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Abstract 42 
 43 
Investigations into how individual neurons encode behavioral variables of interest have revealed specific 44 
representations in single neurons, such as place and object cells, as well as a wide range of cells with 45 
conjunctive encodings or mixed selectivity. However, as most experiments examine neural activity within 46 
individual tasks, it is currently unclear if and how neural representations change across different task 47 
contexts. Within this discussion, the medial temporal lobe is particularly salient, as it is known to be 48 
important for multiple behaviors including spatial navigation and memory, however the relationship 49 
between these functions is currently unclear. Here, to investigate how representations in single neurons 50 
vary across different task contexts in the MTL, we collected and analyzed single-neuron activity from 51 
human participants as they completed a paired-task session consisting of a passive-viewing visual working 52 
memory and a spatial navigation and memory task. Five patients contributed 22 paired-task sessions, 53 
which were spike sorted together to allow for the same putative single neurons to be compared between 54 
the different tasks. Within each task, we replicated concept-related activations in the working memory 55 
task, as well as target-location and serial-position responsive cells in the navigation task. When comparing 56 
neuronal activity between tasks, we first established that a significant number of neurons maintained the 57 
same kind of representation, responding to stimuli presentations across tasks. Further, we found cells that 58 
changed the nature of their representation across tasks, including a significant number of cells that were 59 
stimulus responsive in the working memory task that responded to serial position in the spatial task. 60 
Overall, our results support a flexible encoding of multiple, distinct aspects of different tasks by single 61 
neurons in the human MTL, whereby some individual neurons change the nature of their feature coding 62 
between task contexts.  63 
 64 
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 66 
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Materials Descriptions & Availability Statements 76 
  77 
Project Repository      78 

This project is openly available through an online project repository, which includes all the code used for 79 
data collection and analysis, as well as step-by-step guides through the analyses. 80 

Project Repository:   https://github.com/HSUpipeline/AnalyzeTH 81 

Datasets 82 

This project uses electrophysiological data collected from neuro-surgical patients. The data from the 83 
working memory task is openly available as part of a larger dataset (https://osf.io/824s7/). The data from 84 
the spatial task will be made available prior to publication. All subject testing and data processing 85 
complied with the policies of local institutional review boards.  86 

Software 87 

Code used and written for this project was written in the Python programming language. All the code used 88 
within this project is deposited in the project repository and is made openly available and licensed for 89 
reuse. 90 

 Management of the dataset was done using the Human Single Unit (HSU) Pipeline: 91 

  HSU pipeline:   https://github.com/HSUPipeline 92 

Analyses of the single-neuron data were done using the spiketools toolbox: 93 

spiketools repository:  https://github.com/spiketools/spiketools  94 
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Introduction 96 
 97 

A key question in neuroscience concerns the nature of the information represented by the activity 98 
of individual neurons. A remarkable collection of studies have demonstrated how individual neurons can 99 
encode specific variables of interest at various levels of complexity, across perception, motor control, and 100 
cognitive tasks, ranging from orientation-tuned cells in primary visual cortex (Hubel & Wiesel, 1962), to 101 
abstract invariant representations of specific identities, such as the ‘Jennifer Anniston’ neuron (Quiroga 102 
et al., 2005). However, not all individual neurons encode with such specificity, with many experiments 103 
finding cells with conjunctive encoding, whereby an individual neuron responds to the combination of 104 
two or more features (Duvelle et al., 2023) and/or be even more broadly tuned to a mixture of multiple 105 
variables (Fusi et al., 2016; Rigotti et al., 2013). Collectively, this literature establishes that the brain 106 
contains a mixture of ‘specialist’ cells, which are narrowly tuned to a specific feature, as well as ‘generalist’ 107 
cells, which have broader mixed tuning across multiple variables, with many remaining open questions 108 
regarding if and when different encodings shift or remap entirely.  109 

 110 
Apparent differences in the specificity of neural representations are at least partly related to 111 

regional differences. Where primary sensory areas are generally thought to be specifically tuned to 112 
incoming sensory information of specific modalities (though see a notable example of multi-sensory 113 
responses in V1 (Knöpfel et al., 2019)), increasingly ‘higher-order’ areas are thought to encode increasingly 114 
abstract constructs that could be more broadly tuned across tasks and contexts. The prefrontal cortex, for 115 
example, is thought to engage in high-level, abstract representations that can be flexibly applied across 116 
task contexts (Behrens et al., 2018; Duncan, 2001). Overall, there is thought to be a hierarchy of encoding 117 
from specialized neurons in primary sensory areas that are not expected to change their representation, 118 
to higher-order areas that encode more abstract features, with more flexibility to encode multiple 119 
features, both simultaneously and/or across time. Further understanding the consistency of 120 
representations, however, requires dedicated work that evaluates neural activity across task contexts. 121 

 122 
In the cortex, some experiments have examined different task variants within a cognitive domain, 123 

to investigate how individual neurons change their activity in relation to different task demands. For 124 
example, in recordings in the parietal cortex from mice, neural responses across two different visual 125 
decision tasks engaged largely distinct populations of neurons (Lee et al., 2022). However, when using 126 
two different categorization tasks in monkeys, a broadly similar neural representation was found across 127 
the two tasks (Mohan et al., 2021). An early experiment in humans did report a small number of MTL 128 
neurons that showed responses to words and also to unrelated faces (Heit et al., 1988). Some studies in 129 
humans have examined responses to the same stimuli based on task demands, for example, finding 130 
differences in responses across regions to different task demands when viewing the same faces (Cao, 131 
Todorov, et al., 2022). In another experiment, asking participants to flexibly switch between a recognition 132 
memory and categorization task led to different population-level representations of the task demands in 133 
the medial frontal cortex (Minxha et al., 2020). Collectively, these studies are beginning to establish how 134 
neurons change their representations across variations in task context, however the limited results thus 135 
far suggests there are differences across species, cognitive domains, and anatomical locations. 136 

 137 
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Within the discussion of neural representations, the medial temporal lobe (MTL) is a structure of 138 
particular interest due to its involvement in multiple cognitive processes. In spatial navigation, the MTL 139 
has seemingly ‘specialist’ cells that encode specific locations in space (place cells), as well as location- and 140 
navigation-related features such as head direction, speed, and environment borders (Moser et al., 2017). 141 
While much of the spatial navigation literature is in rodents, space-related representations have also been 142 
found in non-human primates (Rolls & Wirth, 2018), as well as recent demonstrations of place, target-143 
location, and sequence encodings in single-neurons in humans (Miller et al., 2013; Tsitsiklis et al., 2020). 144 
In investigations with visually presented stimuli, the MTL has also been found to have neurons that 145 
respond to broadly tuned object categories as well as to highly specific concepts, which is also thought to 146 
relate to memory processes (Quiroga, 2012; Rutishauser et al., 2021). Despite a large amount of research 147 
on both the spatial navigation and memory functions of the MTL, this research is typically done in distinct 148 
labs and experiments, with the relationship between memory and spatial-navigation functions of the MTL 149 
remains a debated topic. Specifically, it is unclear how the firing patterns of individual neurons shift 150 
between these different  processes. 151 

