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Abstract 

The brain is thought to learn an internal model of the environment for improved performance 

in perception, decision making, and inference. Evidence suggests that spontaneous cortical 

activity represents such a model, or prior distribution, by cycling through stimulus-evoked 

activity patterns at frequencies proportional to the probabilities that these stimuli were 

previously experienced. However, how the brain encodes priors into spontaneous activity and 

utilizes them for inference tasks remains unclear. Here, we present a synaptic plasticity 

mechanism to generate cell assemblies encoding the statistical structure of salient sensory 

events and spontaneously replay these assemblies in spiking recurrent neural networks. The 

plasticity mechanism installs a Hebbian-like learning rule at excitatory and inhibitory synapses 

to minimize mismatches in the probability structure between stimulus-evoked and internally 

driven activities. Our model replicates the behavioral biases of monkeys performing perceptual 

decision making with surprising accuracy, demonstrating how spontaneous replay of previous 

experiences biases cognitive behaviors. 
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Introduction 

The brain needs to know the statistical structure of an uncertain environment to generate 

optimal behavioral responses. Bayesian inference identifies a process that accounts for 

uncertain observations from the environment and likely underlies various cognitive processes 

of the brain1-5. Computational studies suggest that the brain implements Bayesian computation 

at various levels of its processing hierarchy, from synaptic6-10 and local network-level11-16 to 

brain-wide computations17-19. Prior distributions accumulate subjective experiences in the 

environment, exerting crucial effects on statistical inference by individuals20-23. Clarifying how 

the brain performs statistical learning from the continuous stream of sensory experiences is vital 

to understanding the principles of brain computing and individuals' perceptual biases. 

 

   Evidence suggests that spontaneous brain activity learns a model of the sensory environment. 

In the primary visual cortex of anesthetized cats, spontaneously emerging activity patterns cycle 

through cortical states that include neural response patterns to oriented bars24. In the ferret 

visual cortex, the similarity between spontaneous activity and activities evoked by natural 

scenes increased gradually with visual experiences25. These results imply that cortical networks 

implement an internal model progressively adapting at the neural level to the statistical 

structure of sensory stimuli and spontaneously replay the modeled activity patterns. Then, the 

question arises about how cortical circuits extract salient events, encode them in spontaneous 

activity yielding an internal model, and use it for guiding cognitive behaviors. The underlying 

mechanisms of all these processes are only poorly understood26, 27.  

 

   Here, we present a principle of learning to solve the above computational tasks by a recurrent 

spiking neural network. This principle proposes that all excitatory and inhibitory, or afferent and 

recurrent synapses on each excitatory or inhibitory neuron in the network learn to predict the 

neuron's response. The learning rules derived from this principle self-organize a spontaneous 

network activity that captures the statistical structure of the population activity patterns evoked 

by external stimuli. Thus, the spontaneous activity eventually represents an internal model of 

previous probabilistic sensory experiences. To show the biological plausibility of our model, we 

train our network model to perform a perceptual decision-making task21. In the experiment, 

monkeys had to indicate the direction (left or right) of coherent random-dot motions by a 

saccadic eye movement. During learning, monkeys were exposed to the two directions at 

different frequencies, which strongly biased the perceptual discrimination of monkeys during 

the test. Without fine-tuning, our model replicates the behavioral biases of monkeys surprisingly 

well, predicting that spontaneous activity presumably underlies the biased decision making of 

monkeys. 
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   Intriguingly, our learning rules also predict a specific structure of cortical inhibitory circuits, 

that is, two inhibitory connection types with different computational roles. One connection type 

emerges between the assemblies of excitatory neurons to impose lateral inhibition among them, 

and the other type within the individual cell assemblies for desynchronizing neurons. Moreover, 

both connection types contribute to excitation-inhibition balance in recurrent networks. We 

demonstrate that the emergence of the two inhibitory circuits is crucial for robustly learning an 

internal model. 

 

 

Results 

Prediction-driven synaptic plasticity for encoding an internal model 

First, we illustrate the class of tasks our model solves. Consider a task in which the animal should 

decide whether a given stimulus coincides with or resembles any of two previously learned 

stimuli. Whether the animal learned these stimuli with a 50-50 chance or an 80-20 chance should 

affect the animal’s anticipation of their occurrence and hence affect its decision (Fig. 1a). It has 

been suggested that spontaneous activity expresses an optimal model of the sensory 

environment25. In our example, the evoked activity patterns of the two stimuli should be 

spontaneously replayed with the same probabilities as these stimuli were experienced during 

learning: 
< 𝑃(features|input,model) >!(#$%&')= 𝑃(features|model), 

 

where features = {stimulus 1, stimulus 2} and the right-hand side expresses the probabilities of 

replayed activities. The angular brackets indicate averaging over the stimuli. We propose a 

mathematical principle for learning an optimal internal model. Namely, the same learning rule 

chunks salient features (here, stimuli 1 and 2) in temporal input, self-organizes cell assemblies 

encoding these features, and replays them in the post-learning spontaneous network activity 

(Fig. 1b). We show that a recurrent neural network can perform all these processes by 

minimizing the error between the statistical structure of sensory-evoked responses and that 

predicted by the internal model (Fig. 1c). 

