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Abstract 

Self-grooming is an innate, naturalistic behavior found in a wide variety of organisms. The control of 

rodent grooming has been shown to be mediated by the dorsolateral striatum through lesion studies and 

in-vivo extracellular recordings. Yet, it is unclear how populations of neurons in the striatum encode 

grooming. We recorded single-unit extracellular activity from populations of neurons in freely moving 

mice and developed a semi-automated approach to detect self-grooming events from 117 hours of 

simultaneous multi-camera video recordings of mouse behavior. We first characterized the grooming 

transition-aligned response profiles of striatal projection neuron and fast spiking interneuron single units. 

We identified striatal ensembles whose units were more strongly correlated during grooming than during 

the entire session. These ensembles display varied grooming responses, including transient changes 

around grooming transitions or sustained changes in activity throughout the duration of grooming. Neural 

trajectories computed from the identified ensembles retain the grooming related dynamics present in 

trajectories computed from all units in the session. These results elaborate striatal function in rodent self-

grooming and demonstrate that striatal grooming-related activity is organized within functional 

ensembles, improving our understanding of how the striatum guides action selection in a naturalistic 

behavior. 
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Introduction 

Self-grooming is an evolutionarily conserved, ethologically relevant, and innate behavior. Self-grooming 

is found in arthropods1,2, birds3–5, and mammals6–10. In mammals, grooming serves to care for the outer 

body surface, for de-arousal11,12, thermoregulation13–15, and water economy16. Rodent grooming is an 

innate behavior9,17–20, with mice showing primitive forms of facial grooming as early as postnatal day 1 

(p1)17. From p4-8, the kinematics of grooming movements become more tightly coordinated. After p9, 

mice start to perform movements similar to those performed by adults. Rat pups begin to exhibit functional 

face grooming at p6-89, but do not perform long sequences of grooming until p14-2118–20, the time of 

development when many complex motor programs begin to emerge21,22. 

The selection and initiation of actions is controlled by the striatum23–29. The striatum has been shown to 

encode action space30 and to flexibly combine behavioral motifs into actions25. Cells within the striatum, 

predominantly consisting of striatal spiny projection neurons31–33, are organized into functional clusters 

of co-active units; this clustering is considered to be important for striatal network dynamics34,35 and 

behavioral control30,36–40. The striatum has been implicated in the production of self-grooming behavior, 

and lesions of the striatum disrupt grooming bouts41. Within the striatum, neurons of the dorsolateral 

striatum42,43 and nearby central striatal regions44 display grooming-related activity. Yet, how populations 

or ensembles of neurons in the striatum—defined here as sets of neurons that are more likely than chance 

to be co-active—encode self-grooming remains unclear. Given the likely importance of ensemble activity 

in the striatum, elaborating whether grooming-associated neural activity maps onto striatal ensembles is 

significant, and it remains to be elucidated.  

Here we recorded simultaneous activity of populations of neurons in the dorsolateral striatum of freely 

moving mice during spontaneous grooming using extracellular probes. Because grooming can be a 

relatively rare behavior, many hours of data must be acquired to capture an adequate sample of its neural 

correlates. To overcome this obstacle, we developed a semi-automated approach to detect grooming bouts 

from behavioral videos using 3D pose estimation and postural heuristics. We found striatal projection 

neurons (SPN) and fast spiking interneurons (FSI) with temporally diverse grooming-related activity. 

Furthermore, we identified striatal ensembles that encode core parameters of grooming bouts, including 

the transitions in and out of individual bouts, as well as bout duration. 

Results 

Mice were placed in a transparent, triangular arena with video recorded from each side to capture 

spontaneous behavior (Figure 1A, B). We identified mouse grooming bouts in a semi-automated 4-step 

process (Figure 1C). First, mouse limb positions were tracked in 2D in each view using DeepLabCut and 

triangulated to 3D using Anipose (see Methods). The 3D limb positions were then used to isolate likely 

grooming times, using a set of postural heuristics including movement speed, whether the animal was 

rearing, and the hand-to-nose distance. These heuristics identified general windows during which 

grooming was likely to be occurring, but they did not capture the precise timing of the behavior. We 

therefore refined heuristic output using manual frame-by-frame annotation, to capture the precise start and 

stop times of grooming (Figure 1—figure supplement 1A). In 117 total hours of analyzed video, we 
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observed 304.8 minutes of grooming behavior within 1,475 individual bouts of grooming; mice groomed 

for 4.1% of each session on average (Figure 1D, 4.1 ± 0.3%, 63 sessions from 6 mice). Grooming bouts 

were on average 12.4 seconds long (Figure 1E, 12.4 ± 0.4 seconds) and separated by 4.3 minutes (Figure 

1F, 4.3 ± 0.1 minutes). 

 

 

 

 

Figure 1. 3D tracking and characterization of the structure of mouse spontaneous grooming. A. Schematic of 

experimental setup. Mice were placed into an equilateral triangular arena made of transparent acrylic (12-inch sides 

and height) and their behavior was captured with three side view cameras. Schematic is not to scale. B. Example 

video frames of mice during spontaneous grooming. C. Overview of our 4-step grooming identification approach. 

D. Distribution of the percent of each session that mice spent spontaneously grooming (6 mice, 63 sessions, 117 

experiment hours, 1,475 grooming bouts, 304.8 total minutes of spontaneous grooming). E. Distribution of 

spontaneous grooming bout durations in seconds (for the same dataset as in D). F. Distribution of inter-bout 

intervals in minutes (for the same dataset as in D). 
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Figure 1—figure supplement 1. Manual refinement of grooming identification. A. Example annotations 

of grooming behavior by four annotators. Green regions in each row denote times that the annotator labeled as 

grooming and gray regions denote times not annotated as grooming. Vertically aligned white spaces indicate breaks 

of variable time between individual grooming bouts. Average pairwise Jaccard Index (or Intersection over Union) 

computed on all annotations from a single 2-hour session was 0.76 ± 0.04. 