 152 
The previous findings, whereby the MTL has been found to engage in seemingly distinct functions 153 

across spatial navigation and memory has led to the suggestion that this structure may engage in 154 
representing ‘cognitive maps’ whereby individual neurons represent features or relations within a high-155 
dimensional state space (Behrens et al., 2018; Schiller et al., 2015; Tolman, 1948). Under this hypothesis, 156 
the MTL constructs ‘maps’ of features of interest within which physical space may simply be a special case 157 
of a more general mechanism that can be applied to other ‘spaces’. In a physical context, the activity of 158 
place cells represent locations in the map, representing physical space. In a different context, individual 159 
MTL neurons are predicted to be able to represent elements within other feature spaces, such that they 160 
can flexibly engage in different kinds of representations based on task demands. This perspective is 161 
supported by studies such as one that finds ‘frequency-place cells’ wherein individual neurons represent 162 
locations in frequency space during a sound modulation task (Aronov et al., 2017). This framework is also 163 
consistent with perspectives whereby the hippocampus can be thought of as a general relational 164 
processing system which can be applied to organizing relations across space, time, and conceptual 165 
dimensions  (Eichenbaum & Cohen, 2014).  166 
 167 

Empirically, the specificity, flexibility, and consistency of neural responses can be examined by 168 
using different tasks while comparing the responses of a specific neural population across stimuli and task 169 
contexts. However, since the vast majority of experiments only investigate neural representations within 170 
specific behavioral contexts, it is generally unclear if and when individual neurons maintain and/or change 171 
representation across different contexts. Experiments employing multiple tasks are limited by practical 172 
challenges related to training and testing across multiple distinct tasks while recording from the same 173 
neurons, especially for tasks from across different cognitive domains. These limitations may be 174 
particularly difficult if attempting to train animal models to flexibly switch between completely distinct 175 
tasks. Such experimental designs are therefore a situation in which human participants may be ideal due 176 
to their capacity to rapidly learn and switch between distinct behavioral contexts.  177 

 178 
Collectively then, the existing evidence suggests that the brain appears to use a hierarchically 179 

organized combination of ‘specialist’ and ‘generalist’ cells. However, beyond this general 180 
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conceptualization, there are numerous outstanding questions relating to the nature of how individual 181 
neurons encode features across different task contexts. This question is particularly salient in the MTL, in 182 
which there is a strong theoretical motivation for predicting that individual cells engage in distinct 183 
representations across different contexts as part of domain-general ‘cognitive maps’. This is empirically 184 
well demonstrated when considering different contexts within the same domain (e.g. remapping across 185 
contexts in spatial experiments (Kubie et al., 2020; Kubie & Muller, 1991)), however there is currently little 186 
empirical investigation comparing across domains such as comparing across a spatial navigation task and 187 
a non-spatial visual memory task. To what extent do individual MTL neurons maintain a fixed encoding, 188 
responding only to a narrowly tuned feature structure across different behavioral contexts and 189 
disengaging if that feature is not present? Alternatively, can individual neurons be flexibly recruited to 190 
encode task-relevant variables, with potentially different representations based on behavioral context?  191 
 192 

To address these questions, in this study, we investigate how the representations of individual 193 
neurons in the MTL change across task context. We do so using a paired-task design in human participants, 194 
while recording single-neuron activity from implanted electrodes. By comparing neural activity within and 195 
between distinct tasks, we hypothesized that we would observe individual neurons switch between 196 
distinct representations across different tasks. This is indeed what we observed, as we found both neurons 197 
that maintained a consistent representation to stimuli that were presented across tasks, as well as some 198 
neurons that engaged in seemingly distinct representations between the two tasks. This implies that some 199 
‘specialist’ encodings may be specific to task context, and that (at least some) MTL neurons can switch the 200 
kind of feature that they encode, which may relate to the MTL as enacting a feature-general ‘cognitive 201 
map’ rather than being purely specialized within particular domains. 202 

 203 
  204 
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Methods 205 
 206 
2.1 Single-Neuron Recordings 207 
 208 

The participants in our study were patients with chronic, medication-resistant epilepsy who 209 
volunteered to participate in our study while undergoing pre-surgical monitoring with implanted 210 
electrodes to localize epileptogenic regions. Patients were eligible for participation in this study if the 211 
clinical monitoring plan included electrode coverage in the medial temporal lobe (MTL), including 212 
unilateral or bilateral amygdala and/or hippocampus. Eligible participants were implanted with Behnke-213 
Fried electrodes, which include clinical macro-electrodes as well as 40-μm microwires which extend from 214 
the macro electrode tip and can record single-neurons. Five patients (4 female, ages 29-53 years old) 215 
participated, for a total of 22 recording sessions (Table 1). Recordings were collected at J. W. Ruby 216 
Memorial Hospital, affiliated with West Virginia University, and all patients provided informed consent. 217 
Patients had between 3-6 Behnke-Fried electrodes implanted, to a total of 22 electrodes across the group, 218 
each of which had 8 micro-wires. Recordings from the microwires were collected at 32 kHz using a 219 
NeuraLynx Atlas recording system (Neuralynx, Bozeman, USA) with full bandwidth recordings (0.1-9 kHZ). 220 
The data analyzed in this study is openly available for the one-back task (Cao, Lin, et al., 2022) and will be 221 
released for the Treasure Hunt task upon publication. 222 
 223 
2.2 Experimental Tasks 224 
 225 

Participants in our study performed a paired task session in which they completed a visual working 226 
memory task, which was immediately followed by a spatial navigation and episodic memory task. The 227 
visual working memory task was a one-back paradigm, which is commonly used to test how participants 228 
maintain and manipulate information in working memory (Cao et al., 2021; Cao, Wang, et al., 2022). The 229 
spatial navigation task is a 3D virtual stimulus-location associative memory task called Treasure Hunt (TH), 230 
developed in Unity, which was previously used to study various aspects of human spatial memory and 231 
electrophysiology (Miller et al., 2018; Tsitsiklis et al., 2020). Both tasks were played on bedside laptops, 232 
with participants pressing the spacebar on a keyboard to respond in the one-back and using a separate 233 
joystick to control movements in the Treasure Hunt task. In each paired-task  session, participants typically 234 
started with the one-back task first and played Treasure Hunt immediately after, with short breaks 235 
between tasks if necessary. 236 

