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Abstract

How episodic memories are formed in the brain is an outstanding puzzle for
the neuroscience community. The brain areas that are critical for episodic
learning (e.g., the hippocampus) are characterized by recurrent connectivity
and generate frequent offline replay events. The function of the replay events
is a subject of active debate. Recurrent connectivity, computational simula-
tions show, enables sequence learning when combined with a suitable learning
algorithm such as Backpropagation through time (BPTT). BPTT, however,
is not biologically plausible. We describe here, for the first time, a biolog-
ically plausible variant of BPTT in a reversible recurrent neural network,
R2N2, that critically leverages offline-replay to support episodic learning.
The model uses forwards and backwards offline replay to transfer informa-
tion between two recurrent neural networks, a cache and a consolidator,that
perform rapid one-shot learning and statistical learning, respectively. Un-
like replay in standard BPTT, this architecture requires no artificial external
memory store. This architecture and approach outperform existing solutions
and account for the functional significance to hippocampal replay events.
We demonstrate the R2N2 network properties using benchmark tests from
computer science and simulate the rodent delayed alternation T-maze task.

Keywords: recurrent networks, backpropagation through time,
hippocampal replays

1. Introduction

Forming memories of our lives’ episodes requires the ability to encode and
store extended temporal sequences. Those sequences could be things said,
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places visited or innumerable other sequences of states. Beyond enabling
humans’ pastime of recounting our prior experiences, episodic memories are
the basis of predictive models of how the world works that support adaptive
decision making [1, 2]. How brains build memories of temporal sequences
remains poorly understood. It is known that specific brain circuits (e.g., the
hippocampal formation[3, 4, 5, 6, 7, 8, 9]) and functional dynamics (e.g.,
hippocampal replay events) are particularly important. However, the func-
tional principles by which the hippocampus and replay events therein enable
sequence / episode encoding remain a puzzle. Machine learning approaches
can solve this problem but are biologically implausible. Here, we explore how
the principles that underlie machine learning approaches, when modified to
be biologically plausible, may elucidate our understanding of how the brain
builds episodic memories.

Artificial neural networks, when trained with engineered machine learn-
ing approaches, are well capable of encoding protracted temporal sequences.
Temporal sequence learning is a task solved particularly well by recurrent
neural networks (RNNs). RNNs contain one or more layers of neurons with
reciprocal connections among the neurons in that layer (i.e., recurrent connec-
tions). This means that the activity of a neuron is a function of both activity
in other layers and the activity of its own layer a moment prior. When the
recurrent connections are tuned appropriately, the network becomes capable
of recognizing sequences, predicting upcoming transitions, and intrinsically
recalling sequences. The key challenge, of course, is how to tune the con-
nections. This breaks down to two specific questions. First, ”What learning
algorithm allows for reliable encoding and storage of extended sequences from
as little as a single experience with that sequence?” and second, ”How can
this learning be done in a biologically plausible way?”

A potent learning algorithm that enables artificial RNNs to effectively en-
code extended temporal sequences is Backpropagation Through Time (BPTT;
[10]). Briefly, BPTT works as follows: A sequence of patterns is applied
to an input layer of an RNN. A recurrent layer integrates this input along
with it own state, generating a temporally evolving pattern of activity. A
full record of the spatiotemporal activity of the input and recurrent layers
is stored. Given the activity of the recurrent layer, the network can then
predict subsequent outputs or any signals that is trained with. Differences
between the predicted and actual next states are errors. Errors are the prod-
uct of the current connection strengths and the past activity of the input
and recurrent network layers. Following a presentation to a sequence, during
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Figure 1: A Temporally unfolded computational process of an RNN in BPTT: The recur-

rent layer at each time step generates an output through the blue projection; error signals

(yellow circles) are computed according to the output layer and propagated to the recur-

rent layer via the yellow projection. To compute the gradient at different time steps, error

signals also need to be propagated temporally, i.e. backward in time. B consolidator-cache

model. The consolidator-cache system first generates output and gets feedback from the

environment. Then the cache network stores sequences and plays them back in reverse

order to the consolidator network, which in turn optimizes itself based on the replayed

content.
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an offline learning phase, BPTT combines information about the connection
strengths and activity history while propagating the error back along the
computation graph to attribute the blame for the errors to individual net-
work connections (Figure 1A). Finally, individual connections are weakened
or strengthened proportionally to their share of the blame for the error. With
repeated presentations and epochs of offline learning, the network becomes
able to accurately predict or generate the sequence.

Though BPTT is an effective RNN learning algorithm, its value for ex-
plaining how brains form episodic memories is questionable because it is not
biologically plausible. The implausibility results from violations of the lo-

cality constraint. The locality constraint captures the fact that biological
connections, synapses, can only be changed given locally available informa-
tion. BPTT violates this constraint in two key ways.

First, BPTT stores and uses an external record of the network’s past
activity. Though this activity information was available as it propagated
across the network during the presentation of the input sequence, it is no
longer locally available during the offline learning phase. Moreover, the prior
activation states can not be recomputed with locally available information.
This is because the state at time t depended upon the state at time t-1, in-
formation not available at time t+1. Ordinary BPTT solves this by literally
saving a record of the activation history (e.g., in RAM or GPU memory).
Resolving this form of biological implausibility requires addressing how infor-
mation about the activation history can be obtained in reverse chronological
order with only locally available information.

Second, BPTT violates the locality constraint in how the information
about current connection strengths is used in the offline learning phase. To
attribute blame for error to individual connections, BPTT propagates error
backward over the computation graph. This can be accomplished in two
conceptually distinct ways but both are biologically implausible. The first is
that a separate error network is implemented wherein the connections (e.g.,
between neurons A and B) are defined as the transpose of the connection in
the main network. In other words, the connection B→A in the error network
is identical to the strength of A→B in the main network. This makes it so
that the error passed from B to A in the error network is proportional to the
amount of activity passed from A to B in the main network. In this way, the
error network accurately attributes errors to each connection. The main net-
work is then updated accordingly. The key implausibility, called the “weight
transport problem”, is how the connections of the error network mirror those
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of the main network and how the main network updates are informed by the
processing in the error network. Addressing the weight transport problem
but suffering from another implausibility is the second way to backpropagate
errors. The second approach propagates error backward in the main network
itself–firing connections backward with information about the error. This
effectively removes the need to transfer connection information between net-
works but creates the need to pass information backward across connections.
Generally, biological synapses do not run in reverse in terms of propagating
neural activity [11]. Resolving these implausibilities requires addressing the
question that how the connection strength information can be factored into
learning so that only locally available information is used.

