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Advances in gene delivery technologies are enabling rapid progress in molecular medicine, but require
precise expression of genetic cargo in desired cell types, which is predominantly achieved via a regulatory
DNA sequence called a promoter; however, only a handful of cell type-specific promoters are known. Effi-
ciently designing compact promoter sequences with a high density of regulatory information by leveraging
machine learning models would therefore be broadly impactful for fundamental research and direct thera-
peutic applications. However, models of expression from such compact promoter sequences are lacking,
despite the recent success of deep learning in modelling expression from endogenous regulatory sequences.
Despite the lack of large datasets measuring promoter-driven expression inmany cell types, data from a few
well-studied cell types or from endogenous gene expression may provide relevant information for transfer
learning, which has not yet been explored in this setting. Here, we evaluate a variety of pretraining tasks
and transfer strategies for modelling cell type-specific expression from compact promoters and demon-
strate the effectiveness of pretraining on existing promoter-driven expression datasets from other cell types.
Our approach is broadly applicable for modelling promoter-driven expression in any data-limited cell type
of interest, and will enable the use of model-based optimization techniques for promoter design for gene
delivery applications. Our code and data are available at https://github.com/anikethjr/promoter_models.

1. Introduction
Gene therapy aims to deliver therapeutic genetic
cargo to disease-associated cells and tissues. The
expression of therapeutic genes, or transgenes, is
controlled by an upstream compact regulatory DNA
sequence called a promoter. To effectively treat dis-
ease while mitigating off-target side effects, promot-
ers for gene therapy should be optimized for expres-
sion only in particular target cell types (differential
expression), which requires compact promoter se-
quences with a high density of regulatory informa-
tion. Recent advances in single cell-sequencing have
illuminated over 400 cell types in the human body
(Tabula Sapiens Consortium, 2022), yet only a hand-
ful of cell type-specific promoters are known. Exist-
ing methods to engineer promoters with cell type
specificity rely on manual curation of sequence ele-
ments that are known to regulate expression, such
as tiling of cis-regulatory elements (CREs) or tan-
dem repeats of transcription factor (TF) binding mo-
tifs (Miao et al., 2000; Nissim et al., 2017; Wu et al.,
2019). While these approaches have been successful
in some cell types, extending promoter design to less
studied cell types is a laborious process that can be

accelerated by the use of sequence-based models of
expression. In particular, deep learning (DL) models
that predict cell type-specific promoter-driven ex-
pression from compact promoter sequences can be
used to prioritize experimental validation of promot-
ers with promising expression profiles, or to design
optimal promoters in combination with model-based
optimization techniques (Brookes et al., 2019; Linder
et al., 2020; Trabucco et al., 2021).

Despite the success of DL in modelling expression
from naturally occurring endogenous sequences in
the human genome (Agarwal and Shendure, 2020;
Avsec et al., 2021), models of expression from com-
pact artificial promoter sequences are lacking. Ex-
isting endogenous gene expression models cannot
be used directly for this purpose, since endogenous
gene expression depends on distal regulatory el-
ements and is not solely driven by the promoter
sequence, making such model predictions unrepre-
sentative of promoter-driven expression in a gene
therapy setting. Massively parallel reporter assays
(MPRAs) measure promoter-driven expression and
can be used for model training (e.g. Movva et al.
(2019)); however, MPRA expression data are avail-
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able for only a small number of cell types. Thus, we
need new modelling strategies for compact promot-
ers that leverage existing data together with a small
dataset of promoter-driven expression in a cell type
of interest.
In this work, we develop an effective approach

to train such models using larger related datasets
for pretraining, prior to fine-tuning to predict cell
type-specific promoter-driven expression using a
small dataset in the cell type(s) of interest. Trans-
fer learning using pretrained models has emerged
as one of the most effective ways to model small
datasets. Self-supervised tasks such as masked lan-
guage modelling have been used to pretrain genomic
sequence embeddings in recent work (e.g. Ji et al.
(2021); Mo et al. (2021); Benegas et al. (2022); Zeng
et al. (2023)). Pretraining using task-relevant data
can improve the performance of fine-tuned models
(Gururangan et al., 2020), while pretraining using ir-
relevant data can hurt performance (Liu et al., 2022).
For our application, there are many datasets that
are closely related to promoter-driven expression,
including MPRAs and endogenous gene expression
datasets, as well as TF-binding data that may help
models learn relevant sequence motifs that regulate
expression when present in promoters. Here we eval-
uate the utility of pretraining on such datasets for the
task of predicting cell type-specific promoter-driven
expression, as measured by a new dataset that we
collected in three immune cell lines.

