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Abstract 

There is growing evidence that many forms of neural computation may be implemented by low-

dimensional dynamics unfolding at the population scale. However, neither the connectivity 

structure nor the general capabilities of these embedded dynamical processes are currently 

understood. In this work, the two most common formalisms of firing-rate models are evaluated 

using tools from analysis, topology and nonlinear dynamics in order to provide plausible 

explanations for these problems. It is shown that low-rank structured connectivity predicts the 

formation of invariant and globally attracting manifolds in both formalisms, which generalizes 

existing theories to different neural models. Regarding the dynamics arising in these manifolds, 

it is proved they are topologically equivalent across the considered formalisms.  

It is also stated that under the low-rank hypothesis, dynamics emerging in neural models are 

universal. These include input-driven systems, which broadens previous findings.  It is then 

explored how low-dimensional orbits can bear the production of continuous sets of muscular 

trajectories, the implementation of central pattern generators and the storage of memory 

states. It is also proved these dynamics can robustly simulate any Turing machine over arbitrary 

bounded memory strings, virtually endowing rate models with the power of universal 

computation. In addition, it is shown how the low-rank hypothesis predicts the parsimonious 

correlation structure observed in cortical activity. Finally, it is discussed how this theory could 

provide a useful tool from which to study neuropsychological phenomena using mathematical 

methods. 
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1. Introduction 

 

During the last decade, the proliferation of state-of-the-art technologies in the neuroscience 

community, such as microelectrode arrays, brain-computer interfaces or optogenetics, has 

given researchers the ability to record, control, and manipulate neural data in unprecedented 

ways [1]–[3]. With the previous techniques, it has been possible to obtain huge datasets of 

neural activity. 

 A common way to extract useful information from them is to apply dimensionality reduction 

methods [2], [4] which in turn allow to recognize that, despite the large dimensionality of the 

recorded data, neural activation patterns seem to be embedded in a much lower dimensional 

region, often referred to as neural manifold [5]–[7]. Indeed, it has been the proceeding of many 

empirical investigations to obtain neuronal in vivo recordings from behaving animals and to 

subsequentially project the data into this lower dimensional region, in order to infer the most 

prominent features of the underlying neural dynamics [7]–[11].  

To understand how neural ensembles perform task-specific computations is the inquiry of much 

contemporary research, and the role neural manifolds could play in this field is of special interest 

[2], [5]. In order to tackle this challenge, many researchers have used recurrent neural networks 

(RNN) as a model for neural dynamics, searching for a plausible yet tractable modelling capable 

to shed light on the neural machinery by which cortical computations are biologically 

implemented [12], [13]. These various types of networks describe the behavior of a neural circuit 

in terms of continuous population variables, primarily the passive somatic potential [14], 

synaptic conductance [15], [16], or an average of the firing rate of action potentials [17], [18], 

which is why they are commonly referred to as "firing rate models" in theoretical neuroscience 

[18]. Although they are crude approximations of neuronal dynamics that lack many nuances of 

the mechanisms of spike generation [16], their behavior exhibits many  aspects of biological 

neuronal systems, such as recurrence, feedback, nonlinearity, and principal component activity 

[19], and thus they have appealed many neuroscientists who have found in them a way to 

simulate, interpret, and make sense of empirical data, showing that RNN setups are capable of 

replicating many experimental observations [10], [11], [19]–[25].  

Figure 1. Left: a schematic representation of a recurrent neural network, being I(t) the input vector; u(t) the internal state array, formed 
by the measures of the activations of the recurrently connected nodes; Ru(t) the readout of the circuit, which extracts the output of the 
system through the action of a linear operator, R. Right: Plot showing the firing rate of a three-neuron network wired to simulate the 
periodic bursting of the Tritonia Diomedea central pattern generator. The model shows an intrinsic oscillator such as the one in the 
original circuit, which equips the organism with an escape swimming response. See [26] for information about the biological circuit, and 
[16] for details on the computational modelling. 
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As far as neural manifolds are concerned, RNN modelling could be a useful framework from 

which to understand the intrinsic mechanisms that drive neuronal trajectories to settle in a 

lower dimensional embedding [27] . 

In support of this proposal, many recent studies have focused on investigating the emergence 

of neural manifold phenomena in different types of neural networks, some of which having fully 

structured low-rank connectivity matrices [25], [28]–[30], while others possessing both a 

structured low-rank component and an unstructured random weight matrix [31]–[33]. 

Although interesting progress has been made in this direction, the approaches used so far rely 

mainly on computational tools [34] and statistical methods, such as mean-field theory [28], [31], 

[32]. In some respects, there exist limitations in establishing sufficient conditions for the 

existence of neural manifolds and measuring their dimensionality [4]. For example, the mean-

field theory approach works only in the limiting case when the number of neurons tends to 

infinity [35], and thus cannot fully determine the evolution of a given finite-size neural system. 

Similarly, the computational perspective cannot make general statements concerning the 

mechanisms that unfold at the level of a large class of neural models, as they can only provide 

concrete numerical insights into a given system. Therefore, in this paradigm it is difficult to 

obtain general results, and one has to be content with interpreting the implementation of 

specific computational tasks in terms of concrete model configurations [36], without being able 

to make general statements about the universal computational capabilities with which neural 

networks are endowed. 

 Moreover, due to these pitfalls, most of the aforementioned works had to limit the size of the 

studied neural manifolds to as few as 2 variables [30]- [32], while empirical investigations show 

that these subspaces can consist of up to 10 independent components [6]. 

In the present study, we will consider the two best known formalisms of firing-rate models to 

study in detail their behavior from the point of view of dynamical systems theory, topology and 

analysis. We will prove that, for fully structured low-rank connectivity matrices, both models 

exhibit invariant and globally attracting manifolds whose intrinsic dimensionality corresponds 

to the rank of the connectivity matrix.  

 We will then study the computational performance that results from low-rank models and show 

that they are universal approximators of input-driven control dynamical systems, extending 

results that have so far focused mainly on the autonomous case. 

This will lead to announce some general results on the mechanisms underlying some important 

internal processes, such as the storage, control and production of muscle activity; the generation 

of attractive memory states and central patterns; and the universality to simulate effective 

procedures using serial symbolic manipulation with finite memory capacity. Finally, it is going to 

be shown how the low-rank connectivity hypothesis leads to empirically contrasted predictions, 

and the significance of these results is going to be discussed from a cognitive perspective. 
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1.  Results 
 

In this section, we will present statements concerning the dynamics of the following 

mathematical models: 

𝑢′
𝑖(𝑡) + 𝑢𝑖(𝑡) = 𝐹𝑖(∑ 𝑤𝑖𝑗𝑢𝑗(𝑡) + ∑ 𝜔𝑖𝑗𝐼𝑗(𝑡) 

𝑚

𝑗=1

)

𝑁

𝑗=1

                                                                          (1.1) 

𝑣′
𝑖(𝑡) + 𝑣𝑖(𝑡) = ∑ 𝑤𝑖𝑗𝐹𝑖(𝑣𝑗(𝑡)) + ∑ 𝜔𝑖𝑗𝐼𝑗(𝑡) 

𝑚

𝑗=1

𝑁

𝑗=1

                                                                          (1.2) 

The first one describes the time evolution of a filtered measure of the firing rate [37], while the 

second does so for the voltage of the cell when action potentials are removed [18]. Each 𝐹𝑖 

models the relationship between the voltage and the spike frequency of each neuron, and they 

are going to be called transfer functions. The parameters, 𝑤𝑖𝑗,  𝜔𝑖𝑗 stand for the strengths of the 

synaptic projections coming from circuit and input neurons, respectively. We will often refer to 

the first formalism as the u-model or of the Wilson-Cowan type, and the second as the v-model 

or of the Hopfield type. 

For the sake of simplicity, the above equations assume that all the nodes of the net have equal 

time constants. We will further suppose that for every 𝐹𝑖, there exists a scalar, 𝜃𝑖, which stands 

for each neuron’s action potential threshold, such that 𝐹𝑖(𝑥) = 𝜎(𝑥 − 𝜃𝑖), being 𝜎: ℝ → (0,1) 

a sigmoid function. The following results, however, hold for more general transfer functions as 

well. 

The above formalisms are not the only ones that attempt to model collective neural behavior 

using physiologically relevant, continuous neural variables. However, they are analytically 

tractable and can be found among the most widely used models in systems neuroscience. Similar 

but more biophysically realistic models, also based on continuous variables and neural 

population measurements, can be found in [38]–[40]. 

 

1.1 Conditions sufficing the formation of neural manifolds 

In many cases, both computationally and experimentally, it is common to visualize data through 

dimensionality reduction methods [20], [36]. Although their estimates are good enough for 

many practical reasons, they can sometimes be deceptive about the geometry or dimensionality 

of the studied lower-dimensional structures, especially when linear methods are involved [4]. 

For instance, even in the case of a network exhibiting chaotic high-dimensional fluctuations, 

which is known to be the dominant scenario for large recurrent networks with unstructured 

random connectivity [31], [35], [41], [42], the solutions could settle on a strange attractor 

forming a relatively  correlated data set that would subsequently yield some eigenvalues close 

to zero when performing a principal component analysis (PCA). However, this would not entail 

the dynamics to remain in a low-dimensional subspace, since the attractor itself could be full-

dimensional, as numerical evidence suggests in figure 2. 
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It is thus that we are interested in seeking conditions accurately predicting the formation of 

neural manifolds. As previously announced, this will be achieved by restricting weight matrices 

to be non-invertible. Thereby, we present the following statements: 

Theorem 1.1: Let W be the connection matrix of a given u-model with constant input. Then, it 

possesses an invariant, globally attractive manifold, ℳ,  which can be parametrized by a 

homeomorphism 𝑓: ℝ𝑟𝑎𝑛𝑘(𝑊) → ℳ. 

The proof of this theorem relies on constructing a Cauchy series of functions converging to 𝑓. 

Theorem 1.2: Let W be the connection matrix of a given v-model with constant input. Then, it 

possesses an invariant, globally attractive manifold whose intrinsic dimension is given by 

rank(W). Furthermore, this manifold is Euclidean. 

For the proofs, see methods, 5.1. Something that can be inferred from the previous theorems is 

that, although the manifolds emerging from each model could be geometrically different, they 

are always homoeomorphic. This does not imply that all observed neural manifolds must be 

topologically Euclidian, as on the contrary, for example, in the head direction circuits of 

mammals and insects ring attractors  have been observed [9], [43]. Nevertheless, these 

topologically more complex structures could well be considered as sub-manifolds embedded in 

the manifolds described in the previous theorems. Section 2.2 is going to study the dynamics 

evolving in these embeddings, showing that the submanifolds they enclose can be very rich 

indeed.  

Figure 2 : Simulation of a 20 neuron Hopfield network whose connectivity was randomly wired for a given initial condition. In the first column, it is 
shown the activation of 3 units displaying chaotic behavior, and below the underlying double-scroll attractor is projected onto the 3 first principal 
components. In the second column, the evolution of the last principal component is plotted together with a histogram showing the eigenvalues of 
the covariance matrix. Although the last 10 eigenvectors could be neglected in a lower-dimensional model of the dynamics which could explain 
almost the whole variance of the system, the last component is nonconstant, and thus the network exhibits full-dimensional chaotic fluctuations.  
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From now on, we will reserve the term “neural manifold” for the topological Euclidean manifolds 

described in the previous theorems, and we will refer to the dynamical systems evolving on 

these invariant regions as neural manifold dynamics.  

  

So far, we have studied u-models and v-models separately. Now that explicit conditions 

predicting the existence of dynamical embedding manifolds have been found, it could be asked 

what relation exists, if any, between neural manifold dynamics in both kinds of models. The 

following proposition addresses this problem: 

Proposition 1.1: Suppose we have a u-model and a v-model both with equal transfer functions, 

connectivity arrays and constant inputs. Then, their neural manifold dynamics are topologically 

conjugate.  

We say that the set of solutions of two systems are topologically conjugate if there is a one-to-

one, injective and continuous map that yield a trajectory of one system whenever applied to a 

solution of the other one. More technically, it means that there exists a homeomorphism which 

commutes with the flow map. See methods, section 5.1 for the proper definition, or [44]. 

Intuitively, two dynamical systems being conjugate indicate that they are topologically 

equivalent, meaning their qualitative behavior remains unchanged, so that things like the 

number of fixed points, their stability, the presence of cycles or connection orbits as well as the 

existence of chaotic regions in state space are preserved by moving between the systems. This 

result provides a useful analytical tool for investigating the behavior of one type of network 

knowing the behavior of the other. 

 For example, the well-established fact that randomly wired networks of Hopfield neurons tend 

to behave chaotically as their dimensionality increases [35] can now be easily proved for Wilson-

Cowan networks - we only have to use the fact that the most commonly used definitions of 

chaos persist under conjugacy [45] and apply proposition 1.1. 

Figure 3: Two trajectories of a 3 neuron Wilson-Cowan system undergoing a Hopf bifurcation on a 2-dimensional manifold. The bifurcation 
parameter is a single weight whose modification leaves rank(W)=2 unchanged, so that the emergence of a globally attractive surface can be 
observed in both cases, according with the conclusions of theorem 1.1. 
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Ultimately, this theorem assures that u-models and v-models are mutually consistent, being 

both equivalent expressions of the same process, from a topological perspective. In [37] it was 

proven that both models were related with an affine map, but it could not provide a way to find 

a complete trajectory of the u-model given a solution on the neural manifold of the v-model. In 

the previous proposition, it was proven that such an invertible connection between the 

networks exists in all cases, broadening the previous work whenever constant inputs are 

considered. See methods, section 5.1, for the proof and information about the conjugacy. 

 

2.2 Exploring the universality of low-dimensional computations 

The fact that low-rank structured systems have invariant manifolds implies that a dynamical 

system evolves within these hypersurfaces. In this section, we will explore the nature of these 

emergent, populationally distributed processes and the extent to which they can endow cortical 

systems with useful computational mechanisms. 