 

   We introduce our learning principle using a toy network model that does not obey Dale’s law 

for distinguishing between excitatory and inhibitory neurons (Methods). A more realistic model 

with distinct excitatory and inhibitory neuron pools will be shown later. The toy model consists 

of input neuron groups and a recurrent neural network of output neurons, where all neurons 

are Poisson spiking neurons. The number of input neuron groups can vary from task to task, and  
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Figure 1. Spontaneous activity as a neural substrate for priors of experiences. (a) The animal 
may experience two sensory stimuli with different probabilities (e.g., a 50-50 chance in one case 
and a 20-80 chance in another. (b) According to Hebb's hypothesis, two cell assemblies are 
formed to memorize the two stimuli during learning (left). Doing so requires the segmentation 
of the stimuli repeated in the continuous and noisy stream of input from the environment. In 
the absence of the stimuli (during awake rest or sleep), spontaneous cortical activity replays 
sensory-evoked activity patterns with the probabilities presented during the learning (right). 
This match of the probability structure makes the spontaneous activity the optimal model of 
previous experiences. (c) During learning, all synaptic weights are asked to learn the probabilistic 
structure of sensory-evoked activities of individual neurons. This learning should enable a 
recurrent neural network to reproduce the learned probabilistic activity patterns spontaneously 
without external input. 
 

every input neuron projects to all output neurons via modifiable afferent feedforward 

connection matrix 𝐖 (Fig. 2a). Two types of all-to-all modifiable recurrent connections, 𝐌 and 

𝐆 , exist among the output neurons. Matrix 𝐌  is a mixture of excitatory and inhibitory 

connections, and matrix 𝐆 represents inhibitory-only connections. Due to a minus sign for v), 

all components of 𝐆 are positive. All types of connections, both afferent and recurrent ones, are 

modifiable by self-supervised learning rules derived from a common principle: on each neuron, 

all synapses learn to predict the neuron's response optimally (Fig. 2b: see Methods). Therefore, 

unlike most previous studies, the network model does not have preconfigured stimulus-

selective cell assemblies. During learning, the network should simultaneously self-organize cell 

assemblies and their afferent connections from specific input neuron groups. This unsupervised 

learning has a trivial solution in which all neurons become silent. To avoid it, the excitability of  
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Figure 2. Formation of stimulus-selective assemblies in a recurrent network. (a) A schematic 
of connectivity in a network neuron is shown. A grey circle denotes the membrane potential u 
of a network neuron, which was calculated as a linear combination of inputs via different 
connections (v*, v+, and v); colored circles). Here, 𝐖 denotes feedforward (FF), and 𝐌 and 𝐆 
denote recurrent (REC) connections. (b) A schematic of the learning rule for a network neuron 
is shown. For each type of connection on a postsynaptic neuron, synaptic plasticity minimized 
the error between output (gray sigmoid) and synaptic prediction (colored sigmoid). The 
response function for the output was regulated by a dynamical variable ℎ, which tracks the 
history of the membrane potential. (c) The example input spike trains during the initial three 
seconds are shown. Colored areas show periods of the presentation of the corresponding stimuli. 
All input neurons project to all network neurons. (d) Example dynamics of neuronal output and 
synaptic predictions are shown before (top) and after (bottom) learning. Colored bars at the top 
of the figures represent periods of stimulus presentations. (e) Example dynamics of the 
dynamical variable ℎ (top) and the learned network activity (bottom) are shown. Neurons are 
sorted according to their preferred stimuli. During the spontaneous activity, afferent inputs to 
the network were lifted. (f) Correlation coefficients of spontaneous activities of every pair of 
neurons are shown. (g) Dynamics of the mean strengths of all types of connections projecting to 
assembly 1 are shown within (left) and between (right) assemblies. Shaded areas represent SDs 
over the designated network connectivity. 
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each output neuron (i.e., the slope and threshold of its response function) undergoes dynamical 

regulations according to the activity history (Eq. 10). 

 

   As the activity of a single neuron propagates to others in a recurrent network, the above 

learning rules also self-supervise the entire neural network to predict its activity patterns. 

Indeed, the proposed learning rules significantly extend the previous rule proposed for a two-

compartment neuron, in which the dendritic compartment learns to predict the somatic 

response28. When the afferent input involves multiple repeated spike patterns, the dendritic 

compartment selectively learns one (rarely, more than one) of these patterns to achieve a 

statistical consistency between the somatic and dendritic responses. Consequently, the neuron 

model performs unsupervised segmentation of temporal input or chunking, which is essential 

for hierarchical sequence processing29-31. 

 

   We simulated the learning of the network model with five input neuron groups, each of which 

consisted of 100 input neurons throughout this study. These neuron groups were activated 

randomly for 100 ms, one at a time, with an interval of 100 ms between the consecutive active 

epochs (Fig. 2c). Therefore, the input neuron groups were activated with equal probabilities. 

Each input neuron generated a Poisson spike train with a firing rate 2Hz (background activity) or 

50Hz (during the active epoch). In the simulations, the elements of 𝐖 and 𝐌 were initialized by 

independent Gaussian distributions with mean zero. The elements of 𝐆 were initially set to 

positive values and kept positive during the simulation.  

 

   The learning modified afferent connections 𝐖 to segment repeated input patterns (Fig. 2d) 

and self-organized assemblies of output neurons selectively responding to one of the segmented 

patterns. We examined whether and how the spontaneous activity preserves and replays the 

learned cell-assembly structure without afferent input. The loss of afferent inputs initially 

lowered the activities of output neurons. Interestingly, however, their dynamic ranges gradually 

recovered owing to the excitability regulation in output neurons (see Eq. 10) and the network 

eventually started the spontaneous replay of the cell assemblies (Fig. 2e). It is noted that the 

plasticity rules of all synapses were turned off during this recovery period (20 seconds from the 

input termination). Once the network settled in a stable state with fixed connectivity (plasticity 

off), the plasticity rules were rebooted (plasticity on) without destabilizing the structured 

spontaneous replay. Spontaneous activities of neurons were highly correlated within each cell 

assembly, but uncorrelated between different cell assemblies (Fig. 2f). Consistent with this, 

recurrent connections 𝐌 attained excitatory components only within, but not between, cell 

assemblies during learning (Fig. 2g, left). In contrast, the between-assembly components of 𝐌 
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gradually and steadily became inhibitory, suppressing a simultaneous replay of different cell 

assemblies (Fig. 2g, right). Contrary to the inhibitory components of 𝐌 , inhibitory-only 

connections 𝐆  eventually vanished between cell assemblies and only grew within cell 

assemblies (Fig. 2g, left), decorrelating neural activities within the cell assemblies. Thus, the 

network model successfully segregates, remembers, and replays stimulus-evoked activity 

patterns in temporal input. 

