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Abstract—Revoking personal private data is one of the basic human rights, which has already been sheltered by several
privacy-preserving laws in many countries. However, with the development of data science, machine learning and deep learning
techniques, this right is usually neglected or violated as more and more patients’ data are being collected and used for model training,
especially in intelligent healthcare, thus making intelligent healthcare a sector where technology must meet the law, regulations, and
privacy principles to ensure that the innovation is for the common good. In order to secure patients’ right to be forgotten, we proposed a
novel solution by using auditing to guide the forgetting process, where auditing means determining whether a dataset has been used to
train the model and forgetting requires the information of a query dataset to be forgotten from the target model. We unified these two
tasks by introducing a new approach called knowledge purification. To implement our solution, we developed AFS, a unified
open-source software, which is able to evaluate and revoke patients’ private data from pre-trained deep learning models. We
demonstrated the generality of AFS by applying it to four tasks on different datasets with various data sizes and architectures of deep
learning networks. The software is publicly available at https://github.com/JoshuaChou2018/AFS.

Index Terms—Healthcare, Privacy, Deep learning, Machine unlearning, Knowledge purification.

✦

1 INTRODUCTION

R EVOKING personal private data is one of the basic
human rights, which has already been sheltered by

privacy-preserving regulations like The General Data Pro-
tection Regulation (GDPR) [1], The Health Insurance Porta-
bility and Accountability Act of 1996 (HIPAA) [2], and the
California Consumer Privacy Act [3] since 20th century.
With those regulations, users are allowed to request the
deletion of their own data for privacy concerns and to secure
their own ‘right to be forgotten’. However, with the develop-
ment of data science, machine learning (ML) and deep learn-
ing (DL) techniques, this basic right is usually neglected or
violated. For example, it has been observed that patients’
genetic markers were leaked from ML methods for genetic
data processing [4], [5] while the patients were unaware of
that. When users realize the existence of such risks, they
may request their own data to be deleted to protect their
privacy [6]. Meanwhile, those aforementioned regulations
will force involved third parties to take actions immediately.
According to the requirements of those regulations, not only
the previously authorized data by individuals need to be
deleted immediately from hosts’ storage systems but also

1Computer Science Program, Computer, Electrical and Mathematical Sciences
and Engineering Division, King Abdullah University of Science and Technol-
ogy (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
2Computational Bioscience Research Center, King Abdullah University of
Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia
∗Corresponding author
#Equal contribution

the associated information should be removed from DL
models trained with those data, because DL models could
memorize sensitive information of training data and thus
expose individual’s privacy under risk [7], [8], [9], [10], [11].

Nowadays, healthcare is one of the most promising areas
for the deployment of artificial intelligent (AI) systems as so-
called intelligent healthcare. ML and DL-based computer-
aided diagnosis (CAD) systems in intelligent healthcare
accelerate the diagnosis of various diseases and achieve
even better results than doctors, such as tumour detection
[12], [13], retinal fundus imaging [14], detection and seg-
mentation of COVID-19 lung infections [15], [16] and so on.
However, as more and more patients’ data are being col-
lected and used for model training in intelligent healthcare,
their privacy is exposed to high risk. Therefore, intelligent
healthcare is a sector where technology must meet the
law, regulations, and privacy principles to ensure that the
innovation is for the common good [17]. To obey those
privacy-preserving regulations, methods to revoke personal
private data from pre-trained DL models are necessary.

Deleting the stored personal data is simple, whereas
forgetting individuals’ private information from pre-trained
DL models could be difficult as we could not fully measure
the contribution of individual data on the training process of
DL models due to the stochasticity of training [18]. Besides,
due to the incremental nature of training, the model update
brought by one sample would affect the model performance
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on samples followed, thus making it difficult to unlearn
[18]. Finally, catastrophic unlearning might happen and
the unlearned model will perform worse than the model
retrained on the remaining dataset [19].

In general, the process to forget data from a pre-trained
DL model could be divided into two steps. Firstly, the
unlearning process (forgetting) is performed on a given pre-
trained DL model to forget the target data with different
techniques and a new DL model will be generated. Secondly,
an evaluation of the new model (auditing) against different
metrics will be performed to prove that the model has
forgotten the target data. These two processes should be
repeated until the new model passes the evaluation. In sim-
ple terms, there are two commonly acknowledged sub-tasks,
which could also be stated in the reverse order: auditing and
forgetting, as a two-player game. Auditing requires auditors
to precisely evaluate whether the data of certain patients
were used to train the target DL model. Once the data of
certain patients is confirmed to be used to train the target
DL model by auditing, forgetting requires the removal of
learnt information of certain patients’ data from the target
DL model, which is also called machine unlearning, while
auditing could act as the verification of machine unlearning
[18]

In order to achieve forgetting, existing unlearning meth-
ods could be classified into three major classes, includ-
ing model-agnostic methods, model-intrinsic methods and
data-driven methods [20]. Model-agnostic methods refer to
algorithms or frameworks that can be used for different DL
models, including differential privacy [18], [21], [22], certi-
fied removal [23], [24], [25], statistical query learning [6],
decremental learning [26], knowledge adaptation [27], [28]
and parameter sampling [29]. Model-intrinsic approaches
are those methods designed for specific types of models,
such as for softmax classifiers [30], linear models [31], tree-
based models [32] and Bayesian models [19]. Data-driven
approaches focus on the data itself, including data parti-
tioning [18], data augmentation [33], [34], [35] and other
unlearning strategies based on data influence [36]. All meth-
ods have their specific application scenarios and limitations.
Among the three methods, model-agnostic methods might
have the strongest application prospects, as they can be
applied to different models. Still, more mechanisms and
theoretical concepts are being proposed to explore different
solutions to the forgetting task but few of them focused on
the application in real-world intelligent healthcare.

