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Abstract 
The aging brain undergoes major changes in its topology. The mechanisms by which the brain 
mitigates age-associated changes in topology to maintain robust control of brain networks are 
unknown. Here we used diffusion MRI data from cognitively intact participants (n=480, ages 40-
90) to study age-associated changes in the controllability of structural brain networks, features 
that could mitigate these changes, and the overall effect on cognitive function. We found age-
associated declines in controllability in control hubs and large-scale networks, particularly within 
the and frontoparietal control and default mode networks. Redundancy, quantified via the 
assessment of multi-step paths within networks, mitigated the effects of changes in topology on 
network controllability. Lastly, network controllability, redundancy, and grey matter volume 
each played important complementary roles in cognitive function. In sum, our results highlight 
the importance of redundancy for robust control of brain networks and in cognitive function in 
healthy-aging. 
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Introduction  
 
As populations world-wide are aging [1], dementia and other degenerative central nervous 
system diseases associated with cognitive decline are projected to increase in prevalence[2]. 
Cognitive decline is not restricted to pathological aging, but also occurs in healthy older adults. 
Yet healthy cognitive aging can vary greatly between individuals [3]. For those that resist 
cognitive decline, greater life-satisfaction, well-being, and higher levels of happiness are 
reported [4]. Several lifestyle factors have been found to contribute to successful cognitive aging, 
such as exercise [5], and education [6, 7], yet the mechanisms that could support cognitive 
function late in life remain incompletely understood. 
 
Studying the topological properties of macroscopic brain connectivity with tools from network 
science [8] is one method by which the mechanisms that could promote cognitive function in 
aging were examined. Studies focused on measures of network topology that change throughout 
healthy [9-17], and pathological aging [18-24], and attempted to relate alterations in topology to 
cognition. One such central measure is network controllability [25]. Controllability is a concept 
that originated in engineering within the domain of control theory [26-28]. In networks, 
controllability examines the ability of key nodes to enable dynamic state transitions between an 
initial and target state [25]. For example, in brain networks the default mode network, 
hypothesized to be a brain state reflecting general priors for cognitive function [29], has been 
observed to have several hubs of average controllability [30], which are important for steering 
the brain towards easy to reach states. This positions the default mode network to easily direct 
the brain towards activity relevant for behavioral tasks [31]. Network controllability has been 
postulated as a dual mechanism of brain and cognitive reserve in aging by combining structural 
connectivity and brain dynamics to jointly measure the brain’s ability to respond and adapt to 
changing cognitive demands [32]. Recent studies have documented the centrality of changes in 
network controllability in aging [33, 34].  It nevertheless remains unknown how the brain could 
mitigate age-associated changes in network controllability despite changes in network topology.  
 
A mechanism by which the brain may mitigate age-associated alterations in controllability is via 
increased redundancy [35-38]. Redundancy is a general principle ubiquitous in engineering that 
protects systems from the failure of individual components [39]. Redundancy is also evident in 
biological systems at many scales. Examples include at the level of genes [36, 40], organs [38], 
and in population coding within neural networks [41]. In the context of brain networks, 
redundant paths could provide alternate routes for information transmission should one path fail 
due to the effects of aging and/or disease. Redundant links have been previously identified as 
potential mechanisms that support robust control of complex networks during disconnections 
[25, 42, 43], but this has not been investigated in the context of network control in aging brain 
networks. Furthermore, redundancy has been postulated as a neuroprotective mechanism [38], 
but only recently studied within the context of healthy and pathological aging [12, 19, 22, 24]. It 
was reported that functional hippocampal redundancy supports cognitive resilience in 
pathological aging [19, 22, 24], and that network-wide functional redundancy mediates the 
relationships between age and executive function [12]. However, redundancy has yet to be 
investigated in the context of structural brain networks and the alterations in controllability they 
undergo in aging. We hypothesize that redundancy could mitigate the impact of age-associated 
topological changes on the controllability of brain networks. 
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It was recently hypothesized that network controllability and brain volume, the more traditional 
measure of brain reserve, should both separately be partial predictors of cognitive status [32]. In 
the current study we additionally attempted to investigate this aforementioned hypothesis, as 
well as the relevance of redundancy in structural brain networks as a potential mechanism of 
brain reserve. We chose processing speed as the cognitive function evaluated because it is 
believed to be heavily dependent on communication along white-matter tracts [44, 45]. 
Relatedly, processing speed is known to exhibit age-associated declines [46], that correspond 
with changing topological properties of structural brain networks [47, 48]. Processing speed is 
also associated with commonly used measures of brain reserve, such as hippocampal volume 
[49, 50]. We hypothesized that processing speed would be related to measures of regional 
influence on network dynamics, such as average controllability, particularly in functional 
networks that have been reported as important in age-related differences in processing speed 
(e.g., default mode and frontoparietal control networks [15, 51]). We expected that redundancy 
could support rapid communication between task-relevant functional networks [44, 45, 52], and 
thus be positively associated with processing speed.  
 