From a dynamical systems perspective, it would be interesting to characterize both 

geometrically and topologically the various phenomena that take place in these manifolds. With 

respect to this problem, it is found, surprisingly, that neural manifold dynamics are, in some 

sense, dense in the space of dynamical systems, which means that for each system of differential 

equations there is a neural ensemble whose projected dynamics approximates the system up to 

a given, yet arbitrarily small, degree of precision. This is stated more accurately in the following 

theorems, one for each of the models studied: 

Theorem 2.1: Let Ω ⊂ ℝ𝑛 be compact, 𝐺 ∈ 𝐶1(ℝ𝑛 × ℝ𝑚, ℝ𝑛) and 𝑥(𝑡) the solution to the initial 

value problem 𝑥′(𝑡) = 𝐺(𝑥(𝑡), 𝐼(𝑡))|𝑥(0) = 𝑥0 ∈ Ω, being 𝐼: ℝ → ℝ𝑚 drawn from an 

uniformly bounded set of continuous functions. Then, there exists 𝑁 ∈ ℕ, a matrix                          

𝑅 ∈ ℝ𝑛×𝑁 and a u-model with input 𝐼(𝑡) and connectivity W such that, for any 𝜀 > 0 and any 
𝑇 > 0, being [0, 𝑇] included in the maximal interval of existence, it is fulfilled that                             

‖𝑥(𝑡) − 𝑅𝑢(𝑡)‖ < 𝜀 ∀𝑡 ∈ [0, 𝑇], given appropriate initial conditions, 𝑢(0). Furthermore, 

𝑟𝑎𝑛𝑘(𝑊) = 𝑛. 

Theorem 2.2: Let Ω ⊂ ℝ𝑛 be compact, 𝐺 ∈ 𝐶1(ℝ𝑛 × ℝ𝑚, ℝ𝑛) and 𝑥(𝑡) the solution to the initial 

value problem 𝑥′(𝑡) = 𝐺(𝑥(𝑡), 𝐽(𝑡))|𝑥(0) = 𝑥0 ∈ Ω, being  𝐽: ℝ → ℝ𝑚 drawn from an 

uniformly bounded set of differentiable functions.  Then, there exists 𝑁 ∈ ℕ, a matrix                          

𝑅 ∈ ℝ𝑛×𝑁 and a v-model with input 𝐼(𝑡) = 𝐽(𝑡) + 𝐽′(𝑡) and connectivity W such that, for any 

𝜀 > 0 and any 𝑇 > 0, being [0, 𝑇] included in the maximal interval of existence, it is fulfilled that 

‖𝑥(𝑡) − 𝑅𝑣(𝑡)‖ < 𝜀 ∀𝑡 ∈ [0, 𝑇], given appropriate initial conditions, 𝑣(0). Furthermore, 

𝑟𝑎𝑛𝑘(𝑊) = 𝑛. 

The proofs of these theorems rely on the universal approximation theorem from artificial neural 

network theory. 

In the foregoing, the matrix R represents the readout which defines the output of the network 

once it is applied to the vector of neural states. The fact that rank(W)=n predicts, using the 

results of section 2.1, the emergence of stable invariant manifolds in the systems studied, at 

least for the case when the emergent dynamics are autonomous. This establishes a link between 

the theory of neural manifolds and the universal approximation properties of firing rate models, 

which will be further explored in the following subsections. 
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The results we have just outlined can be summarized saying that, for any driven nonautonomous 

dynamical system, there exists a neural network of each type whose outputs can approximate 

its solutions with arbitrary accuracy and during arbitrarily long time periods. This is a property 

that provides our neural models with a great power of simulation and control. 

Biological neural networks must be able to perform a variety of different tasks, as they alone are 

responsible for a wide range of internal processes, ranging from the generation and control of 

the muscular patterns that constitute observable behavior to the computations that mediate 

between the stimulus and responses. For this reason, we will now turn to the behavioral and 

cognitive consequences that follow from the results obtained so far. 

Rigorous propositions with relevant biological interpretations will be presented, concerning the 

coordination and execution of muscle patterns, the storage of mnemonic and behaviorally 

relevant attracting states and the universal implementation of symbolic procedures. 

 

2.2.1 Storing compact sets of muscular trajectories 

The generation of muscular activity patterns is one of the most studied topics within the dynamic 

systems approach to large-scale neuroscience [1]. This perspective has provided experimental 

and computational evidence suggesting that motor areas store large sets of muscle patterns 

whose production is triggered by switching between initial conditions during preparatory 

activity [8], [19], [20], [46]. It is known that there is a strong functional correlation between 

muscle activity and the primary motor area of the cortex [7], [47], so that the dynamic properties 

of the latter can be readily mapped onto the temporal development of the former. 

Here we will use the aforementioned theorems to make a statement about the large-scale 

storage of muscle patterns. Each of these responses is going to be modelled as a trajectory 

Figure 4: projection of a phase plane trajectory of a periodically driven damped harmonic oscillator. In the first row, in blue, the solutions of the 
original system; in the second row, in red, an approximation performed with a firing-rate network of the Wilson-Cowan type. Each column represents 
a different frequency for the driving force. 
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represented by a continuous mapping of the form 𝑟: [0, 𝑇] → ℝ𝑛, 𝑇 > 0. The set of all these 

trajectories are going to be equipped with the uniform norm:                                   

‖𝑟‖∞ = max
0≤𝑡≤𝑇

‖𝑟(𝑡)‖. 

Proposition 2.1: Given any compact set of functions under the uniform norm, 𝒜, whose 

elements are trajectories of the form 𝑟: [0, 𝑇] → ℝ𝑛, 𝑇 > 0 , and given any 𝜀 > 0, there exists a 

u-network (respectively a v-network) such that, for every 𝑟 ∈ 𝒜, its output,  given appropriate 

initial conditions, fulfils that max
0≤𝑡≤𝑇

‖𝑟(𝑡) − 𝑅𝑢(𝑡)‖ < 𝜀  (respectively max
0≤𝑡≤𝑇

‖𝑟(𝑡) − 𝑅𝑣(𝑡)‖ < 𝜀). 

This proposition claims that it is possible to develop a neural system capable of implementing 

arbitrary compact sets of muscle patterns, the production of which is preceded by pinpointing 

an appropriate initial condition, as claimed in previously mentioned studies [8], [19], [20], [46]. 

Our model of muscle activity is essentially autonomous and is controlled by the assignment of 

initial conditions. Therefore, theorems 1.1 and 1.2 predict that the manifold in which the 

relevant muscle pathways are embedded should be preserved and have the same geometry 

regardless of the evoked pattern or the elapsed time. This has indeed been reported by 

experimental studies [7]. 

Moreover, the fact that autonomous and continuous dynamics evolving along neural manifolds 

follow the conditions of Picard's existence and uniqueness theorem implies that two different 

trajectories should never cross each other. This imposes conditions on the intrinsic dimensions 

of the manifold, which should be provided with additional degrees of freedom in order to 

disentangle different trajectories, as shown in Methods X.Y. The existence of such control 

directions has also been reported earlier in empirical investigations [48], [49]. 

Taken together, we believe that these results provide some initial evidence supporting our 

hypothesis. 

 

2.2.2 Attracting sets of neural activity 

One limitation of both theorems 2.1 and 2.2 is that, although the approximation of flows is 

universal and arbitrarily accurate, it can only be so, in general, for a time interval of limited 

duration. Nevertheless, this can be overcomed by providing stronger hypothesis. This will be 

achieved by assuring that all the approximated solutions eventually converge to stable limiting 

trajectories, as the following result suggests: 

Proposition 2.2: Suppose we have an autonomous system of differential equations induced by 

a function 𝐺 ∈ 𝐶1(ℝ𝑛, ℝ𝑛). Let 𝑈 ⊆ ℝ𝑛 be open and Ω ⊂ 𝑈 be a compact domain, and suppose 

further that there exist a family of 𝑙 ∈ ℕ periodic orbits, {𝑠𝑖(𝑡)}𝑖=1
𝑙 ⊆ Ω, such that, if 𝑥(𝑡) is a 

solution given an initial condition 𝑥0, then 

 ∀𝑥0 ∈ 𝑈 ∃𝑡𝑥0
∈ ℝ, 0 ≤ 𝑖 ≤ 𝑙 ∶ lim

𝑡→∞
‖𝑠𝑖(𝑡 − 𝑡𝑥0

) − 𝑥(𝑡)‖ = 0.  

In this case, given 𝜀 > 0 and any trajectory, 𝑥(𝑡) with 𝑥(0) ∈ Ω,  there exists a u-network 

(respectively a v-network) whose output, given appropriate initial conditions, fulfils that: 

 ‖𝑥(𝑡) − 𝑅𝑢(𝑡)‖ < 𝜀 ∀𝑡 ∈ ℝ+ (respectively ‖𝑥(𝑡) − 𝑅𝑣(𝑡)‖ < 𝜀 ∀𝑡 ∈ ℝ+). 
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This allows to extend the previous results for all forward time, allowing our neural models to 

approximate phase trajectories ad infinitum whenever the target system is endowed with stable 

periodic orbits, being these either fixed points or limit cycles.  

Attracting fixed points are traditionally used in the field of artificial neural networks as a tool for 

implementing auto-associative memory devices [50] which curiously often resort to low-rank 

weight matrices, just as in our approach [51], [52], although there the matrices are further 

restricted to be symmetric, unlike in our case. This splitting of the neural state space into 

different basins of attraction has been observed in the study of context-dependent episodic 

memory in the hippocampus [53] . 

Attracting fixed states of persistent neural responses also underpin much contemporary 

research on working memory, where stable bumps of neural activity have been found in the 

prefrontal cortex of animals prior to retrieval of task-related stored information [54]. 

Beyond fixed points, attractive limit cycles are also important objects in neurodynamics, as they 

are responsible for many robust oscillatory phenomena, such as in locomotion or respiratory 

patterns. An important class of biological neural circuits that have been shown to sustain 

intrinsic limit cycle oscillations are the central pattern generators (CPGs), which spontaneously 

support endogenous and repetitive fluctuations without the need for external periodic drive 

[55]. 

These different types of neural phenomena all have in common that they are based on locally 

attracting periodic phase trajectories, as the ones assumed in the hypothesis of proposition 2.2.  

Therefore, this result encompasses all these phenomena in the context of the universal 

approximative capabilities of firing rate networks. 

The statement of the previous proposition does not only intend to show the ability of 

connectionist models to implement attracting memory states or CPGs, which has already been 

achieved [14], [24], [56], [57], but also to demonstrate their universality in accomplishing these 

tasks, to prove that they can behave in this way persistently, and to show that an effective way 

to implement these functions is to use low-rank connectivity patterns, from which neural 

systems are expected to uphold neural manifold dynamics, as it has already been observed 

experimentally. 

 

2.2.3. Universal simulation of finite memory Turing machines 

In the study of computable functions, i.e., mappings for which there is an effective procedure to 

achieve the corresponding outputs, classical computational theory has relied on the Church-

Turing thesis, which basically states that any algorithm can be implemented by a Turing machine, 

and thus relies on this theoretical construct in order to tackle many theoretical problems in 

computational science. 

 Intuitively, a Turing machine is composed of an infinite tape consisting of many ordered symbols 

borrowed from a finite set, the alphabet, where only one of them, the empty symbol, is allowed 

to occur infinitely often; a set of states, one of which is the initial and some others the final 

acceptors; and a hypothetical device that can move along the tape so that once it has read a 

symbol, it is able to rewrite the cell of the tape and move in either direction to a new cell once 
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it has updated its state, thus implementing a transition function. For a deeper understanding of 

these concepts we refer the reader to any textbook about computation theory, such as [58]. 

The tape of the Turing machine store the problem’s information given some formal language 

[58], which the moving lecture device have the job to overwrite so as to terminate the 

computation. This sequentially manipulated tape, once the alphabet elements are indexed, can 

be thought as a natural number. We will say that a Turing machine have finite memory if it only 

performs interpretable computations on some compact set of ℕ, this is, if it is only defined over 

some set of tapes whose non-blank symbols are pushed to some common initial interval of finite 

length.  

It is the quest of this subsection to explore firing rate networks power for serial symbolic 

computation. Much of this effort will rely on [59], where it was proven that continuous time 

dynamical systems on ℝ3 have the power of universal computation, meaning they can simulate 

any arbitrary Turing machine. The way such simulation can be set up is by encoding each Turing 

machine’s configuration (this is, the present state, the whole infinite tape and the current cell 

location) as an open domain in phase space, and then to define the flow of the system such that 

it emulates the same transition function as that of the original Turing machine. See [59] or 

section 5.3 for more details. Mixing this idea with our previous results give rise to the following 

statement. 

Proposition 2.3: Given any compact set 𝑆 ⊂ ℕ and any computable function 𝑓: 𝑆 → ℕ , there 

exists a u-model (respectively a v-model) capable to implement an effective procedure for 𝑓. 

This simulation lies on a 3-dimensional, invariant and globally attractive manifold. 

Using the Church-Turing thesis, we can think of any effective procedure as the operations 

performed by a Turing machine. Following the previous notions of simulation, we can think of 

the settings of this Turing machine as open regions in the predicted 3-D neural manifold, being 

those sets of states sewed together by the phase trajectories implementing the transition 

function. These trajectories would be in charge to transit between different domains of the state 

space with distinct symbolic interpretations. Interestingly, tunnelling trajectories joining 

different state space regions have been showed to implement robust computations in 

recordings of the monkey cortex during decision-making tasks [11]. 

Also backing what is been established experimentally, this proposition shows that it is not 

necessary to have great dimensionality in order to implement powerful neural computations [5], 

[6], [10]. 

The fact that we have to settle for finite-memory computation is due to the fact that Turing 

universality is a theoretical notion, since no physical system such as neural circuits or modern 

computers can store infinite memory. Indeed, theoretical papers proving Turing universality of 

traditional discrete time neural networks either assume that these networks have unbounded 

precision [60], which is physically implausible, or that they can recruit more neurons, 

indefinitely, whenever they need more memory [61], which make the size of these networks 

effectively infinite. 