The main contribution of this work is the identifi-
cation of a novel pretraining-based approach to ef-
fectively train a model that predicts cell type-specific
promoter-driven gene expression in target cell types.
We systematically benchmark several pretraining
datasets, as well as various pretraining, transfer, and
joint learning methods for this task to identify the
best approach. We find that pretraining on exist-
ing promoter-driven expression data from MPRAs
in other cell types, followed by fine-tuning on a new
promoter-driven gene expression dataset in the tar-
get cell types leads to the best predictions. Pretrain-
ing improves prediction performance by 𝟔 − 𝟏𝟐% in
all three experimentally-validated cell types. Our ap-
proach is broadly applicable to any cell type-specific
promoter-driven expression dataset and can help de-
sign promoters for gene therapy that are optimized
for expression in the therapeutic target cell type,
thereby reducing potential off-target side effects.

2. Motivation for promoter design
In this section, we brieflymotivate the need for novel
methods for compact promoter design. While many
gene delivery approaches have been developed, in-
cluding both viral and non-viral delivery, nearly all
approaches have limitations on the length of DNA
that can be delivered, making it difficult to include ex-
tensive regulatory sequences with the genetic cargo.
The delivery methods themselves also typically lack
complete specificity to the target cell or tissue type
(Sayed et al., 2022), which can lead to dangerous
side-effects if the genetic cargo is expressed in the
wrong cell type. One approach to both decrease the
size and increase the specificity of the therapeutic
DNA is to engineer novel cell type-specific compact
promoters.

Promoters are DNA sequences that drive gene ex-
pression by recruiting RNA polymerase to initiate
transcription of an adjacent gene. They are included
before a transgene as part of the therapeutic DNA.
Traditionally, promoters for gene therapy are derived
from viruses (Montaño-Samaniego et al., 2020). Al-
though these promoters are capable of driving high
expression, they lack cell type-specificity and can
lead to deleterious immune responses and cytotoxic-
ity (Shirley et al., 2020). They are also often silenced
through epigenetic mechanisms once delivered to
a cell (Brooks et al., 2004). While endogenous cell
type-specific promoters are common in the human
genome, their specificity is often conferred by regu-
latory elements, such as enhancers, located outside
of the promoter and farther from the gene, which
limits the direct usefulness of endogenous promot-
ers in gene therapy applications (Nott et al., 2019).
Thus, we need methods to design compact synthetic
promoters with cell type specificity that are scalable
to any cell type of interest.

3. Existing gene expression predictors
Endogenous gene expression is a complex process
that is regulated by multiple DNA sequence fea-
tures, including CREs, TF-binding motifs, and epi-
genetic modifications. Before the advent of DL,
most sequence-to-expression models extracted hand-
crafted sequence features such as counts of known
TF-binding motifs and other short sequence (k-mer)
counts within the input sequence (Zrimec et al.,
2021). Early applications of DL in genomics used
convolutional neural nets (CNNs) with one-hot en-
coded sequence inputs. For example, Zhou and Troy-
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anskaya (2015) used CNNs to predict various epi-
genetic modifications and TF-binding sites. More
recently, Avsec et al. (2021) showed that using con-
volutional layers followed by transformer layers im-
proves prediction of endogenous gene expression
when compared to convolutional layers alone. Al-
though many of these models achieve high accu-
racy for endogenous expression, they are not suited
to predicting expression from compact promoters
used in gene delivery applications because (1) unlike
endogenous gene expression, control of promoter-
driven expression relies on only a short promoter
sequence without additional distal regulatory ele-
ments, and (2) promoter-driven expression utilizes
promoter sequences with a much higher informa-
tion density (density of regulatory sequence motifs)
when compared to endogenous promoters.

Models of promoter-driven expression trained us-
ing MPRA data have also been developed, which
are more directly relevant to the gene delivery set-
ting. For instance, Movva et al. (2019) train a CNN
to predict promoter-driven expression in K-562 and
HepG2 cells. However, these models cannot be used
to directly predict expression in cell types other than
those used for training. Since collecting large MPRA
datasets for every cell type of interest is infeasible,
we need new data-efficient approaches that can be
used to train models of cell type-specific promoter-
driven expression.

4. Transfer learning methods for im-
proving task performance by lever-
aging related data

Collecting large datasets that measure promoter-
driven expression in multiple cell types is expen-
sive and time-consuming. However, there are sev-
eral large datasets that provide relevant information
for modelling promoter-driven expression. Transfer
learning was proposed to effectively model small
datasets in these settings by leveraging large rele-
vant datasets. In this work, we explore two main
types of transfer learning for the promoter-driven
expression prediction task: pretraining followed by
linear probing or fine-tuning, and joint training. We
explain these techniques in this section.

4.1. Pretraining followed by linear probing or
fine-tuning

When DL models are trained from scratch on small
datasets, it is difficult for them to learn all task-

relevant features, leading to poor performance. How-
ever, if there is a large related dataset, training on
that dataset prior to training on the small dataset
can help the model learn relevant features that are
similar between the two datasets. This procedure is
called pretraining. The pretrained model can then be
further trained on the small dataset to learn which
of the features learned during pretraining are rele-
vant for the task at hand and and to modify their
weights as needed. This process is data-efficient, as
the model has learned most relevant features during
pretraining, and generally leads to better prediction
performance on the small dataset (e.g. Devlin et al.
(2018); Chen et al. (2020)).