 

Probability coding by replay events 

Now, we turn to the central question of this study. We investigated whether spontaneous replay 

of cell assemblies can represent an optimal model of previous sensory experiences in this 

network. Namely, we examined whether the network spontaneously reactivates the learned cell 

assemblies with relative frequencies proportional to the probabilities with which the external 

stimuli activated the corresponding cell assemblies during learning. 

 
Figure 3. Priors coded in spontaneous activity. A network was trained with five probabilistic 
inputs. (a) Stimulus 1 appeared twice as often as the other four stimuli during learning. The 
example empirical probabilities of the stimuli used for learning are shown. (b) The spontaneous 
activity of the trained network shows distinct assembly structures. (c) The mean ratio of the 
population-averaged firing rate of assembly 1 to those of the other assemblies is shown for 
different values of the occurrence probability of stimulus 1. Vertical bars show SDs over five 
trials. A diagonal dashed line is a ground truth. (d) Similarly, the mean ratios of the size of 
assembly 1 to those of the other assemblies are shown. (e) The mean ratios of total activities of 
neurons in assembly 1 to those of the other assemblies are shown. 
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   We first examined a case in which stimulus 1 was presented twice as often as the other four 

stimuli (Fig. 3a). Hereafter, the probability ratio refers to the relative number of times stimulus 

1 is presented during learning. For instance, the case shown in Fig. 2 represents the probability 

ratio one. As in Fig. 2, the network self-organized five cell assemblies to encode stimuli 1 to 5 

and replayed all of them in subsequent spontaneous activity (Fig. 3b). We found that output 

neurons were activated more frequently and strongly in cell assembly 1 than in other cell 

assemblies. Therefore, we accessed quantitative differences in neuronal activity between 

different cell assemblies by varying the probability ratio. The neuronal firing rate of cell assembly 

1 relative to other cell assemblies increased approximately linearly with an increase in the 

probability ratio (Fig. 3c). Similarly, the size of cell assembly 1 relative to other cell assemblies 

also increased with the probability ratio (Fig. 3d). However, neither the relative firing rate nor 

the relative assembly size faithfully reflects changes in the probability ratio: scaling the 

probability ratio with a multiplicative factor does not scale these quantities with this factor. 

Therefore, we further investigated whether the assembly activity ratio, the ratio in the total 

firing rate of cell assembly 1 to other cell assemblies (Methods), scales faithfully with the 

probability ratio of cell assembly 1. This was the case: the scaling was surprisingly accurate (Fig. 

3e). These results show that the trained network remembers the probabilities of repetitively 

experienced stimuli by the population firing rates of the encoding cell assemblies. 

 

Relationship to Bayesian inference 

We analytically show that recurrent neural networks trained by the proposed learning rules 

generate a prior distribution statistically equivalent to the posterior distribution determined by 

external stimuli. In the approximate treatment below, we assume that both system noise and 

observation noise have constant intensities and also ignore the system noise component 

induced by the neuron's own activity through recurrent connections. Then, as u,  and v,* are 

calculated as linear combinations of independent synaptic input, according to the central limit 

theorem, we may assume that the prior distribution of the membrane potentials, which is 

provided by recurrent synaptic input, is Gaussian, 

 

𝑝=u,|v,+> ∝ exp A−
-&!./!

"0
#

12"
# C,                      (1) 

and that the likelihood distribution of afferent inputs is also Gaussian, 

 

𝑝=v,*|u,> ∝ exp	 A−
-&!./!

$0
#

12$
# C,                         (2) 
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where 𝜎+1  and 𝜎*1 	are the variances of the prior and likelihood, respectively. Using these 

expressions, we can represent the posterior distribution of cells' membrane potentials as 

 

𝑝=u,|v,*, v,+> ∝ 𝑝=v,*|u,,v,+>𝑝=u,|v,+> = 𝑝=v,*|u,>𝑝=u,|v,+> 

								∝ exp A− -&!./!
"0

#

12"
# C exp A− -&!./!

$0
#

12$
# C ∝ exp A−

-&!.4%&'(0
#

12%&'(# C,  (3) 

 

with the mean 𝜇%56' =	
2$
# /!

"72"
# /!

$

2$
# 72"

#  and the variance 𝜎%56'1 =	 2$
# 2"

#

2$
# 72"

# . Here, we used the fact 

that the relation =v,* ⫫ v,+Hu,> holds (i.e., v,* and v,+ are conditionally independent given u,). 
The present learning rules minimize the difference, i.e., the KL divergence, between the 

posterior and prior distributions, which is expressed as 

 

KLK𝑝=u,|v,*>HH𝑝=u,|v,+>L ∶= N𝑝=u,|v,*>log A
𝑝=u,|v,*>
𝑝=u,|v,+>

C 𝑑u,  

																																																																= log Q 2"
2%&'(

R +
2%&'(# 7-/!

".4%&'(0
#

12"
# − 8

1
.         (4) 

 

Under the assumption that the variances are constant, synaptic weights making the term 

=v,+ − 𝜇%56'>
1

 vanish also minimize the KL divergence. Using the definition of 𝜇%56', we can 
further rewrite this term as 

=v,+ − 𝜇%56'>
1
=	T

𝜎+1

𝜎*1 + 𝜎+1
U
1

=v,+ − v,*>
1
. 

 

The above term is approximately zero in the learned network as the relation v,* ≈ v,+ holds 

after learning. 

 

Roles of inhibitory plasticity for stabilizing cell assemblies 

Experimental and computational results suggested that inhibitory synapses are more robust to 

spontaneous activity than excitatory ones and pivotal in preserving cortical circuit functions32. 

