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Abstract 7

The hippocampal subfield CA3 is thought to function as an autoassociative network that stores 8

sensory information as memories. This information arrives via the entorhinal cortex (EC), which projects 9

to CA3 directly as well as indirectly through the dentate gyrus (DG). DG sparsifies and decorrelates the 10

information before also projecting to CA3. The computational purpose for receiving two encodings of the 11

same sensory information has not been firmly established. We model CA3 as a Hopfield-like network that 12

stores both correlated and decorrelated encodings and retrieves them at low and high inhibitory tone, 13

respectively. As more memories are stored, the dense, correlated encodings merge along shared features 14

while the sparse, decorrelated encodings remain distinct. In this way, the model learns to transition 15

between concept and example representations by controlling inhibitory tone. To experimentally test 16

for the presence of these complementary encodings, we analyze the theta-modulated tuning of phase- 17

precessing place cells in rat CA3. In accordance with our model’s prediction, these neurons exhibit more 18

precise spatial tuning and encode more detailed task features during theta phases with sparser activity. 19

Finally, we generalize the model beyond hippocampal architecture and find that feedforward neural 20

networks trained in multitask learning benefit from a novel loss term that promotes hybrid encoding 21

using correlated and decorrelated representations. Thus, the complementary encodings that we have 22

found in CA3 can provide broad computational advantages for solving complex tasks. 23

Introduction 24

The hippocampus is believed to underlie our ability to form episodic memories, through which we can 25

recount personally experienced events from our daily lives (Scoville and Milner, 1957). In particular, the 26

subfield CA3 is thought to provide this capability as an autoassociative network (McNaughton and Morris, 27

1987; O’Reilly and Rudy, 2001; Rolls and Kesner, 2006). Its pyramidal cells contain abundant recurrent 28

connections exhibiting spike-timing-dependent plasticity (Bi and Poo, 1998; Mishra et al., 2016). These 29

features allow networks to perform pattern completion and recover stored patterns of neural activity from 30

noisy cues. Sensory information to be stored as memories arrives to CA3 via the entorhinal cortex (EC), 31

which serves as the major gateway between hippocampus and neocortex (Fig. 1A). Neurons from layer II of 32

EC project to CA3 via two different pathways (Amaral and Pierre, 2006). First, they synapse directly onto 33

the distal dendrites of CA3 pyramidal cells through the perforant path (PP). Second, before reaching CA3, 34

perforant path axons branch towards the dentate gyrus (DG) and synapse onto granule cells. Granule cell 35

axons form the mossy fibers (MF) that also synapse onto CA3 pyramidal cells, though at more proximal 36

dendrites. 37
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Figure 1: Transformations of memory representations along hippocampal pathways to CA3. (A, B) Biological observations.
(A) Entorhinal cortex (EC) projects to CA3 directly via the perforant path (PP, orange) as well as indirectly through the dentate
gyrus (DG) via mossy fibers (MF, purple). Adapted from The Mouse Brain Library (Rosen et al., 2000, free use license). (B) MF
memory encodings are believed to be sparser and less correlated compared to PP encodings. In an autoassociative network,
attractor basins of the former tend to remain separate and those of the latter tend to merge. (C–G) Our model. (C) Memories
are FashionMNIST images, each of which is an example of a concept. (D) Overview of encoding pathways corresponding to A.
(E) We use an autoencoder with a binary middle layer to transform each memory iµν into an EC pattern xEC

µν . (F) From EC to
CA3, we use random binary connectivity matrices to transform each presynaptic pattern xpre

µν to a postsynaptic pattern xpost
µν . (G)

Enforcing sparser postsynaptic patterns in F promotes decorrelation. Dark gray indicates use of xEC
µν as presynaptic patterns.

Points indicate means and bars indicate standard deviations over 8 random connectivity matrices. Green indicates randomly
generated presynaptic patterns at various sparsities apre and correlations ρpre. Theoretical curves depict Eq. 1. (H) To visualize
CA3 encodings, we pass them through a feedforward network trained to produce the corresponding xEC

µν for each xMF
µν and xPP

µν .
Images are then decoded using the autoencoder in E.

Along these pathways, information is transformed by each projection in addition to being simply relayed. 38

DG sparsifies encodings from EC by maintaining high inhibitory tone across its numerous neurons (Engin 39

et al., 2015). Sparsification in feedforward networks generally decorrelates activity patterns as well (Marr, 40

1971; O’Reilly and McClelland, 1994; Vinje and Gallant, 2000; Pitkow and Meister, 2012; Cayco-Gajic 41

et al., 2017). The sparse, decorrelated nature of DG encodings is preserved by the MF pathway because 42

its connectivity is also sparse; each CA3 pyramidal cell receives input from only ≈50 granule cells (Amaral 43

et al., 1990). In contrast, PP connectivity is dense with each CA3 pyramidal cell receiving input from 44

≈4000 EC neurons (Amaral et al., 1990), so natural correlations between similar sensory stimuli should 45

be preserved. Thus, CA3 appears to receive two encodings of the same sensory information with different 46
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properties: one sparse and decorrelated through MF and the other dense and correlated through PP. What 47

is the computational purpose of this dual-input architecture? Previous theories have proposed that the MF 48

pathway is crucial for pattern separation during memory storage, but retrieval is predominantly mediated by 49

the PP pathway and can even be hindered by MF inputs (Treves and Rolls, 1992; McClelland and Goddard, 50

1996; Kaifosh and Losonczy, 2016). In these models, MF and PP encodings merge during storage and one 51

hybrid pattern per memory is recovered during retrieval. 52

Instead, we consider the possibility that CA3 can store both MF and PP encodings for each memory 53

and retrieve either of them. Inhibitory tone selects between the two; with a higher activity threshold, 54

sparser MF patterns are more likely to be recovered, and the opposite holds for denser PP patterns. By 55

encoding the same memory in two different ways, each can be leveraged for a different computational purpose. 56

Conceptually, in terms of energy landscapes, sparser patterns have narrower attractor basins than denser 57

patterns because fewer neurons actively participate (Fig. 1B). Moreover, less correlated patterns are located 58

farther apart compared to more correlated patterns. Thus, MF energy basins tend to remain separate with 59

barriers between them, a property called pattern separation that maintains distinctions between similar 60

memories and is known to exist in DG (Leutgeb et al., 2007; Aimone et al., 2011). In contrast, PP energy 61

basins tend to merge, which enables the clustering of similar memories into concepts. This proposed ability 62

for CA3 to recall both individual experiences and generalizations across would explain observed features 63

of hippocampal function. For instance, remembering the details of an individual experience with your 64

grandmother is a classic example of hippocampus-dependent episodic memory. Meanwhile, recent research 65

has found that the hippocampus also participates in semantic memory, as evidenced by grandmother cells 66

that generalize over your visits and respond to many different representations of your grandmother (Quiroga 67

et al., 2005, 2009). 68

To instantiate these ideas, we will present a model for EC, DG, and CA3 in which CA3 stores both MF 69

and PP encodings of each memory. We will see that MF encodings remain distinct, whereas PP encodings 70

perform concept learning by merging similar memories. Our model predicts relationships between coding 71

properties and network sparsity across phases of the theta oscillation, which modulates inhibitory tone in the 72

hippocampal region. We will test these predictions across two publicly available datasets (Mizuseki et al., 73

2013; Karlsson et al., 2015), and each analysis will reveal that tuning of CA3 neurons is sharper during 74

sparse theta phases and broader during dense phases. This supports our model and enriches our under- 75

standing of phase coding in hippocampus. While our model does not include CA1, we present comparative 76

experimental analyses for this subfield in various Supplementary Figures. Finally, we will apply inspiration 77

from CA3 toward machine learning and introduce a novel plug-and-play loss function that endows artificial 78

neural networks with both correlated and decorrelated representations. These networks can perform better 79

in multitask learning compared to networks with single representation types, which suggests a promising 80

strategy for helping neural networks to solve complex tasks. 81

Results 82

MF encodings remain distinct while PP encodings build concepts in our model 83

for CA3 84

We model how representations of memories are transformed along the two pathways from EC to CA3 and 85

then how the resultant encodings are stored and retrieved in CA3. First, we focus on the transformations 86
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between memories and their CA3 encodings. The sensory inputs that constitute memories in our model are 87