There are two main transfer methods for training
on the small dataset after pretraining: linear prob-
ing and fine-tuning. Pretrained models generate an
embedding of the input before using this embedding
to make predictions for the pretraining task. Linear
probing freezes all weights of the pretrained model
and adds a trainable linear layer that is trained on
the small dataset to make predictions for the down-
stream task of interest using the input embeddings.
Fine-tuning not only adds a trainable output linear
layer but also allows the weights of the pretrained
model to be updated when training on the small
dataset. Fine-tuning typically leads to better pre-
dictions, but there are some instances where linear
probing is better, such as when the small dataset
contains inputs that are out-of-distribution for the
pretrained model (Kumar et al., 2022).

4.2. Joint training
Another effective method to perform transfer learn-
ing is to jointly train a model on multiple related
datasets, some which are much larger than the tar-
get task. Joint training can be accomplished by hav-
ing a shared backbone network that outputs em-
beddings of the inputs. These embeddings are then
supplied to task-specific layers that output predic-
tions for all tasks. The motivation behind this ap-
proach is that the shared backbone network learns a
wide variety of features based on the larger datasets,
and these features can then be efficiently utilized
by the task-specific layers even for tasks with small
training datasets. This method has also been shown
to improve prediction performance on the smaller
datasets (e.g. Yang et al. (2017)).
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4.3. Performing multi-task learning (MTL)
MTL is required to pretrain or jointly train on mul-
tiple tasks. We perform MTL using the torchmtl
package (Bock, 2020). A common backbone net-
work is used to embed inputs. The embeddings
are then supplied to task-specific linear layers that
make task-specific predictions. During training, each
batch is composed of samples for one task and we
cycle through the tasks while sampling batches in
an epoch (batch-level round-robin) which has been
shown to be effective (Alayrac et al., 2022). Since the
losses for each task can be on different scales, we use
Kendall et al. (2018)’s method to learn weightings
for each task’s loss. The weighted sum of losses is
then minimized using an optimizer.

5. Our approach
Our primary goal is to develop an approach for
training effective predictors of cell type-specific
promoter-driven expression that leverages large re-
lated datasets using the transfer learning methods
described in the previous section. To evaluate vari-
ous training strategies, we generate a target experi-
mental dataset of cell type-specific promoter-driven
expression measured in three cell types, as described
in Section 5.1. To model these data, we propose a
model architecture that draws from current trends
in the field of genomic deep learning, described in
Section 5.2. Finally, we identify four large related
datasets that can be used for transfer learning to
improve our expression predictions, described in
Section 5.3. In the Results section, we show the effec-
tiveness of these various training strategies and iden-
tify the best strategy for predicting cell type-specific
promoter-driven expression in new cell types.

5.1. Target task: cell type-specific promoter-
driven expressionmeasured by inducedflu-
orescence levels

We collect a new gene expression dataset that mea-
sures promoter-driven expression in 3 immune cell
lines: Jurkat, K-562, and THP-1. All models trained
using various strategies are ultimately evaluated in
terms of their effectiveness in predicting promoter-
driven expression in each of these 3 cell lines. This
serves as a good proxy for a natural setting where
we often want to model a small expression dataset.
These specific cell lines are chosen because of their
similarity to primary cells, and because promoters
designed for these cell types could be useful for treat-

ing blood cancers. Although promoter-driven ex-
pression is well-studied in K-562 cells, with multiple
MPRAs using K-562s (e.g. Ernst et al. (2016); van
Arensbergen et al. (2019)), there are no large scale
datasets that measure promoter-driven expression
in Jurkats and THP-1s. Thus, we measure expression
from a set of 20,000 promoters of length 250 base
pairs (bp), limited by synthesis constraints similar
to a gene therapy setting. We choose our tested pro-
moter sequences using heuristics designed to max-
imize the number of differentially expressed pro-
moters. Briefly, ∼ 50% of the tested promoters are
derived from promoters of differentially expressed
endogenous genes (Class I). Another ∼ 40% are de-
signed by tiling known and de-novo motifs that were
discovered to be enriched in the promoters of dif-
ferentially expressed endogenous genes by HOMER
(Heinz et al., 2010), a motif detection tool (Class II).
The final ∼ 10% of promoters are derived from pro-
moters of highly expressed endogenous genes so that
our models can learn features of sequences that lead
to high expression across many cell types (Class III).
Each promoter is cloned upstream of a minimal

CMV promoter and the enhanced green fluorescent
protein (EGFP) reporter gene into a lentiviral vector.
The expression induced in each cell line upon trans-
duction is measured by the induced fluorescence
levels, and we collect two replicate measurements of
fluorescence. We get adequate data from 17,104 pro-
moters. For model training and evalutation, ∼ 70%

of these promoters are included in the training set,
∼ 10% in the validation set, and ∼ 20% in the test
set. The promoters in each set are stratified by both
promoter class and GC content. Our models are
trained to simultaneously predict fluorescence lev-
els (average across replicates) in each cell line from
the promoter sequence using 3 output heads. More
details about the experimental protocol (including
how we quantify expression strength) and promoter
selection are in Appendix A and B, respectively.