 

To record striatal activity during mouse spontaneous grooming, we implanted 64-channel electrodes into 

the dorsolateral striatum of adult male and female mice (Figure 2—figure supplement 1A-D, N=6 mice). 

We classified well-isolated units as putative striatal spiny projection neurons (SPN) and putative fast 

spiking interneurons (FSI) on the basis of their firing rates and spike waveform, following established 

criteria45–47. Units that did not fit the criteria for SPNs or FSIs were labelled as ‘other’ and excluded from 

further analyses. (Figure 2A, SPN: 88.2% 2,755 units, FSI: 3.2% 100 units, other: 8.6% 269 units). 

To identify example individual units with grooming-related activity, we isolated units whose activity 

within a two-second window around the start or end of grooming was two standard deviations above mean 

activity during a grooming-free baseline period. All subsequent analyses were performed on the full 

dataset. Example SPNs and FSIs with grooming related activity are shown in Figure 2B-E. We observed 

units displaying diverse grooming-related responses, including increased activity at the start of grooming, 

end of grooming, and both start and end of grooming, as well as units that showed elevated activity for 

the duration of grooming, and units that showed reduced activity for the duration of grooming. 
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Figure 2. Striatal cell type specific activity mapped to spontaneous self-grooming. A. Classification of recorded 

units. Left: units were categorized as either SPNs, FSIs, or ‘other’ by their firing rates, spike waveform peak width, 

and duration between spike waveform peak to valley (SPN: 88.2% 2,755 units, FSI: 3.2% 100 units, other: 8.6% 

269 units). Right: average +/- SEM spike waveforms for units in each category. B. Activity of 4 example SPNs 

during grooming. Neural activity are aligned to the start of grooming bouts, denoted by t = 0. Top: spike raster plots 

for the example neuron during each grooming bout in the given session. Grooming bouts are sorted by grooming 

bout duration, denoted by the green rectangles. Bottom: unit average firing rate aligned to grooming start and 

normalized to [0, 1]. C. Activity of 4 example SPNs as in B, but for aligned to groom end. D. Activity of 4 example 

units as in B, but for FSIs aligned to groom start. E. Activity of 4 example units as in B, but for FSIs aligned to 

groom end. 
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Figure 2—figure supplement 1. Probe placement and firing rate characteristics. A. Schematic depicting how 

the four shanks within our recording electrodes were implanted along the anterior-posterior axis (shanks span 600 

μm). B. Representative coronal slices of electrode placements. Coronal histological slices were obtained and 

registered to the Allen Common Coordinate Framework (CCFv3) using the WholeBrain software package. Blue 

arrows depict the most ventral electrode position for each mouse. Blue lines depict the region covered by sites in 

one shank of each electrode. Anterior-Posterior (A/P) coordinates from Bregma used for registration are depicted 

above each slice. (6 mice, scale bar DV and ML = 1 mm). C. Distribution of firing rates for all recorded units (3,124 

units. 6 mice). D. Distribution of inter-spike intervals for all recorded units (3,124 units. 6 mice). 

 

To characterize different grooming-associated responses in the recorded striatal units, we first performed 

principal components analysis (PCA)48 on the grooming transition-triggered-average activity of all 

recorded SPNs and FSIs. We performed PCA separately on SPN activity aligned to groom start, SPN 

activity aligned to groom end, FSI activity aligned to groom start, and FSI activity aligned to groom end. 

The first principal component (PC) from each group reflects units that undergo a step-like increase or 

decrease in their activity at the grooming transition (Figure 3A, B, F, G, K, L, P, Q, SPNs aligned to 

groom start: 336 units with positive contributions to the first PC (denoted “> 0”), 640 < 0, SPNs aligned 

to groom end: 526 > 0, 424 < 0, FSIs aligned to groom start: 66  > 0, 1 < 0, FSIs aligned to groom end: 22 

> 0, 44 < 0). The second PC from each group reflects units whose activity transiently peaks or decreases 

around the grooming transition (Figure 3C, D, H, I, M, N, R, S, SPNs aligned to groom start: 364  > 0, 

292 < 0, SPNs aligned to groom end: 164 > 0, 518 < 0, FSIs aligned to groom start: 4  > 0, 19 < 0, FSIs 

aligned to groom end: 5 > 0, 19 < 0). Taken together, these results show that single unit SPNs and FSIs 

encode transitions into and out of an innate naturalistic behavior. 
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Figure 3. Emergent motifs in SPN and FSI activity around grooming transitions. A. First principal component 

from decomposing 10 seconds of SPN activity centered around grooming bout start times (1,632 units, explains 

9.3% of variance). B. Activity around grooming start for units that had the largest magnitude weight for the first 
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principal component. Units with weight > 0 are shown above the horizontal black line (336 units) followed by units 

with weight < 0 (640 units). Units are sorted by their weight for PC1. Each unit’s activity was normalized to the 

range from zero to one. C. Same as A, but for the second principal component (explains 5.1% of variance). D. Same 

as B, but for the second principal component (364 units with weight > 0, 292 units with weight < 0). E. Donut plot 

depicting the number of units with positive and negative weights for the first two principal components. F-J. Same 

as A-E, but for FSIs aligned to groom start (66 units with PC1 weight > 0, 1 unit with PC1 weight < 0, 2 units with 

PC2 weight > 0, and 19 units with PC2 weight < 0. PC1 explains 21.2% of variance and PC2 explains 7.1% of the 

variance). K-O. Same as A-E, but for SPNs aligned to groom end (526 units with PC1 weight > 0, 424 units with 

PC1 weight < 0, 164 units for PC2 weight > 0, and 518 units with PC2 weight < 0. PC1 explains 12.9% of variance 

and PC2 explains 5.2% of the variance). P-T. Same as A-E, but for FSIs aligned to groom end (22 units with PC1 

weight > 0, 44 units with PC1 weight < 0, 5 units with PC2 weight > 0, and 19 units with PC2 weight < 0. PC1 

explains 34.6% of variance and PC2 explains 8.6% of the variance).  