In the proof, section 5.3, it can be seen that our construction is robust under small perturbations 

of the neural trajectories, so that it could be, hypothetically, implemented by real noisy neural 

systems with intrinsic bounded precision. 
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2.3. Implications of low-rank connectivity 

The fully structured low-rank hypothesis that it was imposed on the connectivity as to show both 

the existence of neural manifolds and the emergence of computationally useful dynamics 

constitutes a sufficient condition for these purposes, but not a necessary one. Indeed, since 

invertible matrices form an open and dense subset in ℝ𝑁×𝑁, one could arbitrarily approximate 

any non-invertible connectivity array by a full-rank matrix, therefore obtaining some full-rank 

connectivity matrix with the same approximation power of the non-invertible one, thus 

discarding converse results. Nonetheless, the restriction of low-rank wirings could well have 

positive benefits for neural ensembles over other kinds of setups [25]. 

For instance, take the number of parameters, say 𝑝, needed in order to fully define the 

connectivity matrix when implementing an 𝑛 dimensional dynamical system. This measure will 

obviously depend on the size of the network, this is, the total number of neurons, N. If we 

consider that connectivity could lie anywhere in the 𝑁 × 𝑁 matrices space, the number of 

independent parameters needed to define the connections would be given by   𝑝 = 𝑁2, 

regardless of the dynamical system’s dimensionality. However, if we just take the family of 𝑛-

rank matrices into consideration, as theorems 2.1 and 2.2 suggest, since we just need to define 

𝑛 columns and the rest of them turn out to be linear combinations of the former, the ammount 

of independent parameters needed in order to fully define the connections, this time, works to 

be given by  𝑝 = 2𝑛(𝑁 − 𝑛).                   

Therefore, the number of degrees of freedom of the matrix depend linearly on 𝑁, instead of 

doing so quadratically, thus regularizing the connectivity in a way it can implement difficult tasks 

relying on a structured parsimonious connectivity of reduced complexity. Indeed, it’s been 

shown that low-rank structured networks generalize their behavior to novel stimulus better than 

their full dimensional counterpart [25]. 

 

An appealing characteristic of RNN modelling is that it allows both to explain specific aspects of 

experimental data and to generate empirically testable predictions [1], [22], [27]. These kinds of 

Figure 5: plots showing the number of parameters, p, needed to fully specify a connection matrix, versus the number of neurons, N, of the network. 
Different dimensionalities for the simulated dynamical systems, n, are supposed. It can be seen how the number of parameters needed in the low-
rank setup is of order N, whereas in the full-rank scenario p equals the number of matrix components, 𝑁2. It is further shown in the figure, as it 
can be readily seen in the derived expressions for p, that the low-rank function for p corresponds to the tangent line of the full-rank curve, whose 
tangency point is given by the number of dimensions of the implemented dynamics. 
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explanations have been emphasized in this study, where hypothetical mechanisms for the 

implementation of muscular control, attracting memory states, central pattern generation and 

serial symbolic processing were developed. 

On this matter, interesting predictions can be done based on the low-rank regularization 

hypothesis. For instance, suppose we would like to know the value of some descriptive statistics 

of the model, like the correlation between pairs of individual units. This could be done 

individually for each solution, subsequently averaging over some set of initial conditions in 

neural state space (see methods, 5.4). Under the low rank hypothesis, and given the existence 

and uniqueness theorem, any of these solutions would be completely specified once determined 

the initial conditions plus the  𝑝 = 2𝑛(𝑁 − 𝑛) number of parameters needed to fully determine 

the underlying connectivity. Even if we included individual firing thresholds and membrane time 

constants to the model, once we average over the relevant set of initial conditions the number 

of independent parameters needed in order to fully determine the correlation matrix of the 

model will be of order 𝑁, instead of the order 𝑁2 values one would expect in the full-rank 

structure and in the random connectivity cases.  

It turns out this somewhat surprising result have been empirically confirmed in the upper 

sensory cortex, where it was shown that the 𝑁 correlations from individual neurons to the 

summated activity of the whole network suffice to determine a wide fraction of the entire matrix 

of pairwise correlations between network cells [62], showing it is only needed order 𝑁 

independent parameters so as to grasp the whole order 𝑁2 dimensional correlation structure. 

Again, here the low-rank hypothesis is a sufficient condition, but not necessary. Indeed, an 

alternative stronger hypothesis would be to suppose neural data remained on a completely flat 

n-dimensional surface, as then a straightforward PCA would show the covariance matrix, and 

thus also that of the correlations, would have rank equal to n, and therefore the number of 

independent defining parameters would also be of order 𝑁, using preceding arguments 

(methods 5.4). 

Nonetheless, restricting the neural manifold to be flat is a rather strong and unrealistic 

assumption, as even in the v-model the observed manifold is not Euclidian, since to obtain the 

firing rates we still must apply a non-linear transfer function, F [18]. Thus, the low-rank 

hypothesis turns out to be a plausible frame from which to make sense of the seemingly 

parsimonious correlations observed between individual neurons in the cortex. Indeed, in [62] 

the connectivity matrix was already assumed to be low-rank, since in order to explain how 

enhanced nonspecific connectivity increases population coupling it was assumed that inhibitory 

strength relied exclusively on post-synaptic neurons, thus creating repeated columns in the 

connectivity matrix (see [62], Supplementary Materials).  

The prediction of this empirically confirmed cortical correlation structure supposes a further sign 

of the predictive power of the theory presented so far. 

 

3. Discussion 

Up to now, there have been presented theoretical results, based on rigorous mathematical 

tools, which have achieved the following goals: to give sufficient conditions for the formation of 

invariant, stable and low-dimensional manifolds in firing rate models, consisting on restricting 

the connectivity arrays to low-rank structured matrices; to prove these models can both 
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implement, with arbitrary precision, input-driven control dynamical systems; to go through 

some of the theoretical consequences of the previous results, presenting propositions 

concerning the production of muscular activity patterns, the infinite time approximation near 

attracting states and the virtual power of universal computation, all of this within the predicted 

neural manifolds; and finally, to show how low-rank connectivity could provide circuits of a 

useful regularization strategy, and to present how this hypothesis truly predicts empirically 

validated results concerning cortical correlations. 

When it comes to the network setup, a strong link between universal approximation capabilities 

and neural manifolds have been revealed, showing that a condition guaranteeing the universal 

implementation of flows is also a signature of low-dimensional dynamics, namely, the low-rank 

connectivity structure. 

 As to the external control of the modelled behavioral and cognitive phenomena, we have used 

many times the hypothesis that  this could often be supplied by the driven modification of the 

initial conditions along the manifold [25], [63]. Concerning external continuous input driving, 

theorems 2.1 and 2.2 offer vast possibilities for the simulation of externally controlled on-line 

computing systems, similarly to the unstructured models of liquid state machines [64], [65].  

Some of the previous achievements have similar precedents in the literature. For instance, 

regarding the relation between low-rank connectivity, neural manifold dynamics and universal 

approximation properties, akin results were recently announced in [28], [29] as well as in [16], 

annex 1. In all cases, however, these relations where only explored for the v-model, as we have 

no evidence concerning the existence of the same results for the u-model in the literature. 

Regarding the universal approximation of dynamical systems by neural networks, similar 

theorems were also announced previously. For instance, in [66], theorem 2.2 was proven for the 

less general class of autonomous systems; in [67], driving trajectories where included, although 

these where internally generated as the model continued to be essentially autonomous; in [68], 

[69], results allowing external driving where proven for a third class of models with less 

relevance in the neuroscientific research; in [70], a result similar to our theorem 2.1 was stated, 

albeit a lesser level of detail. 

Comparable evidence also appeared recently in [28], although the proof there did not integrate 

biases in transfer functions and had thus to rely on restricted tonic inputs. We think the 

incorporation of variable firing thresholds in the model is not only computationally useful, but 

also supported by evidence [71].  

A question arises from the universal realization of control dynamical systems by firing rate 

models: in top-down studies where RNN where optimized to perform animal behavioral tasks 

[10], [11], [19], [20], was the similarity between the simulations and the data due to a robust 

physiologic correspondence between computational models and the targeted neural systems, 

or was it rather that both biological and artificial systems had adopted similar computational 

strategies in order to perform the same task? After all, universal simulation of dynamical systems 

applies under a large class of non-realistic transfer functions (in fact, it is possible for any non-

polynomial mapping [72]), and thus the striking similarities between biologic and simulated 

neural systems could well be a matter of shared universal computational capabilities, without 

needing a supposedly underlying common functional structure between them.  

Concerning this dilemma, bottom-up research shows that firing rate models, whenever 

endowed with appropriate transfer functions and biophysically based parameters, are able to 
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replicate the frequential behavior of more realistic spiking models under different kinds of input 

currents [73]–[75], supporting the hypothesis that physiological features of individual neurons 

uphold the emergent computational phenomena unfolding at the population level. 

Considering the limitations of our approach, the low-rank hypothesis is a rather strong 

assumption, since the provability of a random matrix to be singular is zero. Although we have 

seen that this hypothesis endows neural ensembles with vast computational capabilities, it 

would be expected from real circuits to have full rank connection matrices, which could 

nevertheless lay close enough to the mentioned low-rank arrays to possess the same properties.  

In this wider scenario, however, the robustness of the derived neural manifolds to small 

connectivity perturbations should be considered. It should also be explored the mechanisms by 

which neural populations could, hypothetically, implement these nearly low-rank connectomes.  

It could also be noted the relative simplicity of the models studied, which did not incorporate 

many biophysically relevant parameters, such as synaptic time constants, in order to make the 

equations analytically tractable. Regarding synaptic homogeneity, however, it could be assumed 

that, since the approach adopted so far has effectively ignored learning mechanisms, the 

absence of different time constants could be a consequence of excluding synaptic potentiation 

from the modelled phenomena.  

We think the results presented so far constitute a mathematical theory with a great explanatory 

power, which is consistent with many recent discoveries in systems neuroscience [1], [5], [12]. 

 From this perspective, many internal processes controlling animal behavior, like the 

coordination of movements, the robust generation of central patterns or the computations 

mediating between stimulus and responses, are all understood as dynamical systems, externally 

controlled by either switching between initial conditions or by directly driving their vector fields. 

These continuous dynamics can be simulated by large scale neural ensembles, recurrently wired 

through low-rank connectivity patterns. Those mutually interacting units are capable to 

implement arbitrary flows through nonlinear feedback, being these dynamics parallelly and 

massively distributed across neural internal states, unfolding at the population level. Thus, 

neural correlates could not be understandable at the scale of the single neuron, whose individual 

activity reflects a raw mixture of the implemented dynamics, but only through the network-wide 

spread patterns of collective activity. These emergent motifs would, in turn, be embedded in a 

lower-dimensional manifold, a byproduct of the low-rank wiring, which with good reason could 

be considered the geometric scaffold of the implemented computations. 

In particular, this paradigm possesses a great power to generate cognitive and psychologically 

relevant interpretations from modelled neural data. Within it, the study of the physiological 

basis of memory and cognition can be elegantly interpreted from a geometrical lens. For 

instance, concerning the study of procedural memory, the short-term storage of task-relevant 

information, called working memory, could be understood as temporary persistent states of the 

manifold dynamics, while the long-term retention of the rules governing the adaptative 

performance of a given task, also known as reference memory, could be inferred from the 

dynamics defining the input-driven transitions in neural state space [76].  

In the same direction, and considering proposition 2.3, the dynamics governing the patterns 

evolving within the neural manifold could be understood as a syntactically structured set of 

rules, defining computations in terms of serial manipulation of symbols, being its 

implementation grounded in the network wiring. This emergentist proposal is backed by the 
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connectionist approach to cognitive science, where neurons are understood to be sub-symbolic 

processors from which parallelly distributed processes can be inferred. This way, neural 

manifolds could be considered as a point of access to these spread, somewhat blurred 

computations, a place from where to elucidate the mechanisms by which conceptually 

intelligible phenomena emerge from raw sub-symbolic neural correlates [77]–[79]. 

In summary, the present research has tackled the study of various neural phenomena using 

analytical methods, proving, on the one hand, under which conditions attracting and invariant 

manifolds can be found in neural systems and, on the other hand, how these conditions are 

linked to the emergence of universal computational capabilities. In doing so, it has been possible 

to generalize previous results to a wider range of firing rate models, as well as to extend such 

developments to more general frameworks of driven non-autonomous dynamics. Consequently, 

statements concerning the topological equivalence of various firing rate models have been 

achieved and, in addition, falsifiable predictions have been generated and subsequently 

contrasted, satisfactorily, with existing empirical data. All the above represents a contribution 

to strengthen our analytic understanding of the equations ruling firing rate networks, as well as 

to build a theoretical framework from which geometric and computational aspects of neural 

dynamics are inseparably understood.  
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5. Methods 

Throughout this section, we will often consider equations (1.1) and (1.2) in vector notation, 

defining the vector transfer function  𝐹: ℝ𝑁 → ℝ𝑁 as 𝐹(𝑥) = (𝐹1(𝑥1), … , 𝐹𝑁(𝑥𝑁))𝑇. Then, if 

𝑊, 𝜔 are the connectivity matrices, the equations for the u-model and the v-model are, 

respectively,  

𝑢′(𝑡) + 𝑢(𝑡) = 𝐹(𝑊𝑢(𝑡) + 𝜔𝐼(𝑡))                                                                                                    (5.1) 

𝑣′(𝑡) + 𝑣(𝑡) = 𝑊𝐹(𝑣(𝑡)) + 𝜔𝐼(𝑡)                                                                                                    (5.2) 

In the following sections, all the results presented in the text are going to be proved using diverse 

mathematical techniques from dynamical systems theory, topology and real analysis. Before 

every proof the most crucial results concerning these mathematical methods are going to be 

presented. However, some basic knowledge about the previous subjects is going to be assumed, 

so the reader will be redirected to introductory textbooks on these topics whenever it is 

necessary. 

 

5.1. Proof of theorem 1.1, theorem 1.2 and proposition 1.1. 

Throughout this paper, the notions of invariant and attracting sets have been used many times. 