5.2. Model architecture
We need an effective model architecture for compact
promoter sequences. Our novel architecture is in-
spired by Avsec et al. (2021)’s model and is shown
in Figure 1. It takes in a one-hot encoded promoter
sequence and applies 3 length-preserving convolu-
tional layers to learn local sequence features (e.g.
TF-binding motifs). A learned [CLS] token embed-
ding is appended to the beginning of the output of
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Figure 1: Our model architecture for evaluating various training strategies. The fluorescence outputs (in blue) are
predictions of cell type-specific promoter-driven expression as measured in our experimental data and all other outputs
(in red) are used either during pretraining or joint training.

Dataset Assay Sequence used as input Size
Promoter-driven

expression

LL-100 RNA-seq of 100 blood cancer cell lines [TSS - 300bp, TSS - 50bp), [TSS - 100bp, TSS + 150bp),
and [TSS + 100bp, TSS + 350bp) 14,969 ✗

CCLE RNA-seq of 1408 cancer cell lines [TSS - 300bp, TSS - 50bp), [TSS - 100bp, TSS + 150bp),
and [TSS + 100bp, TSS + 350bp) 13,831 ✗

Roadmap RNA-seq of 56 cell lines [TSS - 300bp, TSS - 50bp), [TSS - 100bp, TSS + 150bp),
and [TSS + 100bp, TSS + 350bp) 14,209 ✗

Sharpr MPRA MPRA in K-562 and HepG2 145bp sequences with measured expression ∼950K ✓

SuRE MPRA MPRA in K-562 and HepG2 150-500bp sequences with measured expression ∼2.5M
(subsampled) ✓

ENCODE
TF-binding

ChIP-Seq data
1363 ChIP-seq datasets from diverse cells

+ve set: 600bp sequence centered at
avg position of nearby peaks

-ve set: dinucleotide shuffled +ve sequences
∼6M N/A

Table 1: Summary of datasets used for pretraining or joint training.

the convolutional layers. Then, these outputs are
passed through 5 transformer layers (Vaswani et al.,
2017). The [CLS] token’s final embedding is used as
the sequence embedding from which multiple linear
layers predict task-specific outputs. We use the MTL
approach described in the previous section to train
this model. In the Results section, we compare this
architecture to two baselines and show the utility of
using sequence-based transformer models over the
other approaches.

5.3. Pretraining or joint training tasks
Having defined the target task of predicting cell
type-specific promoter-driven expression in three
experimentally-measured cell types, here we iden-
tify four large relevant datasets that can be used for
pretraining or joint training. These tasks are sum-
marized in Table 1.

5.3.1. RNA-Seq data
Since endogenous promoters play a crucial role in
gene expression, it might be useful to pretrain our
models on endogenous gene expression data mea-
sured by RNA-sequencing (RNA-Seq) in various cell
types. This should enable the model to learn TF-
binding motifs and their relative importances in var-
ious cell types. Thus, we pretrain on three large
RNA-Seq datasets: LL-100 (Quentmeier et al., 2019),
CCLE (Barretina et al., 2012), and Roadmap (Kundaje
et al., 2015). LL-100, CCLE, and Roadmap contain
expression values from 100, 1408, and 56 cell lines,
respectively.
For each dataset, we first extract the expression

values in every cell line, as measured by TPM or
RPKM values. TPM values for CCLE and RPKM val-
ues from Roadmap are obtained from their respec-
tive websites. TPM values for LL-100 are obtained
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by processing the published raw reads using a stan-
dard pipeline (Patel et al., 2022). We filter out any
genes that have mean TPM or RPKM values less
than 1. Then, we extract three 250bp regions of the
promoter for every gene: [TSS - 300bp, TSS - 50bp),
[TSS - 100bp, TSS + 150bp), and [TSS + 100bp, TSS
+ 350bp), which are used to predict expression in
every cell line. These regions are chosen by fitting
an Xpresso model (Agarwal and Shendure, 2020) to
predict median expression across all Roadmap cell
lines from various 250bp windows within the TSS ±
1000bp region. We find that the highest prediction
performance is obtained using windows within the
TSS ± 300bp region. Thus, we choose three 250bp
windows covering this region. During training, each
promoter sequence window is treated as a separate
example with the same associated target expression
values. During testing, the predictions for the three
windows are averaged to get the final prediction
for the gene. We find that this approach yields bet-
ter fine-tuning and joint training performance com-
pared to using a single large input region such as
TSS ± 1500bp. Genes from distinct chromosomes are
used in the train, test, and validation sets, and ∼ 70%,
∼ 20% and ∼ 10% of the overall genes are assigned
to the train, test, and validation sets, respectively.