 

The event-triggered average responses of striatal neurons reveal several patterns of firing rate modulation 

aligned with the start or end of grooming. However, because this analysis relies on trial-averaging, it 

cannot be used to determine whether the striatum contains ensembles of neurons that are consistently co-

active. To address this question, we looked for functional clusters, or ‘ensembles’ of co-active striatal 

neurons with grooming related activity. To achieve this, we first constructed a matrix containing the 

grooming activity of all units in a given session, where the activity of each unit plus 5 seconds before and 

after grooming was concatenated. This matrix is shown for an example session in Figure 4A; dendrogram-

based sorting of recorded units makes evident the presence of synchronous activity in groups of units. 

Synchrony among units is also suggested by the block-diagonal structure of the correlation matrix for this 

example session (Figure 4B). This synchrony is further suggested by comparison to a time-shuffled 

version of the data (Figure 4—figure supplement 1A) and its corresponding correlation matrix (Figure 

4—figure supplement 1B).  

To test for the presence of ensembles and to estimate the number of potential ensembles within each 

session, we used an eigenvalue-based statistical method49,50, where we identify dimensions of the neural 

covariance matrix that capture more variance than expected by chance and found each session to have 

three to ten ensembles (Figure 4C, 6.2 ± 0.3 ensembles, 33 sessions, see Methods for details). Next, using 

the meta-k-means clustering algorithm51, we identified the ensembles present in each session. Meta-k-

means is an extension of k-means where one performs N iterations of k-means, keeping track of how many 

times each pair of units gets clustered together. The proportion of times that each pair gets clustered 

together is used to assign intermediate clusters before a final merging step. We chose to use meta-k-means 

for two reasons. First, meta-k-means does not always result in cluster assignment for all units, which is 

preferable because our recording configuration only samples a small subset of neurons in striatum and we 

do not expect all recorded units to belong to an identified striatal ensemble. Second, meta-k-means allows 

for the final number of identified ensembles to be greater or less than the initial choice of k, which is 

preferable because we do not have a priori knowledge of ensemble numbers present in each session.  

We found that 80% of recorded SPNs (1,074 units) and 70% of recorded FSIs (41 units) were clustered 

into ensembles of two or more units (Figure 4—figure supplement 1C). The majority of clusters were 
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composed of only SPNs, and FSIs were almost always assigned clusters together with SPNs (Figure 4—

figure supplement 1D; 88% (214 clusters) SPN only, 1% (1 cluster) FSIs only, 11% (28 clusters) SPN 

and FSIs). Within our identified ensembles, units in the same ensemble tended to be spatially closer than 

units that are not within the same ensemble (Figure 4D), consistent with striatal ensembles detected using 

imaging techniques30,38,39. During grooming, the pairwise correlation between units within the same 

cluster is higher than for the correlation between units not in the same cluster, whether those units are 

unclustered or belong to a different cluster (Figure 4E). The distributions of pairwise correlations 

computed using data from the whole session are shown in Figure 4F. This in-versus-out of cluster 

difference is weaker when comparing unit activity during the whole session, rather than during grooming 

(Figure 4G, grooming AUC: 0.81, whole session AUC: 0.69). 

 

 

Figure 4. Identification and characterization of striatal grooming ensembles. A. Heatmap of activity during 

grooming for all units in an example session (53 units, 6.55 minutes). Arrows point out a subset of synchronous 

events. Each unit’s activity is normalized to [0, 1]. B. Correlation matrix for the activity shown in A. C. Distribution 

of statistical estimate for the number of ensembles within a given session (4 mice, 33 sessions). The estimate is 

obtained by computing the number of eigenvalues from the data that are above the 99th percentile of the distribution 

of eigenvalues from 5,000 random shuffles of the data. D. Average cumulative distribution of pairwise unit distances 

for each pair of units that are within the same cluster (red) and each pair of units that are not within the same cluster 
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(blue). Plot depicts the mean ± SEM of the cumulative distribution across mice (4 mice). E. Distribution of pairwise 

unit correlations during grooming for each pair of units that are within the same cluster (pink 2,747 pairs) and each 

pair of units that are not within the same cluster (blue 27,421 pairs). Left: histogram. Right: cumulative distribution. 

F. Same as in E, but for pairwise correlations computed from activity during the entire session including grooming 

times. G. Comparison between the difference in pairwise unit correlations for units within and not within the same 

cluster computed during grooming (green) and during the whole session (orange) (grooming AUC: 0.81, whole 

session AUC: 0.69).  

 

The distribution of the number of ensembles identified in each session is shown in Figure 4—figure 

supplement 1E. We found a significant positive relationship between the number of ensembles identified 

and the number of units in each session (Figure 4—figure supplement 1F, R2 = 0.239, p = 0.004). The 

distribution of the number of units within each cluster is shown in Figure 4—figure supplement 1G 

(median cluster size = 4 units, mean = 4.6 ± 0.2 units). Cluster size did not increase with the number of 

units recorded in a given session (Figure 4—figure supplement 1H, R2 = 0.01, p = 0.582). The 

distribution of the percent of clustered units in each session is shown in Figure 4—figure supplement 1I 

with half of sessions having at least 82% clustered units. 

