep-state memory 

processing may explain why aging adults within the Aβ+CI group are observed to have 

lower theta burst power in their sleep EEG. Notably, SP precision abnormalities were 

not statistically different in comparisons between the Aβ+CI group with either Aβ-CU or 

Aβ+CU individuals, although the relatively lower number of CDR positive participants 

and high variance among this group may have contributed to lack of statistical 

significance. 

While the dataset utilized for our analyses is significantly larger than prior studies of 

SW-SP coupling and Alzheimer’s-related pathology33,34, limitations in sample size may 

obscure possible differences between groups in the number of identified oscillatory 

events and sleep stage metrics, particularly in comparisons with the Aβ+CI group. 

Further, although our utilization of a single channel of at-home EEG is highly 

advantageous for future translation of this method to inexpensive “wearable” devices, 

there are potential limitations in the use of an EEG headband device. Most notable 

among these technical constraints is the inability to reliably measure a category of 

“early-fast” spindles, as these higher frequency spindles are more prominent in posterior 

recording sites.5 In addition, the cross-sectional nature of this study limits our ability to 

examine potential longitudinal relationships between our novel sleep EEG metrics and 

neurodegenerative processes, and future studies will be required to explore potential 

predictive properties of sleep EEG as a biomarker.      

Detection of oscillatory events in sleep may provide a clinical application as a marker of 

brain health and in early detection of neurodegenerative processes. This signal 

processing technique requires only a single channel of EEG that can be recorded in an 
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unsupervised home setting, thus opening the door for development of brain health 

monitoring via relatively inexpensive and easily self-applied EEG “wearable” 

headbands. This technique is also relatively cost effective for potential longitudinal 

monitoring of both neurodegenerative disease risk and response to interventional 

treatments. Further, the metrics from sleep EEG may provide functional information 

related to memory circuits and is not susceptible to learning effects or volitional aspects 

of cognitive testing. Nonetheless, significant work remains to translate this technique to 

clinical application, including the need to refine the signal processing technique and 

more fully account for variance among individuals.  Advancements in event detection 

and subtyping may provide a means to increase the precision of this technique. 

Considerable work also remains to determine the potential causal relationships between 

EEG events and neuropathology. Future studies will be required to catalogue dynamic 

changes in the EEG signals in response to improvement or worsening of 

neurophysiological processes that impact sleep’s memory processing system.  

In conclusion, our data demonstrate that the time-frequency spectral properties of both 

TB and SP coupling to SWs can be precisely measured from single-channel EEG and 

provide information about the integrity of neural circuits controlling sleep’s memory 

replay in the early stages of AD pathogenesis. Changes in the integrity of these 

hippocampal-dependent memory circuits occur prior to development of cognitive 

symptoms and may serve as an early biomarker of neurodegenerative processes. 

Cross-sectional correlations with CSF AD biomarkers further suggest that SW-TB and 

SW-SP coupling are important processes to consider in the search to identify 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted February 16, 2023. ; https://doi.org/10.1101/2023.02.15.528725doi: bioRxiv preprint 

https://doi.org/10.1101/2023.02.15.528725


fundamental neuroprotective properties of sleep that may serve as targets for novel 

therapeutic development. 
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Demographics Aβ– CU Aβ+ CU Aβ+ CI 
No. participants (%) 105 (51) 69 (34) 31 (15) 
Age at sleep study, years, 
median (IQR) 

71 (69 – 75) 73 (71 – 79)a 74 (69 – 79) 

Males, n (%) 46 (43.8) 30 (43.48) 20 (64.52) 

Education, years, median 
(IQR) 

16 (15 – 18) 17 (15 – 18) 18 (15 – 19) 

Number of APOE4-positive 
(%) 

21 (20) 35 (50.72)b 21 (67.74)c 

Aβ42/Aβ40  ratio, median 
(IQR) 

0.092 (0.087 – 0.097) 0.048 (0.041 – 0.059)b 0.044 (0.039 – 0.052)c 

Sleep Staging  
Minutes, median (IQR) 

   