Establishing biologically plausible means of tuning neural networks to
store temporal sequences is an important and ambitious goal. This goal is
important for its potential to offer a functional hypothesis for how neural
systems support memory for episodes or protracted sequential events. It
is ambitious because the native mechanisms of BPTT were engineered to
specifically meet the functional needs. Reaching this goal requires addressing
biological implausibilities regarding 1) retrieving the activation history of
the input and recurrent layers, and 2) how information about connection
strengths is used to attribute error across connections and backward in time.

Solutions have been proposed previously for both implausibilities but each
has suffered from notable limitations. The utilization of external storage, for
example, has been addressed with various approaches. The specifics of those
approaches differ but they share a common feature. The solutions omit the
need for offline access to a record of the activity through clever handling
of the activity while it is still present during the original presentation of
the sequence. That is, they compute the sources of error in an online way
[12, 13, 14]. These are remarkable for their ability to leverage on-the-fly
computations to support learning but these adaptations come at a substantial
cost to final performance. Moreover, the omission of offline replay does not
improve biological plausibility. Offline forward and reverse replays are well-
established to occur in biological neural networks [15]. Indeed, there is strong
evidence that offline replay is essential for learning [16]. For offline replay
to exist, however, there must be a way to regenerate the patterns. Defining
how this occurs is a puzzle that we address in the present work.

Solutions also exist to address the weight transport problem and reversible
connections problem, but they too have limitations. For example, the re-
versible connection problem comes up in training feed-forward networks. In
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that setting, it was shown that knowledge of the weights is not needed and
that fixed random top-down connections can function to train various net-
works [17] (see also [18]). This is referred to as feedback alignment. Though
originally designed for feed-forward networks, feedback alignment can also
be used in RNNs. One such variant is called random feedback local on-

line (RFLO) [13]. The feedback alignment approach of RFLO effectively
addresses the biological implausibility issue. Critically, however, RFLO is
functionally limited to propagating error only one step backward in time
[19]. A method capable of tracking the temporal gradient over many time
steps in RNNs remains lacking but is a gap we address in the present work.

We present here a biologically plausible recurrent network model of episodic
learning based on BPTT without suffering from the biological implausibil-
ities of BPTT. This model, referred to here as R2N2 (short for Reversible

Recurrent Neural Network), fully satisfies the locality constraint. R2N2 uses
no external record of the network’s past activity. Instead, it leverages two
previously described separate solutions for enabling reversible reactivation of
a network, one for the input layer and one for the recurrent layer. Further,
R2N2 neither transports weights nor does it assume reversible synapses. In-
stead, it leverages an error network that is controlled by and controls the
main network in a way that allows error backpropagation to train the net-
work without weight transport. The individual components of R2N2 are each
based on established approaches. The full R2N2 model, and the fact that it
collectively represents a high-functioning biologically plausible replacement
for BPTT, is novel and innovative. The specifics of each separated solution
and the operation of the full R2N2 model are described in the Model sec-
tion. In the Results section, we demonstrate the sufficiency of each solution
separately. We then combine the components to form R2N2 and bench-
mark the performance of this fully biologically plausible implementation of
BPTT, showing it surpasses current state-of-the-art biologically plausible
implementations. Finally, to facilitate comparison to sequence learning in
brains, we show that R2N2 can learn the classic delayed alternation T-maze
task. While our model is designed to replace biologically implausible compo-
nents with ones that are plausible in principle, it is not designed to simulate
specific anatomy or physiology. Nonetheless, as illustrated and discussed, the
full model recapitulates several key functional properties of the hippocampal
formation including place cells and offline replay.
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2. Model

The full model consists of two interconnected RNNs referred to here as
the consolidator and the cache (Figure 1B). We refer to the full model as the
Reversible Recurrent Neural Network or R2N2 for short. The consolidator
and cache are both RNNs but with different architectures and learning rules
as each is designed for distinct functions. These are briefly summarized here,
and specifics are unpacked in detail in the sections below. The consolidator
is the primary RNN, designed to have a large storage capacity and robust
generalization ability. A trained consolidator is functionally akin to an RNN
trained with BPTT. The cache is an auxiliary network, designed to support
the training of the consolidator. The cache is optimized for rapid encoding
and high-precision bi-directional retrieval of input sequences. This enables
the cache to perform one-shot learning of to-be-learned sequences. During
offline processing, the cache replays the sequences in reverse order to the
consolidator to train the durable trace of the memory.

2.1. The Consolidator Network

Taking inspiration from [20], we developed the consolidator network, an
RNN that is composed of at least two interconnected populations of neurons
A and B (see Figure 2A). The neuron group A receives input signals from
neuron group B and itself and vice versa. More specifically, we divide the
incoming projections for each group into two parts, and the corresponding
dynamics equations can be written as follow:

τ
dhA

dt
= −hA + fA (hA, hB) + gA (hA, hB)

τ
dhB

dt
= −hB + fB (hA, hB) + gB (hA, hB)

y = k(hB)

(1)

We define the f∗ (∗ can be A or B) projections as forward connections
with the g∗ being the backward projections and k being the output projection.
In this part, we will be focused on the recurrent units in A and B and leave
the discussion of output y to later parts, in which the network firing rate
dynamics generated by f∗ is Hf = {(h0

A, h
0
B), · · · , (hT

A, h
T
B)}, which is called

the forward sequence and represents the normal running or forward replay
phase of this RNN. To generate a reversed sequence of Hf , mathematically,
one needs to simply flip the sign of derivatives in the dynamics equation from
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Figure 2: Schematic structure of consolidator and cache. A Projections of neuronal group