 

Figure 4—figure supplement 1. Statistics of identified clusters and activity patterns. A. Heatmap of activity 

during grooming with shuffled time bins for all units in the example session shown in 4A (53 units, 6.55 minutes). 

Arrows are in the same position as in Figure 4A highlighting the absence of synchrony after shuffling. Each unit’s 

activity is normalized to the range from zero to one. B. Correlation matrix for the shuffled activity shown in A. C. 

Total number of SPNs and FSIs that were clustered (pink) and unclustered (blue) (4 mice, 33 sessions, 243 clusters). 

D. Total number of clusters that comprised of only SPNs (purple), only FSIs (green), and of both SPNs and FSIs 
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(orange) (data as in C). E. Distribution of the number of clusters in each session. F. Relationship between the 

number of clusters found in each session and the number of units in that session (R2 = 0.239, p = 0.004). G. 

Distribution of the number of units in each cluster (data as in C). H. Relationship between the average cluster size 

in each session and the number of units in that session (R2 = 0.01, p = 0.582). I. Cumulative distribution of the 

percent of clustered units in each session. Dashed lines denote that half the sessions have at least 82% clustered 

units (data as in C).  

 

Having demonstrated the existence of ensemble activity during grooming, we next asked whether 

ensemble activity was enriched during specific timepoints during grooming. A heatmap displaying the 

average grooming activity for all significant ensembles is shown in Figure 5A (112 ensembles, 4 mice, 

33 sessions). To visualize the average grooming activity of ensembles across grooming bouts of varying 

duration, we first linearly time-warped ensemble activity during grooming. We found that ensemble peak 

activity is enriched around the transitions into and out of grooming (Figure 5B), but that the dynamics of 

grooming ensemble activation are diverse. For example, we found ensembles with higher activity during 

grooming, lower activity during grooming, and with peak activity at the start or end of grooming, with 

individual cluster examples of these patterns shown in Figure 5 C-F and Figure 5—figure supplement 

1C. This finding was unchanged when we analyzed the percentage of active units within each ensemble 

rather than the ensemble-average firing rate (Figure 5—figure supplement 1A, B).  
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Figure 5. Striatal ensembles encode features of self-grooming. A. Heatmap depicting the grooming-aligned 

average activity of all striatal ensembles. Ensemble averages are normalized to the range from zero to one. Prior to 

averaging across grooming bouts, ensemble activity during each grooming bout, excluding the 5 seconds before 

and after grooming, was linearly time warped to a fixed duration. Ensembles are sorted by peak time (112 

ensembles, 4 mice, 33 sessions). B. Distribution of time at which ensemble average activity peaked (data as in A). 

C. Representative example of an ensemble with increased average activity around grooming transitions. Grey region 

denotes the range of activity for shuffled ensemble activity. Bottom of the range depicts the 2.5th percentile of the 

shuffled activity, top of the range depicts the 97.5th percentile of the shuffled activity, and grey line depicts the 

average shuffled activity. D. Representative example of an ensemble with increased average activity at the start of 

grooming (grey region as in C). E. Representative example of an ensemble with increased average activity at the 

end of grooming (grey region as in C). F. Representative example of an ensemble with increased average activity 

throughout the duration of grooming (grey region as in C). G. Neural trajectories traced out in factor space by the 

population of units recorded during all grooming bouts in an example session (65 units, 22 grooming bouts). Colors 

depict different grooming bouts, pluses denote the start of grooming, and asterisks denote the end of grooming. H. 

Neural trajectories traced out in factor space by the population of clustered units during all grooming bouts in an 

example session (49 units, 22 grooming bouts). Visualization elements as in G. I. Ensemble trajectories traced out 

in factor space by the striatal ensembles during all grooming bouts in an example session (13 ensembles, 22 

grooming bouts). Visualization elements as in G.  
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To contrast the encoding of grooming-related activity in ensembles vs unclustered units, we used 

nonnegative matrix factorization to perform dimensionality reduction on the neural activity during 

grooming within a single session. The trajectories traced out by the population activity of all units during 

all grooming bouts in an example session are shown in Figure 5G (65 units). During most grooming bouts 

the population activity moves out along factor 1, then up along factor 2, and finally returns toward the 

origin along factor 3, corresponding to population encoding of grooming onset, maintenance, and 

termination. The neural trajectories computed from unclustered units do not retain the dynamics present 

in the trajectories from all units or the clustered ones (Figure 5—figure supplement 1D, 16 unclustered 

units; Figure 5H, 49 clustered units). Notably, the ensemble trajectories computed from the activity of 

ensembles retain most of the dynamics seen in the trajectories computed from the activity of single units 

(Figure 5I, 13 ensembles).  

 

Figure 5—figure supplement 1. Patterns of cluster engagement. A. Heatmap depicting the percent of units 

within each ensemble that are active during grooming averaged across all grooming bouts in a given session. Prior 

to averaging across grooming bouts, ensemble activity during each grooming bout was interpolated to a fixed 

duration, excluding the 5 seconds before and after grooming. Ensembles are in the same order as in Figure 5A and 

data are normalized to the range from zero to one (112 ensembles, 4 mice, 33 sessions). B. Distribution of times 

when the percent of active units in an ensemble peaked (data as in A). C. Representative example of an ensemble 

with decreased average activity throughout the duration of grooming (grey region as in Figure 5C). D. Neural 

trajectories traced out in factor space by the population of unclustered units during all grooming bouts in an example 

session (16 units, 22 grooming bouts). Visualization elements as in Figure 5G. 
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Discussion 

Here, we developed a semi-automated approach to identify grooming events in mouse behavioral videos. 