To test our hypotheses we used diffusion MRI (dMRI) data from 480 participants (female = 281, 
male = 199) between the ages of 40-90 from the HCP-aging dataset [53] (Fig. 1A). We examined 
how average controllability, defined as the ability of brain regions to influence brain-wide 
dynamics, changes in aging. We constructed structural networks using the functional Schaefer 
local-global parcellation [54] (Fig. 1B). After constructing structural networks, we computed 
average controllability for each brain region (Fig. 1C), and then identified age-related shifts in 
average controllability of control hubs and large-scale networks (Fig. 1C). Next, we investigated 
how redundancy, a measure of multi-step paths between nodes, supports average controllability 
in aging (Fig. 1D). We hypothesized that the existence of additional pathways within structural 
brain networks would facilitate average controllability in networks important for cognitive 
function (Fig. 1E). Finally, we investigated the extent to which grey matter volume, network 
controllability, and redundancy, could serve as partial proxies of age-associated variance in 
processing speed (Fig. 1F). 
  

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted February 18, 2023. ; https://doi.org/10.1101/2023.02.17.528999doi: bioRxiv preprint 

https://doi.org/10.1101/2023.02.17.528999


Results  
 
Declines in the average controllability of control hubs and large-scale networks are implicated 
in aging 
 
To begin our investigation of the relationship between network control and aging, we evaluated 
if the average controllability of control hubs in middle-aged participants (n = 305, ages 40-65) 
were different than in old-aged participants (n = 175, ages 65-90). We classified a node as a 
control hub if the average controllability was greater than one standard deviation above the mean 
average controllability for all nodes in middle-aged participants. This yielded 15 hubs, which 
were predominately within networks associated with cognitive function (Fig. 2A). The 
distribution of hubs within the different large-scale networks (shown as percentages in Fig. 2A) 
were corrected by network size by normalizing the number of hubs in each network by their 
respective size [30].  Hubs of average controllability were most commonly within the default 
mode network (~40%), followed by the salience/ventral attention network (~25%), similar to 
previously reported results [30]. Next, we examined if average controllability for each of these 
identified hubs was different between middle- and old-aged participants (Fig. 2B). For the hubs 
with the greatest average controllability, the mean values were consistent across age groups. 
However, old-aged participants had less average controllability in two hubs within the default 
mode network (DefaultA – PFCm_4: F1, 470.75 = 11.26, pbonf. = 0.013, DefaultB – PFCd_1: F1, 

470.75 = 35.01, pbonf. = 9.46e-08). Next, we investigated if average controllability showed age-
associated changes at the level of large-scale networks. We calculated the mean average 
controllability for each of the 17 large-scale networks in our parcellation, and computed the 
ranked Spearman’s correlation with age. Age was negatively associated with mean average 
controllability in the default mode (DefaultB:  Spearman’s ρ = -0.303, pbonf. = 2.12e-10), the 
frontoparietal control (ContB: Spearman’s ρ = -0.274, pbonf. = 1.69e-08), and the limbic 
(LimbicB: Spearman’s ρ = -0.225, pbonf. = 1.06e-05) networks (Fig. 2C and Table S1). For the 
frontoparietal control network, this decline appears to occur mostly before the age of 61 (Fig. 
S1A), whereas for the default mode and limbic networks, these declines continued throughout 
the age range studied (Fig. S1B, and Fig S1C, respectively).  
 
Degree and redundancy show similar relationships to measures of controllability 
 
To examine if multi-step connectivity supports average controllability, we calculated network 
redundancy [37], defined as number of non-circular paths between nodes up to a designated 
length L (see Methods). When averaging across all subjects and performing rank correlations 
with average controllability, nodal degree and nodal redundancy showed similar strong positive 
correlations (Fig. S2A i, iii). Redundancy, also similarly to degree, showed a strong negative 
correlation with modal controllability (Fig. S2A ii, vi), a measure of a node’s ability to push the 
system to hard to reach states [55]. However, a positive relationship still existed for the rank 
correlation between redundancy and average controllability, adjust for degree (Spearman’s ρ = 
0.444, p = 1.1e-20) (Fig. S2B i). Interestingly, the negative relationship between modal 
controllability and redundancy flipped to a positive correlation when regressing out the effects of 
ranked-degree (Spearman’s ρ = 0.388, p = 9.1e-16) (Fig. 2B ii).  
 