A and B in the consolidator network. The consolidator network is composed of an activity

network and an error network. The activity network shown in red represents f∗ while

the network in blue represents g∗. Notice that the direction of sequence play (forward

or reverse) is not fixed by the arrow but determined by the competition between f∗ and

m, g∗. B The temporal unfolding of forward and backward computation in the consolida-

tor. When projection f∗ is stronger, the whole network operates in the forward mode. In

this case, the network updates its activations in both group A and B, generates outputs,

and computes error signals accordingly. When the g∗ connection is stronger, the whole

network turns into backward mode. The neuronal group A and B generate reversed acti-

vation sequence and thus can be utilized to propagate activation backwards to reconstruct

the previous time step activities, bypassing the temporal credit assignment issue caused

by non-locality and obviating the need to store previous activities. The error network re-

cursively multiplies the error vector by the feedback alignment random matrix to compute

the error vector at the previous timestep. C Projections in the cache. In the cache, each

neuron receives projections from both WE (orange) and WO (green) (C left). A detailed

description of connection pattern in a single neuron i can be found in C right.The final

incoming weight of neuron i is determined by λ ∈ (0, 1), which can be viewed as a result of

competing oscillating interneurons tuning inputs from WE and WO synaptic inputs. D A

schematic description of state transitions in cache. By periodically switching between WO

and WE via the control signal λ (lower panel), the network operates in two set of weights.

Each of them builds state attractors between successive states Sn and Sn+1(energy land-

scape slopes between two edges of the same phase). Different successive state pairs are

connected in a chaining way and thus form a long states sequence (upper panel).
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t = 0 to t = T . If we discretize the dynamics equations into a different form,
it will degenerate to the case of a reversible deep neural network block [20],
which has been shown to be memory-constant in various tasks as the storage
requirement of neural activity equals the number of units in the network.

The intuition is depicted in Figure 2B. The blue circuit represents a
transformation ⊕ (⊕ represents the operation that combines A and B to-
gether) from At, Bt to At+1, Bt+1 in the next time step: At⊕Bt → At+1 and
Bt ⊕ At+1 → Bt+1 . Then, as long as there exist another inverse operation
⊖ that satisfies X ⊕ Y = Z ⇔ Z ⊖ Y = X, we can construct a circuit that
turns At+1, Bt+1 into At, Bt: Bt+1 ⊖ At+1 → Bt and At+1 ⊖ Bt → At.

In effect, these two operators (⊕ and ⊖) reverse the update process with-
out requiring any other constraints: the two variables A and B could be
either scalar (signal neuron case) or high dimensional vector (neuron group
case). One of the simplest pairs of operators that meets the above conditions
consists of addition and subtraction, which is the operator set used by [20].
To map these two operators to the brain seems implausible as it requires
flipping the excitability of a synapse in a short time range. However, we
can approximately reach the same effect by introducing competition from
another group of backward projections g∗ (∗ can be A or B). To function,
the g∗ projections must generate currents that have the same amplitude but
with different signs of f∗ to cancel f∗−h∗: f∗−h∗+g∗ = 0. This can be easily
implemented with local dendritic propagation and local training (see Eq. 2)
on g∗’s parameter θg∗ . This detailed balance between f∗ and g∗ projections
thus makes it possible to run the whole system in a backward manner: If the
excitability of a trained g∗ projection is scaled by a factor of 2, the resulting
effective projection will be approximately h∗ − f∗.

∆θg∗ ∝
∂
!
f∗ − h∗ − g∗

"

∂θg∗
(2)

There are many possible choices for f∗ and g∗ projections. For example,
each can be a simple two-layer neural network if we consider the branching
structure of dendrites, which has been shown experimentally to be equivalent
to multi-layer nonlinear neural networks [21]. In this case, a complex f∗−h∗
architecture can be approximated by g∗ as long as the complexity of f∗ is not
higher than g∗. For demonstration, in the following experiments, we choose
the simplest form of f∗ to be a single-layer nonlinear network and g∗ to be
a combination of one-layer linear and nonlinear networks. Mathematically,
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this reduces the learning process of backward projection g∗ to be a regression
process, which is known to be trivial to solve with local learning rules but
is still enough to support complex sequential computation as non-linearity
is involved in each time step. This architecture (Figure 2A) is scalable and
thus it is possible to support more complicated computations. If one adds
another Group along with A and B, the coupling can be extended, and the
backward running can still be preserved.

Figure 2A depicts a network that can produce sequences of activity in
reverse, and the same network structure can also be used to propagate error
signals in reverse. Figure 2B shows two network graphs, one which runs
activity sequences in reverse, and one which runs error sequences in reverse.

In BPTT (Eq. 3), the error signal etH used to update hidden layer connec-
tions θf∗ are recursively computed in a mirroring circuit (yellow projections
in Figures 2A and 2B) of the forward circuit from ”future” to ”past”, i.e.,
etH relies on both the future hidden layer error et+1

H and the transient output
error Lt.

∆θf∗ ∝
0#

t=T

etHX
t

etH =
∂Lt

∂H t

X t =
∂H t

∂θf∗

(3)

Two types of implausibility exist in this process: 1) the weight transport
problem, i.e., how to compute the transient component of etH with Lt [22]
and 2) the external storage of activations, i.e., how to compute Xt in Eq. 3.
On the one hand, for the first issue, [17] proposed an alternative local error
circuit, Feedback Alignment (FA). With fixed random projections, it has
been shown to be effective on various deep network architectures and tasks
[23, 24]. On the other hand, our synaptic competition balance mechanism
described above addresses the second issue, as it reconstructs the previous
network states Xt in a backward manner. This eliminates the need to store
the neural activities at multiple time steps in the past.

Together these two mechanisms propagate the error temporally back with
a simple linear tuning of projection excitability and without any non-local
information (the first line in Eq.3). The FA algorithm approximates hidden
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layer errors etH in Eq.3 with $etH at each time step using Lt and a fixed random

feedback matrix. For the specific derivation of $etH and its recursive update
equation, see the supplementary material. The backward projections (red

connections in Figure. 2A) in the consolidator network replace Xt with $X t by

approximating H t with $H t. i.e., the reconstructed neural activities generated

in a reverse replay. The product of $etH and $X t is then used to update forward
projections θf∗ .