To see the crucial role of the inhibitory plasticity of 𝐆 in our model, we compared how the self-

organized assembly structure of recurrent connections 𝐌 evolves in the two simulation settings 

shown in Fig. 4a. In the control model, we turned off the plasticity of 𝐆 for a while after the 

cessation of external stimuli but again switched it on, as was previously in Fig. 2. The cell-

assembly structure initially dissipated but eventually reached a well-defined equilibrium 

structure (Fig. 4b, magenta). Consistent with this, the postsynaptic potentials mediated by  
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Figure 4 Crucial roles of inhibitory plasticity in prior learning. We first trained the network 
models with five external stimuli. (a) Then, we terminated the stimuli at -50 sec and waited until 
0 sec for the recovery of network activity through the renormalization process (Eq. 10) with all 
plasticity rules turned off. We turned on the plasticity of 𝐌  at time 0 sec. We kept the plasticity 
of 𝐆 turned off in the truncated model (blue), while we turned on the G-plasticity in the control 
model (magenta). (b) left, The time evolution of the difference between the average within-
assembly coherence (𝑅*/:YYYYYYY) and the average between-assembly coherence (𝑅;/:YYYYYY) was plotted 
for the control (magenta) and truncated (blue) models. Larger differences imply more robust 
cell assemblies. Error bars indicate the SDs over five trials. right, Activity coherences between 
neurons are shown at the indicated times. (c) The time-varying normalized firing rate of a neuron 
(grey) and the values predicted by recurrent synaptic inputs (top) and lateral inhibition (bottom) 
are shown for the control model. (d) Similar plots are shown for the truncated model. (e) 
Changes in prediction errors in the control (magenta) and truncated (blue) models are shown 
for recurrent synaptic inputs (top) and lateral inhibition (bottom). 
 

connections 𝐌 and 𝐆 predicted the normalized firing rate of a postsynaptic excitatory neuron in 

the control model (Fig. 4c). In striking contrast, the cell-assembly structure rapidly dissipated in 

the truncated model in which the G-plasticity was kept turned off after the cessation of external 

stimuli (Fig. 4b, blue). Accordingly, the postsynaptic potentials induced by 𝐌 and 𝐆, so was the 
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normalized firing rate, evolved into trivial solutions and almost vanished in the truncated model 

(Fig. 4d). Only the control model, but not the truncated model, could maintain prediction errors 

small and nearly constant after the termination of the stimuli (Fig. 4e). These results indicate 

that maintaining the learned representations requires the continuous tuning of within-assembly 

inhibition. 

 

Learning conditional probabilities 

In the previous section, we showed that the present network model successfully encodes the 

probabilities of stimulus experiences into spontaneous network activity. The results raise a 

question about how the brain uses the proposed mechanisms in other probabilistic inference 

tasks. Below, we show some examples of such behavioral tasks. First, we construct a neural 

network model that learns the conditional probabilities or the likelihoods of given pairs of stimuli. 

The network model encodes conditional probabilities among stimuli into the total firing rates of 

coactivated cell assemblies.  

 

   The neural network consists of two mutually interacting subnetworks of equal sizes sharing 

none of their membership neurons (Fig. 5a). Subnetwork A was randomly exposed to stimuli 1 

and 2 (S1 and S2) with equal probabilities 1/2, whereas subnetwork B was to stimuli 3 and 4 (S3 

and S4) with the conditional probabilities 1/3 and 2/3 if S1 was presented to subnetwork A and 

the conditional probabilities 2/3 and 1/3 if S2 was presented to subnetwork A. After learning, 

the network model self-organized four cell assemblies each of which responded preferentially 

to one of the four stimuli (Fig. 5b). Consistent with this, the self-organized connection matrix 

represented strong within-assembly connections within each cell assembly and weak between-

assembly connections (Fig. 5c). Note that between-assembly connections were inhibitory 

between assemblies encoding mutually exclusive stimuli, i.e., S1 and S2 and S3 and S4, as they 

should be. Now, we turned off S3 and S4 to subnetwork B and only applied S1 or S2 to 

subnetwork A each at one time. Applying the same stimulus (i.e., S1 or S2) to subnetwork A 

activated either S3- or S4-coding cell assembly in subnetwork B in a probabilistic manner (Fig. 

5d). The cell assemblies evoked in subnetwork B by S1 or S2 to subnetwork A varied the total 

firing rates approximately in proportion to the conditional probabilities (e.g., P(S3|S1)=1/3 vs. 

P(S4|S1)=2/3) used during learning (Fig. 5e). Note that S3- and S4-coding cell assemblies could 

become simultaneously active to represent the desired activation probabilities (e.g., a vertical 

arrow in Fig. 5d). 
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Figure 5. Learning of multivariate priors with assemblies. (a) Network neurons were separated 
into two populations receiving different groups of feedforward inputs (left). Subnetwork A 
received stimuli 1 (S1) and 2 (S2), each presented one at a time with probability 1/2. Subnetwork 
B received stimuli 3 (S3) or 4 (S4) exclusively when subnetwork A was also stimulated. S3 or S4 
was sampled at each presentation according to the probability distribution conditioned on the 
stimulus presented to subnetwork A (middle and right). (b) Raster plot of evoked activity after 
training. Each subnetwork formed two assemblies responding to different preferred stimuli. 
Shaded areas with four colors indicate the duration of stimuli given to the two subnetworks. (c) 
The connection matrix self-organized among the cell assemblies is shown. (d) The activities of 
the four assemblies in the presence of S1 and S2 but not S3 and S4 are shown. Despite the 
absence of stimuli, subnetwork B replayed the assemblies encoding S3 and S4 when subnetwork 
A was activated by S1 or S2. (e) Activities of assemblies 3 and 4 in subnetwork B varied with the 
stimulus presented to subnetwork A. Each data point corresponds to one of 20 independent 
stimulus presentations. Error bars represent SDs. 
 

Replication of biased perceptual decision making in monkeys  

Prior knowledge about the environment often biases our percept of the external world. For 

instance, if we know that two possible stimuli exist and that stimulus A appears more often than 

stimulus B, we tend to feel that a given stimulus is more likely to be stimulus A than stimulus B. 