When forgetting is accomplished, auditing is the next
necessary step to verify it. Different metrics have been
proposed to audit the membership of the query dataset,
including accuracy, completeness [6], unlearn time, relearn
time, retrain time, layer-wise distance, activation distance,

JS-divergence, membership inference [37], [38], ZRF score
[27], epistemic uncertainty [39] and model inversion attack
[7]. In recent studies, membership inference-based metrics
were frequently utilized to determine whether or not any
information about the samples to be forgotten was retained
in the model in intelligent healthcare [38]. A black-box set-
ting was shared by the membership inference attack (MIA)
to calculate the probability of a single datapoint being a
member of the training dataset D. Based on this individual
level MIA, Liu et al. [37] and Yangsibo et al. [38] focused
on a more challenging task: audit the membership of a set
of data points. The ensembled membership auditing (EMA)
[38] was proposed as the state-of-the-art method to verify
whether a query dataset is memorized by a pre-trained
DL model, which is also a benchmark metric in machine
unlearning. However, due to the black box property of DL
models, efficient and accurate auditing is still challenging
and an under-studied topic. Moreover, researchers have
tended to treat auditing and forgetting as separate tasks,
ignoring the fact that the two can be linked up associatively
to work as a self-consistent mechanism.

Here, we proposed a novel solution by using auditing to
guide the forgetting process in a negative feedback man-
ner. We unified the two tasks by introducing knowledge
purification (KP), a new approach to selectively transfer the
needed knowledge to forget the target information instead
of simply transferring all information like knowledge distil-
lation (KD) [40]. On the basis of KP, we have developed a
user-friendly and open-source method called AFS, which
can be easily used to revoke patients’ private data from
DL models in intelligent healthcare. To demonstrate the
generality of AFS, we applied it to four tasks based on
four datasets, including the MNIST dataset, the PathMNIST
dataset, the COVIDx dataset and the ASD dataset, with dif-
ferent data sizes and various architectures of deep learning
networks. Our results demonstrate the usability of AFS and
its application potential in real-world intelligent healthcare.

2 METHODS

2.1 The overall framework of AFS

AFS is a novel and unified method to revoke patients’ pri-
vate data by using auditing to guide the forgetting process
in a negative feedback manner (Figure 1).

To audit the membership of the query dataset, AFS takes
a pre-trained DL model and the query dataset as inputs,
and determines whether the query dataset has been used
for training the target DL model. This function was re-
implemented based on EMA [38], a published MIA-based
method to evaluate the membership of a query dataset.
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Fig. 1. AFS is a unified method to revoke patients’ private data in intelligent healthcare. Given a pre-trained DL model and a query dataset, AFS
could audit and provide confidence whether the query dataset has been used to train the target DL model. When a dataset has been used to train
the target DL model, AFS could effectively remove the information about the dataset from the target DL model with the guidance of auditing. To
achieve that, we proposed a novel method called knowledge purification, which utilizes results from auditing as feedback to forget information.

Fig. 2. Illustration of knowledge distillation and knowledge purification.
Knowledge purification requires the selective transfer of the needed
knowledge in the process of knowledge distillation to forget the target
information instead of simply transferring all information.

Fig. 3. Illustration of four datasets and DL models used to show the
versatility of AFS.

Our re-implementation allows quicker and easier usage of
auditing (Section 2.4).

To forget the query dataset from a DL model, AFS takes
the pre-trained DL model and the query dataset to be for-
gotten as inputs, in which the query dataset has been used
to train the DL model. To effectively forget the information
of the query dataset from the pre-trained DL model, an idea

is to transfer the information of the remaining dataset except
for the query dataset from the pre-trained model to a new
model. Therefore, we designed a novel mechanism called
knowledge purification (KP) by using auditing to guide
the forgetting process to exclude the information of the
query dataset while transferring the remaining information
by incorporating the auditing loss into the training process
(Figure 2). With KP integrated, AFS could generate a new
model, in which the information of the target dataset should
be forgotten under the guidance of auditing (Section 2.5).

To provide an applicable solution, we implemented AFS
as open-source software that provides a user-friendly entry
point allowing users to use both functions with only one
command. To demonstrate the generality of AFS, we applied
it to four tasks based on four datasets, including the MNIST
dataset, the PathMNIST dataset, the COVIDx dataset and
the ASD dataset, which have different data sizes (Figure 3
and Section 2.2) and various architectures of deep learning
networks (Section 2.3).

2.2 Dataset preparation

We used four public datasets that were commonly acknowl-
edged in the machine learning and intelligent healthcare
field to demonstrate the versatility of AFS. For the bench-
mark experiment, we applied AFS on MNIST [41] and
PathMNIST [42] from the MedMNIST [43] dataset. The
MNIST dataset contains 60,000 training images and 10,000
testing images of handwritten digits with size 28×28 and
labelled from 0 to 9. PathMNIST contains 100,000 nonover-
lapping image patches from hematoxylin & eosin stained
histological images and 7,180 image patches from different
clinical centres. In total, 9 types of tissues are involved
in the PathMNIST dataset, including adipose, background,
debris, lymphocytes, mucus, smooth muscle, normal colon
mucosa, cancer-associated stroma, and COAD epithelium.
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All images in PathMNIST were 224 × 224 (0.5 µm/px) and
were normalized with the Macenko method [44]. For the
application of AFS in intelligent healthcare, we used the
COVIDx [45] dataset, which contains 13,975 chest X-ray
(CXR) images across 13,870 patient cases, and the Autism
spectrum disorder (ASD) dataset for toddlers [46], which
contains 20 features of 1,054 samples to be utilized for
determining influential autistic traits and improving the
classification of ASD cases.