∆θf∗ ∝
0#

t=T

$etH$Xt

$Xt =
∂$H t

∂θf∗

(4)

2.2. The Cache Network

The learning mechanism described so far (Eq.3) is effective when the
consolidator network is solely determined by its previous states, i.e., without
external inputs, as the reverse replay equation will not hold if we add a time-
varying term in Eq.1. This limits the use cases of the consolidator as most of
the sequence learning tasks involve dealing with temporal inputs. To perform
reverse replay in a running consolidator that integrates time-varying input
sequences I (see Eq. 5) through the mapping b, external storage of sensory
sequence inputs I becomes necessary, so that Eq 1 is modified as:

τ
dhA

dt
= −hA + fA (hA, hB) + gA (hA, hB) + b(I)

τ
dhB

dt
= −hB + fB (hA, hB) + gB (hA, hB)

(5)

In the replay phase, the consolidator itself cannot generate the dynamics
without knowing b and, by extension, I. Superficially, this brings us back to
the original dilemma, i.e., to design another RNN that can run backward.
The difference is that it should have the capability to memorize a given se-
quence after as little as a single exposure, which makes the problem harder.
Nevertheless, the fact is that sensory input sequences in most cases are usu-
ally in a space that has much fewer dimensions compared with the number
of neurons in consolidator, and this suggests a solution.

To memorize sequential sensory inputs and play them in a reversed man-
ner, one can build point attractors representing inputs in the state space and
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connect them with directed line attractors (Figure 2D). A modified Hopfield
RNN (Figure 2C) matches these desired characteristics. A classical Hopfield
network builds energy basins that allow noisy inputs to settle into corre-
sponding attractors. A modification to its learning rule, from ∆W ∝ I · I⊺
to Eq.6, then links one attractor to another (I t −→ I t+1) in the state space
with a direction pointing to I i if this trial is rewarded (r = 1). This is the
general Hopfield weight update equation for the cache network:

∆W ∝ r ·
#

t,t+1

pt · (I t⊺ + I t+1⊺) (6)

By linking multiple (I t, I t+1) pairs from t = 0 to t = T with the modified
learning rule, a reversed pattern sequence {IT , IT−1, · · · , I0} is built.

The cache is an RNN using the above learning rule combined with time-
varying weights [25] to increase the stability of transitions between successive
sensory patterns (Eq.7). Once I t is stably transformed to I t−1 through WE,
another group of weights WO will dominate the transition from I t−1 to I t−2

through the tuning of λ (see in Figure 2C the yellow and green projections
tuned by two competing interneurons), which can be viewed as an external
periodic control signal or a signal indicating the stability of cache activations
[26]. In terms of a physical analogy, one can imagine this as a reciprocating
pump, in which WE drives the system from I t to I t−1, and then WO drives
the system from I t−1 to I t−2, and so on back and forth between WE and WO,
by the following equation that governs the activity of the cache network:

τ
dI

dt
= −I + λWEφ(I) + (1− λ)WOφ(I) (7)

The cache network thus can learn arbitrary sequences of patterns in a
local, stable, and one-shot manner as the weights update rule of the Hopfield
network is local and can be computed with only a single exposure to the
inputs.

2.3. R2N2: Sequence learning with consolidator and cache

In training a vanilla RNN with BPTT, one needs to perform the following
steps:

• Initialize the RNN and run forward with temporally varying inputs.

• Store the inputs sequence, hidden unit activations, output sequence
generated and the target sequence to an external memory device.
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• After the whole input sequence has been received, compute the error
between output and target for the last time step.

• Extract input, output and target pairs from the memory device in a
temporally reversed order, propagate the error in a backward manner
and compute weight changes simultaneously.

• Apply the accumulated weight changes after finished the backward run-
ning phase.

The first point to note here is that the external storage is where the
main biological implausibility lies. It’s unclear how the brain could store
the activity in each cell at each timestep somewhere else and replay it pre-
cisely. However, with the consolidator and cache, this activity memory can be
reconstructed dynamically. Notably, the storage size requirement is substan-
tially reduced, as the consolidator can reproduce its historical activations as
a reverse-play sequence with the help of the cache. Consider a case in which
consolidator has 128 neurons and the channel size of inputs is 16. The stan-
dard BPTT needs to store a sequence of 16+128 = 144-dimensional vectors
as all input and hidden state vectors need to be preserved in the temporal
unfolding process. However, in our model, the system only requires cache
to store a sequence of 16-d vectors representing only the sequence of in-
put vectors, because the consolidator can reconstruct its activity by itself.
This means a memory of sensory experience instead of all neural activities
is enough to support sequence learning. This approach also matches the
empirical findings that the replay of location sequences improves animals’
performance in given spatial navigation tasks [27].

Secondly, we modify the standard learning process in BPTT to fit our
model. In BPTT, the input and target channels usually belong to different
categories. Taking the classical random dots perceptual decision-making task
as an example, the input is usually set to the coherence of randomly moving
dots’ directions and the desired output target is the eye motion direction
[28]. This makes the backward running phase more complicated as the sys-
tem needs to store the desired target and input patterns together and only
compute the error signal based on the difference between generated outputs
and desired targets. Instead, the process can be simplified if there is no cat-
egorical difference between desired outputs and inputs. Taking inspiration
from predictive coding in sequence learning [29], we view performing cogni-
tive tasks as a process of online sequence prediction: the task-relevant stimuli,
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action signal, and reward signal are treated equally and are concatenated into
an integrated ”sensory inputs” vector. Regardless of their structure, various
cognitive tasks then can be reduced to the same type of sequence prediction
task. Thus the task reduces to predicting the future state at time t + 1 on
the basis of task-relevant variables at time t.

Based on these assumptions and modifications, we propose that learning
a specific task can be divided into two phases, with the first one mapped to
fast learning and the second one to slower statistical learning, essentially as
a consolidation process. In the first stage, the animal explores the task set-
tings and environment randomly, generating both rewarded and unrewarded
”sensory sequences” involving all task-relevant variables. During this initial
phase, the cache memorizes ”sensory sequences” that are rewarded at the end
of each trial, which can be learned in a one-shot fashion as it is a Hopfield
network in principle (see Eq.6).