 237 
Each of these tasks could occur in one of two versions, a “face” version where presented items 238 

were famous faces, or an “object” version where items were images of general objects. Within a single 239 
paired task session, the stimuli type was always consistent across tasks (eg. the object version of the one-240 
back task was always followed by the object version of TH). In the “object” version of the one-back task, 241 
10 images of objects from 50 categories were taken from the ImageNet database (Deng et al., 2009). This 242 
was paired with the standard version of Treasure Hunt in which stimulus items are 3d rendered images of 243 
everyday objects. In the faces version of the one-back, images of celebrities were taken from the CelebA 244 
dataset52 (Liu et al., 2015), selecting identities across genders and races. To create a “faces” version of 245 
treasure hunt, stimuli were replaced with a selection of face images that were also used in the one-back 246 
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task. In the one-back task, for both versions of the tasks, we selected 50 identities and object categories 247 
with 10 images for each, resulting in 1000 images in total. The same set of stimuli were used across all 248 
patients.  249 

 250 
We used a one-back task with human faces or objects as described in previous studies (Cao et al., 251 

2021; Cao, Wang, et al., 2022). Stimuli were presented using MATLAB with the Psychtoolbox 3 (Kleiner et 252 
al., 2007) running a laptop computer with a screen resolution of 1600 × 1280. In each trial, a single image 253 
was presented at the center of the screen for 1 second. The interstimulus-interval (ISI) was uniformly 254 
sampled between 0.5 to 0.75 seconds.  Patients were instructed to respond by pressing the spacebar if 255 
the current image was identical to the immediately preceding image. Patients were instructed to respond 256 
after the image disappeared, to avoid motor activity during image presentations. One-back repetition 257 
presentations happened on 9% of trials. Other than repetition trials, each individual image was presented 258 
once, with the order of presented images being randomized for each patient. All analyses were done 259 
excluding the one-back repetition trials, in order to have an equal number of responses for each image.  260 
 261 

The Treasure Hunt spatial navigation and memory task was used, as described in previous studies 262 
(Miller et al., 2018; Tsitsiklis et al., 2020). In each trial of Treasure Hunt, participants use a joystick to 263 
navigate a rectangular arena on a virtual beach and encounter treasure chests that can contain items. 264 
Participants are instructed to remember the location of the presented items, so that they can later report 265 
the location of each encountered item. Chests appear in the arena one at a time with randomized 266 
locations across trials. There are typically 5 blocks of trials in a complete run of Treasure Hunt, where each 267 
block has 8 individual trials, to a total of 40 trials. Due to the time constraints of our paired-task session, 268 
most Treasure Hunt runs were not a complete session, with most runs instead including 3 complete blocks 269 
(24 trials). A total of 22 paired-task sessions were included and analyzed (TH-face: 10 sessions, average of 270 
23.40 trials (range: 8-40); TH-object: 12 sessions, average of 25.67 trials (range: 24-32)). 271 
 272 

Each trial of Treasure Hunt consists of two phases – a navigation / encoding phase, and a retrieval 273 
phase. During the navigation phase, participants are first placed at one end of the arena, from which they 274 
can navigate freely using the joystick. They are instructed to navigate to a series of chests that are 275 
presented serially in the arena. Upon reaching a chest, players are rotated to the front of the chest, at 276 
which point it opens and reveals either an item contained in the chest, which is presented for 1.5 seconds, 277 
or the chest is shown to be empty. There are 4 chest presentations per trial, 2 or 3 of which are full chests. 278 
After reaching all four chests of a trial, participants are transported to one end of the arena, either the 279 
same side as the navigation start or the opposite side, indicating the end of the navigation phase. 280 
Participants then play a distractor task which is a computerized version of the “shell game”. After the 281 
distractor game, the recall phase starts in which participants are prompted with each of the items from 282 
the trial in a random order. They are first asked to rate their confidence level of whether they remember 283 
the location of the encountered item (response options: “Yes”, “Maybe” or “No''). They are then asked to 284 
respond with the exact location in the arena they encountered the item by maneuvering a crosshair with 285 
the joystick. At the end of the recall period, participants receive feedback regarding whether each 286 
response is close enough to be considered correct, and receive points accordingly. A response is 287 
considered correct if it is within 13 virtual units of the true object location. 288 

 289 
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 290 
Table 1 - Subject overview. Details of the data that was included in this study.  291 
 292 
2.3 Data Pre-Processing 293 
 294 
 After data collection, each paired-task session was pre-processed together such that the same 295 
putative single-neurons could be isolated and analyzed across both tasks. Single-neuron activity was 296 
identified and spike sorted using the OSort algorithm (Rutishauser et al., 2006). Spike times were then 297 
extracted from the full session for each task, such that each task could be analyzed independently. Only 298 
neurons with an average firing rate greater than 0.15 Hz across both tasks were kept for analysis, keeping 299 
a total of 1173 neurons across the project (face-version: 608 neurons; object-version: 565 neurons). In 300 
the analysis, neurons from each recording session were considered unique, even if they came from the 301 
same subject. We note that the same participants did both stimulus versions of the paired-task sessions, 302 
such that there could be overlapping neurons in the two datasets. Notably, the two stimulus versions 303 
were analyzed independently. For the one-back task, single-neuron activity was associated with the 304 
behavioral timestamps and analyzed using custom scripts in the Matlab programming language 305 
(Mathworks, Inc, USA). For the Treasure Hunt task, single-neuron activity was organized together with 306 
behavioral information into Neurodata Without Borders (NWB) files (Rübel et al., 2022) which were then 307 
analyzed in the Python programming language, using the spiketools module for analyzing single-neuron 308 
activity (Donoghue et al., 2023). After each task was analyzed, the activity patterns and task activations 309 
within each task were then compared across tasks in order to examine single-neuron activity across task 310 
contexts.  311 
 312 
2.4 Neural Data Analyses 313 
 314 

Across both tasks, we analyzed neural responses that were potentially consistent across both 315 
tasks, such as responses to stimuli, and also responses that were specific to each task, for example, 316 
identity responses in the one-back task (in which multiple images of the same persons / objects are shown) 317 
and place and sequence-related responses in the Treasure Hunt task. To test for stimulus-related 318 
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responses, we used t-tests comparing firing pre & post stimulus onset. To analyze cell responses to other 319 
task features, we used ANOVAs. For all ANOVA tests, we used surrogates to evaluate statistical 320 
significance, creating 1000 surrogates by circular shifting spike times by a random offset, recomputing the 321 
ANOVA of interest, and computing the f-statistics output from the real data as compared to the 322 
distribution of surrogates to compute an empirical p-value. For each analysis, individual neurons were 323 
considered significant at an alpha value of 0.05 (if the f-value calculated on the real data was at or above 324 
the 95th percentile of the f-value from the shuffled surrogate data). For all analyses, at the group level we 325 
applied one-sided binomial tests to evaluate whether the number of neurons detected to have a 326 
significant response exceeded the number expected by chance. 327 
 328 