5.3.2. ENCODE TF-binding ChIP-Seq data
ChIP-Seq assays are used to discover genomic re-
gions that are bound by TFs, and pretraining on such
data can help models learn TF-binding sequence mo-
tifs. We obtain peak calls (narrow peaks) from 1645
TF-binding ChIP-Seq datasets from ENCODE (EN-
CODE Project Consortium, 2012) that do not have
any major quality issues (list of datasets is available
in the code repository). Peaks that have a q-value
greater than 0.05 are filtered out, and the 1363 cell
types with at least 1000 peaks after q-value-based
filtering are retained. Because many peaks are very
close to each other, wemerge peaks that occurwithin
100bp of each other and create a new unified peak at
the mean of the individual peaks’ positions. This uni-
fied peak is annotated as being a peak in all datasets
from which the individual peaks originated.

We pretrain our models to predict whether a given
sequence contains a peak in each of the 1363 cell
types. The positive set for this classification task
consists of 600bp sequences centered at every peak.
In total, there are ∼ 3M peaks. The negative set is
built by sampling a dinucleotide shuffled sequence
for every positive sequence, similar to the approach

followed by Alipanahi et al. (2015) and Zeng et al.
(2016). Peaks (and their corresponding negative se-
quences) from distinct chromosomes are used in the
train, test, and validation sets with ∼ 66.8%, ∼ 23.6%,
and ∼ 9.6% of the peaks assigned to the train, test,
and validation sets, respectively.

5.3.3. Sharpr-MPRA data
MPRAs measure promoter-driven expression in-
duced by multiple promoters in parallel and thus
have high throughput. We hypothesize that pre-
training on MPRA data might be very beneficial for
our task because of the similarity in experimental
protocols - the main difference being that our data
measures expression induced by stable transduction
while MPRAs measure expression induced by tran-
sient transfection. The Sharpr-MPRA dataset (Ernst
et al., 2016) measures expression induced by ∼ 487K
145bp promoters in K-562 and HepG2 cells. These
promoters are derived from 15,720 295bp sequences
centered at DNase I peaks in K-562, HepG2, HU-
VEC, and H1-hESC cells. Each promoter is cloned
upstream of a minimal TATA or strong SV40 pro-
moter and promoter-driven expression is measured
for both conditions. Two replicates of these measure-
ments are collected. Thus, there are 8 measurements
per promoter (2 cell lines, 2 downstream promoters,
2 replicates).
This dataset was also modelled by Movva et al.

(2019), who include each promoter’s reverse com-
plement as an additional training example with the
same associated expression value. They also predict
the average of the values from the two replicates,
leading to 12 outputs per input sequence. The ∼ 20K
sequences from chromosome 18 and the ∼ 30K se-
quences from chromosome 8 are used for testing
and validation, respectively. All other sequences are
used for training. We use their processed data and
modelling setup for pretraining.

5.3.4. SuRE MPRA data
SuRE (van Arensbergen et al., 2017) is another MPRA
that was scaled up by vanArensbergen et al. (2019) to
survey the genomes of 4 individuals from 4 different
populations. The genomes of these individuals are
broken into 150-500bp fragments and each fragment
is cloned into a reporter plasmid. These sequence
fragments can drive expression and function as pro-
moters in transfected cells if the fragment contains a
valid TSS. ∼ 2.4B and ∼ 1.2B fragments were found
to be expressed in K-562 and HepG2 cells, respec-
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tively. Pretraining on this large dataset allows our
models to learn about the structure of promoters
and the effects of single nucleotide polymorphisms
(SNPs) on expression.

To the best of our knowledge, no other study has
used this data for pretraining. Since pretraining on
the full dataset is time-consuming due to its size, we
subsample it and create a classification task. Our sub-
sampling accounts for GC content to reduce any as-
sociated confounding. First, each tested sequence is
binned into 2 expression bins, one for K-562 and one
for HepG2. We define 5 bins for each cell based on
the number of reads associated with each sequence:
0, (0, 10], (10, 20], (20, 30] and 30+. Most sequences
have 0 reads and the number of sequences assigned
to each bin decreases with higher read counts. We
remove any sequences with ambiguous SNPs and
compute the GC content of each sequence. For each
individual, we compute a histogram of GC content
over all sequences from their genome, with a bin
width of 0.05. Then, for each individual and for each
combination of K-562 and HepG2 expression bins
(25 combinations), we subsample the individual’s
sequences in that bin combination while keeping
the GC content distribution as close as possible to
the overall GC content distribution. We aim to get
30K training sequences and 3K testing and valida-
tion sequences from each bin combination, reflecting
different levels of differential expression; however,
some bin combinations have fewer sequences. Ulti-
mately, we obtain ∼ 400 − 600K training sequences
per individual and ∼ 50 − 70K testing and validation
sequences. We create datasets for each individual
separately. Our models are pretrained to predict a
sequence’s K-562 and HepG2 expression bin in every
individual.