FashionMNIST images (Xiao et al., 2017), each of which is an example belonging to one of three concepts: 88

sneakers, trousers, and coats (Fig. 1C). They are converted to neural activity patterns along each projection 89

from EC to CA3 (Fig. 1D). Our neurons are binary with activity values of 0 or 1. Each image iµν representing 90

example ν in concept µ is first encoded by EC using a binary autoencoder (Fig. 1E). Its middle hidden layer 91

activations represent the patterns xEC
µν . From EC, we produce DG, MF, and PP encodings with random, 92

binary, and sparse connectivity matrices between presynaptic and postsynaptic regions (Fig. 1F). Each matrix 93

transforms presynaptic patterns into postsynaptic inputs, which are converted into postsynaptic patterns at 94

a desired sparsity using a winners-take-all approach. That is, the postsynaptic neurons receiving the largest 95

inputs are set to 1 and the others are set to 0. Enforcing a desired postsynaptic sparsity is equivalent to 96

adjusting an activity threshold. At CA3, two encodings for each image converge: xMF
µν with sparsity 0.02 97

and xPP
µν with sparsity 0.2. Sparsity is the fraction of active neurons, so lower values correspond to sparser 98

patterns. The network parameters in our model are fully described in the Methods section; they are chosen 99

to follow biologically observed trends. 100

Not only are MF patterns sparser, they are less correlated with average correlation 0.01, compared to a 101

corresponding value of 0.09 for PP patterns. Such an association between sparsification and decorrelation 102

has been widely reported across many theoretical models and brain regions (O’Reilly and McClelland, 1994; 103

Vinje and Gallant, 2000; Pitkow and Meister, 2012; Cayco-Gajic et al., 2017). It is also captured by our 104

simulations in which we either take xEC
µν to serve as xpre

µν or randomly generate xpre
µν ’s at various sparsities 105

and correlations (Fig. 1G). Decreasing postsynaptic sparsity (sparsification) correspondingly decreases the 106

postsynaptic correlation (decorrelation) for any presynaptic statistics. We contribute further insight by 107

deriving an explicit mathematical formula that connects sparsities and correlations of patterns in presynaptic 108

and postsynaptic networks: 109

ρpost =
Γ
[√

2 erfc−1(2apost), apre + ρpre − apreρpre
]
− a2post

apost(1− apost)
,

where Γ[ϕ, σ] =
1

2π

∫ π

arccosσ

dψ exp

[
− ϕ2

1 + cosψ

]
(1)

and erfc−1 is the inverse complementary error function. In other words, given the sparsity apre and cor- 110

relation ρpre of the presynaptic patterns and the desired sparsity apost of the postsynaptic patterns, the 111

postsynaptic correlation ρpost is determined. Equation 1 is remarkable in that only these four quantities are 112

involved, revealing that at least in some classes of feedforward networks, other parameters such as network 113

sizes, synaptic density, and absolute threshold values do not contribute to decorrelation. It is derived in 114

Supplementary Methods, and its behavior is further depicted in Fig. S1A, B. 115

Ultimately, the encoding pathways in Fig. 1D–G provide CA3 with a sparse, decorrelated xMF
µν and a 116

dense, correlated xPP
µν for each memory, in accordance with our biological understanding (Fig. 1A, B). Next, 117

we will store these patterns in an autoassociative model of CA3. To intuitively evaluate memory retrieval, 118

it will be useful to decode CA3 representations back into images. To do so, we train a continuous-valued 119

feedforward network to associate each MF and PP pattern with its corresponding EC pattern (Fig. 1H). 120

From there, the reconstructed EC pattern can be fed into the decoding half of the autoencoder in Fig. 1E to 121

recover the image encoded by CA3. This decoding pathway is for visualization and is not designed to mimic 122

biology, although there may be parallels with the output pathway from CA3 to deep layers of EC through 123

CA1 (Amaral and Pierre, 2006). 124
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Figure 2: In a model for CA3 that stores both MF and PP encodings of the same memories, MF examples remain distinct
while PP examples build concept representations. (A–C) Overview of the Hopfield-like model for CA3. (A) We store linear
combinations of MF and PP encodings, with greater weight on the former because MF inputs are stronger. (B) Retrieval begins
by initializing the network to a stored pattern corrupted by flipping the activity of randomly chosen neurons. (C) During retrieval,
the network is asynchronously updated with a threshold θ that controls the desired sparsity of the recalled pattern. (D, E)
Retrieval behavior using MF cues. Examples from the three concepts depicted in Fig. 1C are stored. (D) Visualizations of
retrieved patterns. MF encodings, retrieved at high θ, maintain distinct representations of examples. PP encodings, retrieved at
low θ, merge into concept representations as more examples are stored (compare with average image in Fig. 1C). (E) Overlap
of retrieved patterns with target patterns: MF examples, PP examples, or PP concepts defined by averaging over PP examples
and binarizing (Methods). Solid lines indicate means, shaded regions indicate standard deviations, and the dashed orange
line indicates the theoretically estimated maximum value for concept retrieval (Methods). In all networks, up to 30 cues are
tested. (F, G) Similar to D, E, but using PP cues. (H) Network capacities computed using random MF and PP patterns instead
of FashionMNIST encodings. Shaded regions indicate regimes of high overlap between retrieved patterns and target patterns
(Supplementary Methods). MF patterns have sparsity 0.01 and correlation 0. PP patterns have sparsity 0.5. (I) Similar to H, but
overlaying capacities for MF examples and PP concepts to highlight the existence of regimes in which both can be recovered.

Now, we model memory storage in the CA3 autoassociative network. For each example ν in concept 125

µ, its MF encoding xMF
µν arrives at the proximal dendrites and its PP encoding xPP

µν arrives at the distal 126

dentrites of CA3 pyramidal cells. For simplicity, we assume linear integration of inputs from the two dendritic 127
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compartments (Fig. 2A). The relative strength of PP inputs is weaker because since PP synapses are located 128

more distally and are observed to be much weaker than MF synapses, which are even called detonator 129

synapses (Amaral and Pierre, 2006; Henze et al., 2002; Vyleta et al., 2016). The superimposed activities are 130

stored in a Hopfield-like network (Hopfield, 1982), with connectivity 131

Wij ∼
∑
µν

(
0.9xMF

µνi + 0.1xPP
µνi

)(
0.9xMF

µνj + 0.1xPP
µνj

)
, (2)

where i and j are respectively postsynaptic and presynaptic neurons. Equation 2 captures the most crucial 132

terms in Wij ; see Methods for the full expression. 133

In previous models, CA3 would retrieve only MF encodings, only PP encodings, or only the activity com- 134

mon between MF–PP pairs (Treves and Rolls, 1992; McClelland and Goddard, 1996; Kaifosh and Losonczy, 135

2016). We assess the ability of the network to retrieve either xMF
µν or xPP

µν using either encoding as a cue 136

(Fig. 2B). Each cue is corrupted by flipping randomly chosen neurons between active and inactive and is set 137

as the initial network activity. During retrieval, the network is asynchronously updated via Glauber dynam- 138

ics (Amit et al., 1985). That is, at each simulation timestep, one neuron is randomly selected to be updated 139

(Fig. 2C). If its total input from other neurons exceeds a threshold θ, then it is more likely to become active. 140

The width of the sigmoid function in Fig. 2C determines the softness of the threshold. A large width implies 141

that activation and inactivation are almost equally likely for recurrent input near threshold. A small width 142

implies that activation is almost guaranteed for recurrent input above threshold and almost impossible for 143

input below threshold. See Methods for the full expression of this update rule. 144

The threshold θ represents the general inhibitory tone of CA3 and plays a key role in retrieval. At high 145

θ, neural activity is disfavored, so we expect the network to retrieve the sparser, more strongly stored MF 146

encoding of the cue. Upon lowering θ, more neurons are permitted to activate, so those participating in 147

the denser, more weakly stored PP encoding should become active as well. This combined activity of both 148

encodings almost the same as the PP encoding alone, which contains many more active neurons. Thus, we 149

expect the network to approximately retrieve the PP encoding at low θ. 150

Figure 2D–G illustrates the central behavior of our CA3 model; see Fig. S2A, B for trouser and coat 151

visualizations, which behave similarly to the sneaker visualizations shown here. First using MF encodings as 152

cues, we seek to retrieve either MF or PP encodings by respectively setting a high or low threshold. As we load 153

the network with increasingly more stored examples, distinct MF examples can consistently be retrieved with 154

high threshold (Fig. 2D). Meanwhile, retrieval of PP examples with low threshold fails above 1–2 examples 155

stored per concept. At large example loads, the network again retrieves a sneaker memory when cued with 156

sneaker examples. However, this memory is the same for all sneaker cues and, in fact, appears similar to the 157

average image over all sneaker examples (Fig. 1C). Thus, the network is retrieving a representation of the 158

sneaker concept. Notably, concepts are never directly presented to the network; instead, the network builds 159

them through the unsupervised accumulation of correlated examples. The retrieval properties visualized in 160

Fig. 2D are quantified in Fig. 2E by computing the overlap between retrieved and target patterns. Across 161

all example loads shown, retrieved MF patterns overlap with target examples. As example load increases, 162

retrieved PP patterns transition from encoding examples to representing concepts. We define the target 163

pattern for a PP concept by activating the most active neurons across PP examples within that concept 164

until the PP sparsity is reached, and the dotted line in Fig. 2E estimates the largest overlap achievable 165