We now formalize these concepts:  

Definition 5.1.1: Let 𝑥(𝑡) be some solution of a continuous, finite dimensional dynamical system 

for a given initial condition, 𝑥0. We say a set 𝑆 is invariant if 𝑥(𝑡) ∈ 𝑆 ∀𝑥0 ∈ 𝑆, 𝑡 ∈ ℝ; we say a 

set 𝑆 is positively invariant if 𝑥(𝑡) ∈ 𝑆 ∀𝑥0 ∈ 𝑆, 𝑡 ∈ ℝ+. 

Definition 5.1.2: Let 𝑝 ∈ ℝ𝑛, 𝑆 ⊂ ℝ𝑛; Let 𝑑(𝑝, 𝑆) = inf
𝑞∈𝑆

‖𝑝 − 𝑞‖; Let 𝑥(𝑡) be some solution of a 

continuous, finite dimensional dynamical system for a given initial condition, 𝑥0. We say 𝑆 is 

globally attracting if lim
𝑡→+∞

𝑑(𝑥(𝑡), 𝑆) = 0 ∀𝑥0 ∈ ℝ𝑛. 

The notion of manifold has also appeared ubiquitously in the text. We present here its rigorous 

definition: 

Definition 5.1.3: A 𝑛-dimensional manifold is any Hausdorff, second-countable topological 

space, 𝑋, for which for every point 𝑥 ∈ 𝑋 there exists a neighbourhood homeomorphic to some 

open set of the Euclidian space, ℝ𝑛. 

Here it is not intended to make a comprehensive introduction to manifold topology, so we refer 

the reader to any elementary textbook on topology covering manifolds, like [80], for a thorough 
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exposition of these and other topics. Nonetheless, we present here the notion of 

homeomorphism, as it is going to be fundamental. 

Definition 5.1.4: Let 𝑋, 𝑌 be topological spaces. A map ℎ: 𝑋 → 𝑌 is a homeomorphism whenever 

it is continuous, invertible and have a continuous inverse.  

Homeomorphic sets can be considered as equivalent in a topological sense, since each 

neighbourhood in one space will be mapped to a unique neighborhood of the other, and vice 

versa. It is thus that homeomorphisms are regarded as topological isomorphisms.  

To prove the mentioned results, we present the following lemmas: 

Lemma 5.1.1: Suppose 𝑊 ∈ ℝ𝑁×𝑁. Then, 𝑟𝑎𝑛𝑘(𝑊) = 𝑛 if and only if there exist some rank 𝑛 

matrices  𝐵 ∈ ℝ𝑁×𝑛, 𝐴 ∈ ℝ𝑛×𝑁 such that 𝑊 = 𝐵𝐴 

Proof: If 𝑊 = 𝐵𝐴, the columns of 𝑊 are all linear combinations of the 𝑛 linearly independent 

columns of 𝐵. Since 𝑟𝑎𝑛𝑘(𝐴) = 𝑛, the columns of 𝑊 span the same column space of 𝐵, proving 

the forward result; If 𝑟𝑎𝑛𝑘(𝑊) = 𝑛, suppose {𝑏1, … ,  𝑏𝑛} is a basis for the image of 𝑊. Then, 

there exist unique scalars 𝑎𝑖𝑗  such that 𝑊 = (∑ 𝑎𝑖1𝑏𝑖, … ,𝑛
𝑖=1 ∑ 𝑎𝑖𝑁𝑏𝑖) = 𝐵𝐴,𝑛

𝑖=1  where the 

columns of 𝐵 are given by 𝑏𝑖 and the elements of 𝐴 by 𝑎𝑖𝑗. For the fundamental theorem of 

linear algebra, 𝑟𝑎𝑛𝑘(𝐴) = 𝑟𝑎𝑛𝑘(𝑊) = 𝑛. This concludes the proof  ∎ 

Lemma 5.1.2: Suppose {𝑓𝑛} is a sequence of continuous functions of the form 𝑓𝑛: ℝ𝑛 → ℝ, and 

suppose it is Cauchy under the uniform norm, meaning that ∀𝜀 > 0, ∃𝑛0 ∈ ℕ such that  

|𝑓𝑛(𝑥) − 𝑓𝑚(𝑥)| < 𝜀 ∀𝑛, 𝑚 ≥ 𝑛0, 𝑥 ∈ ℝ𝑛 Then, there exists a continuous function 𝑓 fulfilling 

that {𝑓𝑛} → 𝑓 uniformly, this is, ∀𝜀 > 0, ∃𝑛0 ∈ ℕ such that |𝑓𝑛(𝑥) − 𝑓(𝑥)| < 𝜀 ∀𝑛 ≥ 𝑛0,𝑥 ∈ ℝ𝑛 

For a proof of this important result, see any textbook on real analysis covering successions and 

series of functions, such as [81], [82]. We now turn to prove the theorems of section 1.1. 

Proof of theorem 1.1: If 𝑟𝑎𝑛𝑘(𝑊) = 𝑁, it is verified trivially that ℳ = ℝ𝑁. If, for the contrary, 

𝑟𝑎𝑛𝑘(𝑊) = 𝑛 < 𝑁, we know from lemma 5.1 that 𝑊 = 𝐵𝐴, where both the columns of B and 

the rows of A are linearly independent vectors. We are going to perform the change of variables 

(𝑥(𝑡)
𝑧(𝑡)

) = (𝐴
𝑀

)𝑢(𝑡), where the matrix 𝑀 has the 𝑁 − 𝑛 basis vectors of the kernel of 𝑊 as its rows. 

In this new basis, the system can be expressed as: {
𝑥′(𝑡) = −𝑥(𝑡) + 𝐴𝐹(𝐵𝑥(𝑡) + 𝜔𝐼) (∗)

𝑧′(𝑡) = −𝑧(𝑡) + 𝑀𝐹(𝐵𝑥(𝑡) + 𝜔𝐼)         
 

where 𝐼 is, by hypothesis, a constant input. Let’s see, for later, that if (𝑥(𝑡)
𝑧(𝑡)

) , (𝑥(𝑡)
𝑧̃(𝑡)

) are both 

solutions of the previous system of ordinary differential equations (ODEs) , then 

 |𝑧𝑖(𝑡) − 𝑧̃𝑖(𝑡)| = |𝑧𝑖(0) − 𝑧̃𝑖(0)|𝑒−𝑡  ∀1 ≤ 𝑖 ≤ 𝑁 − 𝑛, since  
𝑑

𝑑𝑥
(𝑧𝑖(𝑡) − 𝑧̃𝑖(𝑡)) = −(𝑧𝑖(𝑡) − 𝑧̃𝑖(𝑡))  

We will now focus on the study of the system of ODEs given by (∗) plus the i-th component of 

𝑧(𝑡), which is passively driven by 𝑥(𝑡). We will label this 𝑛 + 1 dimensional autonomous system 

by (∗∗), and their solutions are going to be represented as (𝑥(𝑡)
𝑧𝑖(𝑡)

).  

Now, we proceed to define some sets: let 𝑆𝑖0

+ = {(𝑥
𝑧𝑖

) ∈ ℝ𝑛+1: 𝑧𝑖 = 𝜅}, where 𝜅 ≔ ∑ |𝑚𝑖𝑗|𝑖,𝑗 , 

being 𝑚𝑖𝑗  the components of 𝑀; if 𝑀𝑖 is the i-th row of 𝑀,  then let  

𝑆𝑖𝑡

+ = {(
𝑥

𝑧𝑖

) ∈ ℝ𝑛+1: 𝑧𝑖 = 𝑒−𝑡(𝜅 + ∫ 𝑒𝑠𝑀𝑖𝐹(𝐵𝑥(𝑠) + 𝜔𝐼)𝑑𝑠), ∀𝑥: 𝑥′(𝑠) = −𝑥(𝑠) + 𝐴𝐹(𝐵𝑥(𝑠) + 𝜔𝐼)
𝑡

0

} 
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so that the previous set is the image of 𝑆𝑖0

+ under the flow of (∗∗) after a time 𝑡; we can define, 

analogously, 𝑆𝑖0

− = {(𝑥
𝑧𝑖

) ∈ ℝ𝑛+1: 𝑧𝑖 = −𝜅} ,and 𝑆𝑖𝑡

−, in the same way, making again the change                 

𝜅 ↦ −𝜅 ; finally, we define the set 𝑇𝑖0
= {(𝑥

𝑧𝑖
) ∈ ℝ𝑛+1: −𝜅 ≤ 𝑧𝑖 ≤ 𝜅}, so that 𝑇𝑖0

 is the closed 

set which includes the origin and whose frontier is given by 𝜕𝑇𝑖0
= 𝑆𝑖0

+ ∪ 𝑆𝑖0

−.  

It can be checked that 𝑇𝑖0
 is positively invariant. Indeed, 𝑧𝑖(−𝑧𝑖 + 𝑀𝑖𝐹(𝐵𝑥 + 𝜔𝐼)) < 0  for 

every (𝑥
𝑧𝑖

) ∈ ℝ𝑛+1\𝑇𝑖0
, since, by definition, 𝐹 is bounded by 1. Thus, no trajectory can 

escape 𝑇𝑖0, as, by the mean value theorem, the contrary would imply the existence of a time 

𝑐: 𝑧𝑖(𝑐) 𝑧𝑖′(𝑐) > 0. A similar argument can be used to show that 𝑇𝑖0
 is globally attracting. 

We now prove that, for all 0 ≤ 𝑡, there exists a continuous function 𝑓𝑖𝑡

+: ℝ𝑛 → ℝ such that  

𝑆𝑖𝑡

+ = {(
𝑥

𝑧𝑖
) ∈ ℝ𝑛+1: 𝑧𝑖 = 𝑓𝑖𝑡

+(𝑥)} 

Indeed, given 𝑥0 ∈ ℝ𝑛, let 𝑥(𝑡) be the solution of (∗) with 𝑥(0) = 𝑥0, which exists and is unique 

for all ℝ, since the system (∗) is globally Lipschitz. Then: 

 𝑓𝑖𝑡

+(𝑥0) = 𝑒−𝑡(𝜅 + ∫ 𝑒𝑠𝑀𝑖𝐹(𝐵𝑥(𝑠 − 𝑡) + 𝜔𝐼)𝑑𝑠)
𝑡

0
. The fact that 𝑓𝑖𝑡

+ is continuous comes from 

the continuity of the flow. Analogously, we can also define continuous functions 𝑓𝑖𝑡

− such that 

𝑆𝑖𝑡

− = {(𝑥
𝑧𝑖

) ∈ ℝ𝑛+1: 𝑧𝑖 = 𝑓𝑖𝑡

−(𝑥)}. 

Let’s now see that 𝑓𝑖𝑡

+ ≤ 𝑓𝑖𝑠

+ ∀𝑠 < 𝑡. If the contrary held, ∃𝑥0 ∈ ℝ𝑛, 𝑠 < 𝑡 :  𝑓𝑖𝑠

+(𝑥0) < 𝑓𝑖𝑡

+(𝑥0). 

In this case, let 𝑥(𝑡) be the solution of (∗) with 𝑥(0) = 𝑥0, and 𝑧𝑖(𝑡), 𝑧̃𝑖(𝑡) be such that 

(𝑥(𝑡)
𝑧𝑖(𝑡)

) , (𝑥(𝑡)
𝑧̃𝑖(𝑡)

) are both solutions of the 𝑛 + 1 dimensional system, (∗∗). Suppose further that   

𝑧𝑖(0) = 𝑓𝑖𝑠

+(𝑥0), 𝑧̃𝑖(0) = 𝑓𝑖𝑡

+(𝑦0). Then, by the definition of 𝑆𝑖𝑡

+, 𝑧𝑖(−𝑠) = 𝑧̃𝑖(−𝑡) = 𝜅. But since 

we showed 𝑇𝑖0
 is positively invariant, 𝑧̃𝑖(−𝑠) ≤ 𝜅. Thus, using Boltzano’s theorem, ∃𝑐 ∈ [−𝑠, 0) 

such that 𝑧𝑖(𝑐) = 𝑧̃𝑖(𝑐). This, however, contradicts Picard’s existence and uniqueness theorem, 

thus proving our claim that the functions 𝑓𝑖𝑡

+ are monotonically decreasing. Using the same 

procedure, it can be shown that 𝑓𝑖𝑠

− ≤ 𝑓𝑖𝑡

− ∀𝑠 < 𝑡, being this complementary set of functions 

monotonically increasing. 

We now define a sequence of functions, {𝑓𝑖𝑛
},  given by 𝑓𝑖𝑛

=
1

2
(𝑓𝑖𝑛

− + 𝑓𝑖𝑛

+). We claim this 

sequence is Cauchy under the uniform norm. To see this, let 𝜀 > 0 be given; choose a natural 

number 𝑛0 > 𝑙𝑛(
2𝜅

𝜀
) so that |𝑓𝑖𝑛0

− (𝑥) − 𝑓𝑖𝑛0

+ (𝑥)| = 2𝜅𝑒−𝑛0 < 𝜀 ∀𝑥 ∈ ℝ𝑛, using what  we proved 

earlier. Because of monotony, 𝑓𝑖𝑛0

− ≤ 𝑓𝑖𝑛

− ≤ 𝑓𝑖𝑛
≤ 𝑓𝑖𝑛

+ ≤ 𝑓𝑖𝑛0

+  ∀𝑛0 ≤ 𝑛, and therefore                         

|𝑓𝑖𝑛
(𝑥) − 𝑓𝑖𝑚

(𝑥)| < |𝑓𝑖𝑛0

− (𝑥) − 𝑓𝑖𝑛0

+ (𝑥)| < 𝜀 ∀𝑛0 ≤ 𝑛, 𝑚. Since {𝑓𝑖𝑛
} is a Cauchy sequence, 

lemma 5.2 stablishes the existence of a continuous function, 𝑓𝑖, such that {𝑓𝑖𝑛
} → 𝑓𝑖 uniformly.  