TST 371.6 (340.38-399.5) 374.75 (331.60 – 408.92) 401.83 (352.28 – 446.20) 
Stage N1 29.67 (23.25 – 37.6) 31.08 (22.33 – 38.0) 26.70 (20.92 – 40.00) 
Stage N2 254.33 (215.92 – 284.5) 258.5 (226.67 – 289.30) 271.4 (218.58 – 318.05) 
Stage N3  2.13 (0.33 – 9.3) 2.58 (0.3 – 12.58) 1.17 (0.11 – 8.65) 
REM 83.83 (60.63 – 96.58) 77.6 (63.20 – 88.38) 86 (63.29 – 106.17) 
REM latency 86.17 (62.33 – 123.80) 77.67 (56.33 – 114.33) 76 (58.83 – 136.73) 
SOL 18 (10.50 – 24) 12.67 (7.75 – 24.20) 14.8 (6.74 – 21.33) 
SE 81.14 (73.54 – 85.25) 80.53 (75.82 – 84.84) 81.37 (76.29 – 87.78) 
WASO 67.70 (47 – 105.10) 74.6 (50.58 – 90.83) 74.1 (39.65 – 99.27) 
N1 %  7.99 (6.34 – 10.91) 8.36 (6.12 – 10.35) 7.71 (5.72 – 9.71) 
N2 %  67.70 (63.65 – 72.10) 68.01 (62.27 – 75.10) 67.59 (63.70 – 75.86) 
N3 %  0.61 (0.10 – 2.16) 0.66 (0.09 – 3.01) 0.35 (0.03 – 2.21) 
REM %  22.50 (18.33 – 25.25) 20.31 (16.38 – 25.18) 21.13 (16.83 – 27.42) 

Table 1. Demographics and Staging. 
 
Abbreviations: Aβ = amyloid; CU = cognitively unimpaired; CI = cognitively impaired; TST= total 
sleep time; REM = rapid eye movement; SOL= sleep onset latency; SE = sleep efficiency; WASO = 
wake after sleep onset 
ª p < 0.05 Aβ– CU vs Aβ+ CU 
b p < 0.001 Aβ– CU vs Aβ+ CU 

c p < 0.001 Aβ– CU vs Aβ+ CI 
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Table 2. Sleep Event Counts. Number of detected events are presented as median (IQR). There were 
no significant differences between groups. Abbreviations: Aβ = amyloid; CU = cognitively 
unimpaired; CI = cognitively impaired; IQR= interquartile range; SP = spindle; SW = slow wave; TB 
= theta bursts  

 

  

Median (IQR) Aβ– CU (n=105) Aβ+ CU (n=69) Aβ+ CI (n=31) 

Total SWs 15,138 
(10,188 – 20,550) 

15,763  
(11,027 – 20,806) 

13,856 
(11,208.50 – 21,228.50) 

Total SWs per night 2,549.50 
(1,698 – 3,454.17) 

2,870.25 
(1,985.5 – 3,467.67) 

2,631.50  
(1,980.45 – 3,538.08) 

High transition frequency 
SWs 

5,252 
(3,237.50 – 7,151.50) 

6,048 
(3,850 – 8922) 

5,405 
(3,569 – 7,559) 

High transition frequency 
SWs per night 

917 
(544.20 – 1,201.33) 

1,055.25 
(683.83 – 1,490.83) 

1,063.33 
(697.90 – 1,320.92) 

Low transition frequency 
SWs 

9,414 
(6,312.50 – 12,050.50) 

10,642 
(7,077 – 11,581) 

8,124 
(6,553 – 13,747) 

Low transition frequency 
SWs per night 

1,588 
(1,059.17 – 2,015.33) 

1,797.50 
(1,277 – 2,087.67) 

1,636.83 
(1,209.67 – 2,315.65) 

Total TBs 20,946 
(15,426 – 26,058.50) 

22,646  
(17,378 – 26,532) 

20,504 
(17,529.50 – 26,729) 

TBs per night 3,579.83 
(2,566.17 – 4,360) 

3,997.33 
(2,971.75 – 4,622.50) 

