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ABSTRACT

The Adolescent Brain Cognitive Development (ABCD) initiative is a longitudinal study aimed at characterizing brain development
from childhood through adolescence and identifying key biological and environmental factors that influence this development.
The study measures neurocognitive abilities across a multidimensional array of functions, with a focus on the critical period
of adolescence during which physical and socio-emotional changes occur and the structure of the cortical and white matter
changes. In this study, we perform a correlation analysis to examine the linear relation of adolescent neurocognition functions
with the demographic, socio-economic, and magnetic resonance imaging-based brain structural factors. The overall goal is to
obtain a comprehensive understanding of how natural and nurtural factors influence adolescent neurocognition. Our results
on > 10,000 adolescents show many positive and negative statistical significance interrelations of different neurocognitive
functions with the demographic, socioeconomic, and brain structural factors, and also open up questions inviting further future
studies.

Introduction

The Adolescent Brain Cognitive Development (ABCD) initiative' recruited children 9-10 years of age to perform a longitudinal
study. This study aims to characterize brain development from childhood through adolescence and to find the key biological
and environmental factors that influence this development. ABCD consortium aimed to measure neurocognitive abilities across
a multidimensional array of functions! as summarized in Table 12. The variation in general acuity of neurocognition in humans
is the result of the efficiency of the subdomain (listed in the fourth column of Table 1)°. Adolescence is a critical period of time
in which physical and socio-emotional changes occur in humans, which greatly shape the level of acuity in neurocognitive
subdomains?. More importantly, this period involves changes in the structure of the cortical and white matter. However, the
onset of many mental illnesses is also recorded in this period of life*.

Brain development is influenced by both natural and nurture factors®. The former factor is coded in the gene. The
latter factor is related to the environment, nutrition, socioeconomics, lifestyle, and other factors. Nature and nurture jointly
shape the development of the human brain®, which can be observed noninvasively by magnetic resonance imaging (MRI)’.
Variability in natural and nurtural factors causes individual differences in cognitive abilities, such as variation in the level of
intelligence (i.e., measured in terms of the intelligence quotient (IQ)), attention, decision-making, memory, and executive
function*. Several studies utilized ABCD data and showed the correlation between the neurocognition and parent-rated
problem behaviors*, neurocognitive development and impacts of substance use”, the activation pattern of functional MRI
and different neurocognitive processes (i.e., cognitive impulse control, reward anticipation and receipt, and working memory
and emotion reactivity)®, suicide ideation and neurocognition’, and age and longitudinal stability of individual differences in
neurocognition'?. However, a comprehensive study to elucidate the effect of both natural and nurtural factors on adolescent
neurocognition is yet to perform. These natural and nurtural factors are embedded in demographics and socio-economics,
respectively, and also blended into the brain’s macro and microstructure. Thus, this article aimed to investigate how adolescent
neurocognition is affected by demographic, socio-economic, and brain anatomical factors. Correlations between different
neurocognitive test scores and variables were estimated using Pearson’s correlation. In addition, statistical significance is
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[ No. [ Test | Toolbox (if any) [ Conginitive Functions | Composite
1 Snellen Chart - Visual acuity -
2 Edinburgh Handedness Inventory - Handedness -
3 Rey Auditory Verbal Learning Test - Verbal encoding, learning, and memory -
4 Flanker Cognitive Control/Attention
5 List Sorting Working Memory Test ‘Working memory, categorization, and information processing Fluid
6 Dimensional Change Card Sort Flexible thinking, concept formation, and set-shifting Intelligence
7 Pattern Comparison Processing Speed | NIH Toolbox Processing speed, and information Processing
8 Picture Sequence Memory Test Visuospatial sequencing & memory
9 Oral Reading Recognition Test Reading ability, language, and academic Achievement Crystallized
10 Picture Vocabulary Test Language, and verbal intellect Intelligence
11 Cash Choice Task - Delay of gratification, motivation, and impulsivity -
12 Little Man Task - Visuospatial attention, perspective-taking, and mental rotation | -
13 Matrix Reasoning Test WISC-V Fluid reasoning, visuospatial ability, part-whole reasoning, and | -
visual sequencing

Table 1. List of neurocognitive tests performed in ABCD initiative. Acronyms- WISC: Wechsler Intelligence Scale for
Children, NIH: National Institute of Health

sought using the Bonferroni-adjusted!! p-values (i.e., Q-values) of 0.01.