For each dataset, we further sampled partial data as
the training dataset, the testing dataset, and the calibration
dataset as below:

MNIST. We randomly sampled 10,000 images as the
training dataset and 10,000 images as the testing dataset. We
also randomly sampled 100, 1,000, 2,000, and 5,000 images
that are disjoint with the training dataset as four calibration
datasets to illustrate the effect of the calibration dataset of
varied sizes on auditing and forgetting.

PathMNIST. We randomly sampled 10,000 images as the
training dataset and 5,000 images as the testing dataset. We
also randomly sampled 1,000 images that are disjoint with
the training dataset as the calibration dataset.

COVIDx. We randomly sampled 5,000 images as the
training dataset and 1,000 images as the testing dataset. We
also randomly sampled 1,000 images that are disjoint with
the training dataset as the calibration dataset.

ASD. We randomly sampled 500 images as the training
dataset and 100 images as the testing dataset. We also
randomly sampled 100 images that are disjoint with the
training dataset as the calibration dataset.

For all four datasets, we randomly sampled partial data
from the training dataset with percentage k from {0.25, 0.5,
0.75} as the training dataset for knowledge distillation (KD)
and AFS.

In addition, we prepared query datasets with different
sizes N from {1, 10, 100, 500, 1000, 2000}. A query dataset
that completely overlapped with the training dataset is
labelled as QO, while the query dataset that is completely
disjoint with the training dataset is labelled QNO. To further
understand the effect of the purity of the query dataset,
we also prepared the query dataset called QM with a k

percentage of the query dataset to be overlapped with the
training dataset. Finally, for the query dataset designed to
be forgotten, we labelled it as QF.

2.3 Deep learning models and experiment setup

To present the generalizability of AFS towards various DL
models, we adopted different architectures for each of the
four tasks, including the multilayer perception [47] (MLP),
the convolutional neural network (CNN) [48] and ResNet
[49]. There were a large DL model and a small DL model

for each task, where the large model refers to the original
pre-trained model and the small model is the new model
generated by AFS.

For the MNIST dataset, we used MLP with 671,754
parameters as the teacher model and 155,658 parameters as
the student model to achieve the 10-class classification task.

For the PathMNIST dataset, we adopted CNN with
21,285,698 parameters as the teacher model and 11,177,538
parameters as the student network for the 9-class classifica-
tion task.

For the COVIDx dataset, we took ResNet34 with
21,285,698 parameters as the teacher model and ResNet18
with 11,177,538 parameters as the student network to
achieve the binary classification of healthy people and pa-
tients.

For the ASD dataset, we used the MLP with 3,586 param-
eters as the teacher model and the MLP with 898 parameters
as the student model for the binary classification of autism
in toddlers.

During model training, the number of epochs was fixed
to 50, the learning rate was set to 1e–5 and the Adam
optimizer was used. A workstation with 252 GB RAM, 112
CPU cores and 2 Nvidia V100 GPUs were adopted for all
experiments. The AFS method was developed based on
Python3.7, PyTorch1.9.1 and CUDA11.4. A detailed list of
dependencies could be found in our code availability.

2.4 Audit the membership of query dataset

EMA [35] is designed as a 2-step process. In the first step,
the best threshold for each metric is selected to optimize
(TPR(t) + TNR(t))/2 based on the calibration dataset as
shown in Algorithm 1. Once the thresholds for all metrics
are selected, the membership of each sample in the query
dataset will be confirmed as at least one metric is larger
than the corresponding threshold. In total, three metrics, in-
cluding correctness [50], confidence [51], [52], and negative
entropy [53], [54], were adopted in AFS as proposed in the
previous work [38], [55].

Once the membership of all samples in the query dataset
is confirmed in the previous step, the query dataset will be
further evaluated to determine whether the query dataset
has been used to train the target pre-trained DL model. A
two-sample statistical test is adopted to evaluate the query
dataset based on the sample-wise membership and an all-
one vector. The p-value of the two-sample statistical test
is used as the output of auditing. Given a user-defined
threshold α, if p < α, then users could conclude that the
query dataset was not used for training the target DL model.
EMA was re-implemented and integrated into AFS to allow
easy and fast auditing.
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Algorithm 1. Infer thresholds

Require: The calibration dataset Dcal, the pre-trained DL
model A and n different metrics (m1, ...,mn) for mem-
bership testing.

1: procedure
2: Split Dcal into training dataset Dtrain

cal and test
dataset Dtest

cal

3: The calibration model is trained as fDcal
←

A(Dtrain
cal )

4: for mi ∈ {m1, ...,mn} do
5: Compute metrics for training dataset as

Mtrain ← {mi(fDcal,s|s ∈ Dtrain
cal }

6: Compute metrics for test dataset as Mtest ←
{mi(fDcal,s|s ∈ Dtest

cal }
7: Find ti ∈ argmaxt∈[Mtrain,Mtest](

TPR(t)+TNR(t)
2 ),

where TPR(t) =
∑

s∈Dtrain
cal

1{mi(s) ≥ t}/|Dtrain
cal | and

TNR(t) =
∑

s∈Dtest
cal

1{mi(s) ≥ t}/|Dtest
cal |

return The thresholds t1, ..., tn for n metrics

2.5 Audit-guided forgetting of query dataset with AFS

Forgetting aims to remove the remembered information of
the query dataset from the target DL model. Similar to
knowledge distillation (KD), a teacher-student paradigm
was also adopted in AFS, but with an additional require-
ment to selectively forget information associated with the
data we want to forget. Thus, we designed a novel approach
called knowledge purification (KP), meaning purifying the
knowledge in the teacher model (the original pre-trained
model), discarding the information related to the data that
needed to be forgotten and transferring the purified infor-
mation into the student model (the new model). AFS unified
auditing and forgetting into a circular process to effectively
enhance the unlearning in a negative feedback manner.