(Methods). 166

The network capabilities observed for MF cues are preserved when we instead use PP cues (Fig. 2F, G) 167
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or cues combining the neurons active in either encoding (Fig. S2C–E); again, these latter two are similar 168

because MF encodings are sparse. Thus, retrieval behavior is driven largely by the level of inhibition rather 169

than the encoding type of cues. This feature implies that our model is agnostic to whether memory retrieval 170

in the hippocampus is mediated by the MF pathway, the PP pathway, or both. Computationally, it implies 171

that our model can not only retrieve two encodings for each memory but also perform heteroassociation 172

between them. 173

We investigate retrieval more comprehensively by randomly generating MF and PP patterns across 174

a broader range of statistics instead of propagating images along the hippocampal pathways in Fig. 1D 175

(Methods). For simplicity, we take MF examples to be uncorrelated. In Fig. 2H, I, we show regimes for 176

successful retrieval of MF examples, PP examples, and PP concepts. For MF and PP examples, the network 177

has a capacity for stored patterns above which they can no longer be retrieved (Fig. 2H). For PP concepts, 178

the network requires storage of a minimum number of examples below which concepts cannot be built. 179

As expected intuitively, fewer examples are needed if they are more correlated, since common features can 180

be more easily deduced. Figure 2I overlays retrieval regimes for MF examples and PP concepts. When 181

the number of concepts is low, there exists a regime at intermediate numbers of stored examples in which 182

both examples and concepts can be retrieved. This multiscale retrieval regime corresponds to the network 183

behavior observed in Fig. 2D–G, and it is larger for more correlated PP encodings. On the other hand, its 184

size does not substantially change with the sparsity of MF patterns (Fig. S2F, G). Using techniques from 185

statistical physics, we can calculate the capacity for each type of pattern, and these theoretical results agree 186

with our simulation (Kang and Toyoizumi, 2023). 187

To further explore the heteroassociative capability of our network, we cue the network with an MF pattern 188

and apply a time-varying threshold during retrieval. The network representation can then alternate between 189

the PP concept of the original cue during oscillation phases with low threshold and various MF examples 190

of that concept during phases with high threshold (Fig. 3A, B). Sharply and sinusoidally varying threshold 191

values both produce this behavior. From one oscillation cycle to the next, the MF encoding can hop among 192

different examples because concept information is preferentially preserved over example information during 193

low-threshold phases. If we weakly apply the MF cue as additional neural input throughout the simulation 194

(Methods), the network will only alternate between the target MF example and the target PP concept. 195

This condition can represent memory retrieval with ongoing sensory input. We quantify the distribution of 196

network behaviors during high- and low-threshold phases in Fig. 3C. The proportion of simulations in which 197

single MF patterns are retrieved, the persistence of the target PP concept, and other retrieval properties 198

vary with network parameters. In Fig. S3A, B, we present analogous results for randomly generated MF and 199

PP patterns demonstrating that these retrieval properties also depend on MF pattern sparsity. All in all, 200

while our network can represent either examples or concepts at each moment in time, an oscillating threshold 201

provides access to a range of representations over every oscillation cycle. 202

Place cell data reveals predicted relationships between encoding properties and 203

theta phase 204

The central feature of our CA3 model is that an activity threshold determines whether the network retrieves 205

example or concept encodings. We claim that the theta oscillation in CA3 physiologically implements this 206

threshold and drives changes in memory scale. To be specific, our model predicts that single neurons should 207

convey more information per spike about example identity during epochs of sparser activity (Fig. 4A). This 208

single-neuron prediction can be tested by analyzing publicly available datasets of CA3 place cells. Figure 4B 209
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Figure 3: The CA3 model can alternate between MF example and PP concept representations under an oscillating threshold.
Four scenarios are considered: a baseline condition with abrupt threshold changes, sinusoidal threshold changes, less frequent
threshold changes, and the weak input of an MF cue throughout the simulation instead of only at the beginning. (A) Pattern
overlap dynamics. Each panel shows, from top to bottom, the threshold, overlaps with MF examples, and overlaps with PP
concepts. The dashed orange line indicates the theoretically estimated maximum value for concept retrieval (Methods). (B)
Visualizations of retrieved patterns show alternation between examples and concepts. In the baseline case, various examples
are explored; in the cue-throughout case, the same cued example persists. (C) Summary of retrieval behavior between update
cycles 60 to 120. For each scenario, 20 cues are tested in each of 20 networks. Each panel depicts the fractions of simulations
demonstrating various example (left) and concept (right) behaviors. In all networks, 50 randomly chosen examples from each
of the 3 concepts depicted in Fig. 1C are stored. One update cycle corresponds to the updating of every neuron in the network
(Methods).
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Figure 4: Place field data support the model prediction that sparser theta phases should preferentially encode finer, example-
like positions. (A) Our CA3 model predicts that single neurons convey more information per spike about example identity during
sparse regimes. Each point represents a neuron. (B) Example CA3 place cell activity along a linear track. Each spike is
represented by two points at equivalent phases. Histogram over position (top) reveals place fields. Histogram over theta phase
(right) reveals variation in sparsity. (C) To test our model, we construe CA3 place cells to store fine positions as examples, which
can combine into coarser regions as concepts. Here, we focus on example encoding. (D) Our model predicts that CA3 place
fields are more sharply tuned during sparse theta phases. An alternative hypothesis is sharper tuning during dense phases.
(E) Example phase-precessing place field. (F) Activity (black), raw position information per spike (blue), and mean null-matched
position information (gray) by theta phase for the field in E. Sparsity-corrected position information is the difference between the
raw and mean null-matched values. (G) Null-matched place field obtained by replacing spike positions, but not phases, with
uniformly distributed random values. (H) Shuffled place field obtained by permuting spike phases and positions. (I, J) Similar
to E, F, but for a place field that is not precessing. (K) Average difference in position information between the sparsest and
densest halves of theta phases. For all cell populations, sparse phases convey more position information per spike. Each point
represents a field. Numbers indicate p-values calculated by Wilcoxon signed-rank tests except for the comparison between
precessing and other, which is calculated by the Mann-Whitney U test. For all results, spikes during each traveling direction are
separately analyzed. In A and K, information is sparsity-corrected with horizontal lines indicating medians.

shows one example place cell recorded while a rat traverses a linear track (Mizuseki et al., 2013, 2014). Note 210

that its activity is strongly modulated by the theta oscillation; we use single-neuron activity as an indicator 211

of network sparsity since a direct relationship between the two has been observed (Fig. 3 in Skaggs et al., 212
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1996). We assume an equivalence between the encoding of images by our CA3 model and the encoding of 213

spatial positions by CA3 place cells (Fig. 4C). Examples are equivalent to fine positions along the linear 214

track. Just as similar examples merge into concepts, nearby positions can aggregate into coarser regions 215

of space. Through this equivalence, we can translate the prediction about example information per spike 216

(Fig. 4A) into a prediction about spatial tuning (Fig. 4D). During denser theta phases, place fields should 217

be broader, which corresponds to lower position information per spike. This prediction relies on our claim 218

that the theta oscillation in CA3 acts as the inhibitory threshold of our model. A priori, the alternative 219

prediction that place fields are sharper during dense theta phases is equally valid. Higher activity may result 220

from strong drive by external stimuli that the neuron serves to encode, while lower activity may reflect 221

noise unrelated to neural tuning. The sharpening of visual tuning curves by attention is an example of this 222

alternative prediction (McAdams and Maunsell, 1999). 223

First, we investigate the encoding of fine, example-like positions by analyzing phase-dependent tuning 224

within single place fields. We use the Collaborative Research in Computational Neuroscience (CRCNS) hc-3 225

dataset contributed by György Buzsáki and colleagues (Mizuseki et al., 2013, 2014). Figure 4E shows one 226

extracted field that exhibits phase precession (for others, see Fig. S4A). At each phase, we compute the total 227

activity as well as the information per spike conveyed about position within the field (Fig. 4F and Fig. S4B). 228

It is well known that the estimation of information per spike is strongly biased by sparsity. Consider the 229

null data in Fig. 4G that is matched in spike phases; spike positions, however, are randomly chosen from a 230

uniform distribution. In the large spike count limit, uniformly distributed activity should not convey any 231

information. Yet, the null data show more position information per spike during sparser phases (Fig. 4F). 232

To correct for this bias, we follow previous protocols and subtract averages over many null-matched samples 233

from position information (Dotson and Yartsev, 2021). In all of our comparisons of information between 234

sparse and dense phases, including the model prediction in Fig. 4A, we report sparsity-corrected information. 235