Degree mediates changes in controllability with age 
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Before assessing the influence of redundancy in age-associated changes in average 
controllability, we began by examining the importance of edges immediately connecting to 
nodes via degree. The average weighted degree in 13 of 17 networks showed negative rank-
correlations with age (pbonf < 0.05, see Table S2) (Fig. 3A). The strongest of these associations 
was in the salience/ventral attention network (SalVentAttnA: Spearman’s ρ = -0.416, pbonf. = 
2.54e-20). With the strong relationships between degree and average controllability, we expected 
that average network degree should influence the association between age and average 
controllability. We assessed this putative relationship by testing if degree mediated age-related 
changes in mean network average controllability. We performed mediation analyses for each of 
the 17 networks, and found that degree influenced the relationship between age and average 
controllability for 14 of 17 networks (all pbonf.’s < 0.05, see Table S3) (Fig. 3B). Degree 
exhibited the strongest mediation in the limbic network (LimbicB: β = -0.016, p < 1e-20) (Fig. 
3B), which did not show a significant direct effect, despite significance for each other component 
of the mediation (Fig. S3). 
 
Redundancy mediates changes in controllability with age over and above the effects of degree 
 
We next turned towards examining the effects of redundancy in the relationship between age and 
average controllability. First, we calculated the average nodal redundancy for each network 
within our parcellation, and calculated a Spearman’s rank correlation with age. Similar to degree, 
average network redundancy shows widespread negative relationships with age (Fig. 3C). 
Redundancy in the frontoparietal control network should strongest relationship with age (ContA: 
Spearman’s ρ = -0.417, pbonf. = 2.24e-20), but all negative associations were significant (all 
pbonf.’s < 0.05; see Table S4). Next, we investigated if the multi-step connectivity indexed by 
redundancy influenced the relationship between controllability and age, over and above the 
effects of degree. For each large-scale network in our parcellation, we performed a mediation 
analysis between age and average controllability with redundancy as the mediator, and included 
average degree of the respective large-scale networks as covariates. Redundancy mediated the 
relationship between age and controllability in 5 of 17 networks, over and above the effects of 
degree (all pbonf.’s < 0.05, see Table S5) (Fig. 3D). This included the default mode network 
(DefaultA: β = -0.0006, pbonf.  < 0.0004), where most average control hubs were located (Fig. 
2A), the salient ventral attention network (SalVentAttnA: β = -0.0003, pbonf.  < 0.0018, 
SalVentAttnB: β = -0.0013, pbonf.  < 0.0010), the limbic network (LimbicB: β = -0.0012, pbonf.  < 
0.0166), which exhibited an age-associated decline in average controllability (Fig. 2C), and the 
somatomotor network (SomMotA: β = -0.0006, pbonf.  < 0.0014). Notably, after controlling for 
degree, redundancy was still positively associated with average controllability in the limbic 
(LimbicB: β = 0.134, pbonf.  < 0.029), salience/ventral attention (SalVentAttnB: β = 0.132, pbonf.  < 
0.032), and default mode (Default: β = 0.108, pbonf.  < 0.024) networks (Fig. S4B).  
 
Average controllability and redundancy are associated with processing speed  
 
After focusing on age-associated variance in average controllability and network properties that 
contribute to it, we studied the relationships between average controllability, redundancy, and 
cognitive function. We first associated the mean average controllability for each large-scale 
network with processing speed assessed by the Pattern Comparison Processing Speed Test [56]. 
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We hypothesized that processing speed would be related to measures of influence on overall 
network dynamics, such as average controllability. We found that processing speed was 
positively associated with average controllability in the frontoparietal control (ContB: 
Spearman’s ρ = 0.149, pbonf. = 0.019) and the default mode (DefaultB: Spearman’s ρ = 0.178, 
pbonf. = 0.002) networks (Fig. 4A). Next, we associated average network redundancy with 
processing speed. Redundancy in 4 of 17 large-scale networks was positively related to 
processing speed (all pbonf.’s < 0.05) (Fig. 4B). This also included the frontoparietal control 
network (ContB: Spearman’s ρ = 0.158, pbonf. = 0.009), but redundancy in other networks was 
also positively associated with processing speed, including the salience/ventral attention 
(SalVentAttB: Spearman’s ρ = 0.161, pbonf. = 0.007), limbic (LimbicB: Spearman’s ρ = 0.158, 
pbonf. = 0.009), visual (VisCent: Spearman’s ρ = 0.148, pbonf. = 0.019), and dorsal attention 
(DorsAttnA: Spearman’s ρ = 0.148, pbonf. = 0.02) networks.  
 