As shown in Figure 1, during each epoch of training, the
training data will be fed into both the teacher model and
the student model, while the data to be forgotten will be
audited on the student model. Our main goal is to transfer
the knowledge from the teacher model to the student model
while forcing the student model to reject the information
associated with data to be forgotten. In order to achieve that,
we added the audit loss into the total loss, thus allowing the
student model to accept partial knowledge from the teacher
model and achieve KP as shown in Algorithm 2.

2.6 Evaluation metrices

Since all four tasks are either multi-classes classification
tasks or binary classification tasks, we adopted the accuracy
and F1-score as the evaluation metrics as below,

Accuracy =
TP + TN

TP + TN + FP + FN
(1)

Algorithm 2. AFS

Require: The calibration dataset Dcal, the query dataset to
forget Dforget, the sampled training dataset Dtrain for
KP, the pre-trained DL model F , the new model f , and
number of epochs T .

1: procedure
2: for epoch ∈ {1, ..., T} do
3: Forward Dtrain with F

4: Forward Dtrain with f

5: Infer threshold with Dcal on f and audit Dforget

on f to get lossaudit
6: Calculate lossAFS = lossclassification+lossKD+

lossaudit
7: Update f based on lossAFS

return The new student model f with information about
Dforget forgotten.

F1− score =
2TP

2TP + FP + FN
(2)

where TP represents true positives, TN stands for true
negatives, FN represents false negatives and FP stands for
false positives.

To evaluate the membership of the query dataset, the
p-value of the two-sample statistical test was used as men-
tioned previously.

3 RESULTS

3.1 AFS audits private datasets stably and robustly

To evaluate the robustness of auditing by AFS, we used it
to audit query datasets with different sizes, various purity
(k percent of the query dataset was overlapped with the
training dataset) and the different sizes of calibration dataset
(the size ranged from 100 to 5000) (Method and Figure 4A).
For each sample in the query dataset, AFS calculates three
metrics for the membership inference, including correctness,
confidence and negative entropy (Method). As shown in
Figure 4B, all three metrics showed different distributions
for QO (query dataset overlapped with the training dataset)
and QNO (query dataset disjoint with the training dataset),
indicating the dataset-wise divergence of metrics between
samples in the training dataset and samples disjoint with the
training dataset. Finally, by integrating these three metrics,
AFS predicts a p-value to evaluate whether or not a query
dataset has been used to train the target DL model. The
large p-values indicate the higher probability that the query
dataset was used in training.

When the size of the query dataset and the calibration
dataset varied, AFS could still efficiently distinguish QO
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Fig. 4. Performance of auditing using AFS on the four datasets. A. Demonstration of the training dataset, the test dataset, the calibration dataset,
and the query dataset overlapped with the training dataset (QO) and the query dataset disjointed with the training dataset (QNO). B. Distribution
of three metrics for samples in QO and QNO. C. The performance of auditing when varying the size of the calibration dataset and the size of the
query dataset. D. The p-value of auditing on QO and QNO of four datasets. E. The p-value of auditing when varying k of the query dataset of four
datasets.

and QNO (Figure 4C and D). Compared to QO, AFS re-
ported a much smaller p-value for QNO, indicating a weak
membership (a small probability that the query dataset has
been used to train the target DL model), thus allowing users
to judge whether the query dataset was used to train the
target DL model. Meanwhile, when the size of the dataset
increased from 1 to 2000, AFS discriminated QO and QNO
more confidently as there was a more significant divergence
of the p-values, which was not affected by the size of the
calibration dataset. To further understand the effect of the
purity of the query dataset in auditing, we mixed some
samples from the training dataset to QNO, thus the new
query dataset was labelled as QM (partial data overlapped
with the training dataset). The percentage of data over-
lapped with the training dataset in QM was denoted by

k = number of data overlapped with training dataset
size of QM . As shown

in Figure 4E, AFS showed a decreasing p-value trend when
k decreased, meaning that the query dataset was less likely
to be used to train the target DL model. In conclusion,
these results indicate the robustness of AFS in determining
whether the query data has been used to train the target DL
model.

3.2 AFS forgets the information of query dataset, main-
tains perfect usability and generates smaller model

Once the prior knowledge that a dataset has been used to
train the target DL model is confirmed with auditing, AFS
could be used for forgetting, to remove the information
of the dataset from the pre-trained DL model. To com-
prehensively show the ability of AFS in removing infor-
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TABLE 1
Comparison of AFS with other methods on auditing QO and QNO from the MNIST dataset with a varied number of samples in the query dataset.

The data in the table shows the results of auditing QO and QNO on models trained by different methods. A larger value indicates stronger
membership.