Previously, a similar bias was quantitatively studied in monkeys performing a perceptual 

decision making task21. In the experiment, monkeys had to judge the direction (right or left) of 

the coherent motion of moving dots on a display. When both directions of coherent motion 

appeared randomly during learning, the monkey showed unbiased choice behaviors. However, 

if the frequencies of the two motion directions were different, the monkey's choice was biased 

toward the direction of a more frequent motion stimulus. 
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Figure 6. Simulations of biased perception of visual motion coherence. (a) The network model 
simulated perceptual decision-making of coherence in random dot motion patterns. In the 
network shown here, network neurons have already learned two assemblies encoding leftward 
or rightward movements from input neuron groups L and R. The firing rates of input neuron 
groups were modulated according to the coherence level Coh of random dot motion patterns 
(Methods). (b) The choice probabilities of monkeys (circles) and the network model (solid lines) 
are plotted against the motion coherence in two learning protocols with different prior 
probabilities. The experimental data were taken from Hanks et al. (2011). In the 50:50 protocol, 
moving dots in the "R" (Coh = 0.5) and "L" (Coh = -0.5) directions were presented randomly with 
equal probabilities, while in the 80:20 protocol, the "R" and "L" directions were trained with 80% 
and 20% probabilities, respectively. Shaded areas represent SDs over 20 independent 
simulations. The computational and experimental results show surprising coincidence without 
curve fitting.  (c) Spontaneous and evoked activities of the trained networks are shown for the 
50:50 (left) and 80:20 (right) protocols. Evoked responses were calculated for three levels of 
coherence: Coh = -50%, 0%, and 50%. In both protocols, the activity ratio in spontaneous activity 
matches the prior probability and gives the baseline for evoked responses. In the 80:20 protocol, 
the biased priors of "R" and "L" motion stimuli shift the activity ratio in spontaneous activity to 
an "R"-dominant regime. 
 

   We constructed a network model shown in Fig. 6a to examine whether the present mechanism 

of spontaneous replay could account for the behavioral bias. The model comprises a recurrent 

network similar to that used in Fig. 2 and two input neuron groups, L and R, encoding leftward 

or rightward coherent dot movements, respectively. We modulated the firing rates of these 

input neurons in proportion to the coherence of moving dots (Methods). During learning, we 

trained this model with external stimuli having input coherence Coh of either -0.5 or +0.5 

(Methods), where all dots move leftward in the former or rightward in the latter. In so doing, 

we mimicked the two protocols used in the behavioral experiment of monkeys: in the 50:50 
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protocol, two stimuli with Coh = ±0.5 were presented randomly with equal probabilities, while 

in the 80:20 protocol, stimuli with Coh =  +0.5 and -0.5 were delivered with probabilities of 80% 

and 20%, respectively. In the 80:20 protocol, stimuli were highly biased toward a coherent 

rightward motion. 

 

   The network model could explain the biased choices of monkeys surprisingly well. In either 

training protocol, the recurrent network self-organized two cell assemblies responding 

selectively to one of the R and L input neuron groups. Then, we examined whether the responses 

of the self-organized network are consistent with experimental observations by stimulating it 

with external inputs having various degrees of input coherence. The resultant psychometric 

curves almost perfectly coincide with those obtained in the experiment (Fig. 6b). We note that 

the psychometric curves of the model do not significantly depend on the specific choices of 

parameter values as far as the network learned stable spontaneous activity. We did not perform 

any curve fitting to experimental data, implying that the psychometric curves are free from 

parameter fine-tuning. 

 

   Biases in the psychometric curves emerged from biased firing rates of spontaneous activity of 

the self-organized cell assemblies. To show this, we investigated how the activities of the two 

self-organized cell assemblies change before and after the onset of test stimuli in three cases, 

i.e., Coh = -0.5, 0, and +0.5. Figure 6c shows the activity ratio AR between the R-encoding cell 

assembly and the entire network (Methods) in pre-stimulus spontaneous and post-stimulus 

evoked activity. When the network was trained in a non-biased fashion (i.e., in the 50:50 

protocol), the activity ratio was close to 0.5 in spontaneous activity, implying that the two cell 

assemblies had similar activity levels. In contrast, when the network was trained in a biased 

fashion (i.e., in the 80:20 protocol), the activity ratio in spontaneous activity was close to 0.8, 

implying that the total spontaneous firing rate of R-encoding cell assembly was four times higher 

than that of L-encoding cell assembly. 

 

 

An elaborate network model with distinct excitatory and inhibitory neuron pools 

The predictive learning rule performed well in training the toy model to learn the probabilistic 

structure of the stimulus-evoked activity patterns. However, whether the same learning rule 

works in a more realistic neural network is yet to be investigated. To examine this, we 

constructed an elaborate network model consisting of distinct excitatory and inhibitory neuron 

pools, obeying Dale’s law (Fig. 7a). The toy model suggested the essential roles of inhibitory 

plasticity in maintaining excitation-inhibition balance and generating an appropriate number of  
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Figure 7. An elaborate model of excitatory and inhibitory cell assemblies. (a) The elaborate 
model consists of distinct excitatory and inhibitory neuron pools, obeying Dale's law. (b) Each 
inhibitory neuron projects to another neuron X through two inhibitory paths, path 1 and path 2, 
where the index X refers to an excitatory or an inhibitory postsynaptic neuron. Hexagons 
represent minimal units for prediction and learning in the neuron model and may correspond to 
dendrites, which were not modeled explicitly. (c) The probability ratios estimated by numerical 
simulations are plotted for the assembly activity ratios (purple), firing rate ratios (cyan), and 
assembly size ratios (green) as functions of the true probability ratio of external stimuli. Error 
bars indicate SEs calculated over five simulation trials with different initial states of neurons and 
synaptic weights in each parameter setting. (d) Inhibitory connection matrices are shown for 
path 1 and path 2. (e) The mean weights of self-organized synapses on excitatory and inhibitory 
postsynaptic neurons are shown. (f) Within-assembly and between-assembly connectivity 
patterns of excitatory and inhibitory neurons are shown. Colors indicate three cell assemblies 
self-organized. (g) The strengths of lateral inhibitions within- (W/N) and between-assemblies 
(B/N) are shown for paths 1 and 2.  Horizontal bars show the medians and quartiles. (h) The 
resultant connectivity pattern suggests an effective competitive network between excitatory 
assemblies with self- (within-assembly) and lateral (between-assembly) inhibition. 
 

cell assemblies. To achieve these functions, inhibitory neurons in the elaborate model project 

to excitatory and other inhibitory neurons via two synaptic paths (Fig. 7b). In path1, inhibitory 

connections alone predict the postsynaptic activity, whereas inhibitory and excitatory 

connections jointly predict the activity of the postsynaptic neuron in path2 (Methods). All 

synapses in the elaborate model are subject to the predictive learning rule. We trained the 

elaborate model with three input neuron groups while varying their activation probabilities. As 
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in the toy model, the elaborate model self-organized three cell assemblies activated selectively 

by the three input neuron groups (Supplementary Fig. 1a). Furthermore, in the absence of 

external stimuli, the elaborate model spontaneously replayed these assemblies with the 

assembly activity ratios in proportion to the occurrence probabilities of the corresponding 

stimuli during learning (Fig. 7c).  