Hippocampal grey matter volume is positively associated with processing speed in older 
participants 
 
Next, we investigated the association between hippocampal grey matter (GM) volume, one of the 
most commonly used measures of brain reserve, and processing speed. We only expected 
hippocampal volume to be a mechanism of brain reserve when declines in volume began in 
normal aging. To determine when decline starts within our participants, we used a piece-wise 
linear regression that identifies breakpoints in a data-driven manner. We found that hippocampal 
volume experiences a non-significant but positive trend of reduction between the ages of 40 - 
66.92 (r = 0.103, p = 0.063), after which hippocampal volume in our participants showed 
significant age-associated decline (r = -0.36, p = 5.70e-06) (Fig. 4C). Total subcortical GM 
volume showed a similar trajectory, with a breakpoint at age 65 (Fig. S5A), and total cortical 
GM volume showed continual decline throughout ages 40-90, with the most rapid decline 
occurring after age 75.33 (Fig S5B). Then, we used the residual method [57] to determine if total 
hippocampal volume was a marker of cognitive reserve for participants with age > 66.92. We 
found that total hippocampal volume, when adjusting for total intracranial volume [58], was 
positively associated with processing speed in this older subset of subjects (r = 0.187, p = 0.021) 
(Fig. 4D).  
 
Controllability, redundancy, and grey matter volume are synergistically associated with 
cognitive performance  
 
Finally, we examined if network controllability, and GM volume served as complementary 
predictors of cognitive function in our participants. With the subset of participants older than the 
previously identified breakpoint (ages > 66.92), we trained GLMs to predict processing speed 
using various combinations of GM volume, mean average controllability, and average network 
redundancy for each of the 17 functional networks (Fig. 4E). For GM volume, we used total 
hippocampal volume, as well as subcortical and cortical volume. GM volume and controllability 
did appear to have an almost entirely complementary effect on predicting cognition, yielding an 
R2 = 0.115, versus an R2 = 0.036 for GM alone, and R2 = 0.081 for controllability alone. 
However, GM volume and redundancy showed better performance (R2 = 0.171), although there 
was more overlap in the predictive power between these features (redundancy: R2 = 0.155). The 
best model included all three sets of features (R2 = 0.233) (Fig. 4F and Table 1).  
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Discussion  
 
In this study we examined whether age-associated changes in the controllability of brain 
networks is mitigated by redundancy. We found age-associated changes in the controllability of 
structural networks within our functional parcellation in the default mode (DefaultB), 
frontoparietal control (ContB), and limbic (LimbicB) networks. Additionally, two control hubs 
within the default mode network showed declines in average controllability among old-aged 
participants. Furthermore, we investigated the extent to which these changes were influenced by 
the presence of single-step and multi-step pathways between brain regions. Degree, our measure 
of single-step connectivity, influenced age-associated changes in average controllability in 14 of 
the 17 functional networks. However, multi-step paths indicative of redundancy in the system 
[19, 22, 24], mediated the relationships between age and average controllability in 5 of 17 
networks, these included the salience/ventral attention (SalVentAttnA, SalVentAttnB), default 
mode (DefaultA), limbic (LimbicB), and somatomotor (SomMotA) networks. Finally, we 
investigated a previously posed hypothesis, that network controllability and GM volume, a more 
traditional measure of brain reserve, should each be partial proxies of cognitive function [32]. 
When using simple linear models, our results were consistent with this hypothesis. However, 
both redundancy and controllability appeared to provide additional predictive power when 
predicting the processing speed abilities of healthy older adults. 
 