Methods
QO QNO

1 10 100 500 1000 2000 1 10 100 500 1000 2000

Independent teacher 1 1 1 1 1 1 1 7.32e-01 7.39e-02 2.43e-05 1.06e-08 4.68e-18
Independent student 1 1 1 3.43e-01 4.22e-01 8.61e-02 1 6.96e-01 4.50e-02 2.74e-06 4.51e-11 8.58e-22
Independent student (k=0.75) 1 1 1 6.80e-01 1.67e-01 7.87e-02 1 5.27e-01 2.28e-02 7.50e-07 4.61e-14 3.10e-27
AFS w/o Audit (k=0.75) 1 1 1 8.64e-01 5.91e-01 5.26e-01 1 5.98e-01 1.02e-01 6.49e-06 4.15e-11 1.28e-20
AFS (k=0.75) 1 1 8.64e-01 1 8.64e-01 4.54e-01 1 6.96e-01 2.94e-02 1.45e-06 9.06e-13 3.79e-24
Independent student (k=0.5) 1 1 8.64e-01 5.59e-01 2.39e-01 2.49e-02 1 8.13e-01 7.75e-02 6.44e-08 1.63e-15 4.15e-30
AFS w/o Audit (k=0.5) 1 1 1 8.64e-01 8.64e-01 8.64e-01 1 5.98e-01 1.32e-01 5.94e-06 2.43e-12 5.73e-23
AFS (k=0.5) 1 1 1 8.64e-01 1 7.27e-01 1 6.68e-01 2.88e-02 9.25e-07 3.70e-13 3.10e-27
Independent student (k=0.25) 1 1 1 8.64e-01 8.64e-01 3.17e-01 1 5.98e-01 1.04e-02 6.40e-10 3.05e-20 1.22e-38
AFS w/o Audit (k=0.25) 1 1 1 1 1 1 1 5.27e-01 4.47e-02 7.49e-07 2.18e-13 5.96e-28
AFS (k=0.25) 1 1 1 1 1 1 1 6.96e-01 8.52e-03 3.85e-10 1.98e-20 1.29e-41

TABLE 2
Comparison of AFS with other methods on forgetting QF and model performance with the MNIST dataset. QF100 is the small query dataset

containing 100 samples and QF1000 is the large query dataset containing 1000 samples. We present the p-values of auditing models trained with
different methods on QF100 and QF1000 and the model performance including the accuracy and F1-score.

Methods QF100 QF1000 Accuracy F1-score

Independent teacher 1 1 0.9622 0.9911
Independent student 1 1 0.9504 0.9911
Independent student (k=0.75) 4.36e-02 5.26e-12 0.9458 0.9880
AFS w/o Audit (k=0.75) 3.19e-01 1.33e-06 0.9582 0.9884
AFS (k=0.75) 1.08e-03 5.22e-23 0.9470 0.9889
Independent student (k=0.5) 6.91e-03 2.34e-15 0.9282 0.9848
AFS w/o Audit (k=0.5) 1.57e-01 7.79e-07 0.9526 0.9884
AFS (k=0.5) 1.27e-02 9.44e-22 0.9380 0.9866
Independent student (k=0.25) 6.91e-03 2.90e-19 0.9067 0.9875
AFS w/o Audit (k=0.25) 1.57e-01 7.04e-10 0.9388 0.9875
AFS (k=0.25) 5.79e-04 6.84e-33 0.9174 0.9853

mation against the model performance, we compared five
methods, including 1) training the teacher model with a
complete training dataset (Independent teacher), 2) retrain-
ing the student model with a complete training dataset
(Independent student), 3) retraining the student model with
k ∈ {0.25, 0.5, 0.75} percentage of the complete training
dataset excluding the data to be forgotten (Independent Stu-
dent with k ∈ {0.25, 0.5, 0.75}), 4) AFS, and 5) training the
student model with AFS without the guidance of auditing
(AFS w/o Audit), as an ablation study of AFS (Section 2.5).
Both AFS w/o Audit and AFS were also conducted with
varied k ∈ {0.25, 0.5, 0.75}. For both Independent teacher
and Independent student methods trained with the com-
plete training dataset, QF100 and QF1000 were included in
the training dataset, while these two query datasets were ex-
cluded from the training dataset when k ∈ {0.25, 0.5, 0.75}.

Taking the MNIST dataset as an example, for models
trained with each method, except for auditing on QO and
QNO, we further audited the membership of two datasets

designed to be forgotten (a small query dataset QF100

and a large query dataset QF1000) to assess the ability of
different methods in forgetting the query dataset. As shown
in Table 1, regardless of the model trained based on which
method, AFS could effectively distinguish between QO and
QNO, and the divergence in auditing two query datasets
was enlarged as the size of the query dataset increased.

As shown in Table 2, AFS perfectly predicted the mem-
bership of QF100 and QF1000 on both models from In-
dependent teacher and Independent student methods as
both query datasets were included in the training dataset.
Since both query datasets were disjoint with the partial
training dataset when k ∈ {0.25, 0.5, 0.75}, thus audit-
ing on the model trained with Independent student with
k ∈ {0.25, 0.5, 0.75} weakly denied the membership of
QF100 (PQF100,k=0.75 = 4.36E–2, PQF100,k=0.5 = 6.91E–3,
PQF100,k=0.25 = 6.91E–3) and QF1000 (PQF1000,k=0.75 =

5.26E–12, PQF1000,k=0.5 = 2.34E–15, PQF1000,k=0.25 =

2.90E–19). However, since only the partial training dataset

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 21, 2023. ; https://doi.org/10.1101/2023.02.17.529040doi: bioRxiv preprint 

https://doi.org/10.1101/2023.02.17.529040
http://creativecommons.org/licenses/by-nc-nd/4.0/


AFS 8

TABLE 3
Comparison of AFS with other methods on auditing QO and QNO from the PathMNIST dataset with a varied number of samples in the query

dataset. The data in the table shows the results of auditing QO and QNO on models trained by different methods. A larger value indicates stronger
membership.