In the one-back task, we analyzed neurons for non-selective responses to stimuli, as well as for 329 
selective responses to specific stimuli, following previously described procedures (Cao et al., 2021; Cao, 330 
Wang, et al., 2022). To detect stimulus-responsive neurons, we used a paired t-test (p<0.05) comparing 331 
the firing rate during baseline (-250 ms to 0 relative to stimulus onset) versus stimulus period (250 ms to 332 
1250 ms after stimulus onset). For the selection of identity neurons, we first used a one-way ANOVA (p < 333 
0.05) to identify neurons that responded differently to different identities. In addition, we applied an 334 
additional criterion requiring that the neural response of one identity/category was at least 2 standard 335 
deviations (SD) above the mean of the neural responses of all others, which also allowed for identifying 336 
which identity/category the neuron’s responded to. These procedures are consistent with criteria 337 
employed in other related studies to detect responses to specific identities (De Falco et al., 2016; Rey et 338 
al., 2020). 339 
 340 

After detecting neurons with responses to particular identities or categories, we employed a 341 
series of control analyses to further examine these neurons. We assessed the selectivity of each neuron 342 
to different identities for each neuron using an identity selectivity index defined as the dʹ between the 343 
most- and least-preferred identities (Grossman et al., 2019). This was computed as (μbest - μworst / 344 
sqrt(0.5*(σ2

best + σ2
worst))), wherein μbest, μworst and σ2

best, σ2
worst denote the mean firing and variance of 345 

firing rate for the most- and least-preferred identities, respectively. We also computed a depth of 346 
selectivity (DOS) measure to summarize the responses of identity neurons, creating a scale that varies 347 
from 0, indicating equal responding to all identities, to 1 denoting exclusive responses to one identity but 348 
none of the others (Minxha et al., 2017; Wang et al., 2018). The DOS measure was quantified as (n-(sum( 349 
Rj / Rmax)/n-1), where n is the number of identities or categories (n = 50), Rj is the average firing rate to 350 
identity j, and Rmax is the maximum average firing rate across all identities. Finally, for each neuron, we 351 
also calculated the response ratio for each face/object identity. To do so, the responses of all identities 352 
were first divided by the response of the most preferred identity and then ranked from the most preferred 353 
to the least preferred, such that the response ratio of the most preferred identity is always 1. We 354 
compared response ratio for each ordered identity between identity vs. non-identity-selective neurons 355 
using two-tailed unpaired t-test (corrected for multiple comparisons using false discovery rate (FDR) 356 
(Benjamini & Hochberg, 1995). A steeper change from the best to the worst category indicates a stronger 357 
identity selectivity. Note that these measures were used to quantify the properties of identity neurons 358 
and compare them to non-identity neurons that were selected by the ANOVA procedure, and were not 359 
used to select identity neurons. 360 
 361 
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In the Treasure Hunt task, overall accuracy was evaluated based on the number of recall 362 
responses that were evaluated by the game as correct, based on the 13 virtual unit threshold. For the 363 
stimulus related responses, in Treasure Hunt, this relates to chest opening events, when stimuli are 364 
presented. We used t-tests to evaluate a significant change of firing, comparing the 1-second pre and post 365 
chest opening time, specifically for full chests, which contain presented stimuli. 366 
 367 

To examine potential space- and sequence-related neural responses in TH, we analyzed the data 368 
from the navigation periods. For the space related analyses, we first binned the rectangular environment 369 
into a grid such that we could assign the position of the subject, the position of the targets (chests) and 370 
neural activity as relating to particular bins. This allowed us to examine relationships between neural firing 371 
and the subject’s and/or target’s positions. In doing so, we used a minimum occupancy of 1 second, and 372 
excluded stationary periods (if the speed was lower than 5x10-6 virtual units / second) for a bin to be 373 
included in any subsequent analyses. After these exclusions, we computed the average firing rate in each 374 
grid by binning the associated spikes based on the position of the player or of the targets respectively. For 375 
place cell analyses, a spatial binning of 5-by-7 across the navigable range was used to associate spiking 376 
with the players position. For target cell analyses, a binning of  2-by-4 across the possible chest range was 377 
used to associate spiking with the target destination. One-way ANOVAs were used to evaluate whether 378 
firing rates were significantly modulated by subject or target spatial location, assessed using the 379 
aforementioned surrogate procedure. For visualization purposes, we smoothed the firing rate heatmaps 380 
by binning into a finer 5-by-8 grid, with a Gaussian filter with a 1.1-bin SD. We additionally tested for a 381 
modulation of firing rate by serial position, using an ANOVA procedure to evaluate whether each neuron’s 382 
firing rate during navigation was significantly modulated by the serial position of the four chests that were 383 
presented per trial. 384 
 385 

After analyzing cell responses within each task – including stimulus-related responses in both 386 
tasks, identity and object category responses in the one-back task, and place, target and serial position 387 
related responses in the Treasure Hunt task – we next tested for interactions betweens neuronal 388 
representations across tasks. Specifically, we tested for an over-representation of neurons with 389 
representation A in the one-back task and representation B in the Treasure Hunt task, across all analyzed 390 
representations ‘A’ and ‘B’. We did so by computing the number of neurons that overlapped across each 391 
task, as related to the number of neurons with that representation within each task, and evaluated the 392 
statistical significance of the overlap with a chi-square test. This procedure allowed for evaluating whether 393 
there was an over-representation of neurons with a particular representation in one task and a similar or 394 
different representation in the other task. As well as comparing the number of identified neurons, we also 395 
examined the full set of statistical test values for each analysis (either t-values of f-values, depending on 396 
the analysis), and compared them between analyses. For each combination of task responses, we 397 
visualized the relationship between the statistical values and computed the spearman rank correlation 398 
between them.  399 
 400 