For further validation, we generate a shuffled dataset that disrupts any relationship between spike positions 236

and phases found in the original data (Fig. 4H). Figure 4I, J illustrates a second place field whose tuning 237

also depends on theta phase but does not exhibit precession. For each theta-modulated CA3 place field, 238

we partition phases into sparse and dense halves based on activity, and we average the sparsity-corrected 239

position information per spike across each partition. CA3 place fields convey significantly more information 240

during sparse phases than dense phases (Fig. 4K). This relationship is present in both phase-precessing 241

and other fields (although slightly non-significantly in the latter) and is absent in the shuffled data. Thus, 242

experimental data support our model’s prediction that CA3 encodes information in a finer, example-like 243

manner during sparse theta phases. Notably, CA1 place fields do not convey more information per spike 244

during sparse phases, which helps to show that our prediction is nontrivial and demonstrates that the phase 245

behavior in CA3 is not just simply propagated forward to CA1 (Fig. S4C). 246

To characterize the relationship between information and theta phase more precisely, we aggregate spikes 247

over phase-precessing fields in CA3 and in CA1 (Fig. S4D–G). This process implicitly assumes that each 248

phase-precessing field is a sample of a general distribution characteristic to each region. These aggregate fields 249

recapitulate the single-neuron results that CA3 spikes are uniquely more informative during sparse phases 250

(Fig. S4H). They also reveal how position information varies with other field properties over theta phases 251

(Fig. S4I, J). For example, information is inversely correlated with field width, confirming the interpretation 252

that more informative phases have sharper tuning curves (Fig. 4D). In CA3, information is greatest during 253

early progression through the field, which corresponds to future locations, with a smaller peak during late 254

progression, which corresponds to past locations. In contrast, past locations are more sharply tuned in CA1. 255
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Figure 5: Place cell data support the model prediction that denser theta phases should preferentially encode coarser, concept-
like positions. (A) Our CA3 model predicts that single neurons convey more information per spike about concept identity during
dense regimes. Each point represents a neuron. (B) To test our model, we construe CA3 place cells to store fine positions as
examples, which can combine into coarser regions as concepts. Here, we focus on concept encoding. (C) We calculate position
information at various track scales over windows of 4 contiguous bins. (D) Activity (black), raw position information per spike
(blue), and mean null-matched position information (gray) by theta phase for the red windows in C. Sparsity-corrected position
information is the difference between the raw and mean null-matched values. (E) Average difference in position information
between the sparsest and densest halves of theta phases. For coarser scales, dense phases convey more position information
per spike. Each point represents values from a place cell averaged over all windows. Numbers indicate p-values calculated by
Wilcoxon signed-rank tests for each scale and by Spearman’s ρ for the trend across scales. (F) Similar to E, but for shuffled data
whose spike phases and positions are permuted. For all results, spikes during each traveling direction are separately analyzed.
In A, E, and F, information is sparsity-corrected with horizontal lines indicating medians.

Thus, different hippocampal subfields may differentially encode past and future positions across the theta 256

cycle; we will return to this topic in the Discussion. 257

Next, we turn our attention to the representation of concepts instead of examples. Our model predicts 258

that single neurons exhibit more concept information per spike during dense activity regimes (Fig. 5A). To 259

test this prediction using the same CRCNS hc-3 dataset, we invoke the aforementioned equivalence between 260

concepts in our model and coarser positions along a linear track (Fig. 5B). Thus, single CA3 neurons should 261
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encode more information per spike about coarse positions during dense theta phases. Previously, to test 262

for finer position encoding in Fig. 4, we divided single place fields into multiple position bins during the 263

computation of information. Here, we analyze encoding of coarser positions by choosing large position bins 264

across the whole track (Fig. 5C, D and Fig. S5A). We consider different bin sizes to characterize at which 265

scale the merging of examples into concepts occurs. When we again compute the average difference in 266

sparsity-corrected position information per spike between sparse and dense theta phases, we find that dense 267

phases are the most preferentially informative at the coarsest scales (Fig. 5E). CA1 place cells also exhibit 268

this property (Fig. S5B). Crucially, differences between sparse and dense phases are not seen in shuffled 269

data, which supports the validity of our analysis methods (Fig. 5F). Our results are further bolstered by 270

their preservation under a different binning procedure (Fig. S4C–E). Thus, coarse positions along a linear 271

track can be best distinguished during dense theta phases, in agreement with our model. Note that we 272

always consider 4 bins at a time even for track scales smaller than 1/4, because changing the number of bins 273

across scales introduces a bias in the shuffled data (Fig. S5F–H). At the finest scales, this process sometimes 274

fails to capture entire fields and artificially partitions them (Fig. 5C, left), which explains why sparse phases 275

do not convey more information as they do in Fig. 4K. 276

In our model, concepts are formed by merging examples across all correlated features. While track 277

position can be one such feature, we now assess whether our predictions also apply to another one. In 278

the CRCNS hc-6 dataset contributed by Loren Frank and colleagues, CA3 place cells are recorded during 279

a W-maze alternation task in which mice must alternately visit left and right arms between runs along 280

the center arm (Karlsson et al., 2015). It is known that place cells along the center arm can encode the 281

turn direction upon entering or leaving the center arm in addition to position (Frank et al., 2000; Wood 282

et al., 2000). Again, our model predicts that sparse theta phases preferentially encode specific information 283

(Fig. 6A), so they should be more tuned to a particular turn direction (Fig. 6B). During dense phases, they 284

should generalize over turn directions and solely encode position. 285

Figure 6C shows spikes from one CA3 place cell accumulated over outward runs along the center arm 286

followed by either left or right turns (Fig. S6A). For each theta phase, we compute the total activity, the 287

turn information per spike (ignoring position), and the mean information of null-matched samples used for 288

sparsity correction (Fig. 6D). Figure 6E, F show similar results for inward runs (for others, see Fig. S6B, C). 289

For both outward and inward runs, sparsity-corrected turn information per spike is greater during sparse 290

theta phases compared to dense phases (Fig. 6G). This finding is not observed in data in which theta phase 291

and turn direction are shuffled (Fig. 6G, H). Not only do these results support our model, they also reveal 292

that in addition to splitter cells that encode turn direction over all theta phases (Duvelle et al., 2023), CA3 293

contains many more place cells that encode it only at certain phases (Fig. S6D). The difference between 294

sparse and dense phases is significantly greater in CA3 than it is in CA1 (Fig. S6E, F). Thus, our subfield- 295

specific results for example encoding are consistent across position and turn direction. Aggregate neurons, 296

formed by combining spikes from more active turn directions and those from less active turn directions, 297

demonstrate similar tuning properties to individual neurons (Fig. S6G–I). 298

Beyond the single-neuron results presented above, we seek to test our predictions at the population 299

level. To do so, we perform phase-dependent Bayesian population decoding of turn direction during runs 300

along the center arm (Fig. 6I). This analysis requires multiple neurons with sufficiently sharp tuning to 301

be simultaneously active across all theta phases; it can be used to decode left versus right turns, whereas 302

an analogous decoding of track position, which spans a much broader range of values, is intractable with 303

our datasets. We find that the CA3 population likelihood exhibits greater confidence during sparse phases 304
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Figure 6: W-maze data support the model prediction that sparser theta phases should preferentially encode turn direction in
addition to position. (A) Same as Fig. 4A. (B) To test our model, we construe CA3 place cells to store turn directions during
the central arm of a W-maze alternation task as examples. By combining examples, concepts that generalize over turns to
solely encode position can be formed. (C–H) Single-neuron information results. (C) Example place cell that is active during
outward runs. Each spike is represented by two points at equivalent phases with different colors representing different future
turn directions. (D) Activity (black), raw turn information (blue), and mean null-matched turn information (gray) by theta phase
for the neuron in C. Sparsity-corrected turn information is the difference between the raw and mean null-matched values. (E, F)
Similar to C, D, but for a place cell that is active during inward runs with colors representing past turn directions. (G) Average
difference in turn information between the sparsest and densest halves of theta phases. For all cell populations, sparse phases
convey more turn information per spike. Each point represents a place cell. Numbers indicate p-values calculated by Wilcoxon
signed-rank tests except for the comparison between outward and inward runs, which is calculated by the Mann-Whitney U test.
(H) Cumulative distribution functions for values in G. (I–L) Bayesian population decoding results. (I) Likelihood of left (L) or right
(R) turns during four runs along the center arm using spikes from either the sparsest or densest halves of theta phases. (J)
Sparse encodings exhibit greater confidence about turn direction. (K) Average difference in accuracy of maximum likelihood
estimation between the sparsest and densest halves of theta phases. Sparse phases encode turn direction more accurately.
Each point represents values for one run averaged over decoded timepoints. Numbers indicate p-values calculated by Wilcoxon
signed-rank tests. (L) Cumulative distribution functions for values in K. For all results, spikes during each traveling direction are
separately analyzed. In A, G, and H, information is sparsity-corrected with horizontal lines indicating medians.
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(Fig. 6J). From a Bayesian perspective, the population expresses stronger beliefs about turn direction during 305

sparse phases and is more agnostic during dense phases. If pressed to choose the direction with higher 306

likelihood as its estimate, CA3 is also more accurate during sparse phases (Fig. 6K, L). These results match 307

our predictions in Fig. 6A, B and bolster our single-neuron results. Moreover, they are specific to CA3, as 308

similar conclusions cannot be made about the CA1 place cell population (Fig. S6J–L). 309