In the second phase, the cache starts reverse replay, sending signals to the
consolidator and thus training it. This means a target for the cache at time t
is actually input for both the consolidator and cache at time t+1, so that the
cache does not need to store a target sequence separately. Then the consol-
idator in the second phase optimizes its forward projections f∗ according to
the targets provided by cache and its own reconstructed reversed activations.
Once its forward projections are changed, the backward projections g∗ will
be adjusted accordingly to cancel f∗. Notice that the adjustment of f∗ and
g∗ (Eq.4 and Eq.2) could occur simultaneously as the learning of backward
projection is an online process. Consequently, the knowledge about the re-
warded sensory experience is transferred from cache to consolidator via fast
learning at first and then statistical learning later. Besides, as the consolida-
tor can go back to states it experienced, it can also perform forward replay
using projections f∗, which could be used to explore possible future outcomes
when the model is in an intermediate state [30, 31]. To sum up, we view this
process as an implementation of Buzsaki’s two-phase model [32] for training
long-term memories as the interplay between consolidator and cache in two
phases simulates the entorhinal-hippocampal communication.

3. Results

3.1. Consolidator

The consolidator is the primary long-term memory store of R2N2. The ar-
chitecture is illustrated in Figure 2A and 2B and described in Section 2.1. To
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be a biologically plausible high-functioning network, the consolidator must
demonstrate two capabilities with only local information: 1) Reversibility:

The ability to reconstruct its activity backward; and 2) Error backpropaga-

tion: The ability to tune connection proportionately to the errors produced
so that error can be reduced. BPTT uses non-local solutions to achieve
both capabilities. In this section, we show functioning solutions to both
that use only local information. Competing complementary subnetworks[20]
can reconstruct the spatiotemporal consolidator activity patterns in reverse
without an external record. Feedback alignment[17] can reduce the recon-
struction error over training without weight transport or reversible synapses.
It should also outperform the highest functioning biologically plausible algo-
rithms. We benchmark R2N2 performance against BPTT and demonstrate
that R2N2 performs better than RFLO and echo state networks.

3.1.1. Reversibility

To achieve reversibility in the consolidator network, we used the com-
peting subnetwork approach described previously[20]. To demonstrate re-
versibility, the consolidator should be able to reconstruct an activation se-
quence in reversed temporal order without external signals so that the error
can be aligned to the dynamics that led to the error.

A random time-varying pattern of activity was applied to the input layer
of the consolidator that induced a complex time-varying pattern of consolida-
tor activity. A representative example of the consolidator activity is shown
for five neurons in each of the consolidator subnetworks in Figure 3A. The
activity of each consolidator subnetwork is, in part, a function of the input
from the other subnetwork by way of connections f∗ (see Model for imple-
mentation details). A separate set of inter-subnetwork connections, g∗, learn
to be equal and opposite in sign to f∗ through a local learning rule (i.e., with-
out use of non-local information). It is proper training of g∗ that allows for
reversible reconstruction of the consolidator activity. Figure 3B illustrates
the reversibility of the consolidator after 4 epochs of training. Shown are
100-time steps of the same five neurons as shown in 3A as the newly trained
g∗ connections control the consolidator activity. Comparing this activity to
the forward pattern by flipping the time axis and subtracting it from the for-
ward pattern reveals that the activity was well matched, as shown in Figure
3C.

15

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted February 24, 2023. ; https://doi.org/10.1101/2023.02.23.529770doi: bioRxiv preprint 

https://doi.org/10.1101/2023.02.23.529770


Figure 3: Normalized firing rates of neuronal group A and B in the consolidator (For each

group, the first 5 neurons are selected, while overall the consolidator has 128 neurons).

A,D: Solid lines represent firing rates in forward running B,E: Dashed lines represent

firing rates during backward running. C,F: Difference of firing rates between forward and

backward running (flipped). Signs of symmetry are shown clearly in comparisons between

the A and B pair and D and E pair.
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Figure 4: Sequence memorization task for the consolidator. The consolidator is trained

to recall elements in the next step using data from the current time step. The top row

represents the input data stream and the bottom row represents the sequence generated

by the consolidator.

3.1.2. Error Backpropagation with Feedback Alignment

Backpropagation allows a network to take error information that becomes
available at the end of a sequence and retroactively tune connection strengths
to reduce error. Successful backpropagation requires both a record of the
prior activity and a means of relaying the error signal. The record of prior
activity in the consolidator is provided by the reversibility property shown
above. To relay the error signal, we used the feedback alignment approach
described previously[17]. To demonstrate successful backpropagation, the
consolidator should be able to adjust its connections to be able to minimize
error and thereby reconstruct an input sequence.

A random binary vector data stream was generated to serve as inputs as
shown in Figure 4A. Notably, the random inputs included repeated elements
at both adjacent and remote time points challenging the network to attribute
the error appropriately as a function of time (i.e., not simply learn that state
Y always follows X). The consolidator was trained to generate input patterns
in the next time step (i.e., predict transitions) using data at the current time
step as a cue. After 50,000 training steps, the consolidator was able to
predict the random binary vector as shown in Figure 4B. This experiment
shows that the consolidator can learn to map input patterns to outputs at
a given time despite using shared weights across multiple time steps. This
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implies that the temporal credit assignment problem is solved effectively (i.e.,
the correct connections were adjusted for an error resulting from an earlier
activity pattern) through the use of feedback alignment and consolidator
reversibility.

3.1.3. Performance

To benchmark the consolidator performance, we compared the memo-
rization capacity of the consolidator to BPTT and two high-performing, bi-
ologically plausible, sequence encoders, Random Feedback Local Learning
(RFLO)[13] and Echo State Networks (ESN)[33].

We compared the performance of the four algorithms (consolidator, BPTT,
RFLO, and ESN) on a character prediction task anbn (Figure 5A). The anbn

character prediction task[34] is a classic test for assessing RNN capability to
encode sequences in the face of strong interference. In short, the input stim-
uli is a stream of n as and n bs (see Model section for details). Performing
this task requires accurately predicting whether the next character is another
repeat or a switch and this requires staying oriented to how many repeats
have come already.