To visualize potential relationships between responses to different features, we did a series of 401 
simulations. Each simulation consisted of bivariate distribution, representing responses to ‘task 1’ and 402 
‘task 2’, with 500 values per task, simulated with different relationships between simulated task 403 
responses. To simulate correlated responses, we simulated bivariate normal data with either a correlation 404 
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of r = 0.85 (correlated example) or r = 0 (uncorrelated example). To simulate data with task specific 405 
responses, univariate normal data was first independently simulated for each task response, and then 406 
combined such that individual data points responded to one or the other task, split evenly. Finally, to 407 
simulate a combination of task-specific and task-general responses, we combined 80% of data points 408 
sampled as task specific responses with 20% sampled as correlated responses. Each of these simulated 409 
cases creates distributions with idiosyncratic properties that can be used to visually compare to the 410 
observed set of responses in the empirical data. The full set of parameters used to simulate the data is 411 
available in the project repository.  412 

413 
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 414 

 415 

Results 416 
 417 
 In this project, we used a paired-task session (Fig 1A), in which 5 neurosurgical patients completed 418 
22 paired task sessions consisting of a working memory one-back (OB) task followed by the Treasure Hunt 419 
(TH) spatial navigation task (Fig 1A&B). There were two versions of these paired-task sessions, one using 420 
face stimuli and the other using object stimuli. We recorded from implanted microwires during the paired 421 
task session, that were pre-processed together such that the same single-neurons could be compared 422 
across both tasks (Table 1; face-version: 608 neurons, object-version: 565 neurons), across the 423 
hippocampus and amygdala (Fig 1D). Within each task, single-neuron responses were analyzed based on 424 
previous analyses of these tasks, finding stimulus-related and identity related responses in the one-back 425 
task (Cao et al., 2021; Cao, Wang, et al., 2022) and space and sequence related responses in the Treasure 426 
Hunt task (Tsitsiklis et al., 2020). We then compared responses across the two tasks, identifying neurons 427 

Figure 1 - Paired-task session with combined spike sorting. A) Overview of the paired task session 
including a one-back task (left) and Treasure Hunt task (right), each of which had versions with either 
face (top; blue) or object (bottom; orange) stimuli. Here, faces have been replaced with place-holders 
– note that in the presented version, the task showed real pictures. The time trace represents the 
neural recordings that were recorded across both tasks in a combined session. B) A top down 
representation of the Treasure Hunt arena, showing the layout and an example trial with 4 chests. 
Note that this view is not shown to participants, and during gameplay each chest is presented serially. 
C) Behavioral performance for the one-back (left) and treasure hunt (right) tasks. D) Number of 
identified neurons across stimulus variants (left), anatomical region (middle), and hemisphere (right). 
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that have task specific responses, neurons that maintain a representation across task contexts, and 428 
neurons that switch representations between tasks. 429 
 430 
3.1  One-Back Results 431 
 432 
 Behaviorally, participants performed consistently well at the n-back task, both in terms of 433 
accuracy of repetition detection (Fig 1C; OB-face: 70.18% ± 21.52 [mean ± 1 standard deviation across 434 
sessions]; OB-object: 66.52% ± 23.98), and reaction time (OB-face: 203.7 ± 145.4ms; OB-object: 118.7 ± 435 
101.1 ms). Comparing between stimulus version, there was no significant difference in accuracy 436 
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(t(20)=0.38, p=0.71, unpaired two-sample t-test) or reaction time (t(20)=1.61, p=0.12, unpaired two-437 
sample t-test)  between the face and object versions of the one-back task. Analyzing the neural data, we 438 
first examined whether there were stimulus reactive cells with a significant activation for presented 439 
images, using paired t-tests (Fig 2A&D). We detected a significant number of stimulus-responsive cells 440 
across both task variants (Fig 2G; OB-face: 102/608 (16.78%), p<10-25, one-sided binomial test; OB-object: 441 
69/565 (12.21%), p<10-10, one-sided binomial test).  442 
 443 

We subsequently analyzed neural responses for cells that responded selectively to individual 444 
identities (people or objects) using 1-way ANOVA (see methods for details; Fig 2B&E). We found a 445 
significant number of identity cells in both task variants (Fig 2H; OB-face: 51/608 (8.39%), p=0.0003, one-446 
sided binomial test; OB-object: 83/565 (14.69%), p<10-17, one-sided binomial test). To further examine 447 
the identity neurons, we compared selective and non-selective cells on several measures, including a 448 
depth of selectivity index, an identity selectivity index, and on differences in response ratios (see 449 
methods). As compared to non-selective neurons, identity-neurons had a significantly higher depth of 450 
selectivity index, a significantly higher identity selectivity index, and a significantly higher difference in 451 
response ratios between the first and second most-preferred identities (Fig 2C&F; all p’s<0.05, two-tailed 452 
unpaired t-test), indicating that their response was selective to specific face or object identities. 453 
 454 

Figure 2 - Individual neurons in the one-back task respond to stimuli, individual identities, and object 
categories. A-F) Responses in the one-back task, for the face (A-C) and object (D-F) versions. Raster 
plots show neuronal responses to 500 faces (A, B) or objects (D, E). Each identity is coded by different 
colors. Trials are aligned to the stimulus onset (gray line) and are grouped by individual identity. A&D) 
Example neurons showing a stimulus related increase in activity for face (A) and object (D) stimuli. 
B&E) Example neurons with responses to specific identities (B) or object categories (E). Bar plots show 
average response for each identity and error bars denote ±SEM across face or object examples. 
Sample stimulus from encoded identities is displayed on top of the bars (face images have been 
removed). C&F) Group analyses of identity/category-selective neurons (S: selective; N: non-selective), 
including depth of selectivity (DOS; top left), identity selectivity index (top-right), response ratio 
(bottom left), and difference in response ratio between the first and second most preferred identities 
(bottom-right). The response ratio plot shows ordered average responses from the most- to the least-
preferred identity, normalized by the response to the most-preferred identity. The black bar refers to 
the significant difference between identity-selective vs. non-selective neurons (two-tailed unpaired t-
test, p<0.05, corrected by FDR for Q < 0.05). Asterisks indicate a significant difference under two-tailed 
unpaired t-test, *: P < 0.05, ** P < 0.01, *** P<0.001, **** P < 0.0001. Error bars denote ±SEM across 
neurons. G&H) Group-level results, showing the number of significant cells in the face (blue) and 
object (orange) versions of the task, as well as across regions (AMG: amygdala; AH: anterior 
hippocampus; PH: posterior hippocampus). 
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 455 
Figure 3 - Individual neurons in the Treasure Hunt task respond to stimuli, target location, and serial 
position. Neurons in the Treasure Hunt task were identified if they responded to stimulus 
presentations (A,D,F), spatial features (B,E,H), and/or serial position of presented items (C,F,I). For all 
analyses, the first two rows show example neurons (top / blue: face version; bottom / orange: object 
version) and the bottom row shows group level results, across stimulus variants and regions. A&D) 
stimulus responsive neurons were identified if they have a significant response to presented stimuli. 
B&E) spatial target cells were identified based on having a firing field related to the location of the 
target (chest) location. C&F) Serial position cells were identified based on having a differential firing 
rate related to the serial position of the four chests presented per trial. G-I) Group-level results, 
showing the number of significant neurons in the face (blue) and object (orange) versions of the task, 
as well as across regions (AMG: amygdala; AH: anterior hippocampus; PH: posterior hippocampus). 
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3.2 Treasure Hunt Results 456 
            457 