Results

Experimental Setup

We used the Pearson correlation to estimate the correlation coefficient (r : [—1,1]) between NIH toolbox neurocognitive
subdomain test scores (see rows 4-10 of Table 1) and anatomical or demographic or socio-economic factors. The NIH
toolbox also provides composite scores, namely fluid composite and crystallized composite, to allow for general evaluation of
overall cognitive acuity. The fluid composite includes fluid ability measures such as Flanker, List Sorting Working Memory,
Dimensional Change Cart Sort, Pattern Comparison Processing Speed, and Picture Sequence Memory (rows 4-8 of Table 1).
On the other hand, the crystallized composite includes the Oral Reading Recognition and Picture Vocabulary Tests (rows 9-10
of Table 1). Fluid abilities are influenced by biological processes, which play an important role in adapting to novel situations in
everyday life and are less dependent on past learning experiences'?. On the contrary, crystallized abilities are known to be more
dependent on past experience and less on biological influences'?. Finally, the total composite score is estimated by averaging
the fluid and crystallized composites. In this study, we also used Pearson’s correlation to estimate the correlation coefficient
(r: [—1,1]) between NIH toolbox neurocognitive composite test scores and anatomical or socio-economic factors. Furthermore,
we used Bonferroni-adjusted p-values (i.e., O-values) of 0.01 and plotted only those r values in Figs. 1-7 heatmaps that satified
Q < 0.01; otherwise left blank. In addition, we used several symbols in Figs. 1-7 heat maps with different colors to represent
the correlation range in which a particular r falls.

In the ABCD dataset, many subjects did not have a complete set of anatomical and socio-economic factor values on record.
Therefore, we estimated the correlation between test scores and a factor for those subjects who have that particular factor in
record and mentioned the number of subjects in parentheses on the x-axis. However, if any anatomical or socio-economic
factor is available for less than 500 subjects, we did not include that factor in our correlation analysis. The ABCD dataset
also comes with standard uncorrected scores, age-corrected standard scores, and fully corrected T scores from neurocognitive
tests'?. The uncorrected standard score represents the performance comparison between the test-taker (i.e., subject) and the
entire NIH toolbox representative normative samples (normative mean = 100, standard deviation = 15) in the United States (US)
population, regardless of any socio-economic factors. Age-corrected standard scores, on the other hand, compare the score of
the test taker to those in the NIH toolbox nationally representative normative sample ‘at the same age,” which were estimated
separately for children (ages 3-17 years) and adults (ages 18-85 years). The fully corrected T-score (normative mean = 50,
standard deviation = 10) compares the score of the test-taker to those in the NIH Toolbox nationally representative normative
sample after the adjustment for age, gender, race/ethnicity, and educational attainment (for ages 3-17 years, parent’s level of
education is used).

Effect of Demographic and Socio-economic Factors on Neurocognition

In Fig. 1, we show the heat map of the Pearson correlation coefficient (r) between the scores of the neurocognitive test and
the demographic/socio-economic factors. We see in this heat map that the uncorrected scores for fluid, crystal, and total
composite are significantly correlated (r > 0.25) with age. One of the notable findings in this study is the effect of ancestry on
different composite scores. We see that the proportion of African ancestry is significantly negatively correlated (r < —0.25)
with different composite scores followed by the proportion of American ancestry (—0.25 < r < —0.10), while the proportion of
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Figure 1. Heatmap showing the Pearson correlation coefficient (r) between neurocognitive test scores and demographic/
socio-economic factors. Statistically not significant correlation values (i.e., Q > 0.01) are left blank. Acronyms- RHD:
residential history derived.