Methods
QO QNO

1 10 100 500 1000 2000 1 10 100 500 1000 2000

Independent teacher 1 1 1 1 1 1 1 4.29e-01 6.29e-03 1.40e-13 4.91e-28 1.88e-60
Independent student 1 1 1 1 1 1 1 5.27e-01 5.11e-03 1.29e-10 3.38e-20 7.24e-42
Independent student (k=0.75) 1 1 1 1 1 1 1 7.32e-01 1.89e-02 1.55e-08 5.74e-16 1.92e-30
AFS w/o Audit (k=0.75) 1 1 5.26e-01 1.78e-01 2.54e-02 1.17e-03 1 2.95e-01 2.26e-02 9.23e-11 1.04e-19 8.21e-41
AFS (k=0.75) 1 1 3.90e-01 3.21e-02 6.13e-04 7.19e-06 1 4.98e-01 2.34e-04 4.25e-16 3.95e-31 4.89e-65
Independent student (k=0.5) 1 8.66e-01 1 8.64e-01 8.64e-01 5.58e-01 1 5.62e-01 4.02e-03 3.01e-10 1.91e-21 7.85e-40
AFS w/o Audit (k=0.5) 1 1 5.11e-01 2.48e-01 1.24e-02 9.59e-04 1 6.26e-01 1.18e-02 2.99e-11 4.03e-21 2.51e-40
AFS (k=0.5) 1 1 1.59e-01 3.45e-04 4.06e-06 1.85e-10 1 2.69e-01 9.17e-05 2.98e-16 3.84e-30 1.04e-62
Independent student (k=0.25) 1 1 8.64e-01 6.95e-01 1.60e-01 4.54e-02 1 1.26e-01 1.24e-06 2.30e-31 2.88e-60 4.73e-109
AFS w/o Audit (k=0.25) 1 8.66e-01 2.39e-01 3.37e-03 1.01e-05 9.15e-10 1 2.42e-01 3.64e-05 2.55e-24 3.01e-43 1.37e-90
AFS (k=0.25) 1 8.66e-01 1.40e-01 2.71e-03 1.07e-06 1.63e-12 1 4.37e-01 7.07e-06 2.01e-27 4.45e-53 1.71e-101

TABLE 4
Comparison of AFS with other methods on forgetting QF and model performance with the PathMNIST dataset. QF100 is the small query dataset
containing 100 samples and QF1000 is the large query dataset containing 1000 samples. We present the p-values of auditing models trained with

different methods on QF100 and QF1000 and the model performance including the accuracy and F1-score.

Methods QF100 QF1000 Accuracy F1-score

Independent teacher 1 1 0.8538 0.9885
Independent student 1 1 0.8446 0.9836
Independent student (k=0.75) 2.35e-02 4.08e-15 0.8396 0.9555
AFS w/o Audit (k=0.75) 1.08e-03 1.67e-22 0.8682 0.9777
AFS (k=0.75) 2.25e-05 2.05e-41 0.8560 0.9605
Independent student (k=0.5) 6.91e-03 2.99e-21 0.7934 0.9533
AFS w/o Audit (k=0.5) 3.74e-03 4.93e-18 0.8494 0.9697
AFS (k=0.5) 2.87e-06 4.75e-35 0.8242 0.9575
Independent student (k=0.25) 1.58e-07 9.05e-57 0.7582 0.9287
AFS w/o Audit (k=0.25) 3.32e-07 2.05e-41 0.7842 0.9406
AFS (k=0.25) 3.32e-07 1.84e-56 0.7810 0.9385

was used when k ∈ {0.25, 0.5, 0.75}, the retrained models
with Independent student only learnt the information of the
partial training dataset and lost the information from the re-
maining data in the complete training dataset, thus resulting
in the significant drop of model performance compared to
either the Independent student or the Independent teacher
trained with the complete training dataset.

To rescue the information lost due to the usage of
partial training samples and further increase the model
performance, AFS could use only a partial training dataset
(k ∈ {0.25, 0.5, 0.75}) to transfer the knowledge from the
Independent teacher pre-trained with the complete training
dataset. As shown in Table 2, the model trained with AFS
provided higher accuracy and F1-score compared to the
Independent student trained with partial training dataset
(k ∈ {0.25, 0.5, 0.75}) and together with a better forgetting
performance (much smaller auditing score on QF100 and
QF1000), as AFS used auditing as feedback for forgetting
and could forget not only the query samples but also other

samples with similar features.

We also applied AFS on the 9-classes classification of
hematoxylin & eosin-stained histological images from the
PathMNIST dataset with CNN. As shown in Table 3, AFS
could still distinguish QO and QNO from the PathMNIST
dataset. The divergence of auditing between QO and QNO
was more significant than that on the MNIST dataset.
With the requirement to forget both query datasets (QF100

and QF1000), the model trained with AFS outperformed
on forgetting information (PQF100,k=0.75 = 2.25E–5,
PQF100,k=0.5 = 2.87E–6, PQF100,k=0.25 = 3.32E–7),
PQF1000,k=0.75 = 2.05E–41, PQF1000,k=0.5 = 4.75E–35,
PQF1000,k=0.25 = 1.84E–56) while learnt more information
from the Independent teacher model trained with a com-
plete training dataset.

In summary, AFS could effectively forget the information
of the query dataset from the target DL model. Since KP
was integrated into AFS, it could generate a smaller DL
model, which masters knowledge from the larger teacher
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Fig. 5. Performance of forgetting using AFS on four datasets. A. The p-value of auditing on a small query dataset and a large query dataset (QF)
and the accuracy of models trained with different methods, including Original (Independent teacher trained with the complete training dataset),
Data Deletion (the Independent student model trained with partial training dataset and k = 0.5), AFS (w/o Audit) and AFS. B. The number of
parameters for the original large model and the new small model generated by AFS. C. The qualitative evaluation of three methods, including
Original (Independent teacher trained with the complete training dataset), Data Deletion (the Independent student model trained with partial training
dataset and k = 0.5), and AFS on five dimensions (Ability to forget, accuracy, size of dataset needed for training, size of the generated model and
the efficiency of training). A larger value means a stronger ability to forget, higher model accuracy, a smaller size of dataset needed for training, a
smaller size of the generated model, and better efficiency of training.

model by using only a partial training dataset (k = 0.5

could achieve a good balance between forgetting and model
performance), without the need to retrain the larger model
with the complete training dataset. Compared to retraining
the student model, the model trained with AFS showed
even better performance in forgetting the information while
maintaining better model performance (accuracy and F1-
score) as it learnt the knowledge from the model trained
with the complete training dataset. As shown by the abla-
tion study in Tables 2 and 4, compared to AFS w/o Audit,
the audit-guided AFS could forget the information more
significantly but with an acceptable cost in decreasing the
model performance (accuracy and f1-score).