In the Treasure Hunt task, we measured performance on each trial based on the distance between 458 
the subject’s response location to the item’s actual position. Participants responded accurately on ~33% 459 
of trials (Fig 1C; TH-face: 33.0% ± 15.50 [mean ± 1 standard deviation across sessions]; TH-object: 34.2% 460 
± 19.77). There was no significant difference in performance between that face and object versions of TH 461 
(t(20)=-0.15, p=0.88, unpaired two-sample t-test). Analyzing the neural data, we first tested for stimulus 462 
responsive cells during the chest-opening events (Fig 3A&D), finding a significant number of stimulus-463 
responsive cells (Fig 3G; TH-face: 108/608 (17.76%), p<10-29, one-sided binomial test; TH-object: 61/565 464 
(10.80%), p<10-7, one-sided binomial test). 465 
 466 

We next looked for space-related representations, including firing patterns that related to the 467 
subject’s location as well as spatial target locations. We first looked for place cells, by examining firing 468 
rates in relation to the player’s position in virtual space, and although there were some individual neurons 469 
that passed the statistical test, overall there was not a significant number of place cells in this task (TH-470 
face: 28/608 (4.61%), one-sided binomial test p=0.6983; TH-object 28/565 (4.96%), one-sided binomial 471 
test p=0.5462). When looking for spatial target cells, by examining firing rates in relation to the player’s 472 
target destination (Fig 3B&E), we did find a significant number of spatial target cells (Fig 3H; TH-face: 473 
43/608 (7.07%), one-sided binomial test p=0.0155; TH-object: 40/565 (7.08%), one-sided binomial test 474 
p=0.0187). We additionally analyzed the Treasure Hunt data for serial position representations, as shown 475 
in previous datasets, by examining whether there was a modulation of firing activity during navigation 476 
based on the serial order of the four chests that were presented per trial (Fig 3C&F). We found a significant 477 
number of serial position cells in both variants of the Treasure Hunt task (Fig 3I; TH-face: 98/608 (16.78%), 478 
p<10-23, one-sided binomial test; TH-object: 77/565  (13.63%), p<10-14, one-sided binomial test). 479 
 480 
3.3  Overlap Results 481 
 482 
 We next examined the overlap between neuronal responses across the two tasks, starting by 483 
comparing stimulus responses across both tasks. To do so, we used Chi-squared tests to examine the 484 
number of cells that responded across one or both tasks. We found a significant overlap between the 485 
neurons that were found to be stimulus-responsive in one-back and those that were stimulus-responsive 486 
in Treasure Hunt (Fig 4A-C; face-version: 31 overlap neurons (30.39%), p=0.0003, Chi-squared test; Fig 4D-487 
F; object-version: 15 overlap neurons (21.74%), p=0.0018, Chi-squared test). Similarly, there was evidence 488 
of an over-representation of identity representation in the one-back task, when compared with more 489 
general stimulus response in Treasure Hunt, though this was only trending in the face version (face-490 
version: 14 overlap neurons (27.45%), p=0.0586, Chi-squared test; object-version: 15 overlap neurons 491 
(18.07%), p=0.0207, Chi-squared test). This overlap suggests that a significant number of neurons 492 
maintained a consistent representation across tasks. 493 
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 494 

 495 
 We then measured the cells that shifted the nature of their representations between tasks, 496 
examining the stimulus- and identity-responsive cells from the one-back task as compared to target- and 497 
serial-position-responsive cells from the Treasure Hunt task. We found that that neurons that were 498 
stimulus responsive in the one-back task often responded at particular serial positions in Treasure Hunt, 499 
though this overlap was only significantly over-represented with the object stimuli (Fig 5A-C; face-version: 500 
18 overlap neurons (17.65%), p=0.6453, Chi-squared test; Fig 5D-F; object-version: 17 overlap neurons 501 
(24.64%) p=0.0044, Chi-squared test). This pattern of results, in which the neurons that respond to all 502 
stimuli during the one-back task shift to represent particular serial positions during Treasure Hunt, 503 

Figure 4 - Overlap results for same representation. Examples of neurons with responses across both 
task contexts for neurons with the same kind of representation, responding to stimuli presentations 
across both tasks, for face stimuli (A-C) and for object stimuli (D-F). A&D) Example neurons that 
respond to stimuli in both the one-back and Treasure Hunt task. B&E) Average waveforms for the 
example neurons in A&D split across tasks. The waveforms are very similar, motivating that these 
detected units are well isolated and represent the same neuron across tasks. C&F) Shows the number 
of task responsive neurons, including the number of neurons that respond in only one task, and the 
number of overlap neurons that respond in both tasks.  
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provides an example of how some neurons can change the nature of their coding fundamentally between 504 
different behavioral task settings. The full set of overlap results, including non-significant overlaps, is 505 
available in Table 2. 506 

Figure 5 - Overlap results for different representations. Examples of neurons with responses across 
both task contexts, for neurons with different representations, responding to different aspects of each 
task for face stimuli (A-C) and for object stimuli (D-F). A&D) Example neurons that respond to stimuli 
in the one-back task and to serial position in the Treasure Hunt task. B&E) Average waveforms for the 
example neurons in A&D, split across tasks. The waveforms are very similar, motivating that these 
detected units are well isolated and represent the same neuron across tasks. C&F) Shows the number 
of task responsive neurons, including the number of neurons that respond in only one task, and the 
number of overlap neurons that respond in both tasks. 
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 507 
Table 2 - Full set of overlap results. The full set of comparisons between tasks. Reported p-values are for 508 
Chi-squared tests evaluating whether the number of neurons that overlap across tasks is different than 509 
expected by chance.  510 
 511 

Finally, to examine the full pattern of results across all neurons, for task combinations for which 512 
we observed a significant number of overlap neurons, we examined the pattern of statistical measures (t-513 
values or f-values) for each analysis. In order to illustrate different potential patterns, we used simulated 514 
data to demonstrate four possible relationships of responses between tasks, including having correlated 515 
responses, having uncorrelated responses, having task specific responses, and having a combination of 516 
task specific responses and neurons that respond to both tasks (Fig 6A-D). The empirical distributions 517 
appeared qualitatively consistent with the simulated data that was created with a combination of task-518 
specific and overlapping responses (Fig 6E-F). Specifically, in the empirical data, there were no significant 519 
correlations between the statistical measures (spearman correlation, all p’s > 0.05), which is also 520 
consistent with their being a combination of task specific and task general responses. Overall, we conclude 521 
from these analyses that there are neurons that do respond across tasks, but that this appears to 522 
represent a subset of neurons, as many neurons appear to respond in a task-specific manner. 523 
  524 
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  525 