European ancestry is significantly positively correlated (r > 0.25) with different composite scores. Other factors that positively
affect (r > 0.25) neurocognition acuity (as seen in terms of composite scores) are found to be the percentage of the population
aged > 25 years with high school diploma, median family income, median home value, and median monthly mortgage. In
contrast, factors that negatively affect (r > 0.25) neurocognition acuity are found to be the percentage of unemployed civilian
labor aged > 16 years, the percentage of families below the poverty level, and the percentage of singles in a neighborhood.
Other mildly negative factors (—0.25 < r < —0.10) affecting neurocognitive functions are the percentage of occupied housing
units without a motor vehicle, the percentage of occupied housing units with > 1 person per room, and the percentage of
occupied housing units without a telephone in a neighborhood.

Effect of Cortical Areas of Brain ROIs on Neurocognition

In Fig. 2, we show the heat map of the Pearson correlation coefficient () between neurocognitive test scores and cortical areas
(mm?) of brain region-of-interests (ROIs). We see in this heat map that the uncorrected and age-corrected crystallized composite
and the total composite scores are positively correlated (0.10 < r < 0.20) with the cortical ROI areas that cover almost the entire
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Cortical Area in Parcellated ROIs (mm?)

Figure 2. Heat map showing the Pearson correlation coefficient (r) between neurocogntive test scores and cortical areas
(mm?) of brain ROISs. Statistically not significant correlation values (i.e., Q > 0.01) are left blank. Acronyms- APARC:
automatic parcellation, lh: right-hemespheric, and rh: right-hemespheric.

brain. We also observe that the uncorrected and age-corrected subdomain tests scores such as the oral reading and the picture
vocabulary test scores, which form the crystallized ability (see Table 1), are also positively correlated to (0.10 < r < 0.20)
with the cortical ROI areas that cover almost the entire brain. However, fluid composite scores were not found to be strongly
correlated with cortical ROI areas, although the working memory test scores show a positive correlation (0.10 < r < 0.20) with
almost all cortical ROI areas in the brain. Furthermore, the total left, right, and whole brain cortical areas show a higher positive
correlation (0.20 < r < 0.25) with the uncorrected and age-corrected crystallized composite and total composite scores.

Effect of Cortical Thickness of Brain ROls on Neurocognition

We show a heat map of the Pearson correlation coefficient (r) between neurocognitive test scores and cortical thickness (mm) of
brain ROIs in Fig. 3. We see in this heat map that, unlike the cortical ROI areas, the cortical thickness in the brain ROIs does
not show a strong trend of positive correlation with the neurocognitive test scores. However, the uncorrected and age-corrected
crystallized composite and the total composite scores are positively correlated (0.10 < r < 0.20) with the cortical thickness in
the left- and right-hemespheric lingual and parahippocampal ROIs, and right-hemespheric lateral occipital ROI.

Effect of Cortical Volumes of Brain ROIs on Neurocognition

Furthermore, we show the heat map of the Pearson correlation coefficient (r) between neurocognitive test scores and cortical
volumes (mm?) of brain ROIs in Fig. 4. Similar to cortical ROI areas, the cortical volumes in the brain ROISs show a strong
trend of positive correlation with the uncorrected and age-corrected crystallized composite and total composite scores. We
see in the heat map of Fig. 4 that the uncorrected and age-corrected crystallized composite and total composite scores are
positively correlated (0.10 < r < 0.25) with the cortical ROI volumes that cover almost the entire brain. We also observe that
the uncorrected and age-corrected subdomain tests scores such as the oral reading and the picture vocabulary test scores, which
form the crystallized ability (see Table 1), are also positively correlated to (0.10 < r < 0.25) with the cortical ROI volumes that
cover almost the entire brain. However, as with cortical ROI areas, fluid composite scores are not found to be strongly correlated
with cortical ROI volumes, although list sorting working memory test scores show a positive correlation (0.10 < r < 0.25)
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Figure 3. Heat map showing the Pearson correlation coefficient (r) between neurocognitive test scores and cortical thickness
(mm) of brain ROIs. Statistically not significant correlation values (i.e., Q > 0.01) are left blank. Acronyms- APARC:
automatic parcellation, lh: right-hemespheric, and rh: right-hemespheric.

with almost all cortical ROI areas of the brain. Furthermore, the total left, right, and whole brain cortical volumes show a
higher positive correlation with the uncorrected and age-corrected crystallized composite (» > 0.25) and total composite scores

(0.20 < r < 0.25).