3.3 Apply AFS to forget medical images

To show the versatility of AFS, we applied it to the classifica-
tion of pneumonia and normal with chest X-ray images from
the COVIDx dataset with ResNet, which is a classic task in

medical image analysis. As shown in Figure 5A, on both
query datasets (QF100 and QF1000), AFS could effectively
forget the information of the query dataset, while generating
the new model with much less number of parameters as
shown in Figure 5B. Surprisingly, the model generated by
AFS showed even better accuracy than the Independent
teacher trained with the complete dataset and the Indepen-
dent student trained with the partial training dataset. This
result not only indicated that AFS could effectively transfer
the knowledge from the teacher model to the student model
but also suggested that the student model with simpler ar-
chitecture could even perform better than the teacher model
with KP in AFS due to the reduction of model parameters
and purification of knowledge in some real-world cases.

3.4 Apply AFS to forget electrical health records

To further prove the generalizability of AFS in both the
auditing and forgetting, we applied AFS to predicting
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early autism spectrum disorder (ASD) traits of toddlers,
which contains sensitive information about patients, such
as the age, gender and the family gene trait. That infor-
mation was stored as electrical health records (EHR). As
shown in Figure 5A, similar to previous results on other
datasets, AFS effectively removed the information of both
query datasets from the pre-trained DL model. Since the
size of the ASD dataset was quite small, we adopted two
smaller query datasets (QF50 and QF100) to be forgotten.
Compared to the models trained with other methods, the
model trained with AFS successfully forgot the information
of both QF50 (PQF50,k=0.75 = 0.08, PQF50,k=0.55 = 0.08,
PQF50,k=0.25 = 0.156) and QF100 (PQF100,k=0.75 = 0.004,
PQF100,k=0.55 = 0.007, PQF100,k=0.25 = 0.007) without
affecting the model utility significantly (AccAFS,k=0.75 =

0.98, AccAFS,k=0.5 = 0.98, AccAFS,k=0.25 = 0.98).

TABLE 5
Time for inferring 100 samples with the original model and the model

generated by AFS.

Dataset Original model New model generated by AFS

MNIST 439 µs ± 1.54 µs 284 µs ± 447 ns
PathMNIST 5.13 ms ± 22 µs 4.99 ms ± 14.1 µs

COVIDx 1.27 s ± 500 ms 661 ms ± 9.98 ms
Autism 126 µs ± 177 ns 87.3 µs ± 120 ns

TABLE 6
GPU memory (MB) for inferring 100 samples with the original model

and the model generated by AFS.

Dataset Original model New model generated by AFS

MNIST 258 61
PathMNIST 173 129

COVIDx 17,805 10,600
Autism 2 1

4 DISCUSSION

To our knowledge, AFS is the first unified method of
auditing and forgetting that could effectively forget the
information of the target query dataset from the pre-trained
DL model with the guidance of auditing. We designed
AFS as a model-agnostic and open-source method that is
applicable to different models. As shown in Figure 5C,
AFS could generate a smaller model, which requires much
less time and GPU memory during the inference (Tables 5
and 6), by training with a partial training dataset (∼50%)
with our novel KP approach. Moreover, AFS could forget
the information of the query dataset at the expense of an
acceptable reduction in the model performance.

Our experiments on four datasets showed that AFS
was generalized for datasets of different sizes and forms,

including medical images and EHR. Since deep learning
models with different architectures were applied to four
tasks, we further demonstrated the broad applicability of
AFS to common deep learning models. In addition, our
tasks include both binary classification and multiclassifica-
tion tasks, which also suggested that AFS was applicable for
tasks with multiple labels.

With current laws that guarantee people the right to
revoke their own data, AFS could help institutions and
companies to efficiently iterate their models to forget indi-
vidual information at the model level. However, there are
still some shortcomings in the application of the current
version of AFS in the production environment, which could
be the main potential direction of research in the future.
Firstly, the models and data we tested in this study were
still not large enough compared to the data in the real
production environment. Therefore, it is unknown whether
scaling AFS to larger models and more data will cause
new problems. Secondly, there are different approaches to
audit, and thus we could add more metrics of auditing to
AFS to guide the forgetting process in the future version.
Finally, due to the limitation of auditing, it is still difficult to
perform individual-level forgetting, as we need to compare
the difference in statistical distribution based on a fraction of
data points, which could be the major possible improvement
for the future version of AFS. Despite these limitations,
we believe that AFS will make a valuable contribution
towards better protection of people’s privacy and the right
to revoke the data with the rapid development of intelligent
healthcare.

5 DATA AVAILABILITY

All four datasets used in this work are publicly avail-
able. The MNIST dataset could be found at http:
//yann.lecun.com/exdb/mnist/. The PathMNIST dataset
is available at https://medmnist.com/. The COVIDx
dataset is stored at https://www.kaggle.com/datasets/
andyczhao/covidx-cxr2?select=competition test. The ASD
dataset can be accessed at https://www.kaggle.com/
datasets/fabdelja/autism-screening-for-toddlers.