6. Results
First, we validate our model architecture by compar-
ing its prediction performance to the performance

of two baseline architectures. Then, we evaluate the
efficacy of various training strategies to find the best
approach to building predictors of cell type-specific
promoter-driven gene expression. Finally, we ex-
plore the TF-motifs attended to by our best model
using a motif insertion-based analysis in an effort
to understand the sequence determinants of expres-
sion.

In all our tables and figures, 𝑟 denotes the Pearson
correlation coefficient and 𝜌 denotes the Spearman’s
rank correlation coefficient between the predictions
and targets. The last row in each table shows the
metrics obtained by comparing two experimental
replicates of the fluorescence measurements in the
test set, which gives a sense of the maximum predic-
tion performance that can be obtained using these
data. Replicate concordance is shown in Supplemen-
tary Figure S.1. The hyperparameters used for our
experiments are detailed in Appendix C.

6.1. Model architecture validation
We evaluate two main architectural choices: (1)
sequence-based DL models compared to simpler
models with handcrafted features based on TF-
binding motif occurrences, and (2) the inclusion of
transformer layers compared to purely convolutional
architectures. In particular, we compare the predic-
tion performance of themodel architecture described
in Section 5.2 to two baseline architectures: (1) a 4-
layer fully connected network (FCN) that takes as
input a vector containing the number of TF-binding
motif occurrences in the promoter sequence, and (2)
a 4-layer CNN that takes the promoter sequence as
input. More details about these baselines are pro-
vided in Appendix C. The performance of each of
these models when used to predict the experimental
fluorescence data is shown in Table 2. We find that
the sequence-based model containing transformer
layers as described in Section 5.2 leads to the best per-
formance; therefore, we use this transformer-based
model in all further experiments.

Model Class Jurkat K-562 THP-1
𝑟 𝜌 𝑟 𝜌 𝑟 𝜌

Motif-based FCN 0.4685 ± 0.0127 0.4539 ± 0.0115 0.4624 ± 0.0098 0.4727 ± 0.0115 0.3916 ± 0.0094 0.3726 ± 0.0128
CNN 0.5594 ± 0.0062 0.5012 ± 0.0044 0.5395 ± 0.0085 0.5077 ± 0.0060 0.5013 ± 0.0101 0.3807 ± 0.0122

CNN + Transformer 0.6389 ± 0.0036 0.5996 ± 0.0093 0.6152 ± 0.0082 0.6043 ± 0.0045 0.5672 ± 0.0131 0.4742 ± 0.0136
Test Set Replicate Concordance 0.7900 ± 0.0271 0.7348 ± 0.0116 0.7267 ± 0.0247 0.6875 ± 0.0093 0.6561 ± 0.0423 0.4987 ± 0.0133

Table 2: Prediction performance obtained using 3 model architectures (Figure 1 and two baselines). The mean and
standard deviation are obtained by fitting 5 different models using 5 different train, test and validation splits of the
fluorescence data.
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6.2. Evaluation of training strategies
Next, we systematically evaluate various training
strategies by pretraining separate models using each
of the tasks described in Section 5.3 alone or in com-
bination. We then perform either linear probing or
fine-tuning of these pretrained models to predict the
experimental data. We also evaluate a joint training
strategy by training on the tasks in Section 5.3 to-
gether with the experimental data. We compare the
prediction performance obtained using each of these
methods, as evaluated on one common split of the
experimental data, in Table 3. Appendix E shows the
performance of our models on the pretraining/joint
training tasks.

We find that the best predictor of cell type-specific
promoter-driven expression is obtained by pretrain-
ing on both of the existing MPRA datasets (Sharpr-
MPRA and SuRE MPRA) before fine-tuning on our
smaller dataset of measured expression in the cell
types of interest. The predictions from this best strat-
egy are shown in Figure 2. We confirm these results
using 5 different splits of the experimental dataset to
get an estimate of the mean and standard deviation
of performance (Supplementary Table S.1). Note that
we do not train multiple models using joint training

because of the large computational cost and rela-
tively poor performance in Table 3. Again, we find
that pretraining on all MPRA data leads to the best
performance, boosting it by 𝟔 − 𝟏𝟐% compared to
training from scratch on the new experimental data.
From Table 3 and Supplementary Table S.1, we

also note the following observations:
(1) The ordering of the additional training tasks

based on performance is similar irrespective of the
transfer learning method used, suggesting that some
tasks are inherently better for transfer learning than
others. For our task of predicting expression from a
compact promoter sequence, the MPRA datasets con-
sistently outperform the other training tasks. These
datasets are also the closest to our experimental
setup, since they also capture promoter-driven ex-
pression. Thus, we find that using more relevant
tasks leads to better transfer learning, akin to prior
observations by Gururangan et al. (2020) among oth-
ers.