Define 𝑇𝑖𝑛
= {(𝑥

𝑧𝑖
) ∈ ℝ𝑛+1: 𝑓𝑖𝑛

−(𝑥) ≤ 𝑧𝑖 ≤ 𝑓𝑖𝑛

+(𝑥)}, which forms a sequence of nested closed 

sets, 𝑇𝑖𝑚
⊂ 𝑇𝑖𝑛

∀𝑛 ≤ 𝑚. Notice that every 𝑇𝑖𝑛
 is positively invariant and globally attracting given 

the flow of (∗∗), since each of them is an image of 𝑇𝑖0
under the flow map. Moreover, 

⋂ 𝑇𝑖𝑛
= {( 𝑥

𝑧𝑖
) ∈ ℝ𝑛+1: 𝑧𝑖 = 𝑓𝑖(𝑥)}𝑛∈ℕ , since {𝑓𝑖𝑛

+}, {𝑓𝑖𝑛

−} → 𝑓𝑖 uniformly. With all this, the set 

⋂ 𝑇𝑖𝑛𝑛∈ℕ  is found to be positively invariant and globally attractive in the 𝑛 + 1 dimensional 

dynamical system given by (∗∗). The fact that this set is also invariant for all backward time 
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comes from the fact that ℝ𝑛+1\ ⋂ 𝑇𝑖𝑛𝑛∈ℕ  is disconnected, being it the union of two connected 

invariant sets.  

To finish the proof, we repeat the previous reasoning for every 1 ≤ 𝑖 ≤ 𝑁 − 𝑛, finding that the 

set  ℳ = {(𝑥
𝑧
) ∈ ℝ𝑁: 𝑧 = 𝑓(𝑥)} is invariant and globally attracting in the original 𝑁 dimensional 

system, where 𝑓(𝑥) = (𝑥1, … , 𝑥𝑛, 𝑓1(𝑥), … ,  𝑓𝑁−𝑛(𝑥)) . Since 𝑓: ℝ𝑛 → ℳ is a homeomorphism, 

ℳ is also a manifold. This concludes the proof    ∎ 

Proof of theorem 1.2: Again, if 𝑟𝑎𝑛𝑘(𝑊) = 𝑁 it is verified trivially that our Euclidean manifold 

is given by ℝ𝑁. If 𝑟𝑎𝑛𝑘(𝑊) = 𝑛 < 𝑁, we decompose 𝑊 = 𝐵𝐴. It is going to be proven that 

ℳ = {𝑣 ∈ ℝ𝑁: 𝑣 = 𝐵𝑥 + 𝜔𝐼, 𝑥 ∈ ℝ𝑛} is globally attractive and invariant. Let 𝑀 be the matrix 

whose rows span the normal space of ℳ, so that 𝑀𝐵 gives the null (𝑁 − 𝑛) × 𝑛 matrix. Let 𝑣(𝑡) 

be any solution of the v-model. Then: 
𝑑

𝑑𝑡
𝑀𝑣(𝑡) = −𝑀𝑣(𝑡) + 𝑀𝜔𝐼. Solving this linear 

differential equation, we find that 𝑀𝑣(𝑡) = (𝑀𝑣(0) − 𝑀𝜔𝐼)𝑒−𝑡 + 𝑀𝜔𝐼. Therefore, given any 

𝑡 ∈ ℝ: 

𝑣(𝑡) ∈ ℳ ⟺ 𝑀(𝑣(𝑡) − 𝜔𝐼) = 0 ⟺ 𝑀(𝑣(0) − 𝜔𝐼) = 0 ⟺ 𝑣(0) ∈ ℳ 

With this we proved ℳ is invariant. To show it is also globally attractive it is enough to see that, 

for any initial condition, lim
𝑡→+∞

𝑀(𝑣(𝑡) − 𝜔𝐼) = 0   ∎ 

For proposition 1.1, we define the notion of topological conjugacy: 

Definition 5.1.5: Suppose we have two 𝐶1 finite-dimensional dynamical systems, and suppose 

there exists a homeomorphism, ℎ, such that, for any solution of the first system, 𝑥(𝑡), we have 

that ℎ(𝑥(𝑡)) is also a solution of the second one. Then, we say that these dynamical systems are 

topologically conjugate. The homeomorphism, ℎ, is called the conjugacy. 

A more general definition, which the previous one can be shown to fulfil, would be to say that 

two dynamical systems are conjugate whenever there exists a conjugacy which commutes with 

the flow map. However, the previous definition is enough for the scope of this work.  With this, 

we are ready to prove the last result of section 1.1, which will rely heavily on the previous proofs. 

Proof of proposition 1.1: Suppose 𝑢(𝑡), 𝑣(𝑡) are solutions of the u-model and the v-model, 

respectively. In the case where 𝑟𝑎𝑛𝑘(𝑊) = 𝑁, choose ℎ: ℝ𝑁 → ℝ𝑁: ℎ(𝑥) = 𝑊𝑥 + 𝜔𝐼 to be the 

conjugacy, and verify that, for every solution 𝑢(𝑡) of the u-model, we have that 

 
𝑑

𝑑𝑡
(𝑊𝑢(𝑡) + 𝜔𝐼) = −𝑊𝑢(𝑡) + 𝑊𝐹(𝑊𝑢(𝑡) + 𝜔𝐼) + 𝜔𝐼 − 𝜔𝐼 = −ℎ(𝑢(𝑡)) + 𝑊𝐹 (ℎ(𝑢(𝑡))) + 𝜔𝐼  

Thus, 𝑣(𝑡) = ℎ(𝑢(𝑡) is a solution of the v-model, and therefore ℎ is a conjugacy. 

In the case of 𝑟𝑎𝑛𝑘(𝑊) = 𝑛 < 𝑁, decompose 𝑊 = 𝐵𝐴 . Without loss of generality, we can 

assume the columns of 𝐵 form an orthonormal basis of the image of 𝑊. Let’s call 𝒩  to the 𝑛-

dimensional Euclidean manifold obtained in theorem 1.2, and 𝑥 to the 𝑛-dimensional vector 

whose elements define the coordinates of 𝒩 in the base given by 𝐵. Then, 𝑣(𝑡) ∈ 𝒩 ⇔ 𝑣(𝑡) =

𝐵𝑥(𝑡) + 𝜔𝐼. Since 𝑥(𝑡) = 𝐵𝑇(𝑣(𝑡) − 𝜔𝐼), we have that any 𝑥(𝑡) is the solution of   

𝑥′(𝑡) = −𝑥(𝑡) + 𝐴𝐹(𝐵𝑥(𝑡) + 𝜔𝐼)      (∗) 

This defines the neural manifold dynamics in 𝒩. 

Now consider any solution, 𝑢(𝑡),  on the u-model’s neural manifold, ℳ, and decompose          
𝑊 = 𝐵𝐴  in the same way. Suppose that  𝑥(𝑡) is some solution of (∗), and perform a change of 
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basis such that (𝑥(𝑡)
𝑧(𝑡)

) = (𝐴
𝑀

)𝑢(𝑡), where the matrix 𝑀 has a basis of 𝑊′s kernel as it’s rows, as 

done in the proof of theorem 1.1. There, it was proved that the solutions of the u-model in their 

neural manifold, ℳ, are given by (𝑥(𝑡)
𝑧(𝑡)

) = 𝑓(𝑥(𝑡)).  

To finish the proof, define the homeomorphism: 

ℎ: 𝒩 → ℳ: ℎ(𝑣) = (
𝐴

𝑀
)

−1

𝑓(𝐵𝑇(𝑣 − 𝜔𝐼)) for all 𝑣 ∈ 𝒩. 

 It is now straightforward to see that, for every solution 𝑣(𝑡) ∈ 𝒩 of the v-model, we have a 

solution ℎ(𝑣(𝑡)) ∈ ℳ of the u-model, as we wanted.   ∎ 

 

5.2. Proof of theorems 2.1 and 2.2 

In this subsection, theorems expressing the universal approximation capabilities of firing rate 

models are going to be proved. For this reason, we present the following preliminary work:  

Theorem 5.2.1 (approximation by sigmoidal superposition): Let 𝐾 be a compact set of ℝ𝑛, 

and𝑓: 𝐾 → ℝ𝑚 a continuous function.  Then, given an arbitrarily small 𝜀 > 0 , there are 𝑁 ∈ ℕ 

and matrices A (m× 𝑁), B (𝑁 × 𝑛), 𝜃 (𝑁 × 1) such that: 

max
𝑥∈𝐾

‖𝑓(𝑥) − 𝐴𝜎(𝐵𝑥 + 𝜃)‖ < 𝜀 

where 𝜎: ℝ → (0, 1) is a sigmoid map, this is, a monotonically increasing continuous function 

such that lim
𝑥→−∞

𝜎(𝑥) = 0, lim
𝑥→+∞

𝜎(𝑥) = 1.   The theorem also holds for more general 

functions, as long as they are non-polynomic [72]. 

For proofs of this important result in neural network theory, see [83]–[85]. 

In the following proofs, we will need a stronger definition of continuity: 

Definition 5.2.1: Let 𝑈 ⊂ ℝ𝑚. We say a function 𝑓: 𝑈 → ℝ𝑚 is Lipschitz continuous if there 

exists a constant 𝐶 > 0 such that ‖𝑓(𝑥) − 𝑓(𝑦)‖ ≤ 𝐶‖𝑥 − 𝑦‖∀𝑥, 𝑦 ∈ 𝑈; we say a function 

defined as before is locally Lipschitz if for every 𝑝 ∈ 𝑈 there exists a neighborhood of 𝑝, 𝑈𝑝, 

where 𝑓|𝑈𝑝 is Lipschitz continuous.  

Lemma 5.2.1: If a function is differentiable, then it’s locally Lipschitz; if a function is locally 

Lipschitz, then it is Lipschitz in every compact set 𝐾 ⊂ 𝑈. 

For a definition of compactness, see the following subsection. 

Lemma 5.2.2: Let 𝑈 ⊂ ℝ𝑛 × ℝ be an open set containing (𝑥0, 0) and suppose that the 

maps 𝐹, 𝐹̃: 𝑈 → ℝ𝑛 are locally Lipschitz. Suppose also that ‖𝐹(𝑥, 𝑡) − 𝐹̃(𝑥, 𝑡)‖ < 𝜀   ∀(𝑥, 𝑡) ∈ 𝑈  

for some 𝜀 > 0. Let 𝐶  be a Lipschitz constant in 𝑥 for 𝐹 . If 𝑥(𝑡), 𝑦(𝑡): 𝐼 ⊂ ℝ → ℝ𝑛 are solutions, 

respectively, of the systems of equations given by 𝑥′(𝑡) = 𝐹(𝑥(𝑡), 𝑡), 𝑦′(𝑡) = 𝐹̃(𝑦(𝑡), 𝑡), on 

some interval 𝐼 and these solutions fulfil that 𝑥(0) = 𝑦(0) = 𝑥0, then: 

                                                      ‖𝑥(𝑡) − 𝑦(𝑡)‖ <
𝜀

𝐶
(𝑒𝐶|𝑡| − 1)  ∀𝑡 ∈ 𝐼  

For the proofs of the previous lemmas, we redirect the reader to [86]. 
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Lemma 5.2.3: let 𝑣(𝑡) ∈ ℝ𝑛 solution of the system 𝑣′(𝑡) = −𝑣(𝑡) + 𝑓(𝑣(𝑡)), where         

𝑓: ℝ𝑛 → ℝ𝑛 is  Lipschitz, and 𝑢(𝑡) ∈ ℝ𝑛 be solution of 𝑢′(𝑡) = −𝑢(𝑡) + 𝑓(𝑣(𝑡)). Then,  

 𝑢(0) = 𝑣(0) ⇒ 𝑢(𝑡) = 𝑣(𝑡) ∀𝑡 ∈ ℝ 

Proof: Knowing that solutions are unique and defined for all time, it’s only left to show that, for 

all the components of the solution vectors: 

 
𝑑

𝑑𝑡
(𝑣𝑖(𝑡) − 𝑢𝑖(𝑡)) = −(𝑣𝑖(𝑡) − 𝑢𝑖(𝑡)) ⇔ 𝑣𝑖(𝑡) − 𝑢𝑖(𝑡) = (𝑣𝑖(0) − 𝑢𝑖(0))𝑒−𝑡    ∎ 

Proof of theorem 2.1: Let 𝜀, 𝑇 > 0 be given.  Let 𝑥(𝑡) be the solution of the initial value problem 

of the system to be approximated for some  𝑥(0) = 𝑥0 ∈ Ω, and suppose [0, 𝑇] is included in its 

maximal interval. Let  Ω̃ = {𝑥(𝑡) ∈ ℝ𝑛: 𝑥(0) ∈ Ω, 𝑡 ∈ [0, 𝑇]} be the image of Ω under the flow 

map for the time interval [0, 𝑇]. 

Start supposing that 𝑊 = 𝐵𝐴, being 𝐵, 𝐴, matrices as the ones described in lemma 5.1.1, whose 

precise value is going to be provided later. Define 𝑦(𝑡) ≔ 𝐴𝑢(𝑡), so that 𝑦′(𝑡) = −𝑦(𝑡) +

𝐴𝐹(𝐵𝑦(𝑡) + 𝜔𝐼(𝑡)). Let 𝐶𝐺 be a Lipschitz constant for 𝐺 in Ω, whose existence is guaranteed 

since 𝐺 is assumed to be differentiable, and thus locally Lipschitz (lemma 5.2.1). Then, theorem 

5.2.1 guarantees the existence of 𝑁 ∈ ℕ and matrices 𝜔(𝑛 × 𝑁), 𝐴 (𝑛 × 𝑁), 𝐵 (𝑁 × 𝑛), such 

that: 

 ‖𝐴𝐹(𝐵𝑦 + 𝜔𝐼) − 𝑦 − 𝐺(𝑦, 𝐼)‖ <
𝐶𝐺𝜀

𝑒𝐶𝐺𝑇−1
   for every (𝑦, 𝐼)𝑇 ∈ Ω̃ × 𝐾𝐼,  

whenever 𝐹 is endowed with appropriate thresholds. Here, 𝐾𝐼 ≔ {𝑥 ∈ ℝ𝑛: ‖𝑥‖ ≤ 𝑏}, where 𝑏 

is taken to be big enough so that 𝐼(𝑡) ∈ 𝐾𝐼 ∀𝑡 ∈ ℝ+ for all input trajectories drawn from the 

uniformly bounded set of functions considered in the statement of the theorem.  