In summary, extensive data analysis reveals experimental support for our CA3 model over two datasets 310

collected by different research groups, across two encoding modalities, for both example and concept repre- 311

sentations, and at both the single-neuron and population level. 312

CA3-like complementary encodings improve neural network performance in mul- 313

titask machine learning 314

We have observed how CA3 encodes behaviorally relevant information at different scales across theta phases. 315

Can these different types of encodings be useful for solving different types of tasks? Can they even benefit 316

neural networks designed for machine learning, abstracting away from the hippocampus? To address these 317

questions, we turn to a classic paradigm in machine learning: a multilayer perceptron trained on MNIST 318

digits (LeCun et al., 1998). First, we augment the MNIST dataset by randomly assigning an additional label 319

to each image: a set number (Fig. 7A). We train the fully connected feedforward network to perform one 320

of two tasks: classification of the written digit or identification of the assigned set (Fig. 7B). The former 321

requires clustering of images based on common features, which resembles concept learning in our CA3 model, 322

and the latter requires discerning differences between similar images, which resembles example learning in 323

our CA3 model (Fig. 7C). We use a held-out test dataset to evaluate digit classification performance and 324

corrupted images from the train dataset to evaluate set identification performance. 325

In our CA3 model, we found that examples were preferentially encoded by the decorrelated MF pathway 326

and concepts by the correlated PP pathway (Fig. 2). In an analogous fashion, we seek to manipulate the 327

correlation properties within the final hidden layer of our perception, whose activations sα serve as encodings 328

of the input images iα. In particular, we apply a novel DeCorr loss function, which penalizes correlations in 329

sα between every pair of items α, β in a training batch (Fig. 7D): 330

LDeCorr ≈
1

2

∑
α,β∈
batch

Pearson(sα, sβ)
2. (3)

DeCorr mimics the MF pathway; the equation is approximate due to a slight modification of the Pearson 331

correlation formula to aid numerical convergence (Methods). Alternatively, we consider the baseline condition 332

with no loss function on hidden layer activations, which preserves natural correlations between similar images 333

and mimics the PP pathway. Indeed, we observe that different encoding properties are suited for different 334

tasks. Baseline networks perform better in concept learning (Fig. 7E) while DeCorr networks perform better 335

in example learning (Fig. 7F), and these effects vary consistently with the strength of the DeCorr loss 336

function (Fig. S7A, B). Thus, DeCorr allows us to tune encoding correlations in neural networks to highlight 337

input features at either broader or finer scales. Tasks can be solved more effectively by matching their 338

computational requirements with the appropriate encoding scale. Note that DeCorr is different from the 339

DeCov loss function previously developed to reduce overfitting (Cogswell et al., 2015). DeCorr decorrelates 340

pairs of inputs across all neurons in the specified layer, whereas DeCov decorrelates pairs of neurons across 341

all inputs. As a regularizer that promotes generalization, DeCov improves digit classification and does not 342
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Figure 7: Complementary encodings inspired by CA3 can improve machine learning performance in a complex task. (A) We
extend the MNIST dataset by randomly assigning an additional set label to each image. (B–F) We train a multilayer perceptron
to either classify digits or identify sets. (B) Network architecture. Each hidden layer contains 50 neurons. (C) Task structures.
Digit classification requires building concepts and is tested with held-out test images. Set identification requires distinguishing
examples and is tested with noisy train images. (D) We apply the DeCorr loss function (Eq. 3) to decorrelate encodings in the final
hidden layer, in analogy with MF patterns in CA3. Without an encoding loss function, image correlations are preserved, in analogy
with PP patterns. (E, F) DeCorr decreases concept learning performance and increases example learning performance. Points
indicate means and bars indicate standard deviations over 32 networks. (G–J) We train a multilayer perceptron to simultaneously
classify digits and identify sets. (G) Network architecture. Each hidden layer contains 100 neurons. The train dataset contains
1000 images and 10 sets. (H) We apply the HalfCorr loss function (Eq. 4) to decorrelate encodings only among the second
half of the final hidden layer. Correlated and decorrelated encodings are both present, in analogy with MF and PP patterns
across the theta cycle in CA3. (I) DeCorr networks generally perform better at example learning but worse at concept learning
compared to baseline. HalfCorr networks exhibit high performance in both tasks. Open symbols represent individual networks
and filled symbols represent means over 64 networks. (J) Influence of each neuron in HalfCorr networks on concept and example
learning, defined as the average decrease in accuracy upon clamping its activation to 0. Correlated neurons (orange bars) are
more influential in concept learning, and decorrelated neurons (purple bars) are more influential in example learning. For all
results, p-values are computed using unpaired t-tests.
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substantially improve set identification, which contrasts with the effect of DeCorr (Fig. S7C, D). 343

Complex tasks, including those performed by biological systems, may require information to be processed 344

at different scales of correlation. In CA3, a spectrum of encodings is available during each theta cycle. Can 345

neural networks take advantage of multiple encodings? We tackle this question by asking a perceptron to 346

simultaneously perform digit classification and set identification (Fig. 7G). In addition to the baseline and 347

DeCorr networks, we define a HalfCorr loss function (Fig. 7H): 348

LHalfCorr ≈
1

2

∑
α,β∈
batch

Pearson(shalfα , shalfβ )2, (4)

where shalfα represents the second half of neurons in the final hidden layer. After training with this loss 349

function, the neural representation consists of both a correlated, PP-like component in the first half and 350

a decorrelated, MF-like component in the second half. When we evaluate these networks on both digit 351

classification and set identification, we see that baseline and DeCorr networks behave similarly to how they 352

did on single tasks. Compared to baseline, DeCorr networks perform better in example learning at the 353

cost of poorer concept learning (Fig. 7I). However, HalfCorr networks do not suffer from this tradeoff and 354

perform well at both tasks. Their superior performance is maintained over a variety of network and dataset 355

parameters (Fig. S7E). Moreover, HalfCorr networks learn to preferentially use each type of encoding for the 356

task to which it is better suited. We use the decrease in task accuracy upon silencing a neuron as a metric 357

for its influence on the task. Correlated neurons are more influential in concept learning and decorrelated 358

neurons in example learning (Fig. 7J). 359

Note that we do not manipulate pattern sparsity in these artificial networks. Sparsification can be useful 360

in the hippocampus because it provides a biologically tractable means of achieving decorrelation. It also 361

allows biological networks to access both less and more correlated representations by changing the level of 362

inhibition. Instead, we can directly manipulate correlation through the DeCorr and HalfCorr loss functions. 363

Under some conditions, the decorrelated half of the final hidden layer in HalfCorr networks indeed exhibits 364

sparser activation than the correlated half (Fig. S7F). It is possible that directly diversifying sparsity can also 365

improve machine learning performance, especially since sparse coding is known to offer certain computational 366

advantages as well as greater energy efficiency (Olshausen and Field, 1996, 2004; Sze et al., 2017). 367

Discussion 368

The hippocampus is widely known to produce our ability to recall specific vignettes as episodic memories. 369

This process has been described as indexing every sensory experience with a unique neural barcode so that 370

separate memories can be independently recovered (Teyler and DiScenna, 1986; Teyler and Rudy, 2007). 371

Recently, research has shown that the hippocampus is also important in perceiving commonalities and 372

regularities across individual experiences, which contribute to cognitive functions such as statistical learning 373

(Schapiro et al., 2014; Covington et al., 2018), category learning (Knowlton and Squire, 1993; Zeithamova 374

et al., 2008; Mack et al., 2016; Bowman and Zeithamova, 2018), and semantic memory (Manns et al., 2003; 375

Duff et al., 2020). Evidence for this has been obtained largely through human studies, which can present and 376

probe memories in controlled settings. However, the detailed circuit mechanisms used by the hippocampus 377

to generalize across experiences while also indexing them separately are not known. 378

Our analysis of rodent place cell recordings reveals that single CA3 neurons alternate between finer, 379
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example-like representations and broader, concept-like representations of space across the theta cycle (Figs. 4, 380

5, and 6). These single-neuron results extend to the network level, which alternatively encodes more specific 381

and more general spatial features in a corresponding manner (Fig. 6). If we accept that place cells store 382

these features as spatial memories, then our experimental analysis reveals that CA3 can access memories of 383

different scales at different theta phases. We propose that the computational mechanism underlying these 384

observations is the multiplexed encoding of each memory at different levels of correlation (Figs. 1 and 7). We 385

show that this mechanism can be biologically implemented through the storage of both sparse, decorrelated 386