 

   The two inhibitory paths divided their labors in a somewhat complex manner. To see this, we 

investigated the connectivity structures learned by these paths. In path 1, inhibitory connections 

were primarily found on excitatory neurons in the same assemblies (Fig. 7d, top). In contrast, in 

path 2, inhibitory connections were stronger on excitatory neurons in different assemblies than 

those in the same assemblies (Fig. 7d, bottom). On both excitatory and inhibitory neurons, the 

total inhibition (i.e., path 1 + path 2) was balanced with excitation (Fig. 7e). Figure 7f summarizes 

the connectivity structure of the elaborate model. Excitatory neurons in a cell assembly project 

to inhibitory neurons in the same assembly. Then, these inhibitory neurons project back to 
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excitatory neurons in the same or different assemblies via paths 1 and 2. Interestingly, lateral 

inhibition through path 1 is more potent between excitatory neurons within each cell assembly 

than between different assemblies (Fig. 7g). In contrast, path 2 mediates equally strong within-

assembly and between-assembly inhibition. 

 

   We can understand the necessity of the two inhibitory paths based on the dynamical 

properties of competitive neural networks. Figure 7h displays the effective competitive network 

of excitatory cell assemblies suggested by the above results. Both paths 1 and 2 contribute to 

within-assembly inhibition among excitatory neurons, whereas between-assembly inhibition 

(i.e., lateral inhibition) mainly comes from path 2. In a competitive network, the lateral inhibition 

to self-inhibition strength ratio determines the number of winners having non-vanishing 

activities: the higher the ratio is, the smaller the number of winners is33. Therefore, self-

organizing the same number of excitatory cell assemblies as that of external stimuli requires 

tuning the balance between the within-assembly and between-assembly inhibitions. This tuning 

during learning is likely easier when the network has two independently learnable inhibitory 

circuits. Indeed, a network model with only one inhibitory path rarely succeeded in encoding 

and replaying all stimuli used in learning (Supplementary Fig. 1b, c). 

 

 

Discussion 

Having proper generative models is crucial for accurately predicting statistical events. The brain 

is thought to improve the prediction accuracy of inference by learning internal generative 

models of the environment. These models are presumably generated through multiple 

mechanisms. For instance, the predictive coding hypothesizes that top-down cortical inputs 

provide lower sensory areas with prior information about sensory experiences17-19. However, 

experimental evidence also suggests that spontaneous activity represents an optimal model of 

the environment in sensory cortices. This study proposed a biologically plausible mechanism to 

learn such a model, or priors for experiences, with the brain's internal dynamics. To our 

knowledge, our model is the first to encode the optimal model of an environment into 

spontaneous activity. 

 

   Our model adopted a single principle for the plasticity of excitatory and inhibitory synapses to 

learn and replay the probabilistic structure of the environment. On each neuron, excitatory and 

inhibitory synaptic weights undergo plastic changes to improve their independent predictions 

on the cell's firing. This was done by minimizing the mismatch between the prior distribution 

and posterior distribution of the membrane potentials (Eq. 4). This simple learning rule showed 
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excellent performance in a simplified network model and in a more realistic model obeying 

Dale's law. In both models, inhibitory synaptic plasticity plays a crucial role in learning an 

accurate internal model by maintaining excitation-inhibition balance and decorrelating cell-

assembly activities34, 35. The latter model predicts a division of labor between two inhibitory 

paths. 

 

   The mismatch between the prior and posterior distributions is called Bayesian surprise36. 

Therefore, it is said that the proposed learning rule asks a recurrent neural network to minimize 

the Bayesian surprise of its own activity for a given sensory input.  Surprise signals have been 

implicated in learning cognitive behaviors37, 38. A well-known example is mismatch detection, in 

which listeners promptly perceive a deviant stimulus preceded by repetitions of standard 

stimuli36, 39, 40. Our model suggests that Bayesian surprise also plays a role in learning internal 

models of the environment in spontaneous brain activity. 

 

   Furthermore, we have shown that the proposed mechanism can account for the behavioral 

biases observed in perceptual decision making. This behavioral experiment quantitatively 

clarified how the difference in the probability between alternative sensory experiences during 

learning biases the choice behavior of monkeys during tests. However, the underlying neural 

mechanism was not explored. In its spontaneous activity, our model replays cell assemblies 

encoding the different stimuli at total firing rates proportional to the difference in their 

occurrence probabilities during learning. The difference in spontaneous firing rates explained 

the behavioral biases of monkeys accurately without any fine-tuning of model parameters. Our 

results strongly suggest that spontaneous cortical activity underlies the observed behavioral 

biases, although other mechanisms, such as biased top-down input, cannot be excluded. 

 

   As mentioned previously, various models have been proposed to account for neural 

mechanisms of Bayesian computation by the brain6-19. Typically, these models embed prior 

knowledge on previous sensory experiences into the wiring patterns of afferent (and sometimes 

also recurrent) synaptic inputs such that the corresponding stimuli can evoke the learned activity 

patterns to retrieve the prior knowledge. The present model differs from the previous models 

in several aspects: i) First, the model segments repeated stimuli to be remembered in an 

unsupervised fashion; ii) Then it generates cell assemblies encoding the segmented stimuli; (iii) 

Finally, it replays these cell assemblies spontaneously with learned probabilities. Note that the 

same learning rules enable the network to perform all necessary computations for (i) to (iii). 
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   What could be the advantages of coding prior distributions into spontaneous activity over 

other ways of probability coding? We could consider some advantages. The replay of 

hippocampal engram cells is crucial for memory consolidation to cortical memory storage during 

sleep. Although the underlying mechanisms of hippocampal replay and memory consolidation 

have not been fully understood, the repeated activation of hippocampal engrams is thought to 

reinforce the activity patterns of cortical engrams41-44. Similarly, the spontaneous replay of 

learned cell assemblies in lower cortical regions may provide "training data" for learning priors 

in higher cortical areas, hence promoting hierarchical Bayesian modeling in predictive coding. 