(2) Pretraining on certain datasets (RNA-Seq, TF-
binding data) can lead to negative transfer; i.e. lower
performance of fine-tuned models compared to mod-
els trained from scratch on the new experimental
data. Negative transfer has also been observed in

Additional Training Tasks Training Strategy Jurkat K-562 THP-1
𝑟 𝜌 𝑟 𝜌 𝑟 𝜌

- Train from scratch 0.6509 0.6078 0.6370 0.6190 0.5604 0.4894
All RNA-Seq Pretrain + Linear Probing 0.5126 0.4707 0.5188 0.5005 0.4561 0.4106
TF-binding Pretrain + Linear Probing 0.4213 0.4514 0.4434 0.4904 0.3260 0.3644

Sharpr-MPRA Pretrain + Linear Probing 0.6034 0.5873 0.5935 0.6038 0.5066 0.4822
SuRE MPRA Pretrain + Linear Probing 0.6390 0.6055 0.6389 0.6432 0.5552 0.4940
All MPRA Pretrain + Linear Probing 0.6629 0.6336 0.6565 0.6586 0.5751 0.5234

All RNA-Seq Pretrain + Fine-tune 0.6338 0.5940 0.6269 0.6076 0.5468 0.4814
TF-binding Pretrain + Fine-tune 0.6229 0.5826 0.6200 0.6031 0.5231 0.4579

Sharpr-MPRA Pretrain + Fine-tune 0.6316 0.6045 0.6210 0.6320 0.5375 0.4905
SuRE MPRA Pretrain + Fine-tune 0.6732 0.6320 0.6680 0.6611 0.5962 0.5206
All MPRA Pretrain + Fine-tune 0.6849 0.6463 0.6762 0.6710 0.5991 0.5316

All RNA-Seq Joint Training 0.6564 0.6025 0.6395 0.6133 0.5669 0.4970
TF-binding Joint Training 0.6460 0.5981 0.6326 0.6029 0.5495 0.4919

Sharpr-MPRA Joint Training 0.6519 0.6169 0.6378 0.6235 0.5547 0.5032
SuRE MPRA Joint Training 0.6517 0.6216 0.6396 0.6394 0.5711 0.5039
All MPRA Joint Training 0.6522 0.6121 0.6414 0.6329 0.5658 0.5006

Test Set Replicate Concordance 0.8191 0.7345 0.7371 0.6656 0.7300 0.4827

Table 3: Prediction performance obtained using various training strategies on a common split of the experimental
fluorescence dataset. Linear probing, fine-tuning, and training from scratch are performed 5 times with 5 different
parameter initializations and the metrics are averaged over these initializations.
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Figure 2: Scatter plots showing the predictions obtained using the best model from Table 3 for each cell type, compared
to the experimental measurements. Models are trained to predict Z-scored expression values. The best model is
pretrained on both of the existing MPRA datasets before fine-tuning on the fluorescence data. Fine-tuning is performed
using 5 different parameter initializations and we choose the model that leads to best average 𝜌 on the validation set
as the best model.

other fields (Liu et al., 2022), and indicates that care
must be taken when choosing pretraining tasks.

(3) On average, the best transfer learning method
is pretraining followed by fine-tuning. Joint train-
ing produces the second-best results and pretraining
followed by linear probing leads to the worst results.

6.3. Model interpretation: effect of TF-binding
motifs

We finally want to use our models to understand the
sequence determinants of promoter-driven expres-
sion, which is important for many biological appli-
cations where we want to understand how compact
promoters drive expression, including the role of TF-
binding motifs. Traditionally, the experimental data
can be directly used to compare expression of tested
sequences containing a given motif to those not con-
taining the motif. However, with a small experimen-
tal dataset, such statistical tests are underpowered
for many motifs that are present in relatively few
tested sequences; thus, only a subset of motifs can
be analyzed. In contrast, using the DL models devel-
oped above, we can test the effect of any motif of
interest.

First, we obtain a list of clustered TF-binding mo-
tifs (Vierstra et al., 2020) 1. For every motif, we gen-
erate 10 instances of that motif by sampling from its
position-weight matrix (PWM). We then randomly
insert (in silico) these 10 instances of the motif into
every tested sequence from the experimental dataset