Figure 6 - Group level comparison of responses across tasks across all neurons. A-D) Simulated data 
showing hypotheses of potential relationships of the task-related activity across two distinct tasks. Four 
potential relationships are shown: A) responses are correlated between tasks, B) responses are 
uncorrelated across tasks, C) responses are task-specific, such that individual neurons respond to single 
task only, D) there is a combination of task-specific responses, whereby most neurons respond to one 
task only, with a subset of neurons that respond to both (‘overlap’ neurons). E-F) Empirical distributions 
comparing the statistical measures for different responses between tasks, shown for the pairings in 
which we saw evidence of a significant number of overlap neurons.  Each data point represents an 
individual  neuron, plotted based on the statistical measures computed for different analyses (f-value 
or t-value, depending on the analysis – note that t-values are absolute valued). Each data point is 
colored by the outcomes of the analyses (yellow: not significant in either task; purple: only significant 
in the one-back task measure; green: only significant in the Treasure Hunt task measure; black: 
significant in both the one-back and Treasure Hunt task measures. Inset text shows the correlation 
values. The overall pattern of the empirical data is most consistent with the simulated hypothesis in 
which there is a combination of task specific and overlap neurons.  
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Discussion 526 
 527 
 In this study, we leveraged the human capacity for rapidly shifting task demands to investigate 528 
representations in individual neurons in the MTL across distinct behavioral contexts. We did so using a 529 
paired-task session including a one-back visual working-memory task followed by a spatial-navigation and 530 
memory task with human participants. Of the neurons that responded in both tasks, some neurons do 531 
maintain a consistent representation, by responding to the same class of stimuli across task contexts, 532 
whereas other neurons appear to switch their representation, responding to one type of feature in one 533 
task, and switching to represent a different, seemingly unrelated, feature in a subsequent task. Our 534 
findings thus contribute to the discussion on the specificity (or lack thereof) of neural representations at 535 
the level of individual neurons. Relatedly, it helps to address an implicit tension in the literature – given 536 
an ever expanding number of experiments that often report between ~5-50% of neurons that respond to 537 
a particular variable of interest, it quickly becomes practically impossible that each of these reflects a 538 
unique and independent set of neurons with a consistent feature encoding. Addressing this tension, here 539 
we show that while individual neurons in the human MTL can have what appear to be specific and 540 
selective responses within a particular context, across different tasks with disparate demands, neurons 541 
can flexibly shift between different representations. 542 
 543 

We note that while this experiment motivates that individual neurons can have a variable 544 
representation across contexts in the MTL, this is distinct from the notion of ‘mixed selectivity’ in which 545 
individual neurons respond to multiple features simultaneously. For example, in the prefrontal cortex, 546 
individual neurons with ‘mixed selectivity’ can non-linearly encode combinations of multiple features, 547 
suggesting a code in which variables of interest are thought to be represented across ensembles of 548 
neurons (Duncan, 2001; Fusi et al., 2016; Rigotti et al., 2013). The findings in our study are distinct from 549 
this notion of broadly tuned neural responses, and do not suggest that MTL neurons respond broadly to 550 
a mixture of features within the same task, but rather that they can have a selective response in one 551 
context, which flexibly reorganizes to a different selective response in another context. This distinction 552 
emphasizes that there is likely a high degree of regional specificity in the nature of neural representations, 553 
with different brain networks using distinct strategies to encode task-relevant information.  554 

 555 
The particular design and task set used in this experiment also reflect a targeted combination of 556 

MTL related functions, including having representations related to concepts (Quiroga, 2012) and to spatial 557 
navigation (Moser et al., 2017). The combination of tasks in this experiment were specifically tuned to 558 
relate to these seemingly distinct functions of the MTL, with much discussion about the relation of these 559 
distinct functions, and how they each relate to memory. We  found that neurons in the same regions 560 
engage in both spatial and concept-related tasks, with a clear overlap between cells engaged in the two 561 
tasks, replicating and extending previous studies using each in isolation to show spatial (Tsitsiklis et al., 562 
2020) and identity-related responses (Cao et al., 2021; Cao, Wang, et al., 2022) in the human MTL. We 563 
also ran these tasks with two distinct sets of stimuli (faces and objects), and while there were some small 564 
differences, there was not overall a clear distinction between the two different stimulus versions of the 565 
tasks. 566 
 567 
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 One way to contextualize our findings is in relation to the notion of ‘cognitive maps’ (Behrens et 568 
al., 2018; Schiller et al., 2015; Tolman, 1948), or similarly considering the MTL as a relational processing 569 
system (Eichenbaum & Cohen, 2014). Under this framework, the hippocampus and surrounding areas can 570 
be thought to represent abstract relations across dimensions, whereby space is a prominent, but non-571 
exclusive, domain for which a map can be constructed. Our experiment is consistent with the MTL being 572 
involved in generalized relational representation, finding responses that relate to space, sequences, and 573 
stimulus categories within a single recording session. We note however, that while our experiment is 574 
consistent with the general notion of ‘cognitive maps’, the specific patterns of changing representations 575 
are not clearly the pattern of dynamic representation that might be predicted under this framework. It 576 
could be hypothesized, for example, that individual neurons in a ‘cognitive map’ would have a conserved 577 
function of representing locations in different dimensional spaces across contexts, representing for 578 
example, locations in physical space in one task context and location in stimulus space in another. The 579 
changes in representations we observed were largely related to more broadly tuned representations such 580 
as stimulus responses, which are not entirely consistent with such a change in representation that relates 581 
to mapping specific locations in different feature spaces. Future work should seek to continue to evaluate 582 
individual neurons across distinct tasks in order to better evaluate how and understand why neurons 583 
appear to change their representations. 584 
 585 