Effect of Cortical Sulcal Depth of Brain ROIs on Neurocognition

We also show a heat map of the Pearson correlation coefficient (r) between neurocognitive test scores and cortical sulcal
depth (mm) of brain ROIs in Fig. 5. We see in this figure that the uncorrected and age-corrected crystallized composite
and total composite scores are positively correlated (0.10 < r < 0.20) with cortical sulcal depths in the left- and right-
hemespheric medial orbito-frontal, left-hemespheric temporal pole, and righ-hemespheric superior frontal ROIs, while negatively
correlated (—0.25 < r < —0.10) with cortical sulcal depths in the left- and right-hemespheric posterior cingulate, left- and
right-hemespheric transverse temporal, and righ-hemespheric caudal anterior cingulate ROIs.

Effect of Subcortical Volumes of Brain ROIs on Neurocognition

Additionally, we show the heat map of the Pearson correlation coefficient (r) between neurocognitive test scores and subcortical
volumes (mm?) of brain ROISs in Fig. 6. Similar to cortical ROI areas and volumes, the subcortical volumes in the brain ROIs
show a strong trend of positive correlation with the uncorrected and age-corrected crystallized composite and total composite
scores. We see in the heat map of Fig. 6 that the uncorrected and age-corrected crystallized composite and total composite
scores are positively correlated (r > 0.10) with the subcortical ROI volumes that cover almost the entire brain. We also observe
that the uncorrected and age-corrected subdomain tests scores such as the oral reading and the picture vocabulary test scores,
which form the crystallized ability (see Table 1), are also positively correlated to (r > 0.10) with the subcortical ROI volumes
that cover almost the entire brain. However, fluid composite scores are positively correlated with subcortical volumes in sparsely
located ROIs, although the list sorting working memory test scores show a positive correlation (0.10 < r < 0.20) with almost
all subcortical brain ROI volumes. Furthermore, subcortical volumes in the entire brain, supratentorial, and subcortical gray
areas show a higher positive correlation with the uncorrected crystallized composite score (r > 0.25).
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Cortical Volume in Parcellated ROIs (mm?)

Figure 4. Heat map showing the Pearson correlation coefficient (r) between neurocogntive test scores and cortical volumes
(mm?) of brain ROIs. Statistically not significant correlation values (i.e., Q > 0.01) are left blank. Acronyms- APARC:
automatic parcellation, lh: right-hemespheric, and rh: right-hemespheric.

Effect of Average T1- and T2-weighted Intensity of Brain ROIs on Neurocognition

Finally, we show the heat map of the Pearson correlation coefficient () between neurocognitive test scores and average T1-
and T2-weighted intensity of brain ROIs in Fig. 7. This figure shows that the average intensities of brain ROIs do not strongly
contribute to neurocognitive acuity. The only notable correlation is observed between the volume of the right pallidum and the
age-corrected pattern comparison processing speed with —0.25 < r < —0.10.

Discussion

This Pearson correlation-based study analyzed the effect of brain structure, demographics, and socio-economics on adolescents’
neurocognitive functions and revealed several key findings. At the same time, the analysis reveals some open research questions.

One of the major observations in this study is the interrelation of neurocognitive functions with the ancestry of adolescents,
as seen in Fig. 1. We observed a strong positive correlation ( > 0.25; Q0 < 0.01) of European ancestry with uncorrected fluid,
crystallized, and total composite scores. In contrast, we observed a strong negative correlation (r < —0.25; O < 0.01) of
African ancestry with uncorrected fluid, crystallized, and total composite scores. In addition, we observed a moderate negative
correlation (—0.25 <r < —0.10; Q < 0.01) of American ancestry and almost no correlation of East Asian ancestry with the
uncorrected crystallized and total composite scores (see Fig. 1). However, one of the remaining questions is how a mixed
ancestry (i.e., father and mother are of different ancestral lineage) would contribute to different neurocognitive subdomains and
composite abilities.