Age related change in average controllability  
 
Structural networks reorganize in brain aging [16]. Despite these changes, mechanisms that 
mitigate age-associated changes in network controllability have been relatively understudied. For 
modal controllability, a quantification of a brain region’s ability to push the brain into difficult to 
reach states [55, 59], recent work has found longitudinal changes in a multiple demand system in 
aging that could underly age-associated declines in executive function [33]. Other work 
demonstrated that the ability of temporal-parietal regions to control other brain regions decreases 
with age, and is particularly vulnerable to simulated lesions [34]. Our work adds to these results 
by evaluating changes in average controllability associated with aging in control hubs and in the 
structural connectivity of large-scale brain networks. We found that average controllability was 
similar in the top 13 of 15 control hubs between middle-aged and old-aged participants. Many of 
these hubs were in the precuneus, and posterior cingulate, overlapping with previously identified 
average control hubs [30], and regions identified as the structural core [60]. However, for two 
hubs in the default mode network, old-aged participants showed less average controllability than 
middle-aged participants. Both of these hubs were in the prefrontal cortex (PFC), one in the 
medial prefrontal cortex (PFCm), and the other in the dorsal prefrontal cortex (PFCd). The PFC 
experiences age-related declines in brain volume [61, 62] and white matter integrity [61]. 
Increased task-based brain activity in the PFC is commonly reported as a potential mechanism to 
compensate for declines in brain volume and white matter [39] (for a review see: [63, 64]). Our 
results suggest that increased compensatory PFC activation could also be related to declines in 
the average controllability of hubs within the default mode network, providing further support to 
the possibility of network controllability as a measure linking brain and cognitive reserve [32].  
 
Multi-step connectivity (redundancy) influences age-associated changes in average 
controllability  
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Nodal degree, a measure of the number edges connected to a particular node, has been shown to 
strongly predict nodal controllability within subjects  [25, 30, 65-67]. However, the additional 
properties that influence controllability are largely unknown. In this study we investigated the 
relevance of redundant multi-step paths to brain network controllability [35-37]. We found that 
redundancy was positively associated with both average and modal controllability, when 
adjusted for degree, suggesting that multi-step pathways could play a crucial role in the control 
profiles of complex networks. Furthermore, our mediation analyses indicated that redundancy, 
while holding degree as a covariate, supported the average controllability of several key 
networks for cognitive function in aging. These included the salience/ventral attention, default 
mode (DefaultA), and limbic (LimbicB) networks. Both the default and limbic networks 
identified showed age-associated declines in average controllability, which indicates that 
redundancy could be a neuroprotective mechanism to mitigate these declines [38]. This work 
aligns with findings in other complex systems suggesting that edge redundancy can promote 
robust network controllability [25], particularly in the context of changing network topologies, 
such as edge removal [42, 43], which is similar to weakening white matter connectivity observed 
in aging [68, 69]. Our work suggests that the existence of multi-step pathways in brain networks 
could provide bridges of connectivity that preserve network controllability [70], to support 
dynamic brain activity in aging.  
 
Average controllability, redundancy, and processing speed 
 
Processing speed in our study was assessed via the speed of pattern comparison [56]. This task 
requires several cognitive processes, such as visual search, working memory, and decision 
making. For both average controllability and redundancy, we found a positive association within 
the same subnetwork of the frontoparietal control network (ContB). The frontoparietal control 
network is important for allocation of attention, flexible goal-driven behavior, working memory, 
and decision making [71, 72]. Furthermore, the global connectivity of the frontoparietal control 
network may allow it to influence brain-wide dynamics [73]. Our results suggest that the average 
controllability, and redundancy, of edges within the frontoparietal network could be important 
for enabling the diverse cognitive functions relevant in processing speed and other similar tasks. 
Furthermore, we found that processing speed was positively associated with redundancy in the 
dorsal attention (DorsAttnA), visual (VisCent), and salience/ventral attention (SalVentAttnB) 
networks, suggesting that increased number of communication pathways involving each of these 
networks could support guidance of top-down attention and discrimination in this visually-based 
processing speed task [74-77].  
 
Complementary effects of grey matter volume, network controllability, and redundancy on 
cognitive performance 
 
In support of the hypothesis that GM volume and network controllability could each be partial 
proxies of cognitive function [32], we found that GM volume and average controllability had 
almost directly complementary effects on the goodness of fit for our model’s prediction of 
processing speed. GM volume and redundancy also improved performance together versus when 
considering either of them alone, but the additive effect on the goodness of fit was not as 
dramatic. This is not surprising, as hippocampal volume has been previously associated with 
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redundancy in brain networks [24]. Additionally, we found that average controllability and 
redundancy showed highly complementary effects in predicting processing speed, despite 
similarities in their calculation. We propose that this is primarily due to the within-subject 
normalization performed when calculating average controllability, which could mask age-
associated variance between subjects. However, model performance was the best when including 
GM volume, average controllability, and redundancy in a single model, suggesting that they each 
could play an important role in cognitive function in healthy-aging.  
 