3,683.60 
(3,271.42 – 4,657.22) 

Total SPs 23,016 
(17,263.50 – 28,177.50) 

24,963 
(18,439 – 28,942) 

22,391 
(17,864 – 29,271.50) 

SPs per night 3,836.83 
(2,894 – 4,759.33) 

4,362.83 
(3,221.17 – 4,909.83) 

4,257.50 
(3,250.67 – 4,946.17) 

High transition frequency 
SW-TB coupling 

1,624 
(1,021.50 – 2,301) 

1,810 
(1,194 – 2,742) 

1,673 
(1,143.50 – 2,245) 

High transition frequency 
SW-TB coupling, per night 

270.67 
(160.33 – 388) 

323 
(205.67 – 457) 

304 
(212.40 – 394.17) 

High transition frequency 
SW-SP coupling 

2,623 
(1,582.50 – 3,466.50) 

3,107 
(1,948 – 4,298) 

2,694 
(1,766 – 3,750.50) 

High transition frequency 
SW-SP coupling, per night 

437.17 
(255.33 – 605.17) 

521.83 
(342 – 730.33) 

490.75 
(333.33 – 658.75) 

Low transition frequency 
SW-TB coupling 

2,836 
(1,752 – 3,629.50) 

2,996 
(2,081 – 3,575) 

2,305 
(1,883.50 – 3,491) 

Low transition frequency 
SW-TB coupling, per night 

479 
(285.83 – 631) 

531.17 
(369.20 – 609.67) 

443.20 
(353.57 – 630.67) 

Low transition frequency 
SW-SP coupling 

4,448 
(2,975 – 5,701) 

4,991 
(3,347 – 5,811) 

3,847 
(2,968 – 6,413) 

Low transition frequency 
SW-SP coupling, per night 

753.17 
(496 – 968.67) 

858 
(627.50 – 986) 

803.17 
(540.25 – 1,068.83) 
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 Perfect Difference 
Estimate 

Adjusted Confidence 
Interval 

Adjusted p-value 

Aβ+CU vs Aβ-CU    
High transition frequency SW-TB precision 
High transition frequency SW-SP precision 
Low transition frequency SW-TB precision 
Low transition frequency SW-SP precision 

-2.568 
-3.042 
-1.938 
-5.099 

-4.993 – -0.081 
-7.815 – 1.979 
-4.126 – 0.301 
-8.770 – -1.280 

0.041 
0.319 
0.104 
0.006 

High transition frequency SW-TB TF-window 
High transition frequency SW-SP TF-window 
Low transition frequency SW-TB TF-window 
Low transition frequency SW-SP TF-window 

-0.448 
1.395 
-0.097 
0.848 

-3.710 – 2.924 
-2.256 – 5.182 
-3.497 – 3.423 
-2.754 – 4.583 

0.946 
0.645 
0.998 
0.847 

Aβ+CI vs Aβ-CU     
High transition frequency SW-TB precision 
High transition frequency SW-SP precision 
Low transition frequency SW-TB precision 
Low transition frequency SW-SP precision 

-1.707 
-4.676 
-2.032 
-4.853 

-5.336 – 2.060 
-10.916 – 2.002 
 -4.814 – 0.832 
-10.896 – 1.600 

0.517 
0.213 
0.210 
0.170 

High transition frequency SW-TB TF-window 
High transition frequency SW-SP TF-window 
Low transition frequency SW-TB TF-window 
Low transition frequency SW-SP TF-window 

-6.561 
-1.083 
-6.446 
-0.393 

-10.146 – -2.834 
-5.364 – 3.393 

-10.471 – -2.241 
-4.728 – 4.139 

<0.001 
0.826 
0.002 
0.976 

Aβ+CI vs Aβ+CU    
High transition frequency SW-TB precision 
High transition frequency SW-SP precision 
Low transition frequency SW-TB precision 
Low transition frequency SW-SP precision 