Memory reinforcement by activity replay has also been studied in machine intelligence45-47. 

 

   Another possible advantage of the spontaneous replay of internal models is that it may 

support the generalization of acquired knowledge. It was recently reported that a transitive 

inference task requires post-learning sleep in the anterior cingulate cortex (ACC)48. In this task, 

mice had to infer correct behavioral responses to inexperienced combinations of reward 

delivery rules from the outcomes of past experiences. The mice failed to generalize the learned 

rules if the activity of ACC was suppressed during post-learning sleep. The results suggested that 

the offline activity of ACC neurons, which likely involves the spontaneous replay of rule-encoding 

neurons, is crucial for rule generalization. Clarifying how the brain uses spontaneous activity to 

generalize the learned internal models is an intriguing open question. 

 

 

Methods 

Neural network model 

Below, we first describe the model architecture and learning rule for a toy model (i.e., single 

population violating the Dale’s law). Details of simulation of distinct excitatory and inhibitory 

populations will be explained later. Unless otherwise stated, recurrent neural networks used in 

this study consist of 𝑁(= 500) Poisson neurons, which generate spikes according to a non-

stationary Poisson process with rate 𝜑(𝑢), where 𝜑(∙) is a sigmoidal function. The membrane 

potential 𝑢 of neuron 𝑖 at time 𝑡 is given as follows:  

 

𝑢,(𝑡) = ∑ W,<𝑥<(𝑡)=
<>8 + ∑ (M,< − G,<)𝑦<(𝑡),?

<>8         (5) 

 

where 𝐾 is the number of input neurons. In some simulations, the network model had more 

than one input neuron group although the number of input neuron groups is not explicitly shown 

in Eq. 5. Three matrices 𝐖 ∈ ℝ?×= , 𝐌 ∈ ℝ?×? , and 𝐆 ∈ ℝ?×?  represent the weights of 

afferent synaptic connections, recurrent synaptic connections and inhibitory-only connections, 
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respectively, on neurons in the recurrent network. These synaptic connections are all-to-all. In 

terms of the kernel function 

 

𝜀(𝑠) = exp(−s/τ) ∙ Θ(s),                                               (6) 

 

recurrent input and afferent input to neuron 𝑖 are calculated as 

 
𝑥,(𝑡) = 	∑ 𝜀(𝑡 − 𝑡A)B)∈B*++

+ ,                                        (7a) 

 
𝑦,(𝑡) = 	∑ 𝜀(𝑡 − 𝑡A)B)∈B,-.+ ,                                       (7b) 

 

where τ stands for the membrane time constant, 𝑡DEE
E  and 𝑡FGHE  for the time sets of afferent and 

recurrent presynaptic spikes, and Θ(∙) for the Heaviside function. Throughout this study, τ = 15 

ms.  

 

   The instantaneous firing rate 𝑓,(𝑡) of each neuron is given as 

 

𝑓,(𝑡) = 	𝜑=𝑢,(𝑡); ℎ,(𝑡)>,                                         (8) 

 

in terms of sigmoidal response function 𝜑: 

 

𝜑(𝑢,; ℎ,) = 	𝜑IK1 + exp[𝑔𝛽(ℎ,)(−𝑢, + 𝑔𝜃(ℎ,))]L
.8

,    (9) 
 

with a constant value of  𝑔 = 3. Here, the dynamical variable ℎ is determined by the history of 

the membrane potential: 

 

ℎ̇, =	−𝜏J.8ℎ, , 	if	ℎ, > 𝑢, ,
ℎ, ← 𝑢, , otherwise.

                                   (10) 

 

The maximum instantaneous firing rate 𝜑I is 50 Hz and 𝜏J = 10 s. Through Eq. 10, ℎ,  tracks the 

maximum value of the membrane potential 𝑢,  in a time window of approximately the length 𝜏J 

in the immediate past. The value of ℎ is utilized to regulate the gain 𝛽 and threshold 𝜃 of the 

sigmoidal response function as follows: 

 

𝛽(ℎ,) = ℎ,
.8𝛽I		,             (11) 
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𝜃(ℎ,) = ℎ,𝜃I		,                  (12) 

 

where the values of constant parameters are	𝛽I = 5, and 𝜃I = 1. Neuron 𝑖 generates a Poisson 

spike train at the instantaneous firing rate of	𝑓,(𝑡). 
 

Learning rules 

To predict the firing rate of the postsynaptic neuron, the different types of synapses obey similar 

learning rules in the present network model. Given the postsynaptic potentials as 

 

v,* = ∑ W,K ∙ 𝑥K=
K>8 ,										         (13a) 

 

v,+ = ∑ M,K ∙ 𝑦K,?
K>8                   (13b) 

 

v,) = ∑ G,K ∙ 𝑦K ,?
K>8                     (13c) 

 

the weights of the corresponding synapses are modified according to the following equations: 

 

∆W,K = 𝜖𝜓=𝑓, , v,*>𝑥K,                     (14a) 

 

∆M,K = 𝜖𝜓=𝑓, , v,+>𝑦K,                     (14b) 

 

∆G,K = 𝜖𝜓=𝑓, , v,)>𝑦K,                       (14c) 

 

where the error term 𝜓(𝑓, , v,) is defined as 

 

𝜓(𝑓, , v,) = 𝜑I.8(1 − 𝑓,/𝜑I)[𝑓, − 𝜑(v,; 𝑐I)],     (15) 

 

with a constant value of 𝑐I = 1. Throughout this study, the learning rate 𝜖 = 10.L, for which 

the typical time length required for the convergence of learning is 1,000 s.  