We recorded population activity in the dorsolateral striatum of freely moving mice and found SPNs and 

FSIs with activity that encodes the start and end of spontaneous grooming bouts. Previous studies reported 

changes in striatal single unit activity around the start and end of naturalistic42,43,52 and learned 

behaviors24,53,54. Our single unit data elaborate the changes in striatal unit activity around the transitions 

of a naturalistic behavior. Single unit responses were heterogenous and included units with changes in 

activity at the start or end of grooming, as well as units that were active or silenced throughout the duration 

of grooming. We identified striatal ensembles with units that were more correlated during grooming than 

during the entire session. These striatal ensembles encoded grooming start time, end time, and bout 

duration. Single session trajectories computed from ensemble activity retain most of the dynamics present 

in trajectories computed from all units in the session. 

The distribution of pairwise distances between units within an ensemble is shifted towards smaller 

distances, compared to the distribution of distances for units that do not belong to the same ensemble. This 

is consistent with striatal ensembles detected using imaging techniques30,38,39 although our identified 

ensembles are less spatially compact than those previously reported. Notably, however, striatal 2-photon 

imaging approaches and microendoscopic imaging of genetically encoded calcium indicators yield a 

recording area that extends along the medial-lateral and anterior posterior axes (i.e., horizontally), whereas 

our four-shank electrophysiological recordings yield a recording field that extends along the anterior-

posterior and dorsal-ventral axes (i.e., vertically), potentially accounting for this difference in findings. 

Together, the ensemble distances recorded via both methods suggest the possibility that striatal ensembles 

are isotropically organized, which is well-aligned with studies of cortical and thalamic projection patterns 

to the striatum55–57. 

While the ensembles we characterized were identified during grooming behavior, it is possible that they 

are not grooming-specific. One possibility for the functional organization of striatal ensembles is that 

ensemble membership is stable across different behaviors. Then, ensemble activation encodes some 

common movement motif or state that is present across multiple behavioral settings. However, the units 

within our identified striatal ensembles were more correlated during grooming than during the entire 

recording session. Our data therefore support an alternative to the stable membership hypothesis, wherein 

individual units can be members of multiple ensembles, such that when a given unit is active, the behavior 

the animal is performing can only be determined by looking at the population level. For example, a set of 

units might be members of a single ensemble that encodes the start of grooming, but each unit could also 

be part of different ensembles that encode aspects of other natural behaviors, such as eating or walking. 

This ‘mixed selectivity’ is broadly consistent with previously reported data on striatal activity patterns 

and cluster memberships that are not conserved across divergent behavioral motifs30,39.  

Striatal FSIs are parvalbumin-containing GABAergic interneurons that make up approximately 1% of 

striatal neurons33,58,59. FSIs receive direct cortical input, form inhibitory synapses onto SPNs33,60,61, and 

are interconnected amongst themselves via gap junctions on their dendrites62. Previous studies found 
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uncoordinated, idiosyncratic task-related changes in FSI activity63, as well as changes in FSI activity that 

correlated with movement features like velocity64, with one study showing grooming-related activity in a 

small number of recorded putative FSIs43. We recorded units that match spike waveform features and 

firing rates of FSIs45,59 and found them to have grooming related activity. These units displayed decreased 

or increased activity during grooming, as well as transient activity changes at the transitions into and out 

of grooming. Consistent with strong connectivity present between FSIs and SPNs65, a majority of FSIs 

(70%) were part of identified ensembles and almost all FSIs were part of ensembles together with SPNs. 

Striatal control of movement is mediated via two parallel pathways: the direct and indirect pathway, 

composed of dSPNs and iSPNs66–68. Previous recordings of direct and indirect pathway striatal ensemble 

activity have found that d- and iSPNs exhibit a similar time course of behavior-related changes in their 

activity23,30,38 and have similar ensemble organization30, suggesting mixed pathway membership within 

ensembles. Indeed, simultaneous recording of direct and indirect pathway SPNs showed that striatal 

ensembles are composed of d- and iSPNs in equal proportions39. These prior data suggest that striatal 

ensembles encoding self-grooming might be composed of both d- and iSPNs, in similar proportions and 

with similar encoding of grooming, although this remains to be confirmed. 

Within bouts of rodent self-grooming, animals perform highly stereotyped grooming sequences called 

syntactic grooming69,70. This sequence is comprised of four distinctive phases and found in a variety of 

species8–10. A large body of work has established a function for the striatum in the sequential ordering of 

syntactic grooming phases41,52,71,72. On a longer time scale, grooming is one of many behaviors an animal 

can perform at a given time. Since self-grooming, although broadly important, is not often an immediate 

concern, grooming is considered a low priority behavior73. Thus, the control of grooming has been 

characterized by a disinhibition model, in which grooming takes place in the time left over by other higher 

priority behaviors when grooming would be inhibited74. Previous studies have demonstrated a striatal role 

in behavioral sequencing on this longer time scale as well25,30. Thus, self-grooming represents an 

ethologically meaningful behavioral paradigm providing a path to study neural control of an innate, 

conserved behavior at multiple spatiotemporal scales. 
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Materials and Methods 

Subjects 

Animals were handled according to protocols approved by the Northwestern University Animal Care and 

Use Committee (protocol number: IS00009022). Adult male and female C57BL/6J mice (p57-105) were 

used in this study (The Jackson Laboratory, RRID:IMSR_JAX:000664). All mice were group-housed in 

a humidity-controlled, ambient temperature facility, with standard feeding, 12 hr. light-dark cycle, and 

enrichment procedures. 