6 CODE AVAILABILITY

The AFS software is publicly available at https://github.
com/JoshuaChou2018/AFS
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[10] N. Carlini, C. Liu, Ú. Erlingsson, J. Kos, and D. Song, “The secret
sharer: Evaluating and testing unintended memorization in neural
networks,” in 28th USENIX Security Symposium (USENIX Security
19), 2019, pp. 267–284.

[11] J. Zhou, S. Chen, Y. Wu, H. Li, B. Zhang, L. Zhou, Y. Hu, Z. Xiang,
Z. Li, N. Chen et al., “Ppml-omics: a privacy-preserving federated
machine learning system protects patients’ privacy from omic
data,” bioRxiv, 2022.

[12] S. M. McKinney, M. Sieniek, V. Godbole, J. Godwin, N. Antropova,
H. Ashrafian, T. Back, M. Chesus, G. S. Corrado, A. Darzi et al., “In-
ternational evaluation of an ai system for breast cancer screening,”
Nature, vol. 577, no. 7788, pp. 89–94, 2020.

[13] D. Ardila, A. P. Kiraly, S. Bharadwaj, B. Choi, J. J. Reicher, L. Peng,
D. Tse, M. Etemadi, W. Ye, G. Corrado et al., “End-to-end lung
cancer screening with three-dimensional deep learning on low-
dose chest computed tomography,” Nature medicine, vol. 25, no. 6,
pp. 954–961, 2019.

[14] R. Poplin, A. V. Varadarajan, K. Blumer, Y. Liu, M. V. McConnell,
G. S. Corrado, L. Peng, and D. R. Webster, “Prediction of cardio-
vascular risk factors from retinal fundus photographs via deep
learning,” Nature Biomedical Engineering, vol. 2, no. 3, pp. 158–164,
2018.

[15] L. Zhou, Z. Li, J. Zhou, H. Li, Y. Chen, Y. Huang, D. Xie, L. Zhao,
M. Fan, S. Hashmi et al., “A rapid, accurate and machine-agnostic
segmentation and quantification method for ct-based covid-19
diagnosis,” IEEE transactions on medical imaging, vol. 39, no. 8, pp.
2638–2652, 2020.

[16] L. Zhou, X. Meng, Y. Huang, K. Kang, J. Zhou, Y. Chu, H. Li, D. Xie,
J. Zhang, W. Yang et al., “An interpretable deep learning workflow
for discovering subvisual abnormalities in ct scans of covid-19
inpatients and survivors,” Nature Machine Intelligence, vol. 4, no. 5,
pp. 494–503, 2022.

[17] I. Bartoletti, “Ai in healthcare: Ethical and privacy challenges,” in
Conference on Artificial Intelligence in Medicine in Europe. Springer,
2019, pp. 7–10.

[18] L. Bourtoule, V. Chandrasekaran, C. A. Choquette-Choo, H. Jia,
A. Travers, B. Zhang, D. Lie, and N. Papernot, “Machine unlearn-
ing,” in 2021 IEEE Symposium on Security and Privacy (SP). IEEE,
2021, pp. 141–159.

[19] Q. P. Nguyen, B. K. H. Low, and P. Jaillet, “Variational bayesian
unlearning,” Advances in Neural Information Processing Systems,
vol. 33, pp. 16 025–16 036, 2020.

[20] T. T. Nguyen, T. T. Huynh, P. L. Nguyen, A. W.-C. Liew, H. Yin,
and Q. V. H. Nguyen, “A survey of machine unlearning,” arXiv
preprint arXiv:2209.02299, 2022.

[21] V. Gupta, C. Jung, S. Neel, A. Roth, S. Sharifi-Malvajerdi, and
C. Waites, “Adaptive machine unlearning,” Advances in Neural
Information Processing Systems, vol. 34, pp. 16 319–16 330, 2021.

[22] A. Thudi, G. Deza, V. Chandrasekaran, and N. Papernot, “Un-
rolling sgd: Understanding factors influencing machine unlearn-
ing,” in 2022 IEEE 7th European Symposium on Security and Privacy
(EuroS&P). IEEE, 2022, pp. 303–319.

[23] C. Guo, T. Goldstein, A. Hannun, and L. Van Der Maaten, “Certi-
fied data removal from machine learning models,” arXiv preprint
arXiv:1911.03030, 2019.

[24] A. Golatkar, A. Achille, and S. Soatto, “Eternal sunshine of the
spotless net: Selective forgetting in deep networks,” in Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recogni-
tion, 2020, pp. 9304–9312.

[25] S. Neel, A. Roth, and S. Sharifi-Malvajerdi, “Descent-to-delete:
Gradient-based methods for machine unlearning,” in Algorithmic
Learning Theory. PMLR, 2021, pp. 931–962.

[26] A. Ginart, M. Guan, G. Valiant, and J. Y. Zou, “Making ai forget
you: Data deletion in machine learning,” Advances in neural infor-
mation processing systems, vol. 32, 2019.

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 21, 2023. ; https://doi.org/10.1101/2023.02.17.529040doi: bioRxiv preprint 

https://doi.org/10.1101/2023.02.17.529040
http://creativecommons.org/licenses/by-nc-nd/4.0/


AFS 12

[27] V. S. Chundawat, A. K. Tarun, M. Mandal, and M. Kankan-
halli, “Can bad teaching induce forgetting? unlearning in
deep networks using an incompetent teacher,” arXiv preprint
arXiv:2205.08096, 2022.

[28] J. Kim and S. S. Woo, “Efficient two-stage model retraining for
machine unlearning,” in Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, 2022, pp. 4361–4369.

[29] Q. P. Nguyen, R. Oikawa, D. M. Divakaran, M. C. Chan, and
B. K. H. Low, “Markov chain monte carlo-based machine un-
learning: Unlearning what needs to be forgotten,” arXiv preprint
arXiv:2202.13585, 2022.
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