The panels of Figure 5B show the mean squared error (MSE) and correct
rates of the consolidator (blue), BPTT (orange), RFLO (green), and ESN
(red) for sequences of increasing length. The leftmost panels show the perfor-
mance for input sequences where n = 1, 2, 3, 4 and the rightmost panels show
the performance when n = 21, 22, 23, 24. Given differences in how each algo-
rithm handles the temporal gradient (as unpacked in the Model section), we
expected that the consolidator performance would be close to BPTT and bet-
ter than RFLO (Performance: BPTT ≥ consolidator > RFLO > ESN). The
results match our prediction and are shown in Figure 5B. Across sequence
lengths, the consolidator performs consistently better than RFLO and ESN,
approaching the performance of the biologically implausible BPTT.

Trained RFLO networks can reach a correct rate with an upper bound
at around 0.5, which reflects that the error gradient in RFLO is essentially
limited to one step backward in time [19], while the consolidator can propa-
gate the error gradient backward multiple steps in time. By comparison, the
ESN can hardly generate any proper outputs when the sequence length is
longer than 10 (right four columns in Figure 5B). This shows the advantage
of multi-time-step temporal error signal propagation over online error mini-
mization, even with the constraint of no external storage of neural activation
history.
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Figure 5: A A schematic view of anbn task. Each model is trained to predict the next

character based on the previous inputs. B Performance Comparison on the anbn task. The

upper rows show averaged loss curves while the lower rows show prediction accuracies.

From the leftmost to the rightmost column, the range of n in each dataset is linearly

increased from a bin including (1, 4) to a bin including (21, 24), thus the corresponding

sequence length ranges from (4, 10) to (44, 50). Orange lines represent the consolidator

with transpose of forward matrices as backward matrices. Blue lines represent consolidator

with fixed random backward matrices, implementing feedback alignment. Green lines

represent RFLO, and red lines represent ESN.
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Figure 6: One shot sequence memorization task for the cache. A A cache trained to recall

the random binary sequence with an external periodic signal. Top: the oscillating external

control signal λ, Bottom: The relative hamming distance between cache’s activation and

all patterns. A larger pattern index represents a pattern that appears later in the given

sequence. B Same as A, except that it uses an internally generated control signal.

For shorter sequences (e.g., n < 9), the consolidator and BPTT have sim-
ilar asymptotic performance. As the sequence length increases, the perfor-
mance of all models decreases (bottom row of Figure 5B), and the divergence
between a consolidator implemented with BPTT (orange lines) versus Feed-
back Alignment (blue lines) gradually increases. This divergence shows that
feedback alignment does have limits relative to pure BPTT, which maintains
a perfect record, for temporal propagation across numerous time steps.

3.2. Cache

The cache network functions as the primary input to the consolidator.
Functionally, it performs rapid memorization of the input sequence for sub-
sequent playback to the consolidator during the offline learning phase. BPTT
uses an externally stored record of the input sequence that is aligned with
the backpropagated error. To be a biologically plausible high-functioning
network, the network must be capable of storing a sequence of states in a
way that can be retrieved in reverse order (to synchronize with the reverse
replay in the consolidator) after a single training trial.

To achieve this, the cache is itself a classic form of a recurrent neural
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network, using well-established learning principles (akin to a Hopfield net-
work with multiple weight matrices) that enable retrieval of stored states
in forward or reverse order as described in full detail in the Model section.
To demonstrate this ability, we tested the ability of an isolated cache net-
work (i.e., with no consolidator network connected) to retrieve a sequence of
randomly generated binary vectors.

As shown in Figure 6, the cache was presented with 20 distinct binary
vectors over time. Transitions between adjacent vectors were encoded by
alternating weight matrices based on a control signal (Figure 6A). With only
the single presentation, the cache can step through the same set of states
(Figure 6B). This playback can be performed in the forward or backward
direction depending upon which pattern the cache is initialized with. The
timing of each transition is controlled by the control signal, allowing the
network to intrinsically regulate the retrieval. With this ability, the cache
can support playback of the input sequence so that it is synchronized with
consolidator processing.

3.3. R2N2 Solving Sequence Learning Problems

The results shown thus far demonstrate that each component of R2N2 is
capable of performing its function as intended. In this section, we demon-
strate that nothing is lost and nothing additional is needed when the compo-
nents are assembled into the full R2N2 model while adhering to the locality
constraint. That is, we show that R2N2 is capable of encoding the memory
of temporal sequence into a recurrent neural network using only local infor-
mation. Given that our motivation was to understand how brains enable
episodic memory, we applied R2N2 to a simulation of a T-maze navigation
task, in which the animal needs to make decisions to either turn to the left
or right end of the horizontal branch to get a reward based on the visual cue
at the beginning of the maze (see Figure 7).

This was not intended to be a simulation of the brain itself. Rather, it
was to test and examine the functionality of the model in a setting parallel
to one commonly used to study memory in rodent models.

Briefly, the model alternately explored a T-maze and performed off-line
learning after collecting enough experiences. As with rodents learning to
complete the task, the model generated actions that directly impacted the
sensory inputs that formed the episodic sequences. Thus, the learning task
was two-fold - encoding the experienced sequences to enable accurate pre-
diction of upcoming transitions and adaptive selection of actions to collect
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Figure 7: T-maze task trained with consolidator and cache. A Task structure and training

paradigm. Upper: Animal makes a decision to run and then turn to left or right according

to the cue type (black or grey block in the top of the T-maze) to get reward. Lower:

The system first selectively receives rewarded sensory sequences (red trajectories in the T-

maze) and stores it in the cache, which then performs reverse replay, providing a reversed

input sequence to the consolidator. The consolidator then is trained to generate rewarding

predictions. B Place representations in the hidden unit firing rates of the consolidator.

For left and right rewarded trials, neurons are sorted according to the distance between the

start point and positions with highest firing rates. The first vertical dashed line represents

the distance at which the cue ends, while the second one indicates where the left/right

decision point lies.
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Figure 8: Model behavior in T-maze navigation task in comparison with results from [35].