Choose 𝑢(0) such that 𝐴𝑢(0) = 𝑥0.This system is solvable since, as stated earlier, we can 

assume that 𝑟𝑎𝑛𝑘(𝐴) = 𝑛, as these matrices form an open and dense set in ℝ𝑛×𝑁. Then, by 

lemma 5.2.2: 

‖𝑥(𝑡) − 𝐴𝑢(𝑡)‖ < 𝜀 ∀𝑡 ∈ [0, 𝑇]. 

 Letting 𝑅 = 𝐴, we found what we wanted to prove. Since 𝑊 = 𝐵𝐴, lemma 5.1.1 guarantees 

that 𝑟𝑎𝑛𝑘(𝑊) = 𝑛.    ∎ 

Proof of theorem 2.2: Let 𝜀, 𝑇 > 0 be given. Let 𝑥(𝑡) be the solution of the initial value problem 

of the system to be approximated for some  𝑥(0) = 𝑥0 ∈ Ω, and suppose [0, 𝑇] is included in its 

maximal interval. Let  Ω̃ = {𝑥(𝑡) ∈ ℝ𝑛: 𝑥(0) ∈ Ω, 𝑡 ∈ [0, 𝑇]} be the image of Ω under the flow 

map for the time interval [0, 𝑇]. 

Define 𝑦(𝑡) ∈ ℝ𝑛 as the solution of the initial value problem given by 

 𝑦′(𝑡) = −𝑦(𝑡) + 𝐴𝐹(𝐵𝑦(𝑡) + 𝐷𝐽(𝑡)) |𝑦(0) = 𝑥0 

Where 𝐴 is some 𝑛 × (𝑁 − 𝑛)matrix, 𝐵 is (𝑁 − 𝑛) × 𝑛  and 𝐷 is of order (𝑁 − 𝑛) × 𝑚. Let 𝐶𝐺 

be a Lipschitz constant for 𝐺 in Ω, whose existence is guaranteed since 𝐺 is assumed to be 

differentiable, and thus locally Lipschitz.  It is clear that 𝐴𝐹(𝐵𝑣 + 𝐷𝐽) = 𝐴𝐹((𝐵 𝐷) (𝑣
𝐽
)). With 

this, we can make use of theorem 5.2.1, which assures that there exist matrices 𝐴, (𝐵 𝐷) as the 

ones we just defined such that, for N sufficiently big, ratify that: 
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‖𝐴𝐹(𝐵𝑣 + 𝜔𝐽) − 𝑣 − 𝐺(𝑣, 𝐽)‖ < 𝜀
𝐶𝐺

𝑒𝐶𝐺𝑇 − 1
  ∀(𝑣, 𝐽)𝑇 ∈ Ω̃ × 𝐾𝐽 

whenever 𝐹 is endowed with appropriate thresholds. Here, 𝐾𝐽 ≔ {𝑥 ∈ ℝ𝑛: ‖𝑥‖ ≤ 𝑏}, where 𝑏 

is taken to be big enough so that 𝐽(𝑡) ∈ 𝐾𝐼 ∀𝑡 ∈ ℝ+ for all the possible driving trajectories, 𝐽 , 

drawn from the uniformly bounded set of functions considered in the statement of the theorem.  

With all the previous, lemma 5.2.2 establishes that max
𝑡∈[0,𝑇]

‖𝑥(𝑡) − 𝑦(𝑡)‖ < 𝜀.     

Let’s define the connectivity matrices of the net,  𝑊 (𝑁 × 𝑁), 𝜔(𝑁 × 𝑚), as 𝑊 = (
0 𝐴
0 𝐵𝐴

) ,

𝜔 = (
0
𝐷

) ; we will split the solutions of the v-model, making 𝑣(𝑡) = (𝑣1(𝑡), 𝑣2(𝑡))𝑇, where 

 𝑣1(𝑡) ∈ ℝ𝑛, 𝑣2(𝑡) ∈ ℝ𝑁−𝑛.  

Now, we check that 𝑣2(𝑡) = 𝐵𝑦(𝑡) + 𝐷𝐽(𝑡) is the value of the last components of the solution 

vector, 𝑣(𝑡), whenever 𝑣2(0) = 𝐵𝑥0 + 𝐷𝐽(0), since: 

𝑣2′
(𝑡) = 𝐵𝑦′(𝑡) + 𝐷𝐽′(𝑡) = −𝐵𝑦(𝑡) + 𝐵𝐴𝐹(𝐵𝑦(𝑡) + 𝐷𝐽(𝑡)) + 𝐷𝐽′(𝑡)

= −𝐵𝑦(𝑡) − 𝐷𝐽(𝑡) + 𝐵𝐴𝐹(𝐵𝑦(𝑡) + 𝐷𝐽(𝑡)) + 𝐷𝐽′(𝑡) + 𝐷𝐽(𝑡)

= −𝑣2(𝑡) + 𝐵𝐴𝐹(𝑣2(𝑡)) + 𝐷𝐼(𝑡) 

Using that, by definition, 𝐼(𝑡) = 𝐽’(𝑡) + 𝐽(𝑡). Now, since the equations of the first components 

of 𝑣(𝑡) are given by 𝑣1′(𝑡) = −𝑣1(𝑡) + 𝐴𝐹(𝑣2(𝑡)), choosing 𝑣1(0) = 𝑥0 we have, by lemma 

5.2.3, that  𝑣1(𝑡) = 𝑦(𝑡). We define 𝑅 as the matrix fulfilling that 𝑅𝑣(𝑡) = 𝑣1(𝑡). Therefore: 

max
𝑡∈[0,𝑇]

‖𝑅𝑣(𝑡) − 𝑥(𝑡)‖ = max
𝑡∈[0,𝑇]

‖𝑦(𝑡) − 𝑥(𝑡)‖ < 𝜀 

To finish the proof, we see that ( 𝐴
𝐵𝐴

) = (𝐼𝑛
𝐵

)𝐴, where 𝐼𝑛 is the n-th order identity matrix, and 

thus, by lemma 5.1.1, 𝑟𝑎𝑛𝑘(𝑊) = 𝑛. With this, everything that was claimed in theorem 2.2 has 

been proved.    ∎ 

 

5.3. Proof of propositions 2.1 to 2.3 

We start by presenting a handful of preliminary concepts that will be needed for the proof of 

proposition 2.1. The notion of compacity is of special interest in the fields of topology and 

analysis, and we have used it implicitly in the previous results. Because in the next proof we will 

need a more concise grasp of this concept, we present it here its formal definition. 

Definition 5.3.1: Let 𝑋 be a topological space and let 𝐾 ⊆ 𝑋. Suppose {𝑈𝑖}𝑖∈𝐼is a family of open 

sets indexed by some set 𝐼. We say it is an open cover of  𝐾 if 𝐾 ⊂ ⋃ 𝑈𝑖𝑖∈𝐼 ; We say {𝑈𝑖𝑗
}

𝑗=1

𝑛
 is a 

finite subcover of 𝐾 if {𝑈𝑖𝑗
}

𝑗=1

𝑛
⊆ {𝑈𝑖}𝑖∈𝐼 and 𝐾 ⊂ ⋃ 𝑈𝑖𝑗

𝑛
𝑗=1 ; finally, we say that 𝐾 is compact if 

for every open cover there exists a finite subcover for 𝐾. 

In Euclidean spaces, the Heine-Borel theorem assures that a set is compact if and only if it is 

closed and bounded. Although the previous is a necessary condition in general topological 

spaces, it does not have to be sufficient, as it is the case in function spaces equipped with the 

uniform topology, as the one we deal in proposition 2.1, whose topology is induced by the norm 

‖𝑟‖∞ = min
0≤𝑡≤𝑇

‖𝑟(𝑡)‖. The existence of compact sets in these Banach spaces is guaranteed by 

the Arzelà-Ascoli theorem [80]. We now present an extension theorem: 
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Theorem 5.3.1 (Kirszbraun): Suppose 𝐾 ⊂ ℝ𝑛 is a compact set. Suppose also that 𝑓: 𝐾 → ℝ𝑚 is 

Lipschitz continuous, with a given constant 𝐶 > 0. Then, there exists a function 𝑓: ℝ𝑛 → ℝ𝑚 

with the same Lipschitz constant, 𝐶, such that  𝑓|𝐾 = 𝑓  

For a recent constructive proof of this theorem, see [87]. Finally, we have the following lemma: 

Lemma 5.3.1: Under the uniform norm, 𝐶∞ functions are dense in the Banach spaces of 

continuous functions with compact domain. 

The proof is a straightforward application of the Stone-Weierstrass theorem. See [81], [82] for 

a statement of this crucial result in mathematical analysis.   

Proof of proposition 2.1: Considering the uniform norm, suppose 𝒜 is a compact set of 

continuous functions of the form 𝑟: [0, 𝑇] → ℝ𝑛, 𝑇 > 0, as the statement of the proposition 

suggests. Let 𝜀 > 0 be given. Let 𝐵𝜀

3

(𝑟) = {𝑥 ∈ 𝐶([0, 𝑇], ℝ𝑛): ‖𝑥 − 𝑟‖∞  <
𝜀

3
} be the ball of 

radius  
𝜀

3
 centred at 𝑟. Since {𝐵𝜀

3

(𝑟)}
𝑟∈𝒜

is an open cover of the compact set 𝒜, there exist a 

finite set of trajectories, {𝑟1, … , 𝑟𝑙  } ⊆ 𝒜 for which  𝒜 ⊂ ⋃ 𝐵𝜀

3
(𝑟𝑖)𝑙

𝑖=1 .  

We define 𝑟̂𝑖 ∈ 𝐶∞([0, 𝑇], ℝ𝑛) such that ‖𝑟𝑖 − 𝑟̂𝑖‖∞  <
𝜀

3
, 1 ≤ 𝑖 ≤ 𝑙, using lemma 5.3.1. 

Now consider the 𝑙 trajectories in ℝ𝑛+𝑙 , {𝑟̃1, … , 𝑟̃𝑙  }, whose components are given by 

 𝑟̃𝑖𝑗
(𝑡) = 𝑟̂𝑖𝑗

(𝑡) if 𝑗 ≤ 𝑛;  𝑟̃𝑖𝑗
(𝑡) = 0 if 𝑛 < 𝑗, 𝑗 ≠ 𝑛 + 𝑖;  ;  𝑟̃𝑖𝑗

(𝑡) = 1 + 𝑡 if 𝑛 < 𝑗, 𝑗 = 𝑛 + 𝑖 

It can be checked that 𝑟̃𝑖(𝑡) ≠ 𝑟̃𝑗(𝑡)∀𝑡 ∈ [0, 𝑇], 𝑖 ≠ 𝑗 , and that 𝑟̃𝑖(𝑡) ≠ 𝑟̃𝑖(𝑠) ∀1 ≤ 𝑖 ≤ 𝑙, 𝑠 ≠ 𝑡, 

so these new trajectories will never cross each other. Now consider the compact set of 

ℝ𝑛+𝑙  defined as follows: 

𝐾 = ⋃ 𝑟̃𝑖(𝑡)

𝑡∈[0,𝑇]
1≤𝑖≤𝑙

 

Consider also the function 𝑔: 𝐾 → ℝ𝑛+𝑙 which fulfils that 𝑔(𝑥) =
𝑑

𝑑𝑡
𝑟̃𝑖(𝑡) ∀𝑥 = 𝑟̃𝑖(𝑡). Since 

every 𝑟̃𝑖(𝑡)  is 𝐶∞, and because these trajectories never cross, the function is well-defined. 

Moreover, since they all have continuous derivatives, by lemma 5.2.1 𝑔 is Lipschitz. Then, 

theorem 5.3.1 allows to extend 𝑔  to a Lipschitz function 𝐺: ℝ𝑛+𝑙 → ℝ𝑛+𝑙.  

Suppose we want to approximate an arbitrary trajectory 𝑟 ∈ 𝒜 . To this end, from compactness 

we know that ∃1 ≤ 𝑖 ≤ 𝑙 such that ‖𝑟𝑖 − 𝑟‖∞  <
𝜀

3
 . Now let 𝑥(𝑡) be the solution of the initial 

value problem 𝑥′(𝑡) = 𝐺(𝑥(𝑡))|𝑥(0) = 𝑟̃𝑖(0). From the existence and uniqueness theorem, it 

follows that 𝑥(𝑡) = 𝑟̃𝑖(𝑡) ∀𝑡 ∈ [0, 𝑇] 

Although we presented theorems 2.1 and 2.2 in terms of dynamical systems induced by 

𝐶1 functions to avoid technicalities, there is nothing restricting us to apply the same results to 

more general Lipschitz functions. Thus, by theorem 2.1, there exists a u-model whose output 

fulfils that ‖𝑟̃𝑖(𝑡) − 𝑅̃𝑢(𝑡)‖ <
𝜀

3
 ∀𝑡 ∈ [0, 𝑇]. Now, let 𝑀 ∈ ℝ𝑛×(𝑛+𝑙) be given by 𝑀 = (𝐼𝑛 0). 

Let 𝑅 = 𝑀𝑅̃. Then, using the triangle inequality:  

‖𝑟(𝑡) − 𝑅𝑢(𝑡)‖ ≤ ‖𝑟̂𝑖(𝑡) − 𝑅𝑢(𝑡)‖ + ‖𝑟𝑖(𝑡) − 𝑟̂𝑖(𝑡)‖ + ‖𝑟𝑖(𝑡) − 𝑟(𝑡)‖

≤ ‖𝑟̃𝑖(𝑡) − 𝑅̃𝑢(𝑡)‖ + ‖𝑟𝑖(𝑡) − 𝑟̂𝑖(𝑡)‖ + ‖𝑟𝑖(𝑡) − 𝑟(𝑡)‖ <
𝜀

3
+

𝜀

3
+

𝜀

3
= 𝜀 
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For the v-model, use instead theorem 2.2 to obtain the same result. This concludes the proof. 