We also observed in Fig. 1 for the sample size of 11,701 that sex does not affect any neurocognitive functions in adolescents,
except executive function (Dimensional Change Card Sort Test; 0.10 < r < 0.20; Q < 0.01). Similar findings are reported by
French et al.'® on a sample size of 2,845 (10-18 years). However, another study'# on a sample size of 3,500 (8-21 years) showed
that sex difference has a smaller but noticeable effect on all social cognition tests. Furthermore, sex is an important determinant
of neurocognitive impairments in diseased populations; for example, populations with the human immunodeficiency virus
(HIV)'S. Roalf et al.> studied 9,138 youths (8-21 years) and reported that within-individual variability of neurocognitive
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Cortical Sulcal Depth in Parcellated ROIs (mm)

Figure 5. Heat map showing the Pearson correlation coefficient (r) between neurocognitive test scores and cortical sulcal
depth (mm) of brain ROIs. Statistically not significant correlation values (i.e., Q > 0.01) are left blank. Acronyms- APARC:
automatic parcellation, lh: right-hemespheric, and rh: right-hemespheric.

functions is the highest in childhood, declines into mid-adolescence, and increases again into adulthood. This finding agrees
with our findings. Therefore, another open question would be why the effect of sex on neurocognitive functions diminishes for a

short span of time during adolescence (age ~8—18 years).

In Fig. 1, we further observed that the disadvantage of the neighborhood in terms of crime reports for adult offenses, violent
crimes, drug abuse, and drug sales does not affect any neurocognitive functions in adolescents aged 9 to 10 years. However, the
disadvantage of the neighborhood in terms of the percentage of the population (aged > 16 years) unemployed, the percentage
of families below the poverty level, and the percentage of the population being single adversely affects (r < —0.10; Q < 0.01)
neurocognitive functions in adolescents. In contrast, the advantage of the neighborhood in terms of the percentage of the
population (aged > 25 years) having at least a high school diploma, median family income, median home value, and median
monthly mortgage favorably affects (» > 0.10; Q < 0.01) the neurocognitive functions in adolescents (see Fig. 1). In this
context, it would be important to find out using multivariate correlation analysis how neurocognitive functions in adolescents
are affected when they live in a mix of neighborhood advantages and disadvantages factors.

In addition to the effects of demographic and socio-economic factors, brain structure has shown considerable effects on
neurocognitive functions in adolescents. However, the degree of effects by different brain regions and geometry varies. In
Figs. 2, 3, 4, 5, we showed heat maps of the Pearson correlation coefficient (r) between neurocognitive test scores and cortical
areas, cortical thickness, cortical volumes, and cortical sulcal depths, respectively, for the same set of parcellated cortical
gray matter ROIs. For cortical ROI areas, we see in Fig. 2 that the crystallized composite and the total composite scores are
positively correlated (r > 0.10; Q < 0.01) with ROI areas that cover almost the entire brain. However, the cortical thickness for
the same set of ROIs did not show a strong trend of positive correlation with the neurocognitive test scores (see Fig. 3). The
cortical ROI volume (product of cortical area and thickness) for the same set of ROIs, on the other hand, showed a similar trend
of positive correlation (r > 0.10; Q < 0.01) with neurocognitive test scores as cortical areas (see Figs. 2 and 4). In contrast,
cortical sulcal depth for a few sparsely located ROIs showed a moderate positive (0.10 < r < 0.20; Q < 0.01) and negative
(—0.25 <r < —0.10; @ <0.01) correlation with the neurocognitive test scores (see Fig. 5). Similarly to the cortical anatomical
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Subcortical Volume of Segmented ROIs (mm?)

Figure 6. Heat map showing the Pearson correlation coefficient (r) between neurocogntive test scores and subcortical volumes
(mm?) of brain ROIs. Statistically not significant correlation values (i.e., @ > 0.01) are left blank. Acronyms- ASEG:
automatic segmentation.

structure, the subcortical structure plays an important role in neurocognitive development in adolescents. We see in Fig. 6 that
the crystallized composite and the total composite scores are positively correlated (» > 0.10; Q < 0.01) with subcortical ROI
volumes that cover almost the entire brain. However, MRI contrast of the subcortical tissues did not show any significance
for neurocognitive development in adolescents, as evidenced by the poor correlation between neurocognitive test scores and
the average intensity of T1 and T2-MRI of subcortical ROIs in Fig. 7. Our overall observation on Figs. 2-7 depicts that the
anatomical structure of brain tissue plays a more significant role in crystallized cognition than fluid cognition ability. On the
other hand, the brain network homogeneity correlates with fluid intelligence in children'®. Therefore, it warrants investigating
whether the role of functional brain connectivity and/or biochemical diffusivity in the development of fluid cognition is stronger
than cortical and subcortical structures or similar.