MF and dense, correlated PP inputs to CA3 and their alternating retrieval by the theta oscillation, which 387

acts as an activity threshold (Figs. 1, 2, and 3). Our model performs successful pattern completion for both 388

types of encodings, suggesting that patterns across the theta cycle can truly function as memories that can 389

be recovered from partial cues. 390

Alone, our experimental findings contribute to a large set of observations on how coding properties vary 391

with theta phase in the hippocampus. Of note is phase precession, in which different phases preferentially 392

encode different segments within a firing field as it is traversed, with later phases tuned to earlier segments 393

(O’Keefe and Recce, 1993). Phase precession is most widely reported for place cells and traversals of physical 394

space, but it also appears during the experience of other sequences, such as images and tasks (Terada et al., 395

2017; Qasim et al., 2021; Reddy et al., 2021). Our analysis implies that the sharpness of tuning is not 396

constant throughout traversals. In particular, CA3 neurons are more sharply tuned at early positions in 397

place fields, while CA1 neurons are more sharply tuned at late positions (Fig. S4I, J). Transforming these 398

conclusions about position into those about time through the concept of theta sequences, CA3 represents 399

the future more precisely, while CA1 represents the future more broadly. The latter is consistent with the 400

idea that CA1 may participate in the exploration of multiple possible future scenarios (Kay et al., 2020). 401

Furthermore, our W-maze analysis reveals that certain hippocampal neurons which do not obviously encode 402

an external modality across all theta phases, such as turn direction, may do so only during sparse phases 403

(Fig. S6D). This observation adds to the subtleties with which the hippocampus represents the external 404

world. 405

Other groups have investigated the variation of place field sharpness with theta phase in CA1, not CA3, 406

and their results are largely in agreement with our CA1 analyses. Skaggs et al. (1996) partitioned theta 407

phases into halves, one of which with higher activity than the other, and find more information per spike 408

during the less active half. We observe no difference at the single-neuron level, though our W-maze results are 409

only slightly non-significant (Figs. S4C and S6E). Their partitions differ from ours by 30◦ and they employ 410

a different binning technique, both of which can influence the results. The more informative phases in their 411

work correspond to earlier field positions, which we also observe (Fig. S4J). Note that their computation of 412

sparsity is performed along a different axis compared to ours; using terms fromWillmore and Tolhurst (2001), 413

they use the lifetime sparsity while we compute the population sparsity, which fundamentally differ. Ujfalussy 414

and Orbán (2022) also found that phases with smaller field sizes correspond to earlier field positions. Mehta 415

et al. (2002) considered phase-dependent tuning within CA1 place fields, but they calculate field width 416

over theta phase as a function of field progress, whereas we do the opposite. Their results appear to be 417

compatible with ours, but a direct comparison cannot be made. Overall, our work offers original insights 418

into hippocampal phase coding not only by focusing on CA3, which behaves differently from CA1, but also 419

by elucidating a connection between tuning width and network sparsity. 420

One major simplification in our model is that we separately simulate memory storage and retrieval. 421

These two operating regimes can represent different tones of a neuromodulator such as acetylcholine, which is 422

17

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 21, 2023. ; https://doi.org/10.1101/2023.02.21.529365doi: bioRxiv preprint 

https://doi.org/10.1101/2023.02.21.529365
http://creativecommons.org/licenses/by-nc-nd/4.0/


thought to bias the network towards storage (Hasselmo, 2006). Another proposal is that storage and retrieval 423

preferentially occur at different theta phases, motivated by the variation in long-term potentiation (LTP) 424

strength at CA1 synapses across the theta cycle (Hasselmo et al., 2002; Kunec et al., 2005; Siegle and Wilson, 425

2014). Although this idea focuses on plasticity in CA1, it is possible that storage and retrieval also occur 426

at different phases in CA3. Note that our experimental analysis reveals a sharp dip in position information 427

around the sparsest theta phase in both CA3 and CA1 (Fig. S4E, G). This phase may coincide with the 428

storage of new inputs, during which the representation of existing memories is momentarily disrupted; the 429

rest of the theta cycle may correspond to retrieval. This interpretation could motivate excluding the sparsest 430

theta phase from further analysis, since our model predictions only regard memory retrieval. However, we 431

take a conservative approach and include all phases. Intriguingly, recent work reported that the strength of 432

LTP in CA1 peaks twice per theta cycle (Leung and Law, 2020), suggesting for our model that MF and PP 433

patterns could have their own storage and retrieval intervals during each theta cycle. Another simplification 434

in our model is that we do not consider the theta oscillation in EC and DG, whose encodings may also 435

vary with inhibitory tone. Since these regions are not known to receive multiple inputs with substantially 436

different sparsities, we focus on the theta rhythm in CA3. 437

Our work connects hippocampal anatomy and physiology with foundational attractor theory. Among 438

others, Tsodyks and Feigel’man (1988) observed that sparse, decorrelated patterns can be stored at high 439

capacity, and Fontanari (1990) found that dense, correlated patterns can merge into representations of 440

common features. We demonstrate that both types of representations can be stored and retrieved in the 441

same network, using a threshold to select between them. This capability can be given solid theoretical 442

underpinnings using techniques from statistical mechanics (Kang and Toyoizumi, 2023). The convergence of 443

MF and PP pathways in CA3 has also been the subject of previous computational investigations (Treves and 444

Rolls, 1992; McClelland and Goddard, 1996; Kaifosh and Losonczy, 2016). In these models, CA3 stores and 445

retrieves one encoding per memory, while our model asserts that multiple encodings for the same memory 446

alternate across the theta cycle. Another series of models proposes, like we do, that the hippocampus can 447

simultaneously maintain both decorrelated, example-like encodings and correlated, concept-like encodings 448

(Schapiro et al., 2017; Sučević and Schapiro, 2022). These encodings converge at CA1 and each type is not 449

independently retrieved there, which differs from our model. EC has also been hypothesized to differentially 450

encode inputs upstream of CA3, with specific sensory information conveyed by lateral EC and common 451

structural representations by medial EC (Whittington et al., 2020). Further experimental investigation into 452

the contributions of various subregions would help to clarify how the hippocampus participates in memory 453

generalization. 454

Finally, we show that complementary encodings similar to those found in CA3 can aid neural networks 455

in solving complex tasks. We introduce a novel HalfCorr loss function that diversifies hidden layer represen- 456

tations to include both correlated and decorrelated components (Fig. 7). HalfCorr networks can better learn 457

tasks that involve both distinction between similar inputs and generalization across them. They are simul- 458

taneously capable of pattern separation and categorization even based on small datasets, demonstrating a 459

possible advantage of brain computation over conventional deep learning. Yet, we deliberately chose a neural 460

architecture that differs from that of the CA3 network to test the scope over which complementary encodings 461

can improve learning. Instead of a recurrent neural network storing patterns of different sparsities through 462

unsupervised Hopfield learning rules, we implemented a feedforward multilayer perceptron, a workhorse of 463

supervised machine learning. The success of HalfCorr networks in this scenario supports the possibility that 464

HalfCorr can be broadly applied as a plug-and-play loss function to improve computational flexibility. 465
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Functional heterogeneity is commonly invoked in the design of modern neural networks. It can be 466

implemented in the form of deep or modular neural networks in which different subnetworks perform different 467

computations in series or parallel, respectively (LeCun et al., 2015; Amer and Maul, 2019). Here, inspired 468

by biology, we propose a different paradigm in which a loss function applied differentially across neurons 469

promotes heterogeneity within a single layer. This idea can be extended from the two components of 470

HalfCorr networks, correlated and decorrelated, by assigning a different decorrelation strength to each neuron 471

and thereby producing a true spectrum of representations. Furthermore, heterogeneity in other encoding 472

properties such as mean activation, variance, and sparsity may also improve performance in tasks with 473

varying or unclear computational requirements. Such tasks are not limited to multitask learning, but also 474

include continual learning (Parisi et al., 2019), reinforcement learning (Arulkumaran et al., 2017), and natural 475

learning by biological brains. 476

Methods 477

Transformation of memories along hippocampal pathways 478

Binary autoencoder from images to EC 479

Our memories are 256 images from each of the sneaker, trouser, and coat classes in the FashionMNIST dataset (Xiao 480

et al., 2017). We train a fully connected linear autoencoder on these images with three hidden layers of sizes 128, 1024, 481

and 128. Batch normalization is applied to each hidden layer, followed by a rectified linear unit (ReLU) nonlinearity 482

for the first and third hidden layers and a sigmoid nonlinearity for the output layer. Activations in the middle hidden 483

layer are binarized by a Heaviside step function with gradients backpropagated by the straight-through estimator 484