                                                                                                                                                                             ∎ 

Now we turn to the proof of proposition 2.2, which involves periodic solutions of differential 

equations, this is, trajectories 𝑠 for which ∃𝑇 > 0: 𝑠(𝑡) = 𝑠(𝑡 + 𝑇) ∀𝑡 ∈ ℝ . The orbits fitting in 

this definition consists of either fixed points or limit cycle oscillators. 

 The following deduction will require of new definitions and preliminary results. The first one 

involves the rigorous formulation of the notion of a flow, which we eluded so far in order to 

leave aside the more technical concepts from the main text.  

Definition 5.3.2: Let 𝑈 ⊆ ℝ𝑛 be open. A map 𝑔: 𝑈 × ℝ → 𝑈 is called a flow if for every 𝑠, 𝑡 ∈ ℝ 

and 𝑥 ∈ 𝑈, it fulfils the following axioms: 

• 𝑔0(𝑥) = 𝑥 

• 𝑔𝑠+𝑡(𝑥) = 𝑔𝑠(𝑔𝑡(𝑥)) 

In the case of continuous time dynamical systems induced by Lipschitz functions, the existence 

and uniqueness theorem allow to express the bundle of its solutions as a flow fulfilling the 

equation  
𝜕

𝜕𝑡
𝑔𝑡(𝑥) = 𝐺(𝑔𝑡(𝑥)), being 𝑥 the values for the initial conditions. A remarkable 

property of this flow is the following: 

Theorem 5.3.2: Let 𝐺: 𝑈 ⊆ ℝ𝑛 → ℝ𝑛 have Lipschitz constant 𝐶𝐺, and let the flow map of its 

induced dynamical system be given by 𝑔: 𝑈 × ℝ → 𝑈. Then, it is fulfilled that 

 ‖𝑔𝑡(𝑥) − 𝑔𝑡(𝑦)‖ ≤ ‖𝑥 − 𝑦‖𝑒𝐶𝐺|𝑡|  ∀𝑥, 𝑦 ∈ 𝑈 

In other words, this result assures that the flow mapping is continuous. For a proof, see [86]. 

 In the case of the flow on a neural manifold, ℳ, of a low-rank system, we will design it by 

𝜐𝑡(𝑓(𝑥)), where 𝑥 ∈ ℝ𝑛 stand for the initial position on the intrinsic coordinate system of the 

manifold. As it was seen in the proof of theorem 1.1 (and as it can be seen trivially in the proof 

of theorem 1.2), the coordinate chart of ℳ can be expressed by a continuous bijection, given 

by 𝑓: ℝ𝑛 → ℳ, that can be chosen so that its inverse is defined by the linear surjection                         

𝑅: ℝ𝑁 → ℝ𝑛 restricted to ℳ, where 𝑅 was the matrix set to define the readout of the network 

in theorems 2.1 and 2.2. This way, in order to study neural manifold dynamics, we assure the 

initial condition of the network, 𝑓(𝑥), lays on the manifold, and thus that the correspondent 

solution remains there forever.  

Before we start proving proposition 2.2, we present another important result concerning the 

topology of compact spaces: 

Theorem 5.3.3: Let 𝑋 be a metric space. Then, it is compact if and only if for every sequence 

{𝑥𝑛} ⊂ 𝑋 there exists a subsequence {𝑥𝑛𝑘
} ⊂ {𝑥𝑛} such that {𝑥𝑛𝑘

} → 𝑥, for some 𝑥 ∈ 𝑋. 

An interesting tool used in the proof of this theorem, which it is not going to be presented here, 

is that of the Lebesgue number. Given an open cover of a compact set, there exists a number, 

𝜆 > 0, such that the ball with radius 𝜆 centred in any point on the compact region is included in 

some of the open sets forming the cover. For a proof, see [81]. Now proposition 2.2 is proved. 

Proof of proposition 2.2: Let 𝜀 > 0 be given. Let 𝑆 = ⋃ 𝑠(𝑡)𝑡∈ℝ  be the orbit set traced by some 

attracting solution. We will suppose there is just one of them, as the process below can be 

repeated for each of the open sets composing the original set 𝑈, which is necessarily 
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disconnected in the case there are many stable trajectories. Let 𝑉 be a bounded open set such 

that Ω ⊆ 𝑉̅ ⊂ 𝑈, being 𝑉̅ its closure. It can be constructed as the union of a set of balls with 

sufficiently small radius. 

  Let 𝑇𝜀

3
 be big enough in order to satisfy that ‖𝑔𝑡(𝑥) − 𝑠(𝑡 − 𝑡𝑥)‖ <

𝜀

3
 ∀𝑡 ≥ 𝑇𝜀

3
, 𝑥 ∈ 𝑉̅. To prove 

the existence of such number, negate the claim to find a succession {𝑥𝑛} ⊂ 𝑉̅ for which, for each 

term, ∃𝑡 ≥ 𝑛: ‖𝑔𝑡(𝑥𝑛) − 𝑠(𝑡 − 𝑡𝑥𝑛
)‖ ≥

𝜀

3
. As 𝑉̅ is compact, by theorem 5.3.3 lim

𝑘
𝑥𝑛𝑘

= 𝑥 ∈ 𝑉̅. 

But then, by theorem 5.3.2, 𝑔𝑡(𝑥) should not converge to 𝑠(𝑡 − 𝑡𝑥), thus obtaining a 

contradiction. The open set 𝑔𝑇𝜀
3

(𝑉) has the property that  

𝑥 ∈ 𝑔𝑇𝜀
3

(𝑉) ⇒ ‖𝑔𝑡(𝑥) − 𝑠(𝑡 − 𝑡𝑥)‖ <
𝜀

3
 ∀𝑡 ≥ 0 

Let 𝜆 > 0 be such that ⋃ 𝐵𝜆(𝑥) ⊂ 𝑔𝑇𝜀
3

(𝑉)𝑥∈𝑆 . Given that 𝑔𝑇𝜀
3

(𝑉) is an open cover of 𝑆, 𝜆 can be 

taken to be the Lebesgue number of that cover. It’s obvious that 𝜆 <
𝜀

3
. 

Let 𝑇𝜆

2

 be defined analogously, so that ‖𝑔𝑡(𝑥) − 𝑠(𝑡 − 𝑡𝑥)‖ <
𝜆

2
 ∀𝑡 ≥ 𝑇𝜆

2

 , 𝑥 ∈ 𝑉̅. Again, the 

existence of such time is proved as with 𝑇𝜀

3
. We define a function 𝑧: 𝑈 → 𝑆 : 𝑧(𝑥) = lim

𝑛
𝑔𝑛𝑇(𝑥), 

so that it represents to which phase of the attracting orbit does the solution with initial value 𝑥 

converge. To conclude this list of definitions, let 𝑊𝑥 = {𝑦 ∈ 𝑈: 𝑧(𝑦) = 𝑧(𝑥)}, so that it is the set 

of initial values which converge to the same orbit with the same phase.  

First, we prove 𝑧(𝑥) is continuous. To this end, let 𝜂 > 0 be given, and let 𝑛 ∈ ℕ such that        

𝑇𝜂

3
≤ 𝑛𝑇, where  𝑇𝜂

3
 is defined as in the previous cases. Then, by theorem 5.3.2: 

 ∃𝛿 > 0: 𝑥, 𝑦 ∈ 𝑉, ‖𝑥 − 𝑦‖ < 𝛿 ⇒ ‖𝑔𝑛𝑇(𝑥) − 𝑔𝑛𝑇(𝑦)‖ <
𝜂

3
 . 

But then, by the definition of 𝑇𝜂

3
: ‖𝑧(𝑥) − 𝑧(𝑦)‖ ≤ ‖𝑧(𝑥) − 𝑔𝑛𝑇(𝑥)‖ + ‖𝑔𝑛𝑇(𝑥) − 𝑔𝑛𝑇(𝑦)‖ +

‖𝑧(𝑦) − 𝑔𝑛𝑇(𝑦)‖ <
𝜂

3
+

𝜂

3
+

𝜂

3
= 𝜂 

Now, by theorem 2.1 (resp. theorem 2.2) it can be built a u-model (resp. a v-model) whose flow 

fulfils that ‖𝑔𝑡(𝑥) − 𝑅𝜐𝑡(𝑓(𝑥)) ‖ <
𝜆

2
 ∀𝑥 ∈ 𝑉̅, 0 ≤ 𝑡 ≤ 𝑇𝜆

2

+ 2𝑇. From the triangle inequality, it 

follows that ‖𝑠(𝑡 − 𝑡𝑥) − 𝑅𝜐𝑡(𝑓(𝑥)) ‖ ≤ ‖𝑠(𝑡 − 𝑡𝑥) − 𝑔𝑡(𝑥)‖ + ‖𝑔𝑡(𝑥) − 𝑅𝜐𝑡(𝑓(𝑥)) ‖ < 𝜆 

for every 𝑇𝜆

2

≤ 𝑡 ≤ 𝑇𝜆

2

+ 2𝑇.  

In the limit cycle case, without loss of generality, we can assume that 𝜆 is small enough so that 

𝑆 ⊈ 𝑧(𝐵𝜆(𝑠(𝑡)))∀𝑡 ∈ ℝ. Since 𝑅𝜐𝑡(𝑓(𝑥)) ∈ 𝐵𝜆(𝑠(𝑡 − 𝑡𝑥)) ∀𝑡 ∈ [𝑇𝜆

2

, 𝑇𝜆

2

+ 2𝑇], parametrizing 𝑆 

and using the intermediate value theorem, it can be shown that there exists some value of time 

𝜏1 ∈ [𝑇𝜆

2

, 𝑇𝜆

2

+ 2𝑇] where 𝑧(𝑅𝜐 𝜏1
(𝑓(𝑥))) = 𝑧(𝑥). The same result is evident in the fixed-point 

scenario. Thus, in both situations one has that 𝑅𝜐𝜏1
(𝑓(𝑥)) ∈ 𝑊𝑥 ∩ 𝑔𝑇𝜀

3

(𝑉). 

Let 𝑛 ∈ ℕ and suppose ∃𝜏𝑛 ∈ ℝ+ such that 𝑅𝜐𝜏𝑛
(𝑓(𝑥)) ∈ 𝑊𝑥 ∩ 𝑔𝑇𝜀

3

(𝑉). Then: 
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‖𝑅𝜐𝑡(𝑓(𝑥)) − 𝑠(𝑡 − 𝑡𝑥)‖

≤ ‖𝑅𝜐𝑡−𝜏𝑛
(𝑓 (𝑅𝜐𝜏𝑛

(𝑓(𝑥)))) − 𝑔𝑡−𝜏𝑛
(𝑅𝜐𝜏𝑛

(𝑓(𝑥)))‖

+ ‖𝑔𝑡−𝜏𝑛
(𝑅𝜐𝜏𝑛

(𝑓(𝑥))) − 𝑠(𝑡 − 𝑡𝑥)‖ <
2𝜀

3
         ∀𝑡 ∈ [𝜏𝑛, 𝜏𝑛 + 𝑇𝜆

2

+ 2𝑇] 

In addition, repeating the argument used for 𝜏1, there exists a 𝜏𝑛+1 ∈ [𝜏𝑛 + 𝑇𝜆

2

, 𝜏𝑛 + 𝑇𝜆

2

+ 2𝑇] 

such that 𝑅𝜐𝜏𝑛+1
(𝑓(𝑥)) ∈ 𝑊𝑥 ∩ 𝑔𝑇𝜀

3

(𝑉). Thus, by induction, we have, for all  𝑡 ≥ 𝑇𝜆

2

+ 2𝑇 : 

‖𝑔𝑡(𝑥) − 𝑅𝜐𝜏𝑛
(𝑓(𝑥))‖ ≤ ‖𝑔𝑡(𝑥) − 𝑠(𝑡 − 𝑡𝑥)‖ + ‖𝑅𝜐𝑡(𝑓(𝑥)) − 𝑠(𝑡 − 𝑡𝑥)‖ < 𝜀                          ∎ 

 

To finish this subsection, the proof of proposition 2.3 is going to be presented, relating universal 

approximation capabilities of neural networks to the simulation of symbolic computations 

whenever finite (yet arbitrary) memory is required. From now on, we will follow the Church-

Turing thesis so that for any decidable function, 𝑓, we will assume that an effective procedure 

capable of computing its outputs can be implemented by a Turing machine. In order to link these 

theoretical devices with dynamical system theory, we present the following theorem, which 

claims that discrete time dynamical systems possess the power of universal computation. 

Theorem 5.3.4: Every Turing machine is equivalent to an iterated map of the form  𝐹: ℕ → ℕ. 

Proof: Describe the configuration of a given Turing machine as follows: suppose that {𝑖𝑛} is the 

sequence describing the tape, being each term the number codifying each symbol of the tape 

once a particular order has been assigned to the alphabet set, where 𝑖 = 0 stands for the blank 

symbol, the only appearing infinitely many times; {𝑝𝑛} = {2, 3, 5, 7, 11 … } is the sequence of 

prime numbers; 𝑠 ∈ ℕ the state, being 𝑠 = 1 the codification of the initial state; 𝑁 ∈ ℕ the 

position on the tape. Then, the natural number 

𝑥 = 2𝑠3𝑁 ∏ 𝑝𝑛+2
𝑖𝑛

∞

𝑛=1

 

codifies uniquely the configuration of the Turing machine. Thus, it can be constructed a function 

𝐹: ℕ → ℕ implementing the transition function with which the given Turing machine operates.       

                                                                                                                                                                             ∎  

However, concerning neural computations, since the models studied in this paper take 

continuous values of both time and phase variables, it can be questioned how these kinds of 

systems could effectively implement an essentially discrete model of computation. It is thus that 

we should define in which way it could be understood that a continuous system simulates a 

discrete one. For that purpose, we present some theory developed by Branicky in [59]. 