Top row: A, B and C are adapted from Fig.4 in [35]. Bottom row: D, E and F are

results from the the consolidator-cache model. A,D: Throughout training the model and

animal performance both steadily increase. B,E: During the training process, the replay

rate gradually decreases as the performance increases. C,F: C Animals have relatively

balanced forward and reverse replay in the all training sessions regardless of performance.

F In the system of the cache and consolidator, the replay rate is balanced by definition as

forward replay involves learning of backward circuits and backward replay trains forward

circuits.

rewards. This is fundamentally different than the benchmark tests presented
above in that the question is not whether the network can simply recall a
training sequence.

Similar to the paradigm discussed previously, we performed another sim-
ulation to test both performance and a match with empirical data from the
hippocampus. We set the sensory inputs to both consolidator and cache as
a concatenated binary vector (ot, at, rt) data stream at time step t, with ot

for visual observation, at for action and rt for the presence of the reward.
After training, the {consolidator, cache} system successfully mastered

the task with a correct performance rate above 90% (see Figure 8D). The
performance rise is driven by a series of gradually decreasing replay epochs
of training (Figure 8E). Besides, since this system requires training for both
forward and backward circuits in the consolidator, the replay rate for both
directions is balanced by definition (Figure 8F). These results account for the
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empirical finding that as the animal gets familiar with the task, the replay
events occur less often [35] (Figures 8A, 8B and 8AC). To investigate the
representation of tasks in the system, we sorted neurons’ normalized firing
rates according to the distance between their positions with highest firing
rate and the start point. Similar to some previous work [36, 37], the results
(Figure 7B) show that place cells-like structure emerged after training, and
some neurons are biased to crucial positions such as the end of the cue and
the turning point.

4. Conclusion

In this article, a novel learning system, R2N2, is developed to address
the long-standing question of biologically plausible learning of RNNSs. It is
composed of two components: a fast RNN that stores and replays experiences
(cache) and a statistical learning RNN (consolidator).

We have shown that R2N2 is capable of running itself in a reversed order
and shows improved performance relative to other models based on recurrent
weight updates computed in the backward phase in various tasks. In addition,
by applying this model to a rat navigation task we showed its power as a
whole in sequence learning and that it captures several observed phenomena
in previous experiments such as balanced replay and place cell encodings.

5. Discussion

5.1. The R2N2 model

The massive success of deep learning models and their similarities with
biological neural networks at both the behavior and neural dynamics level
have captured the attention of the neuroscience community on many different
questions, with one of the most crucial being how the full error gradient
learning in RNNs might be implemented in the brain due to its recurrent
(lateral connections) and hierarchical (multi-layer) connectivity nature.

To form episodic memories, brains need to encode protracted temporal
sequences of states with high efficiency. RNNs can accomplish this task
when trained with the biologically implausible machine learning algorithm
BPTT. To build a biologically plausible alternative of BPTT, we divided
the problem into three pieces and applied solutions to each to form a novel
integrated learning system: R2N2. The first two pieces eliminate the need for
an external record of the spatiotemporal activity pattern to perform offline
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learning. One piece establishes a way to reconstruct the input sequence
activity in the backwards direction. This was solved with an RNN using
a reciprocating weight structure. The second piece establishes a way to
reconstruct the recurrent layer activity. This was solved in the consolidator
network with a pair of competing, complementary subnetworks. Finally,
the third piece eliminates the need for either weight transport or reversible
synapses to back-propagate error. This is solved using feedback alignment.

Consequently, R2N2 consists of two major RNNs: 1) The consolidator, a
main network that is to be trained and that serves as a long-term memory
store for inference; and 2) The cache, an auxiliary network that supports
the training of the consolidator by performing one-shot learning with the
input layer activity sequences and thus providing training samples to the
consolidator. Besides the constraint of only local information at synapses, as
a seemingly obvious biological constraint in the brain, most of the work trying
to solve this problem has focused on the online side [22, 13] as a workaround.

Unlike its online alternatives to BPTT, R2N2’s underlying principle is
that it has a backward phase to compute and assign credit to synapses in
recurrent projections without violating the locality constraint.

The ability to compute the error feedback signal through numerous time
steps may account for the advantage over previous localist supervised se-
quence learning models such as echo state network[33, 38] and RFLO [13],
as it extends the error gradient farther back in time.

Since the consolidator is gradually trained to perform reverse replay in a
nearly perfect way, we further speculate that the consolidator could, in turn,
train other similar consolidator instances in the cortex in a ”bootstrapped”
manner to implement distributed knowledge representation across distinct
brain regions.

5.2. Biological Implications

Our model bears some similarity to the complementary learning systems
(CLS) framework regarding the relative roles of the hippocampus and cor-
tex. Typically the hippocampus is cast as the fast learner and the cortex
the slower learner [39], and more recently the role of replays has been incor-
porated into the framework [40]. The R2N2 model suggests that the cache
and consolidator functions (analogous to fast and statistical learning, re-
spectively) may both be carried out within the hippocampal region, as well
as between the hippocampus and neocortex. For example, the cache could
be implemented in CA3 pyramidal neurons with recurrent lateral excitatory
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projections, which have the same arbitrary spatial association and pattern
completion capability. With a trainer providing reversed sequence samples,
the consolidator, which could be a circuit in the entorhinal cortex receiv-
ing inputs from CA3, could learn statistics in the data stream and solidify
the short-term memory in the hippocampus to provide longer-lasting memo-
ries. When assembled together, this system could be triggered and tuned by
reward-related signals as we did in the T-maze simulation to ensure the se-
quence being replayed and learned is rewarded and beneficial for the animal,
which has been found to be the case in the hippocampus [27].