0.883 
-1.685 
-0.096 
0.259 

-2.742 – 4.644 
-8.104 – 5.182 
-2.886 – 2.774 
-6.016 – 6.953 

0.832 
0.818 
0.996 
0.995 

High transition frequency SW-TB TF-window 
High transition frequency SW-SP TF-window 
Low transition frequency SW-TB TF-window 
Low transition frequency SW-SP TF-window 

-6.141 
-2.444 
-6.356 
-1.230 

-9.537 – -2.617 
-6.566 – 1.860 

-10.175 – -2.374 
-5.412 – 3.136 

<0.001 
0.360 
0.001 
0.772 

    
 Correlation Estimate 95% Confidence Interval p-value 
CSF 42/40 & Coupling Precision    
High transition frequency SW-TB coupling 
High transition frequency SW-SP coupling 
Low transition frequency SW-TB coupling 
Low transition frequency SW-SP coupling 

0.197 
0.140 
0.151 
0.183 

0.060 – 0.327 
0.001 – 0.273 
0.012 – 0.284 
0.046 – 0.314 

0.005* 
0.047 
0.033 

0.009* 
p-Tau & Coupling Precision    
High transition frequency SW-TB coupling 
High transition frequency SW-SP coupling 
Low transition frequency SW-TB coupling 
Low transition frequency SW-SP coupling 

-0.201 
-0.121 
-0.091 
-0.134 

-0.330 – -0.064 
-0.255 – 0.019 
-0.226 – 0.049 
-0.267–0.005 

0.004* 
0.089 
0.201 
0.059 

total Tau & Coupling Precision    
High transition frequency SW-TB coupling 
High transition frequency SW-SP coupling 
Low transition frequency SW-TB coupling 
Low transition frequency SW-SP coupling 

-0.175 
-0.056 
-0.033 
-0.123 

-0.306 – -0.037 
-0.193 – 0.084  
-0.171 – 0.106 
-0.257 –0.016 

0.013* 
0.432 
0.640 
0.082 

Combined SW-TB/SW-SP metric    
Precision correlation with Aβ42/Aβ40 
Precision correlation with p-tau 

0.273 
-0.21 

0.132 – 0.390 
-0.073 – 0.339 

<0.001* 
0.003* 
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Table 3. Precision of coupling and TF-window EEG power are expressed as a percent difference between 
groups, adjusted for covariates, and controlled for multiple comparisons with via Tukey-Kramer 
adjustment. Correlations between precision of coupling and biomarkers are adjusted for covariates only. 
Abbreviations: Aβ = amyloid; CU = cognitively unimpaired; CI = cognitively impaired; IQR= interquartile 
range; TF= time-frequency; SW= slow wave; SP= spindle 
TB=theta burst; * = statistically significant when controlled for a false discovery rate (FDR) of 0.05.   

Precision correlation with total-tau -0.182 -0.044 – -0.313 0.01* 
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Figure 1: A) An illustrative example of raw sleep EEG data containing an identified theta 
burst (TB) event and a spindle (SP) event, each temporally coupled to the trough of a 
slow wave (SW) event. Note that not all SW events can be matched to coupled TB or 
SP events. B) A conceptual illustration of TB and SP oscillatory events that are 
individually identified from raw EEG (illustration not to scale). C) Slow wave (SW) 
oscillations are identified from raw EEG and characterized as having low or high 
transition frequencies by measuring the distance from their troughs to peaks. D) 
Temporal sequences of “1” TBs, “2” SWs, and “3” SPs create “coupling” as the events 
co-occur in fixed time windows from one another (illustration not to scale). E) An 
example of a normalized time-frequency EEG spectrogram containing an individual SP 
event coupled to the trough of an individual SW (SW and SP shapes are superimposed 
as a conceptual illustration, not to scale). F) An example of event detection wherein the 
time-frequency location of individual SP events from multiple spectrograms are outlined 
and superimposed. G) An example of precision event topographical localization. The 
precision of SP event centroids in panel “F” is calculated by measuring the number of 
SP event centroids within the inner ring, divided by the total number within the outer and 
inner ring areas.  