Our study also shed some light on the effects of natural vs. nurtural agents on the development of neurocognition in
adolescents. Considering demographic and socio-economic factors in Fig. 1 as natural and nurtural factors, respectively, we see
a clear comparative picture of the effects of these types of factors on adolescent neurocognition. However, anatomical and
microstructural development in the brain is known to be governed by both natural (i.e., intrinsic molecular cues derived from
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Figure 7. Heat map showing the Pearson correlation coefficient (r) between neurocogntive test scores and average T1- and
T2-weighted intensity of brain ROIs. Statistically not significant correlation values (i.e., Q > 0.01) are left blank. Acronyms-
ASEG: automatic segmentation.

gene expression) and nurtural (i.e., extrinsic input from sources outside of the organism) factors'”. Thus, it would be interesting
to investigate what degree of change in brain structure does nature and nurture cause separately, and how it affects adolescent
neurocognition.

Last but not least, our correlation analysis was univariate, where demographic, socio-economic, and brain structural
factors were individually used as a variable and correlated with different neurocognitive test scores. However, to analyze the
covariance of multiple factors in the development of neurocognition in adolescents, it is necessary to implement multivariate
correlation analysis. Furthermore, it is also necessary to investigate the comparative roles of individual factors in terms of
feature importance, when used in a multivariate analysis.

Methods

Data

We accessed demographic, socio-economic, structural brain anatomy, and neurocognitive test scores from 11,878 samples from
the Adolescent Brain Cognitive Development (ABCD) initiative!. We summarize the demographics of all subjects included in
this study in Table 2. These data are collected in 21 sites across the United States using either of Siemens (Prisma or Prisma
Fit), General Electric (MR 750), or Philips (Achieva dStream or Ingenia) MRI scanners with 3T magnetization. The MRI
preprocessing steps'® involved (i) correction of gradient nonlinearity distortions in T1 and T2-MR images using scanner-specific
nonlinear transformations, (ii) registration of T2-MR images to T1-MR images using mutual information, (iii) correction of
intensity inhomogeneity correction B1-bias fields, (iv) rigid registration and resampling into alignment of MR images to an
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averaged reference brain in standard space, (v) cortical surface reconstruction and subcortical segmentation using FreeSurfer
v5.3, and (vi) atlas-based automatic volumetric segmentation/parcellation and labeling of cortical and subcortical structures.

[ Measure | Category | Number of Samples |
[ Total Samples [ - [ N=11,878 (100%) |
. years , o
(mean: 9.91+£0.62) 7 iTable 344 (3%)
Male 6,196 (52%)
. Female 5,679 (48%)
Sex at birth Other 3 (Negligible)
White 6,180 (52%)
African American | 1,784 (15%)
Hispanic 2,410 (20%)
Race/ethnicity Asian 252 (2%)
Other 1,247 (11%)
Not available 5 (Negligible)

Table 2. Demographics for all participants included in this study for correlation analysis.

Pearson Correlation

The Pearson correlation measures the linear relationship between the attributes of two datasets A and B and produces a
coefficient (r) value in the range of [—1,1]. A value of r = —1 represents a perfect negative correlation, a value of r = +1
represents a perfect positive correlation, and a value of » = 0 represents no correlation between A and B. Although r =0
indicates that there is no linear relationship between A and B, there may still be a higher-order relationship between the same
datasets. The Pearson correlation between paired datasets (A, B) : {(a1,b1),(a2,b2),...,(an,by)} is mathematically defined
as'?:

- Y (ai—a)(bi—Db)
AB — —>
\/vazl (a; — 5)2\/25‘\/:1(2’1‘ —b)?

where a and b are the mean of all data points in datasets A and B, respectively.

ey
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