Recent work has similarly argued that both fast and statistical learning
may take place within the hippocampus, with the entorhinal cortex to CA1
pathway providing statistical learning, and the pathway from CA1 to den-
tate gyrus to CA3 providing fast learning [41]. The R2N2 model is consistent
with this anatomical delineation but does not exclude other possible func-
tional mappings. Another implication provided by R2N2 is its utilization of
the reverse replay phenomenon found in hippocampus [15, 3], which is the
key element that drives the whole model to learn sequences. However, many
of the existing models [42, 43] for reverse and forward replay do not account
for sequence learning at all or have a limited learning capacity. They are
limited in that those models are built on handcrafted attractor connectivity
patterns and thus usually have only one or few spatially clustered neurons
active at each moment, which is functionally equivalent to one-hot encod-
ings and puts a limit (N=the number of neurons) on their learning capacity.
Instead, the consolidator in our model builds connectivity matrices for the
reverse replay of arbitrary neuronal activation pattern sequences without any
prior assumptions on the spatial distribution of synapse strengths, which is
far more flexible and biologically realistic considering the high dimensional
nature of spiking activities in the brain. This also matches previous ob-
servations that the reverse replay in the brain is key for sequence learning
[3, 4, 5, 6, 7, 8, 9]. It implies that the hippocampal cortical system may be
a neural instantiation of BPTT, and our proposed model might account for
the underlying mechanism of reverse replay as well as its computational role
in learning.

A possible neural realization of this consolidator-cache system might be
the entorhinal-hippocampus communication system. First, there is empirical
evidence showing it is the backward running phase (reverse replay), rather
than the forward running phase (forward replay), in the hippocampus dur-
ing immobilization that is crucial for the animal’s later performance after
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experiencing the task environment [27]. Some other recent studies even show
that prolonged reverse replay enhances task performance [8], while destroyed
reverse replay leads to failures in task performance [9]. Second, R2N2 also
suggests the importance of internal clock signals, as the consolidator and
cache each oscillate to generate state updates. The importance of oscillating
clock signals is consistent with several hippocampal cell types which show
either the greatest or smallest activity levels at the peak of the theta cycle or
a ripple [44]. Our simulation results also reveal that during learning the sys-
tem shows similar characteristics and internal representations to place cells
and replay rate effects observed in previous studies [36, 37, 35].

Together, these observations imply the existence of offline backward learn-
ing in recurrent neuronal networks, which is conceptually isomorphic with the
temporal unfolding process in BPTT. However, there also exist some limi-
tations in the current implementation of R2N2. For instance, the speed of
forward replay and reverse replay is the same in our simulation while the
reverse replay in the hippocampus is usually highly compressed in time com-
pared with the forward running process [15].

The temporal symmetry of reverse replay in R2N2 is due to the same time
constant we used in Eq.1 for both forward and reverse modes. In future re-
search, we will explore addressing this issue by diving into the level of spiking
networks, since the speed change is caused by the spike interval reduction,
which can be implemented with a discrete version of the consolidator that
preserves the symmetry but in which the timing can be freely tuned. The
speed of network evolution may also be controlled by a clocking mechanism
similar to a CPU clock, in which the frequency of an oscillatory signal as in
Figure 6 may control the speed of the network.

5.3. Summary

In summary, this article provides a new possible approach for biological
RNNs to learn sequential tasks: R2N2. R2N2 can memorize sequences in
a one-shot way and transfer the experience to long-lasting synaptic changes
through reverse replay. When it comes to cognitive tasks, the consolidator-
cache system treats different types of tasks under a unified sequence predic-
tion framework and solves it with rewards as a signal for reverse replay. The
whole process is based on competitions between different synaptic projec-
tions, i.e., the competition between f∗ and g∗ in the consolidator and WO

and WE in the cache, which does not require any non-local information or
weight symmetries. When compared with other online alternatives to BPTT,
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R2N2 can better propagate the temporal information in the training phase
and thus has better performances in some tasks. This computational supe-
riority is driven by the use of reverse replay as an error propagating mecha-
nism, which also raises several experimentally testable predictions for future
research on sequence learning in the brain. First, an imbalanced synaptic
projection (e.g., decreased excitatory level in one projection) between dif-
ferent neural assemblies may lead to impaired reverse replay since in our
model the reverse replay in the consolidator relies on competition of different
projections between neuronal groups. Second, as in the cache, an internally
generated pseudo-periodic signal is responsible for the transition between fir-
ing pattern attractors, one may expect to see induced reverse replay with
external periodic signals acting on the gating neurons for the CA3 network
or corrupted reverse replay with aperiodic perturbations.
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Appendix A. Hidden layer error computation

In our implementation, the specific process to update the postsynpatic
component, etH , in Eq.3 is discretized as a difference equation from time
t = 0 to t = T . Consider a simple case in which from (0, T ) the task of the
network is only to generate a proper output OT at the last time step t = T
and the overall loss function is then defined as 1

2
(OT −O!T )2 with O!T being

the desired output. If neuronal group B is connected to the output layer O
through a linear mapping WO, then we have

eTB = W⊤
O · (OT −O!T )

eTA = 0
(A.1)
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for the last time step.
For all other previous steps t ∈ (0, T −1), we have two coupling equations

to compute the error signals for both A and B iteratively:

etB =
1

τ
W⊤

A et+1
A + (1− 1

τ
)et+1

B

etA =
1

τ
W⊤

B etB + (1− 1

τ
)et+1

A

(A.2)

We include a leaky term in the the above update equations to maintain
consistency with the leaky nature of the activity updates in Eq. 1.

With the help of Feedback alignment algorithm, the W⊤
O , W⊤

A and W⊤
B

in the above equation can further be replaced by random fixed matrices βO,
βA and βB, for t = T , then we have:

$eTB = βO · (OT −O!T )

$eTA = 0
(A.3)

and for t ∈ (0, T − 1):

$etB =
1

τ
βA

%et+1
A + (1− 1

τ
)%et+1

B

$etA =
1

τ
βB

$etB + (1− 1

τ
)%et+1

A

(A.4)

If we generalize the case of only generating output OT at T to outputs at
each time step O1, O2, · · · , OT , the corresponding eA and eB will be similar
with each time step to the neuronal group connected to the output layer
receiving an extra non-zero output error term used in Eq. A.3

$etB =
1

τ
βA

%et+1
A + (1− 1

τ
)%et+1

B + βO · (Ot+1 −O!t+1)

$etA =
1

τ
βB

$etB + (1− 1

τ
)%et+1

A

(A.5)

When connecting with the cache network, since we’re taking a sequence
prediction paradigm, O!1 , O!2 , · · · , O!T will be the activation sequence of the
cache, which can perform reverse replay itself to provide the reversed desired
output sequence required in Eq. A.5.
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