This experiment emphasizes that the MTL is able to flexibly adapt to representing task-relevant 586 
features across changing behavioral demands. This may also relate to a potentially surprising aspect of 587 
our results, whereby we found a significant number of spatial target cells, but that we did not find a 588 
significant level of place cells. This general finding, in which there is stronger evidence for spatial target 589 
encoding rather than player location, is consistent with previous analyses of an independent dataset using 590 
this task (Tsitsiklis et al., 2020). This kind of encoding of remote target locations is reminiscent of non-591 
human primate work in which MTL neurons often represent remote locations (Rolls & Wirth, 2018), 592 
including spatial-view cells which encode the viewing location of the monkey (Rolls, 1999), grid-like 593 
representation of visual space (Killian et al., 2012), and schema cells which respond to abstract 594 
representations of space (Baraduc et al., 2019). Viewpoint-specific representations of visual scenes have 595 
also been observed in human MTL with fMRI (Epstein et al., 2003). In contrast to our findings, other human 596 
work using different virtual-navigation tasks has found place cells (Ekstrom et al., 2003; Miller et al., 2013). 597 
We thus hypothesize that the predominance of spatial-target responses observed here may relate to the 598 
behavioral demands. Notably, the Treasure Hunt task has an emphasis on the remote location of visible 599 
chest locations, rather than on current location, such that participants likely focused on the remote target 600 
locations while navigating, which is reflected in the spatial target cells. This shift in the nature of location 601 
tuning between place and spatial-target cells is consistent with the broader pattern we found here 602 
between the one-back and spatial tasks, where human MTL neurons flexibly vary their coding properties 603 
depending on task demands. 604 
 605 
 Beyond single-neuron recordings, our findings are also consistent with other human work that 606 
has emphasized that the same circuits seem to be involved in multiple distinct feature representations  607 
and tasks. Based on a review of human studies predominantly using fMRI, the human MTL has been found 608 
to have a similar functional organization in relation to spatial navigation as has been established in animal 609 
models, including elements of the hippocampal network that activate during specific spatial settings 610 
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(Epstein et al., 2017). Building on this homology, other fMRI experiments have established that the same 611 
or similar circuits are engaged when participants engage in non-spatial tasks that can still be 612 
conceptualized as ‘navigating’ feature spaces. For example, in an experiment in which participants made 613 
social decisions in a role playing game, analyzing the task decisions as movements through a social space 614 
revealed task related activations in the hippocampus (Tavares et al., 2015). In another experiment that 615 
involved making decisions about items varying across a 2d feature space, grid-like activations were found 616 
in a set of regions that are also related to spatial navigation (Constantinescu et al., 2016). While these 617 
fMRI studies do not allow for inference on the activity of single neurons, they reflect a growing literature 618 
that is establishing that the same MTL circuits engage in different tasks, including across the domains of 619 
spatial tasks, faces, and object categories, within which our current work helps to evaluate the single-620 
neuron correlates of how these circuits become flexibly recruited across task contexts.  621 
 622 

A key limitation of the previous literature as it pertains to explaining the relations of 623 
representations across contexts is that the majority of previous literature examines how individual 624 
neurons represent variables of interest in experiments using only a single task or across a limited 625 
behavioral context. One reason for this is that most animal models require extensive training on 626 
behavioral tasks, and it is therefore practically difficult to have animals quickly and flexibly maneuver 627 
between completely different tasks while recording across the same neurons. Here, we leveraged the 628 
benefits of working with humans, which allows for rapidly switching between multiple complex tasks. By 629 
using a paired-task session, this research design required only minimal practical updates to deploy a 630 
protocol in which two distinct tasks could be run adjacent in time in order for the data to be spike sorted 631 
and analyzed together. In future work, this experimental design could continue to be applied in other 632 
human single-neuron recording settings across different task combinations in different brain areas to 633 
further probe questions about neural representations across task contexts. Although some of these 634 
questions can also be examined with fMRI, which conveniently allows for multiple scans in the same 635 
individuals, single-neuron recordings have the advantage of providing much higher spatial and temporal 636 
precision that is useful for measuring precisely timed neuronal signals such as those that represent specific 637 
locations during active navigation. 638 
 639 

We also note that it is typical for human single-neuron research participants to complete multiple 640 
different tasks across the 1-2 weeks that they are typically in the EMU. In principle, the kinds of 641 
comparisons performed in this study could be extended across more tasks, potentially even with 642 
retrospective data, pending some technical challenges of aligning and analyzing data across recording 643 
sessions done at different times. Most notably, this requires having strategies for aligning spike sorting 644 
solutions across recording sessions in order to align putative single units. While it is unclear to what extent 645 
historical data may be alignable, prospectively recording long-term collections of ongoing data may also 646 
provide a strategy for analyzing data across sessions (Chaure & Rey, 2020), though more work is needed 647 
with this approach. Overall, we propose that analyzing single-neuron activity across task contexts is a 648 
fruitful research strategy that leverages the benefits of working with humans in order to answer important 649 
questions about neural representations.  650 
  651 
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Conclusion 652 
 653 

The medial temporal lobe is a complex structure that is known to be involved in multiple cognitive 654 
processes, including spatial navigation, representing high-level concepts, and memory processing. Here, 655 
we investigated the relation between these seemingly distinct functions, by using a paired task session in 656 
which the activity of the same neurons can be evaluated across task contexts. By doing so, we were able 657 
to show that there are multiple patterns of neural activity across tasks, whereby some neurons are active 658 
only in one task context, some neurons maintain a similar representation, and some neurons appear to 659 
switch their representation entirely, responding to seemingly distinct features in different task contexts. 660 
By showing that individual neurons can change the nature of their coding scheme between different 661 
behavioral tasks, our results contribute to a broader understanding of how the brain supports a broad 662 
range of behaviors. Our results show that individual neurons change their coding scheme between 663 
behaviors, demonstrating that, at least in the medial temporal lobe, there is a substantial degree of 664 
flexibility in neural networks, as opposed to requiring dedicated brain regions for individual behavioral 665 
tasks and types of neural representations. This topic may be a useful area for future research that could 666 
assess the modularity and flexibility of neural coding more generally and characterize the principles that 667 
explain the transformations in neural coding by individual neurons that appear between tasks. 668 
  669 
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 670 
 671 
 672 
 673 
  674 

Supplemental Figure 1 - Spike sorting quality measures. Panels A-F reflect spike sorting metrics 
combined across the face and object versions of the task, including A) the number of units per wire , 
B) the firing rates, C) the inter-spike intervals, D) the waveform peak signal-to-noise ratio (SNR), E) the 
waveform mean SNR, F) the projection distance, and G) the isolation distance. G) The mean isolation 
distance averaged across face and object versions of the paired task sessions.  
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 675 
 676 

 677 
 678 

 679 

  680 

Supplemental Figure 2 - Group-level analyses of the Treasure Hunt task. A) Averaged firing rate maps 
for all identified place cells, split by face and object versions of the task. B) Averaged firing rate maps 
from all significant spatial target cells, split by face and object versions of the task. C) The count of 
preferred positions for all significant serial-position cells, split by face and object versions of the task. 
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