(Bengio et al., 2013). The loss function is 485

L =
∑
µν∈
batch

||̂iµν − iµν ||2 + λ
∑
µν∈
batch

KL
(

1
NEC

∑
i x

EC
µνi

∥∥∥ aEC

)
, (5)

where iµν is the image with pixel values between 0 and 1, îµν is its reconstruction, xEC
µν represents the binary 486

activations of the middle hidden layer with NEC = 1024 units indexed by i, and aEC = 0.1 is its desired sparsity 487

(Fig. 1E). Sparsification with strength λ = 10 is achieved by computing the Kullback-Leibler (KL) divergence between 488

the hidden layer sparsity and aEC (Le et al., 2011). Training is performed over 150 epochs with batch size 64 using 489

the Adam optimizer with learning rate 10−3 and weight decay 10−5. 490

Binary feedforward networks from EC to CA3 491

To propagate patterns from EC to DG, from DG to MF inputs, and from EC to PP inputs, we compute 492

xpostµνi = Θ

[∑
j

Wijx
pre
µνj − θ

]
, (6)

where xpre
µν and xpost

µν are presynaptic and postsynaptic patterns, Wij is the connectivity matrix, and θ is a threshold. 493

Each postsynaptic neuron receives l excitatory synapses of equal strength from randomly chosen presynaptic neurons. 494

θ is implicitly set through a winners-take-all (WTA) process that enforces a desired postsynaptic sparsity apost. Θ is 495

the Heaviside step function, and N is the network size. 496

EC patterns have NEC = 1024 and aEC = 0.1. To determine N , a, and l for each subsequent region, we turn to 497

estimated biological values and loosely follow their trends. Rodents have approximately 5-10 times more DG granule 498

cells and 2-3 times more CA3 pyramidal cells compared to medial EC layer II principal neurons (Amaral et al., 1990; 499

Murakami et al., 2018; Attili et al., 2019). Thus, we choose NDG = 8192 and NCA3 = 2048. During locomotion, DG 500

place cells are approximately 10 times less active than medial EC grid cells (Mizuseki and Buzsáki, 2013), and MF 501

inputs are expected to be much sparser than PP inputs (Treves and Rolls, 1992). Thus, we choose aDG = 0.005, 502

aMF = 0.02, and aPP = 0.2. Each DG neuron receives approximately 4000 synapses from EC and each CA3 neuron 503

receives approximately 50 MF and 4000 PP synapses (Amaral et al., 1990). Thus, we choose lDG = 205, lMF = 8, 504

and lPP = 205. We do not directly enforce correlation within concepts, which take values ρEC = 0.15, ρDG = 0.02, 505

ρMF = 0.01, and ρPP = 0.09. 506
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In Fig. 1G, for the case of xpre
µν = xEC

µν , we use Npost = 2048 and l = 205. ρpost is obtained by computing 507

correlations between examples within the same concept and averaging over 3 concepts and 8 connectivity matrices. 508

For the case of randomly generated xpre
µν , we use Npre = Npost = 10 000, a single concept, and a single connectivity 509

matrix with l = 2000. See Supplementary Methods for further details, including the derivation of Eq. 1. 510

Visualization pathway from CA3 to EC 511

We train a fully connected linear feedforward network with one hidden layer of size 4096 to map inputs xMF
µν to targets 512

xEC
µν and inputs xPP

µν also to targets xEC
µν . Batch normalization and a ReLU nonlinearity is applied to the hidden layer 513

and a sigmoid nonlinearity is applied to the output layer. The loss function is 514

L =
∑
µν∈
batch

||x̂EC
µν − xEC

µν ||2. (7)

Training is performed over 100 epochs with batch size 128 using the Adam optimizer with learning rate 10−4 and 515

weight decay 10−5. 516

Hopfield-like model for CA3 517

Pattern storage 518

Our Hopfield-like model for CA3 stores linear combinations qµν of MF and PP patterns: 519

qµνi = (1 − ζ) · (xMF
µνi − aMF) + ζ · (xPP

µνi − aPP), (8)

where ζ = 0.1 is the relative strength of the PP patterns (Fig. 2A). The subtraction of sparsities from each pattern is 520

typical of Hopfield networks with neural states 0 and 1 (Tsodyks and Feigel’man, 1988). The synaptic connectivity 521

matrix is 522

Wij =
1

NCA3

∑
µν

qµνiqµνj . (9)

Pattern retrieval 523

Cues are formed from target patterns by randomly flipping the activity of a fraction 0.01 of all neurons (Fig. 2B). 524

During retrieval, neurons are asynchronously updated in cycles during which every neuron is updated once in random 525

order (Fig. 2C). The total synaptic input to neuron i at time t is 526

gi(t) =
∑
j

WijSj(t) + hi(t), (10)

where Sj(t) is the activity of presynaptic neuron j and hi(t) is an external input. The external input is zero expect 527

for the cue-throughout condition in Fig. 3, in which h(t) = σx for noisy MF cue x and strength σ = 0.2. 528

The activity of neuron i at time t is probabilistically updated via the Glauber dynamics 529

P [Si(t+ 1) = 1] =
1

1 + e−β[gi(t)−θ(t)]
, (11)

where θ is the threshold and β is inverse temperature, with higher β implying a harder threshold. Motivated by 530

theoretical arguments, we define rescaled variables θ′ and β′ such that θ = θ′ · (1 − ζ)2aMF and β = β′/(1 − ζ)2aMF 531

(Kang and Toyoizumi, 2023). Unless otherwise indicated, we run simulations for 10 update cycles, use β′ = 100, and 532

use θ′ = 0.5 to retrieve MF patterns and θ′ = 0.1 to retrieve PP patterns. The rescaled θ′ is the threshold value 533

illustrated in Fig. 3A and Fig. S3A. 534

Retrieval evaluation 535

The overlap between the network activity S and a target pattern x is 536

m =
1

NCA3a(1 − a)

∑
i

Si(xi − a), (12)
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where a is the sparsity of the target pattern. This definition is also motivated by theory (Kang and Toyoizumi, 2023). 537

The target pattern x̄PP
µ for PP concept µ is 538

x̄PP
µi = Θ

[∑
ν

xPP
µνi − ϕ

]
, (13)

where ϕ is a threshold implicitly set by using winners-take-all to enforce that x̄PP
µ has sparsity aPP. The theoretical 539

maximum overlap between the network and x̄PP
µ is the square root of the correlation

√
ρPP (Kang and Toyoizumi, 540

2023). 541

See Supplementary Methods for the determination of network capacity with random binary patterns (Fig. 2H, I 542

and Fig. S2F, G) and the definition of oscillation behaviors (Fig. 3C and Fig. S3B). 543

Experimental data analysis 544

General considerations 545

To calculate activity, we tabulate spike counts c(r, ϕ) over spatial bins r (position or turn direction) and theta phase 546

bins ϕ, and we tabulate trajectory occupancy u(r, ϕ) over the same r and distribute them evenly across ϕ. Activity 547

as a function of theta phase, the spatial variable, and both variables are respectively 548

f(ϕ) =

∑
r c(r, ϕ)∑
r u(r, ϕ)

, f(r) =

∑
ϕ c(r, ϕ)∑
ϕ u(r, ϕ)

, and f(r, ϕ) =
c(r, ϕ)

u(r, ϕ)
. (14)

Information per spike as a function of theta phase is calculated by 549

I(ϕ) =
∑
r

c(r, ϕ)

c(ϕ)
log2

f(r, ϕ)

f(ϕ)
, (15)

where c(ϕ) =
∑
r c(r, ϕ) (Skaggs et al., 1993). To perform sparsity correction for each neuron, we generate 100 null- 550

matched neurons in which the spatial bin of each spike is replaced by a random value uniformly distributed across 551

spatial bins. We subtract the mean I(ϕ) over the null matches from the I(ϕ) for the true data. To calculate the 552

average difference in information between sparse and dense phases, we first f(ϕ) to partition ϕ into sparse and dense 553

halves. We then average the sparsity-corrected I(ϕ) over each half, apply a ReLU function to each half to prevent 554

negative information values, and compute the difference between halves. 555

See Supplementary Methods for dataset preprocessing details. 556

Model prediction 557

For the example prediction in Fig. 4A, we choose one concept from Fig. 1C and find 50 neurons that are active in 558

at least one MF example and one PP example within it. For each neuron, we convert each active response to one 559

spike and assign equal occupancies across all examples. We calculate the information per spike across MF examples 560

and across PP examples using example identity ν as the spatial bin r. These values are sparsity-corrected with 50 561

null-matched neurons, and their difference becomes our example prediction, associating MF encodings with sparse 562

phases and PP with dense. 563

For the concept prediction in Fig. 5A, we find 50 neurons that are active in at least one MF example and one 564

PP example within any concept. For each neuron, we convert each active response to one spike and collect MF and 565