Limitations and future directions 
 
The goals of our study included assessing the extent to which redundancy could mitigate age-
associated changes in network control, and evaluate network control in the context of traditional 
measures of brain reserve.  We used mediation analyses within our study which relied on a cross-
sectional sample. Cross-sectional age-associated variance does not always hold in longitudinal 
settings [78], thus replication of our findings in a longitudinal setting would be ideal. When 
studying a traditional measure of reserve, we used the residual method [57] to assess if increased 
hippocampal volume was positively associated with processing speed. While we did observe 
hippocampal atrophy (reduction in GM volume) in older participants, this method is primarily 
used in the context of neurodegenerative disease [57]. Future studies may consider including 
participants in with later stages of dementia-associated atrophy to further evaluate network 
controllability in the context of reserve. Lastly, the positive association between redundancy, 
adjusting for degree, and average controllability, as well as modal controllability, could warrant 
further investigation into the importance of multi-step pathways in the controllability of complex 
networks.  
 
Conclusion 
 
In sum, we found age-associated shifts in network controllability of control hubs and large-scale 
brain networks in healthy middle- and old-aged adults, particularly within the default mode, 
frontoparietal control, and limbic networks. These age-associated changes in network 
controllability were mitigated by redundancy in the same networks. This suggests that, in 
healthy-aging, age-associated changes in network topology can be countered by the presence of 
redundancy in the brain.  
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Methods 
 
Dataset and participants  
 
We used preprocessed dMRI data obtained from the 2.0 release of the Human Connectome 
Project – Aging database [53]. Ages of participants ranged from 40 – 90. We restricted 
participants to those with normal cognitive function as assessed by the Montreal Cognitive 
Assessment (MoCA) [79]. For subjects older than 65, we used a cutoff of 23/30, which has been 
found to limit false diagnosis of mild cognitive impairment [80]. To reduce the likelihood of 
inclusion of participants with forms of dementia the MoCa may be less sensitive to (e.g., 
vascular, semantic or frontotemporal dementia), we also excluded subjects between the ages of 
65-90 with poor performance on measures of cognitive flexibility, vocabulary comprehension, 
and executive function [17]. Poor performance was defined as a performance level worse than 
two standard deviations below the mean. In total, we used data from 480 (281 females, 199 
males) participants for this study. All participants gave written informed consent and all 
procedures had been pre-approved by local Institutional Review Boards.  
 
Image acquisition and processing 
 
T1-weighted structural images were acquired in a 3 Tesla Siemens Prisma Scanner. A multi-echo 
magnetization prepared rapid gradient echo (MPRAGE) sequence (voxel size: 0.8x0.8x0.8mm, 
TE = 1.8/3.6/5.4/7.2ms, TR = 2500ms, flip angle = 8 degrees) was used. Diffusion MRI (dMRI) 
images were generated from multi-shell diffusion with b-values of 1500 and 3000 s/mm2, with 
93 and 92 sampling directions, a slice thickness of 1.5mm, and an in-plane resolution of 1.5mm. 
We used preprocessed dMRI data for our study. For details on the preprocessing pipeline see: 
https://brain.labsolver.org/hcp_a.html. Briefly, the pipeline involved susceptibility artifact 
detection with the TOPOP, from the Tiny FSL package (http://github.com/frankyeh/TinyFSL), 
alignment with the AC-PC line, restricted diffusion imaging [81], and generalized q-sampling 
[82]. These analyses were conducted at Extreme Science and Engineering Discovery 
Environment (XSEDE) [83] resources using the allocation TG-CIS200026.  
 
Network construction 
 
Preprocessed dMRI data was reconstructed in DSI Studio (http://dsi-studio.labsolver.org). We 
performed whole-brain fiber tracking with 5,000,000 streamlines. (Fig. 1A). Structural networks 
were constructed according to the Schaefer Local-Global cortical parcellation with 400 cortical 
regions [54], which subdivides the human cortex into 17 large-scale (functional) networks (Fig 
1B). Each brain parcel was considered a node, with the number of streamlines between any pair 
of parcels used as the weighted edge. A threshold of 0.001 of the maximum edge weight per 
subject was used as to threshold edges in the resulting brain networks. 
 