Definition 5.3.3 (S-simulation): Let 𝑋, 𝑌 be topological spaces. Let 𝑔: 𝑋 × ℝ → 𝑋 be the flow of 

a continuous dynamical system, and 𝐹: 𝑌 → 𝑌 an iterated map describing a discrete one. We say 

the former system S-simulates the later whenever there exists a continuous surjective function                                     

𝜓: 𝐷 ⊆ 𝑋 → 𝑌 and some 𝑇0 ∈ ℝ+ such that 

 𝜓 (𝑔𝑛𝑇0
(𝑥)) = 𝐹𝑛(𝜓(𝑥)) ∀𝑥 ∈ 𝐷, 𝑛 ∈ ℕ  
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where 𝐹𝑛 denotes the map 𝐹 𝑛 times composed with itself. This definition is similar to definition 

5.1.4, which presented the notion of topological conjugacy. In this case, however, the function 

𝜓 needs not to be injective, and thus topological conjugacy implies S-simulation, while the 

converse is not necessarily true. 

With this, we could set up a neural simulation of some Turing machine as follows: choose some 

intrinsic dimensionality for the neural manifold (it is going to be proved that 3 dimensions are 

sufficient) and place a collection of open sets in this immersed space, each one of which will 

stand for a particular configuration of the Turing machine’s tape, position and current state. 

Then, use theorems 2.1 and 2.2 to define a dynamical system capable to implement the 

transition function of the algorithm. This could be performed by joining the mentioned open 

regions with concrete phase trajectories, indicating the system which steps should it follow to 

simulate the given computation. In order to formalize the previous intuition, we present the 

following theorem. 

Theorem 5.3.5: Let 𝐹: 𝑌 ⊂ ℤ𝑛 → ℤ𝑛 define a discrete dynamical system and suppose 𝑌 is a 

compact subset. Then, it can be S-simulated by a continuous-time dynamical system in ℝ2𝑛+1  

whose dynamics are induced by a Lipschitz function. 

For a proof see [59], theorem 5.7.  

It is interesting to see that this dynamical system is robust, being able to carry out the simulation 

also in the cases where the flow is slightly perturbed or when some small enough amount of 

noise is added to the model.  

Indeed, in the original proof [59] it was constructed a continuous nearest integer function like 

[∙]𝐶 : ℝ → ℝ: [𝑥]𝐶 = {
𝑖         𝑖 −

1

3
< 𝑥 ≤ 𝑖 +

1

3

3𝑥 − 2𝑖 − 1   𝑖 +
1

3
< 𝑥 ≤ 𝑖 +

2

3

  for all 𝑖 ∈ ℤ, subsequently defining the 

map inducing the S-simulation, 𝜓: ℝ2𝑛+1 → ℝ𝑛, like 𝜓(𝑥) = ([𝑥1]𝐶 , … , [𝑥𝑛]𝐶) 𝑇∀ 𝑥 ∈ ℝ2𝑛+1.   

Now suppose that 𝑔𝑡(𝑥) is the flow simulating the given iterated map.  To say that this system 

S-simulates a given discrete time dynamical system is equivalent to say that for every initial 

condition  𝑥 ∈ 𝜓−1(𝐹(𝑌)) it is fulfilled that 𝑔𝑛𝑇0
(𝑥) ∈ 𝜓−1 (𝐹𝑛(𝜓(𝑥)))  for all 𝑛 ∈ ℕ. It can be 

seen from the definition of 𝜓 that 𝜓−1(𝑌) has nonempty interior, since for every 𝑦 ∈ 𝑌, if                                   

𝑥 = (𝑦, 𝑦, 0)𝑇 then 𝐵1

3

(𝑥) ⊂ 𝜓−1(𝑦) . Therefore, given any 𝑀 ∈ ℕ, for every 𝑥 ∈ 𝐵1

3

(𝑥)one can 

find some 𝑟 > 0 such that 𝐵𝑟(𝑔𝑛𝑇0
(𝑥)) ⊂ 𝜓−1 (𝐹𝑛(𝜓(𝑥))) ∀𝑛 ≤ 𝑀 . This is saying that if some 

small enough perturbation is added to some trajectory starting in an open set, it will still be able 

to efficiently carry on the computing process during a sufficiently long period of time, thus 

ensuring that our setup is robust. In the proof of proposition 2.3, which is presented below, it is 

shown how robustness is preserved by neural manifold implementations.  

Proof of proposition 2.3: By the Church-Turing thesis, take the effective procedure which sustain 

the computable function 𝑓 to be performed by some Turing Machine. Let 𝑆 be a set of natural 

numbers, each of which codifies a given tape uniquely as it was done in the proof of theorem 

5.3.4. Since we restrict our computations to require only a finite amount of memory, there exists 

𝑙 ∈ ℕ such that the length of the nontrivial segment of the tape is less than 𝑙 for every tape 

codified in 𝑆. Let 𝑀 ∈ ℕ be the maximum number of epochs necessary to terminate the program 

in any input of the given set, 𝑆.  
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 By theorem 5.3.4, there is a map 𝐹: 𝑌 ⊂ ℕ → ℕ implementing the computation, where we 

define the set 𝑌 = ⋃ 𝐹𝑖(𝑆)𝑀
𝑖=0 . It is compact since it is a finite set of natural numbers, each of 

which represents some configuration of the Turing machine. It is invariant since after a time 𝑀 

every possible computation has been completed, reaching thus a stable state of the mapping. 

By theorem 5.3.5, there exists a Lipschitz flow 𝑔: ℝ3 × ℝ → ℝ3 S-simulating the dynamical 

system produced by 𝐹, where the function 𝜓 defining the simulation can be the one we already 

presented. 

 Then, choose some 0 < 𝜂 <
1

3
  and let Ω = {𝑥 ∈ ℝ3: ‖𝑥 − 𝑦‖ ≥ 𝜂 ∀𝑦 ∈ ℝ3\𝜓−1(𝑆)}. It can be 

seen that Ω ⊂ 𝜓−1(𝑆)∘, where 𝜓−1(𝑆)∘ denotes the interior of 𝜓−1(𝑆), and that Ω is compact.  

Let Ω̃ = ⋃ 𝑔𝑖𝑇0
(Ω)𝑀

𝑖=0 , which is still compact. Since 𝑔 S-simulates the discrete dynamics, it 

follows that Ω̃ ⊂ 𝜓−1(𝑌)∘, where ∘ stands again for the interior. This is because the Lipschitz 

condition makes 𝑔𝑇0
a homeomorphism, and thus it maps interiors to interiors. 

 Since 𝜓−1(𝑌)∘ is an open cover of Ω̃, let 𝜆 > 0 be a Lebesgue number. Using theorem 2.1 in the 

u-model case or theorem 2.2 for the v-model, we have can find a recurrent network such that 

‖𝑔𝑡(𝑥) − 𝑅𝜐𝑡(𝑓(𝑥))‖ < 𝜆 ∀𝑡 ∈ [0, 𝑀𝑇0], 𝑥 ∈ Ω.  With this, it is seen from the definition of 

Ω ̃ that 𝑅𝜐𝑛𝑇0
(𝑓(𝑥)) ∈ 𝜓−1 (𝐹𝑛(𝜓(𝑥))) ∀𝑛 ≤ 𝑀, 𝑥 ∈ Ω ⇒  𝜓(𝑅𝜐𝑛𝑇0

(𝑓(𝑥)) = 𝐹𝑛(𝜓(𝑥)). 

It only remains to be shown that the neural manifold of this system is 3-dimensional. Indeed, 

theorems 5.3.4 and 5.3.5 together predict that 𝑔 can be a 3-d flow. Thus, using theorems 2.1 

and 2.2 𝑟𝑎𝑛𝑘(𝑊) = 3 in both models. Therefore, theorems 1.1 and 1.2 confirm that the 

emerging manifolds will be 3-dimensional. This concludes the proof.    ∎ 

Using wat it is presented in the previous proof, since Ω has nonempty interior, if 𝑥 ∈ Ω° , using 

that ‖𝑔𝑡(𝑥) − 𝑅𝜐𝑡(𝑓(𝑥))‖ < 𝜆 and the same arguments we fenced to show 𝑔 is robust, it also 

follows that the computational process held by the neural manifold trajectory 𝜐𝑡(𝑓(𝑥)) will 

tolerate small perturbations without affecting its performance, both if we slightly modify the 

trajectory or if we do so for its initial condition by a sufficiently small amount. 

 

5.4. Descriptive statistics of low-rank models 

In this subsection a precise formulation of the statement presented in section 2.3, where it was 

claimed that in low-rank wirings the correlation matrix’s number of degrees of freedom was of 

order N, is going to be presented. We start by making the idea of order more precise: 

Definition 5.4.1: We say that a real valued function 𝑓 is of order 𝑔, being 𝑔 a positive valued 

function, whenever lim
𝑁→∞

|𝑓(𝑁)|

𝑔(𝑁)
≤ 𝐾, for some 𝐾 ∈ ℝ+, and we write it 𝑓~𝑂(𝑔). 

The flow of the set of ODE’s defining our neural systems is going to be given by 

𝜈: ℝ𝑁 × ℝ𝑝 × ℝ → ℝ𝑁 and it is going to be written like 𝜈𝑡(𝑥, 𝛼), where 𝛼 ∈ ℝ𝑝 stand for the 

vector of bifurcating parameters defining the system, which include the weights, the firing 

thresholds or other scalars that could be added to improve the model’s fitting to data, such as 

membrane time constants or parameters describing different input-spiking rate relations.  

.CC-BY-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 22, 2023. ; https://doi.org/10.1101/2023.02.21.529079doi: bioRxiv preprint 

https://doi.org/10.1101/2023.02.21.529079
http://creativecommons.org/licenses/by-nd/4.0/


Let’s now describe the statistical measures which are going to be required: 𝐸[𝜈𝑡(𝑥, 𝛼)𝑖] will 

stand for the mean of the i-th component of the trajectory starting in 𝑥 with bifurcation vector 

𝛼 during some arbitrary lapse of time [0, 𝑇], 𝑇 > 0,  and will be given by  

𝐸[𝜈𝑡(𝑥, 𝛼)𝑖] ≔
1

𝑇
∫ 𝜈𝑡(𝑥, 𝛼)𝑖

𝑇

0

𝑑𝑡 

Taking the previous definition, 𝐶𝑖𝑗(𝑥, 𝛼) ≔ 𝐸[𝜈𝑡(𝑥, 𝛼)𝑖𝜈𝑡(𝑥, 𝛼)𝑗] − 𝐸[𝜈𝑡(𝑥, 𝛼)𝑖]𝐸[𝜈𝑡(𝑥, 𝛼)𝑗] is 

going to stand for the covariance between the i-th and the j-th component of a trajectory 

starting in 𝑥 and whose definitory parameter vector is 𝛼. Of course, the behavior of a single 

trajectory need not to be representative. Thus, if we are interested in studying the behavior of 

the model in some bounded open region of the phase space, we can define 

𝐶𝑖𝑗(𝛼) ≔
1

𝜇(𝑈)
∫ 𝐶𝑖𝑗(𝑥, 𝛼)𝑑𝑥

𝑈

 

to be the covariance of the neural model specified by the parameter vector 𝛼 averaged over the 

given domain, 𝑈. Here, it was used that 𝜇(𝑈) ≔ ∫ 1𝑑𝑥
𝑈

 is the Lebesgue measure of the region 

𝑈.  

Finally, in order to find the correlation matrix, Ρ, one could normalize the covariance matrix 

using the formula  

Ρ(𝛼) = 𝑆−1(𝛼)𝐶(𝛼)𝑆−1(𝛼) 

Where 𝑆(𝛼) is the diagonal matrix whose entries consist on the variances of each component 

of the solution vector, this is, 𝑆𝑖𝑗(𝛼) = 𝐶𝑖𝑗(𝛼)𝛿𝑖𝑗 , where 𝛿𝑖𝑗 is the Kronecker delta. From here, it 

could be seen that the matrix Ρ(𝛼) is defined by a continuous map of the form Ρ: ℝ𝑝 → ℝ𝑁×𝑁.  

Thus, in order to fully characterize the matrix Ρ(𝛼) we must specify the 𝑝 independent 

parameters which completely define the flow of our neural models. 

 In a general frame, it could be assumed that three different classes of parameters exist. In the 

first place, we could find parameters which affect the whole network, like the activation of a 

neuron of a nearby region that projects outputs to the system. These parameters do not depend 

on the size of the network, and thus remain constant with 𝑁.  

Then, there are the ones that depend on individual neurons, like spike thresholds, time 

constants or the afferent synaptic strengths coming from outside the network. The number of 

such scalars increases linearly with the network size.  

Finally, we have the parameters that define pairwise relations between units, like synaptic 

strengths between neurons of the network itself.  

In general, if no specific structure is imposed on these last types of arrays, or if their components 

are assumed to be mutually independent, then their number grows quadratically as the network 

size increases. In this scenario 𝑝~𝑂(𝑁2). 

However, if we assume these parameters are mutually dependent, as in the case we impose 

connection matrices to be restricted to have a given lower dimensional rank, then their size also 

grows in a linear fashion, as we saw in section 2.3, and thus one has that 𝑝~𝑂(𝑁). Indeed, it has 

been already shown how the number of parameters needed to fully specify a 𝑁 × 𝑁 rank-𝑛 
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matrix is given by 𝑝 = 2𝑛(𝑁 − 𝑛). Thus, if we also take into consideration the other types of 

parameters, whose cardinality cannot increase faster than linear, one could divide by 𝑁 to find 

that 𝑝~𝑂(𝑁), as claimed.  

In section 2.3 it was also assured that if the dynamics were confined to a lower dimensional 

Euclidean manifold the same would hold true. In this case, if it is assumed the manifold is 𝑛-

dimensional, then a PCA would find that the covariance matrix would only have  𝑛 non-null 

eigenvalues, which in turn would imply that 𝑟𝑎𝑛𝑘(Ρ) = 𝑟𝑎𝑛𝑘(𝐶) = 𝑛. Then, since we already 

know that the complexity of a rank-𝑛 matrix is given by 𝑝 = 2𝑛(𝑁 − 𝑛), we would also have 

that 𝑝~𝑂(𝑁), as before. 

  

 Code availability  

All figures were produced using MATLAB, version R2021a. The code will be made available upon 

publication. 
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