Electrode implantation 

Mice were anesthetized with isoflurane (3% for induction, 1.5-2% for maintenance) and placed on a small 

animal stereotax frame (David Kopf Instruments, Tujunga, CA). A 4-shank 64-channel silicon electrode 

(part #A4x16-Poly2-5mm-23s-200-177-H64LP_30mm mounted on a dDrive-m, NeuroNexus 

Technologies, Ann Arbor, MI) was implanted into the dorsolateral striatum (0.5 mm AP, 2 mm ML, and 

lowered 0.25 mm) and secured with Vetbond (3M, Maplewood, MN) followed by dental cement (Micron 

Superior 2, Prevest DenPro, Jammu, India, or C&B Metabond, Parkell, Edgewood, NY). The electrode 

shanks were aligned with the brain’s anterior-posterior axis. A skull screw was connected to the electrode 

ground wire and fastened to the skull above the ipsilateral cerebellum. The screw was secured with 

Vetbond followed by dental cement. Mice were monitored following the surgery to ensure a full recovery 

and were administered post-operative analgesics. Mice recovered for at least 5 days after implantation. 

Behavioral recording  

On the first day of experimentation, mice were acclimated to the experimental arena for 30 minutes. All 

subsequent experimental sessions were 120 minutes long. The experimental arena was an equilateral 

triangular arena constructed from transparent acrylic (Figure 1A. 12-inch sides and height, 1/8-inch thick. 

Part #8536K131, McMaster-Carr, Elmhurst, IL) fastened together with clear epoxy (Part #31345, Devcon, 

Solon, OH). While in the arena, mice were given DietGel (ClearH2O, Westbrook, ME) for food and 

hydration. One mouse was in the arena at a time. The arena was cleaned with 70% ethanol after each 

session. The arena was enclosed by a dark curtain and illuminated by infrared LEDs. Experiments were 

conducted during the animal’s active phase. 

Mouse behavior was captured with three side-view cameras at 125 fps using a custom fork of the campy 

Python package75 (Figure 1A. image size 1440 x 608 pixels. cameras: Part #BFS-U3-16S2M-CS 

Teledyne FLIR, Wilsonville, OR. Lenses: Part #8595755548 Yohii, China). To synchronize recordings 

from all cameras, each frame grab was triggered by a TTL pulse sent from a microcontroller (Arduino, 

Turin, Italy). To facilitate alignment of videos and neural data, each frame grab TTL pulse was also sent 

to the electrophysiology acquisition board and the video and neural recordings were simultaneously 

initiated by pressing a button connected to the microcontroller.  

Electrophysiological recording 
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A 64-channel headstage (part #C3325 Intan Technologies, Los Angeles, CA) was connected to the 

implanted electrode. In the arena, the headstage was connected to a 12-channel commutator supported by 

a balance arm (Part # FL-12-C-MICRO-BAL Dragonfly Inc., Ridgeley, WV). Neural recordings were 

acquired at 30 kHz with an Open Ephys acquisition board76 and the Open Ephys GUI76 (GUI version 

0.5.5, Open Ephys, Atlanta, GA). To facilitate alignment of videos and neural data, the video and neural 

recordings were simultaneously initiated by pressing a button connected to the microcontroller. 

Neural recordings were spike sorted offline using KiloSort377 in MATLAB (MathWorks, Natick, MA). 

We only considered units labeled as ‘good’ by KiloSort. Additionally, we manually inspected the 

waveforms of all units labeled as ‘good’ and excluded units with waveform shapes that did not resemble 

an action potential. Recordings were performed from each animal until the number of ‘good units, as 

identified by KiloSort, stayed below 15 for 2 consecutive days (27.3 ± 4.3 days since implant). 

Unit classification 

All recorded units were classified as either putative striatal projection neurons (SPN), fast-spiking 

interneurons (FSI), or ‘other’ based on their spike waveform and mean firing rate across the entire session 

following established criteria45–47. Units were classified as putative SPNs (88.2 %) if they had peak width 

> 150 µs, peak-valley interval > 500 µs, and mean firing rate ≤ 10 Hz. Units were classified as FSIs (3.2 

%) if they had peak width ≤ 150 µs, peak-valley interval ≤ 500 µs, and mean firing rate ≥ 0.1 Hz. Units 

that were not identified as either putative SPNs or FSIs were labeled ‘other’ (8.6 %) and excluded from 

all analyses. 

Histology 

After the recordings, coronal brain sections were obtained from all mice to determine electrode placement. 

Mice were deeply anesthetized with isoflurane and transcardially perfused with 4% paraformaldehyde 

(PFA) in 0.1 M phosphate buffered saline (PBS). Brains were post-fixed for 1-2 days and washed in PBS. 

Brains were then sectioned on a vibratome (Leica Biosystems, Wetzlar, Germany) at 60 µm from frontal 

cortex to posterior striatum and then dried and cover slipped under glycerol:TBS (9:1) with Hoechst 33342 

(2.5 µg/ml, Thermo Fisher Scientific, Waltham, MA). Sections were imaged on an Olympus VS120 slide 

scanning microscope (Olympus Scientific Solutions Americas, Waltham, MA) with DAPI for localization 

of cell nuclei and FITC for background fluorescence to enable electrode localization. 

Electrode localization 

Coronal slices containing electrode tracts were processed using WholeBrain software package78 in R79. 