Abbreviations: SP = spindle, SW = slow wave, TB = theta bursts. 
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Figure 2: Comparison of SW-TB and SW-SP coupling normalized EEG power across 
stratified groups spanning stages of normal aging to mild cognitive impairment in early 
Alzheimer’s disease. A) High transition frequency SW-TB coupling and B) low transition 
frequency SW-TB coupling are visually represented as averaged time-frequency plots, 
and quantified EEG power among individuals is graphed in box/whisker plots. C) High 
transition frequency SW-SP coupling and D) low transition frequency SW-SP coupling 
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are visually represented as averaged time-frequency plots, and quantified EEG power 
among individuals is graphed in box/whisker plots.  

Abbreviations: Aβ = amyloid, CU = cognitively unimpaired, CI = cognitively impaired, SP 
= spindle, SW = slow wave, TB = theta bursts. [*] indicates statistical significance 
<0.005 after adjusting for covariates and multiple comparisons (Tukey-Kramer 
adjustment). 
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Figure 3: Comparison of SW-TB and SW-SP coupling precision across stages of normal 
aging to mild cognitive impairment in early Alzheimer’s disease. A) High transition 
frequency SW-TB precision comparison between groups. B) Low transition frequency 
SW-TB precision comparison between groups. C) High transition frequency SW-SP 
precision comparison between groups. D) Low transition frequency SW-SP precision 
comparison between groups.  

Abbreviations: Aβ = amyloid, CU = cognitively unimpaired, CI = cognitively impaired, SP 
= spindle, SW = slow wave, TB = theta bursts. [*] indicates statistical significance <0.05 
and [**] indicates statistical significance <0.01 after adjusting for covariates and multiple 
comparisons (Tukey-Kramer adjustment). 
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Figure 4: Regression analyses are illustrated for combined SW-TB and SW-SP metrics 
(log scale precision values were summed for each participant to create a hybrid 
precision metric that incorporates both their high frequency SW-TB and low frequency 
SW-SP precision). The covariate-adjusted correlations with this hybrid metric were 
statistically significant for A) CSF Aβ42/Aβ40 ratios (rho=0.266, 95% CI: (0.132, 0.390), 
p<0.001), B) p-tau (rho=-0.210, 95% CI: (-0.339, -0.073), p<0.003), and C) total-tau 
(rho=-0.182, 95% CI: (-0.313, -0.044)) p<0.010). The correlations remained significant 
under a false discovery rate (alpha = 0.05) for these summed precision values with 
Aβ42/Aβ40, p-tau, and total-tau. Note that raw values are graphed for conceptual and 
illustrative purposes, while correlation coefficients and p-values were obtained via 
partial Spearman correlations after adjusting for covariate effects. 

Abbreviations: Aβ = amyloid, SP = spindle, SW = slow wave, TB = theta bursts.   
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Figure 5: A) The temporal coupling of a single theta burst (TB) event and a single 
spindle (SP) event to the trough of a slow wave (SW) event is re-illustrated from Figure 
1 as a conceptual reference. B) An illustration of reduced EEG power in TB events that 
are coupled to both high transition frequency and low transition frequency slow wave 
(SW) events (illustration not to scale). Individuals with symptoms of mild cognitive 
impairment by CDR testing exhibit relatively lower EEG power of TB events. C) A 
conceptual illustration of TB temporal and frequency precision “drift” in the coupling of 
TB events to high transition frequency SW events (illustration not to scale). Lower 
precision in this SW-TB circuit is associated with categorical amyloid positivity by CSF 
threshold levels, as well as higher CSF levels of Aβ42/Aβ40, phosphorylated-tau181, and 
total-tau. D) A conceptual illustration of SP temporal and frequency precision “drift” in 
the coupling of SP events to low transition frequency SW events (illustration not to 
scale). Lower precision in this SW-SP circuit is associated with categorical amyloid 
positivity by CSF threshold levels, as well as higher CSF levels of Aβ42/Aβ40.  

Abbreviations: Aβ = amyloid, CDR = Clinical Dementia Rating Scale. CSF = 
Cerebrospinal Fluid, SP = spindle, SW = slow wave, TB = theta bursts.   
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