Average and modal controllability calculations 
 
Average controllability, defined as the average energy from a set of control nodes on dynamic 
state trajectory over all possible states, was calculated using the trace of the finite time 
controllability Gramian [84]. The finite time controllability Gramian is computed via: 
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#
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Where 𝐴 is the adjacency matrix, and 𝐵! is an input matrix of dimension 1	𝑥	𝑛𝑅𝑂𝐼𝑠, and 𝑘 
represents the set of nodes specified as control nodes. For most of our analyses, we looked at the 
mean average controllability within each of the 17 functional networks within our parcellation, 
and performed rank correlations with features of interest. We also performed a supplementary 
analysis that involved modal controllability, defined as the ability to push the network in hard to 
reach states, which are the modes of the dynamical network [59]. The eigenvector of the 
adjacency matrix is used to compute modal controllability. Modal controllability is computed 
via: 

𝜙& =	$(1 − 𝜆'((𝐴))𝑣&'( 																																																																																			(2)
)

'$*

 

 
For each mode in N, this provides a measure of controllability from brain region 𝑖. In both cases, 
matrices were normalized dividing by one-plus the largest absolute eigenvalue before computing 
controllability metrics. Controllability metrics were calculated with code from:  
https://github.com/BassettLab/nctpy. 
 
Redundancy calculations 
 
Redundancy was calculated as the number of simple (non-circular) paths between a pair of nodes 
up to a specified length (here we used L = 4) [37], according to the equation: 

𝑅&,' =	$𝑃(𝑖, 𝑗, 𝑘).																																																																																			(3)
,

!$*

 

 
Where P(i, j, k) was the number of paths non-circular paths between nodes i, and j,  calculated 
with the  all_simple_paths function in NetworkX [85]. To get nodal redundancy, we summed the 
total number of paths from each node to all other nodes. After calculation of nodal redundancy 
for all nodes in each subject’s structural networks, we calculated the average redundancy in the 
structural connectivity of each of the 17 large-scale networks per subject. We used the binarized 
matrices structural connectivity matrices for these calculations. 
 
Cognitive measures 
 
We focused on the cognitive measure of processing speed within our study because processing 
speed is believed to be limited by communication along white-matter tracts [44, 45]. Processing 
speed was assessed via the Pattern Comparison Processing Speed Test [56]. Subjects were shown 
pairs of objects and asked to judge whether two objects, presented simultaneously, were the same 
or different. They were given 85 seconds to judge as many objects as possible. We used 
participant’s MoCA scores to determine if they were healthy (score >= 23/30). Additionally, we 
used measures of cognitive flexibility, assessed via the used the Dimensional Card Sort Test 
[86], executive control, assessed via the Flanker Inhibitory Control and Attention Test [87], and 
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vocabulary comprehension, assessed via the Picture Vocabulary Test [88], to exclude subjects 
with forms of dementia that the MoCA is insensitive to [17].  
 
Grey matter volume extraction  
 
From the T1-weighted images, we extracted grey matter volume using the run_first_all 
command within Freesurfer [89]. This included extraction of hippocampal volume, and the 
volume of subcortical structures, in the Aseg atlas [90], as well cortical grey matter volume and 
estimated total intracranial volume. 
 
Statistical analysis 
 
We performed group comparisons of average controllability in middle- and old-aged adults for 
control hubs. We performed rank-correlations between features of network controllability and 
redundancy with age and processing speed. As well as rank-correlations between redundancy, 
degree, and network controllability measures. We then performed mediation analyses to 
investigate the effects of degree and redundancy on the relationships between age and average 
controllability. In the mediation analysis with redundancy, ranked-degree was included as a 
covariate to highlight influence of multi-step pathways on the relationships between age and 
average controllability. Following these experiments, we performed a breakpoint analysis using a 
piece-wise linear regression to determine the starting point of hippocampal atrophy in our 
healthy cross-sectional sample. Finally, we used general linear models (GLMs) to investigate the 
extent to which linear combinations of GM and network features aided in the prediction of 
processing speed. Welch’s ANOVAs, Spearman’s correlations, Pearson’s correlations, and 
mediation analysis, were performed using the python package Pingouin [91]. For the Welch’s 
ANOVAs, we compared average controllability in 15 identified hubs in middle- and old-aged 
adults. We used the Bonferroni method to correct for multiple comparisons which set the p-value 
necessary for significance to p < 0.05/15.  For Spearman and Pearson correlations, we required p 
< 0.05/17 to correct for the number of functional networks analyzed. Mediation analyses were 
performed with the 𝛼 = 0.05/17 for the confidence intervals, with significance determined by 
whether or not the confidence intervals for each coefficient crossed the value of zero. Piece-wise 
linear regression to determine breakpoints in rates of change for grey matter volume was 
performed using the pwlf python package [92]. Our GLMs were constructed using the python 
package Statsmodels [93]. Additional stats derived from these models (R2, log-likelihood, AIC 
[94], BIC [95]) were also computed using the Statsmodels package. 
  