 

   Initial values of 𝐖  and 𝐌  are sampled from gaussian distributions with the mean 0 and 

variances 	0.1/√𝐾  and 0.1/√𝑁 , respectively. During learning, the elements of 𝐖 and 𝐌 can 

take both positive and negative values. After sufficient learning, the postsynaptic potentials v,* 

and v,+  on neuron on neuron 𝑖  converge to a common value of 𝑣,∗ . Therefore, 𝜑=𝑣,*> ≈
𝜑=v,+> ≈ 𝜑(v,∗) ≈ 𝑓, , implying that the postsynaptic potentials of afferent and recurrent 

synaptic inputs to neuron 𝑖 can both predict its output 𝑓,  after learning. The initial values of 𝐆 
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are uniformly set to 1/√𝑁 , and its elements are truncated to non-negative values during 

learning. This implies that v,) does not become negative. After learning, 𝜑(v,)) ≈ 𝑓,  is satisfied. 

Although some elements of 𝐌  may give recurrent inhibitory connections, modifiable 

connections in 𝐆 are necessary to encode all external inputs into specific cell assemblies. 

 

Measures for cell assembly activities 

Here, we explain the measures used in Fig. 3. We calculated the firing rate ratio of cell assembly 

1 in Fig. 3c as follows: 

Firing	rate	ratio = 	 N!
(0)

O∑ 0
23
∑ N!

(3)23
!40

5
34# Q LR

		,                (16) 

using the average firing rate 𝑟,
(K)  of the 𝑖-th neuron in cell assembly 𝑗 and the number 𝑁K  of 

neurons belonging to the cell assembly. Similarly, we defined the assembly size ratio of cell 

assembly 1 as 

Assembly	size	ratio = ?0
S∑ ?35

34# T L⁄
	 .                        (17) 

in Fig.3d and assembly activity ratio of cell assembly 1 as 

Assembly	activity	ratio =
N%&%
(0)

S∑ N%&%
(!)5

!4# T LR
		,               (18) 

in Fig. 3e. Here, r%5%
(,)  represents the population neural activity of cell assembly 𝑖: 

𝑟%5%
(K) ≡ ∑ 𝑟,

(K)?3
,>8   .                                                        (19) 

 

Simulations of perceptual decision making 

In each learning trial, we trained the network with either leftward or rightward dot movement 

represented by the corresponding input neurons firing at 𝑟VDW = 50 Hz. In test trials, we defined 

input coherence as Coh = 𝜌X − 0.5 according to Hanks et al.21, where 𝜌X  is the ratio of R input 

neurons to the sum of R and L input neurons in firing rate. The value of Coh ranges between -

0.5 (all dots moving leftward) and +0.5 (all dots moving rightward). Then, in test trials for input 

coherence Coh, we generated Poisson spike trains of R and L input neurons at the rates (Coh +
0.5)𝑟VDW and (−Coh + 0.5)𝑟VDW, respectively.  

 

   In Fig. 6c, we calculated the activity ratio (AR) as 

AR = N6
%&%

N6
%&%7N7

%&%		,                                                  (20) 
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where 𝑟Y
%5%  and 𝑟Z

%5%  represent the average population firing rates of R-encoding and L-

encoding cell assemblies, respectively. In Fig. 6b, we defined "choices to right” as 

Choices	to	right = 	AR × 100	(%).                   (21) 

 

A network model with distinct excitatory and inhibitory neuron populations 

Here, we explain the architecture of the model used in Fig. 7. The network consists of 𝑁[(=
500) excitatory and 𝑁\(= 500) inhibitory neurons. The membrane potential of a neuron 𝑖 of a 

population X (= E or I) at time 𝑡 is given as follows:  

	𝑢,](𝑡) = ∑ W,<
] 𝑥<(𝑡)=

<>8���������
>∶/!

$

+ �∑ M,_
]`𝑦_[(𝑡) − ∑ G,a

]b	(%D'd1)𝑦a\ (𝑡)
?8
a>8

?9
_>8 ����������������������������

>∶/!
"(#)

            

−∑ G,a
]b	(%D'd8)𝑦a\ (𝑡)

?8
a>8���������������

>∶/!
"(0)

,            (22) 

where {W,<
] } is afferent synaptic weights, which are a mixture of excitatory and inhibitory 

connections as in the toy model. The weights of recurrent excitatory synapses are {M,_
]`}. Here, 

we considered two types of recurrent inhibitory connections (i.e., path 1 and path 2), denoted 

by G,a
]b	(%D'd8) and G,a

]b	(%D'd1), respectively. Using the same definitions of kernel function of 
synaptic inputs and the error term as in Eq. 15, we modified these weights according to the 

following equations: 

∆W,K
] = 𝜖𝜓=𝑓, , v,*>𝑥K,                            (23a) 

∆M,K
]` = 𝜖𝜓�𝑓, , v,

+(1)� 𝑦K[,                    (23b) 

∆G,K
]b	(%D'd1) = 𝜖𝜓 �𝑓, , v,

+(1)�𝑦K\,           (23c) 

∆G,K
]b	(%D'd8) = 𝜖𝜓 �𝑓, , v,

+(8)� 𝑦K\.           (23d) 

To satisfy the Dale’s law, we truncated all weights of recurrent connections to non-negative 

values during learning. 

 

   In Fig. 7g, we measured the lateral inhibition between excitatory neurons via path 1 by 

calculating:  

KW,,K
ZbL =� G,<

`b	(%D'd8)M<K
b`

?9

<>8
. 

Lateral inhibition via path 2 was calculated in a similar fashion. 

 

Data availability 
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All numerical datasets necessary to replicate the results shown in this article can easily be 

generated by numerical simulations with the software code provided below. No datasets were 

generated during this study. 

 

Code availability 

All codes were written in Python3 with numpy 1.17.3 and scipy 0.18.1. Example program codes 

used for the present numerical simulations and data analysis will be available after publication 

at https://github.com/ToshitakeAsabuki/PriorNet_codes. 
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