Histological slices were analyzed and registered to the Allen Mouse Brain Common Coordinate 

Framework (CCFv3)80 as described previously81. Striatal sections with electrode tracts were analyzed at 

60 µm intervals and frontal lobe cortical sections, which rarely contained electrode tracts, were analyzed 

at 100-200 µm intervals. A total of 6-18 section images were analyzed per mouse brain. Electrode 

placement for each brain section was denoted at the most ventral location that the electrode tract was 

observed. Medial-lateral and dorsal-ventral coordinates registered to the CCFv3 were obtained for each 

section and plotted on a representative coronal section using the WholeBrain package. 
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Grooming identification 

We identified mouse grooming bouts in behavioral videos using a semi-automated 4-step procedure 

(Figure 1C). As detailed further below, first, we tracked the mouse limb positions in 2D; second, we 

triangulated to the 2D limb positions to 3D; third, the 3D limb positions were used to isolate likely 

grooming times; and fourth, using the likely times of grooming we manually identified grooming bout 

start and stop times. 

For 2D pose estimation, we used DeepLabCut (version 2.2.0.5)82,83 to detect 15 keypoint positions (snout, 

both paws, wrists, elbows, shoulders, eyes, ears, and hind paws) on the frames from each camera. We 

labeled the 15 keypoints in 1,627 frames from 14 videos, 3 animals, and all 3 cameras. We trained a 

ResNet-50-based neural network84,85 with default parameters on 90% of the labeled frames for 300,000 

iterations. We validated with 1 shuffle and got a train error of 3.88 pixels and test error of 6.64 pixels 

(image size: 1440 x 608 pixels). We used a p-cutoff of 0.6 to condition the x and y coordinates for future 

analyses. With the p-cutoff, the train error was 3.27 pixels and test error 5.06 pixels. This network was 

then used to analyze all videos from the same experimental setting. 

For 3D triangulation of the 2D poses we relied on Anipose86. We calibrated our 3 cameras with a 3-minute 

video of a ChArUco board throughout the camera fields of view (125 FPS. Image size 1440 x 608 pixels). 

The ChArUco board was printed on paper and taped onto a stiff plastic board. The ChArUco pattern had 

7x10 squares containing 4-bit markers and a dictionary size of 50 markers. Before triangulation, we 

applied a Viterbi filter to the 2D poses with F = 12 frames. The triangulation was performed via an 

optimization constrained on the distance between the two eyes and the distance between each eye and the 

snout. We chose scale_smooth = 5, scale_length = 2, and score_threshold = 0.3. 

To isolate times when the mouse was likely grooming, we identified frames where the mouse was rearing, 

and its paws were near its head. To identify frames where the mouse was rearing, we set thresholds on the 

snout height and the distance between the midpoint of the eyes and the midpoint of the hindlimbs. To 

identify frames where the mouse’s paws were near its head, we set thresholds on the distance between the 

midpoint of the paws and the snout, the distance between the midpoint of the paws and the midpoint of 

the eyes, and height of the midpoint of the paws. Per-frame labels within 1.2 seconds were merged to form 

predictions over a window. Predicted grooming bouts less than 2 seconds long were discarded. Parameter 

values were evaluated by generating predictions for a set of videos and viewing the predictions aligned to 

the video in BENTO87.   

Grooming bout start and stop times were manually refined by 4 trained annotators, with each annotator 

labeling a different subset of videos. Annotators used the predictions from the previous thresholding step 

to navigate the videos and score grooming behaviors. The videos were annotated in VLC media player88 

using the Time v3.289 and Speed controller90 extensions. To assess inter-annotator reliability, all 

annotators were also given the same 2-hour session to annotate. The average pairwise Jaccard index (or 

Intersection over Union) computed on the annotations was 0.76 ± 0.04.   

Identification of units with grooming-related activity 
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To isolate units with grooming related activity, we first down sampled activity to 2 Hz, by summing spike 

counts within non-overlapping 500 ms bins. We defined units as having grooming-related activity if their 

average activity at the start or end of grooming was 2 standard deviations above their average activity 

during a 3 second-long, grooming-free baseline period. For activity aligned to groom start, we used the 

activity from 5 to 2 seconds before grooming start as the baseline and compared that to the activity from 

1 second before until 1 second after the grooming start time. For activity aligned to groom end, the activity 

from 2 to 5 seconds after grooming was chosen as the baseline and was compared to the average activity 

from 1 second before until 1 second after groom end. These selection criteria were only used to identify 

neurons to serve as examples in Figure 2; all subsequent analyses were performed on the full dataset. 

Characterization of trial-averaged grooming responses  

We characterized the grooming responses exhibited by the recorded units by computing each unit’s event-

triggered average response in a ± 5-second window relative to the start and (separately) end of grooming. 

Responses were down sampled to 4 Hz, by summing spike counts within non-overlapping 250 ms bins. 

To simplify interpretation, we restricted averaging to grooming bouts that were ‘well-isolated.’ 

Specifically, because we included the 5 seconds before and after each bout in this analysis, grooming 

bouts that started within 10 seconds of the end of the previous bout were not included in this analysis. An 

exception to this is instances with less than 3 seconds between the end of one grooming bout and the start 

of the next, in which case we merged these two annotations into a single bout. 

To better visualize and interpret grooming-associated activity we next performed principal component 

analysis (PCA)48 on the set of event-triggered averages. Specifically, we performed PCA separately on 

SPN activity aligned to groom start, SPN activity aligned to groom end, FSI activity aligned to groom 

start, and FSI activity aligned to groom end. For each cell type and condition combination, we 

concatenated the associated units to form a units-by-time matrix, relative to groom start/stop. The response 

of each unit in this matrix was then Z-scored, after which PCA was used to extract the first two principal 

components. 

To group units into ‘response types’ for visualization, we examined the weight (or ‘score’) for each unit’s 

contribution to the largest and second-largest principal component. Units for which the absolute value of 

this weight was greater for the first principal component than the second formed the “PC1” response 

group, while those with greater-magnitude weights for the second principal component formed the “PC2” 

response group. Finally, we sorted the units within each group according to their contribution to the first 

(PC1) or second (PC2) principal component of the dataset (weight * activity).   