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted February 18, 2023. ; https://doi.org/10.1101/2023.02.17.528999doi: bioRxiv preprint 

https://doi.org/10.1101/2023.02.17.528999


Plotting 
 
We used custom python scripts for plotting and data visualization based on the Matplotlib [96], 
Pandas [97], and Seaborn [98], packages.  
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Fig. 1 Study outline. A) Diffusion MRI data from 480 subjects from the HCP Aging dataset 
were used in our study. B) We constructed structural networks using the functional Schaefer 
local-global parcellation with 17 networks and 400 ROIs. C) For each subject, we calculated 
network controllability, a measure of a node’s ability to steer the brain into easy to reach 
states. D) We studied the relationship between controllability and network redundancy in 
aging, testing the extent to which redundancy influences the relationship between age and 
network controllability. E) We hypothesized that redundancy would mitigate the effects of 
age-associated changes in topology on average controllability in brain networks. F) Finally, 
we investigated the extent to which grey matter volume, network controllability, and 
redundancy, can jointly predict age-associated variance in cognitive function. 
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Fig. 2. Hub and average network controllability are impacted by aging. A) The 
affiliations of hubs of average controllability in middle-aged subjects (ages 40-65) were 
predominately within the default mode network. Percentages were corrected by network size, 
which equalizes the probability of hubs falling within each network. B) Distributions of 
average controllability for each hub, for middle- and old-aged participants (ages 65-90). Two 
hubs in the default mode network exhibited less average controllability in old-aged 
participants. C) Average network controllability was negatively associated with age in the 
default mode network (DefaultA), control network (ContB), and limbic network (LimbicB). 
The Bonferroni method to correct for multiple comparisons was applied to correct for the 
number of hubs analyzed (16) (Panel B). and the number of networks (17) (Panel C). 
*corrected P < 0.05, **corrected P < 0.001, **corrected P < 1e-05. 
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Fig. 3. Multi-step connectivity (redundancy) mediates relationships between age and 
average controllability over and above the effects of degree. A) Average network degree 
was negatively associated with age for 13 of 17 large-scale networks. B) Changes in degree 
influenced the relationship between age and mean network average controllability for 14 of 
17 networks. C) Average network redundancy also showed age associated declines, but for 
all networks examined. D) Average network redundancy mediated relationships between age 
and average controllability for 5 of 17 networks when including degree as a covariate. These 
networks included the salience/ventral attention (SalVentAttnA, SalVentAttmB), limbic 
(LimbicB), default mode (DefaultA), and the somatomotor (SomMotA) networks. We used 
the Bonferonni method to correct multiple comparisons. In each panel we corrected for the 
number of networks analyzed (17). In panels (B) and (D), the mediation was significant if the 
confidence intervals did not cross 0 when the α = 0.05/17 to correct for multiple 
comparisons. Significant mediations are indicated by black confidence intervals, while 
insignificant mediations are indicated by grey confidence intervals. 
 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted February 18, 2023. ; https://doi.org/10.1101/2023.02.17.528999doi: bioRxiv preprint 

https://doi.org/10.1101/2023.02.17.528999


 
  

Fig 4. Associations between grey matter volume (GM), average controllability, 
and redundancy, and processing speed. A) Mean average controllability in the 
frontoparietal control (ContB), and default mode (DefaultB) networks was positively 
associated with processing speed. B) Processing speed was positively associated with 
redundancy in 5 of 17 networks (all pbonf.’s < 0.05). C) Total hippocampal volume does 
not significantly change until around the age of 67, after which is shows a negative 
association with age. D) For participants older than 66.92, IC volume-adjusted total 
hippocampal volume was positively associated with processing speed. E) Performance 
of a general linear models when predicting processing speed with measures of GM 
volume, average controllability, and redundancy. For GM, we used IC-volume-
adjusted measures of hippocampal volume, subcortical volume, and cortical volume. 
F) The z-scored predicted processing speed versus real z-scored processing speed for 
the best model shown in (E). In panels A, and B, we used the Bonferroni method to 
correct for multiple comparisons based on the number of networks analyzed (17). For 
panels D-E, measures of processing speed and GM volume were z-scored. 
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Table 1. GM, network controllability (Control), and network redundancy 
(Redundancy), each aid in the prediction of processing speed in older adults. The R2, 
log-likelihood, AIC, and BIC for each GLM trained to predict processing speed in older 
participants (ages > 66.92) shown in Fig 4E. Each set of features provided highly 
additive effects in the overall goodness-of-fit (R2) for these models. 
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