PP concept responses by summing spikes within each concept. We assign equal occupancies across all concepts. We 566

calculate the information per spike across MF concepts and across PP concepts using concept identity µ as the spatial 567

bin r. We then proceed as in the example case to produce our concept prediction. 568

Linear track data 569

Single neurons in Fig. 5 are preprocessed from the CRCNS hc-3 dataset as described in Supplementary Methods 570

(Mizuseki et al., 2013). To identify place cells, we compute the phase-independent position information per spike 571

using 1 cm-bins across all theta phases, and we select neurons with values greater than 0.5. For each place cell, we 572

bin spikes into various position bins as illustrated and phase bins of width 30◦. Since our prediction compares sparse 573

and dense information conveyed by the same neurons, we require at least 8 spikes within each phase value to allow 574

for accurate estimation of position information across all theta phases. To ensure theta modulation, we also require 575

the most active phase to contain at least twice the number of spikes as the least active phase. In Fig. 5E, these 576

constraints yield 47, 49, and 56 valid CA3 neurons respectively for track scales 1/16, 1/8, and 1/4, and in Fig. S5B, 577

they yield 122, 137, and 144 valid CA1 neurons. 578
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Place fields in Fig. 4 are extracted as described in Supplementary Methods. Processing occurs similarly to the 579

whole-track case above, except we do not enforce a phase-independent information constraint, we use 5 progress bins, 580

and we require at least 5 spikes within each phase value. These constraints yield 35 valid CA3 fields and 47 valid 581

CA1 fields. Phase precession is detected by performing circular–linear regression between spike progresses and phases 582

(Kempter et al., 2012; Kang and DeWeese, 2019). The precession score and precession slope are respectively defined 583

to be the mean resultant length and regression slope. Precessing neurons have score greater than 0.3 and negative 584

slope steeper than −72 ◦/field. 585

W-maze data 586

Single neurons in Fig. 6A–H are preprocessed from the CRCNS hc-6 dataset as described in Supplementary Methods 587

(Karlsson et al., 2015). For each neuron, we bin spikes into 2 turn directions and phase bins of width 45◦. Since our 588

prediction compares sparse and dense information conveyed by the same neurons, we require at least 5 spikes within 589

each phase value to allow for accurate estimation of position information across all theta phases. To ensure theta 590

modulation, we also require the most active phase to contain at least twice the number of spikes as the least active 591

phase. These constraints yield 99 valid CA3 neurons and 187 valid CA1 neurons. 592

Bayesian population decoding in Fig. 6I–L involves the same binning as in the single-neuron case above, and we 593

enforce a minimum spike count of 30 across all phases instead of a minimum for each phase value. We do not ensure 594

theta modulation on a single-neuron basis. We consider all sessions in which at least 5 neurons are simultaneously 595

recorded; there are 8 valid CA3 sessions and 25 valid CA1 sessions. For each session, we compute the total activity 596

across neurons and turn directions as a function of theta phase to determine the sparsest and densest half of phases 597

(similarly to Eq. 14). We then compute activities fi(r, ψ) over each half, indexed by ψ ∈ {sparse, dense}, for neurons 598

i and turn directions r. For each neuron, we rectify all activity values below 0.02 times its maximum. 599

We decode turn direction during runs along the center arm using sliding windows of width ∆t = 0.5 s and stride 600

0.25 s. In each window at time t, we tabulate the population spike count c(t, ψ) over sparse and dense phases ψ. The 601

likelihood that it arose from turn direction r is 602

p(c(t, ψ)|r) =
∏
i

p(ci(t, ψ)|r) ∝
(∏

i

fi(r, ψ)ci(t,ψ)

)
exp

(
−∆t

∑
i

fi(r, ψ)

)
. (16)

This formula assumes that spikes are independent across neurons and time and obey Poisson statistics (Zhang et al., 603

1998). We only decode with at least 2 spikes. By Bayes’s formula and assuming a uniform prior, the likelihood is 604

proportional to the posterior probability p(r|c(t, ψ)) of turn direction r decoded from spikes c(t, ψ). Consider one 605

decoding that yields p(R) as the probability of a right turn. Its confidence is |2p(R)−1|. Its accuracy is 1 if p(R) > 0.5 606

and the true turn direction is right or if p(R) < 0.5 and the true direction is left; otherwise, its accuracy is 0. 607

Machine learning with multilayer perceptrons 608

Dataset 609

We use the MNIST dataset of handwritten digits (LeCun et al., 1998). Each image iα is normalized by subtracting 610

the mean value and dividing by the standard deviation across all images and pixels. In addition to its digit class label, 611

we randomly assign a set number. We train networks on a subset of images from the train dataset. To test concept 612

learning through digit classification, we use all held-out images from the test dataset. To test example learning 613

through set identification, we use all train images corrupted by randomly setting 20% of normalized pixel values to 0. 614

Single-task learning 615

We train a fully-connected two-layer perceptron with a hyperbolic tangent (tanh) activation function applied to each 616

hidden layer and a softmax activation function applied to the output layer. Each hidden layer contains 50 neurons, 617

and the output layer contains 10 neurons for digit classification and as many neurons as sets for set identification. 618

Let sα be the activations of the final hidden layer for image α. The loss is composed of a cross-entropy loss 619

function between reconstructed labels ŷα and true labels yα, which are one-hot encodings of either digit class or set 620

number, and the DeCorr loss function: 621

L = −
∑
α∈

batch

N−1∑
i=0

[
yαi log ŷαi + (1 − yαi) log(1 − ŷαi)

]
+ λLDeCorr, (17)
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where 622

LDeCorr =
1

2

∑
α̸=β∈
batch

[∑N−1
i=0 (sαi − s̄α)(sβi − s̄β)

]2[∑N−1
i=0 (sαi − s̄α)2 +Nϵ

][∑N−1
i=0 (sβi − s̄β)2 +Nϵ

] . (18)

We introduce ϵ = 0.001, which is scaled by the number of hidden layer neurons N , to aid numerical convergence. 623

Mean activations are s̄α = (1/N)
∑N−1
i=0 sαi. The DeCorr strength is λ; except for Fig. S7A, B, we use λ = 0 for the 624

baseline case and λ = 1 for the DeCorr case. 625

We train the network using stochastic gradient descent (SGD) with batch size 50 and learning rate 10−4. In 626

general, we train until the network reaches >99.9% accuracy with the train dataset. For example, we use 40, 100, 627

and 200 epochs respectively for digit classification and set identification with 10 and 50 sets. 628

In contrast to DeCorr, the DeCov loss function formulated to reduce overfitting is 629

LDeCov =
1

2

N−1∑
i̸=j=0

[∑
α∈

batch

(sαi − s̄i)(sαj − s̄j)

]2

, (19)

where mean activations are now taken over batch items: s̄i = (1/Nbatch)
∑
α∈batch sαi (Cogswell et al., 2015). 630

Multitask learning 631

We train a fully-connected two-layer perceptron with a hyperbolic tangent (tanh) activation function applied to each 632

hidden layer. In Fig. S7E, F, we also consider applying a ReLU activation function to each hidden layer, or a ReLU 633

to the first hidden layer and no nonlinearity to the second. The final hidden layer is fully connected to two output 634

layers, one for digit classification and the other for set identification. A softmax activation function applied to each 635

layer. Each hidden layer contains 100 neurons, the concept output layer contains 10 neurons, and the example output 636

layer contains as many neurons as sets. 637

The loss is composed of a cross-entropy loss function between reconstructed ŷα and true yα digit labels, a 638

cross-entropy loss function between reconstructed ẑα and true zα set labels, and either the DeCorr or HalfCorr loss 639

function: 640

L = −
∑
α∈

batch

N−1∑
i=0

[
yαi log ŷαi+(1−yαi) log(1−ŷαi)

]
−
∑
α∈

batch

N−1∑
i=0

[
zαi log ẑαi+(1−zαi) log(1−ẑαi)

]
+λLDeCorr/HalfCorr, (20)

where 641

LHalfCorr =
1

2

∑
α̸=β∈
batch

[∑N−1
i=N/2(sαi − s̄α)(sβi − s̄β)

]2[∑N−1
i=N/2(sαi − s̄α)2 +Nϵ/2

][∑N−1
i=N/2(sβi − s̄β)2 +Nϵ/2

] . (21)

Mean activations are s̄α = (2/N)
∑N−1
i=N/2 sαi. The DeCorr/HalfCorr strength is λ; we use λ = 1 with a tanh activation 642

function, λ = 0.04 with a ReLU, λ = 2 with no nonlinearity, and λ = 0 for the baseline case with any nonlinearity. 643

We train the network using stochastic gradient descent (SGD) with batch size 50 and learning rate 10−4. In 644

general, we train until the network reaches >99.9% accuracy in both tasks with the train dataset. For example, we 645

use 100 epochs for the results in Fig. 7I, J. 646

Code availability 647

All network training and simulation code will be made available at https://louiskang.group/repo. 648
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