Grooming-associated striatal ensemble identification 

To identify grooming-associated striatal ensembles within a given session, we took the neurons-by-time 

matrix of recorded spiking from the full two-hour recording session and excluded all frames that did not 

occur during grooming or within a 5-second window before or after grooming. Due to the low firing rate 

of SPNs, it was rare to find units that were co-active at high sampling rates. Therefore, to instead identify 

units that were frequently active at around the same time, we binned spike counts at a sampling rate of 
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0.667 Hz (bin size of 1.5 seconds). The spike counts for each unit were then normalized to between zero 

and one, and further smoothed by convolving with a Gaussian filter with a standard deviation of 3 seconds.  

Using this smoothed and coarsened estimate of cell activity, we next applied meta-k-means51 to identify 

sets of cells that were often co-active. We chose to use meta-k-means for clustering, because it does not 

force all units in a session to be assigned to a cluster, and it allows for the number of ensembles to be 

greater or less than the initial choice of k. Briefly, meta-k-means employs repeated runs of standard k-

means clustering to identify groups of units that are consistently clustered together. As with standard k-

means, meta-k-means requires the user specify an initial number of clusters k, which we set to be the 

square root of the number of units in the given session, as in Barbera et al38. We then ran 1,000 repeats of 

the k-means clustering algorithm on the matrix of filtered grooming-related activity described above, with 

units as variables and time bins as observations. Cluster centroids for each repeat were initialized using 

the greedy k-means++ algorithm91. As in prior work30,38,92, units that were assigned to the same cluster in 

>80% of k-means runs were considered to be part of the same meta-k-means cluster.  

When merging clusters as part of the meta-k-means algorithm, we used the silhouette score93 to evaluate 

the outcome of a potential cluster merge. To ensure adequate sample size for downstream analyses, 

ensemble identification was restricted to sessions with at least 30 SPNs and FSIs. 

Statistical analysis of striatal ensembles 

To compute a statistical estimate on the number of ensembles present in each session we used an 

eigenvalue based statistical method from Peyrache at al49,50. Briefly, if two neurons have correlated firing, 

then we expect to observe common fluctuations in their spiking activity during recording. This can be 

visualized by plotting the firing rates of the two neurons against each other, in the form of a direction in 

neural activity space along which observations tend to be distributed. Conversely, without any correlated 

firing, the variance in the dataset will be roughly equally distributed in all directions, and one would not 

expect to see structure when plotting the activity of two cells against each other. These relationships hold 

for any n-dimensional set of neurons, where structure emerges from correlated activity. The eigenvectors 

of the covariance matrix of a dataset represent the directions of maximally shared variance, thereby 

capturing the correlations present in the data. Each eigenvalue quantifies the variance of the data along 

the axis defined by its corresponding eigenvector. Thus, in a matrix of neurons-by-time, the eigenvalues 

of its covariance matrix capture the correlations among neurons (i.e., ensembles) and comparing the 

eigenvalues to those computed from the covariance matrix of a shuffled version of the data provides a 

measure of the number of ensembles present. 

To apply this method, we first binned spike counts at the same sampling rate as for clustering (0.667 Hz, 

bin size of 1.5 seconds) and Z-scored the activity of each neuron. Next, we shuffled the time bins for each 

neuron independently, and computed the maximal eigenvalue of the covariance matrix of the shuffled 

data. We repeated this 5,000 times to form a null distribution and counted the number of eigenvalues from 

the covariance matrix of the actual data that were above the 99th percentile of this null distribution.  

Time-normalized grooming-related activity 
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To compare ensemble average activity during grooming across grooming bouts of varying duration, we 

linearly temporally rescaled the activity of each unit during each grooming bout to a single fixed length. 

We chose the length for the interpolated values from the distribution of grooming bout durations from all 

clustered sessions. To avoid ‘blurring’ activity associated with the start and end of grooming bouts, the 

activity during the 5 seconds before and after each bout was not interpolated. 

Bootstrap significance testing of grooming-related ensemble activity 

To test for periods during grooming when the grooming ensemble average activity was significantly 

higher or lower than chance, we computed the mean, 2.5th, and 97.5th percentiles of the distribution of 

randomly sampled ensemble activity. To generate this distribution, we computed the population-average 

ensemble activity during 1,000 random duration windows of time sampled throughout the 2-hour 

recording session. Start times were sampled uniformly from 5 seconds into the recording session until 5 

seconds before the end of the session. Window durations were sampled from the distribution of observed 

grooming bout durations across all sessions. 

Neural trajectories 

To visualize neural trajectories, neural activity during grooming was decomposed onto 3 components 

using non-negative matrix factorization94. For the neural trajectories, we decomposed a matrix containing 

each unit’s activity during all grooming bouts within that session. For each unit, we concatenated its 

activity during all grooming bouts including the five seconds before and after each bout. For the ensemble 

trajectories, we averaged the activity of all units within each ensemble and concatenated each ensemble’s 

activity during all grooming bouts including 5 seconds before and after each bout. We initialized using 

Nonnegative Double Singular Value Decomposition with zeros filled with the average neural activity and 

minimized the Frobenius norm of the loss.   

Statistical methods 

All statistical tests were two-sided. Statistical significance was set to p = 0.05. Summary data in all figures 

are reported as mean ± SEM. 

Software 

All custom software was written in Python95 unless stated otherwise. In addition to those mentioned 

elsewhere, we used the following Python packages: numpy96, scipy97, matplotlib98, scikit-learn99, and 

pandas100,101. 
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