1https://resources.altius.org/∼jvierstra/projects/motif-
clustering-v2.0beta/

that did not originally contain the motif. We use
the best performing model, described above, to pre-
dict the expression of the modified and unaltered
sequences. Our estimate of the influence of the mo-
tif on expression is then obtained by subtracting the
predictions for the unaltered sequences from those
for the modified sequences, and averaging over all
sequences.
To validate our influence estimates, we check

whether they match the results of the traditional ap-
proach for the subset of motifs that can be analyzed
directly from the experimental data. In particular,
for every motif for which we have ≥ 30 sequences
in the fluorescence dataset containing that motif (de-
termined by running FIMO (Grant et al., 2011) with
default arguments and retaining detected motif oc-
currences with q-value < 0.01), we run a t-test to
compare the measured expression of sequences in
which the motif is present to those in which it is
absent. We then compare significant fold-changes
(q-value < 0.05) in observed expression in the pres-
ence of the motif to the predicted motif influence
scores from our model. We find that they are highly
correlated, with Spearman’s rank correlation coeffi-
cients of 0.7673, 0.8198 and 0.8008 in Jurkat, K-562
and THP-1 cells, respectively (correlation depicted
in Figure 3). This result indicates that our model can
accurately predict the effects of motifs on promoter-
driven gene expression.

Next, we analyze motifs with the highest and low-
est predicted influence scores (note that a negative in-
fluence score means that the motif reduces predicted
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Figure 3: Scatter plots showing the correlation between our motif influence estimates in each cell type and significant
changes in experimentally-measured expression in the presence of each motif (significance is computed using a t-test
and q-values < 0.05 are deemed significant). Similar plots showing the correlation for all motifs that are contained in
at least 30 experimental sequences are shown in Supplementary Figure S.2.

Figure 4: Top TF-binding motifs that influence model predictions.

expression). We first Z-score the cell type-specific
influence scores across all motifs in each cell type;
let the resulting scores be𝑚𝐽 𝑢𝑟𝑘𝑎𝑡 , 𝑚𝐾−562, 𝑚𝑇𝐻𝑃−1 for
a motif 𝑚. Then, to identify top upregulating mo-
tifs in a given cell type (e.g. Jurkat), we consider
all motifs with positive influence scores in that cell
type and choose those with the highest differential
influence score (e.g. 𝑚𝐽 𝑢𝑟𝑘𝑎𝑡 −max(𝑚𝐾−562, 𝑚𝑇𝐻𝑃−1)).
To identify top downregulating motifs, we similarly
consider motifs with negative influence scores and
choose those with the smallest differential score (e.g.
𝑚𝐽 𝑢𝑟𝑘𝑎𝑡 − min(𝑚𝐾−562, 𝑚𝑇𝐻𝑃−1)).
Figure 4 shows the PWMs of the top motifs that

are predicted to uniformly drive up or down expres-
sion in all three cell types or to differentially drive
expression in each of the three cell types. Several of

these predictions are consistent with prior biological
knowledge. For example, the motif for NRF1, an acti-
vator that plays a role in homeostasis and the activa-
tion of housekeeping genes (Zhang and Xiang, 2016),
leads to higher overall predicted expression. The mo-
tif for REST, a repressor (Chong et al., 1995), leads
to lower predicted expression. ZBTB proteins are
responsible for regulating various T cell processes
(Cheng et al., 2021), and we find that the ZBTB motif
leads to higher predicted differential expression in
Jurkats, which are T cells. These results suggest that
our model can identify biologically meaningful mo-
tifs that play a role in promoter-driven expression.
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7. Conclusion
We propose a novel pretraining-based approach that
leverages existing large datasets to train predictors of
cell type-specific promoter-driven expression using
small datasets. After a thorough analysis of vari-
ous pretraining tasks and transfer methods, we find
that the best predictors can be obtained by first pre-
training on existing promoter-driven expression data
from MPRAs and then fine-tuning on small datasets
measuring expression in specific cell types. We see
a 6 − 12% improvement in performance using this
approach compared to training models from scratch.
Finally, we use our best models to explore the ef-
fects of various TF-binding motifs on expression and
find meaningful effects that concur with previous
results. Our approach can be easily adopted to model
any other promoter-driven expression dataset in a
data-efficient manner and can be used for designing
promoters for gene therapy.
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A. Experimental methods
A.1. Library cloning
The promoter library was synthesized by Twist Biosciences in a pooled fashion using microarray sythethesis.
25bp overhangs were added to each 250bp promoter sequence to allow for PCR amplification and Golden
Gate assembly (5’-TAGTCGGCTAGATGCGTCTCCTACG(Nx250)GGTACGAGACGACTGTCTTTCCCCT-
3’). 20ng of the oligopool was PCR amplified in a 50µL reaction using 1.5µL of of each 10µM primer
(TAGTCGGCTAGATGCGTCTCC and AGGGGAAAGACAGTCGTCTCG), and 25µL KAPA HiFi HotStart
ReadyMix (Roche KK2602). The thermocycling protocol was 98°C for 3 minutes followed by 12 cycles of 98°C
for 20s, 69°C for 15s, 72°C for 15s with a final extension at 72°C for 1 minute. 1µL of the reaction was analyzed
by gel electrophoresis, and a single band was visualized at 300bp. The remainder of the reaction was purified
using DNA Clean & Concentrator-5 (Zymo D4004) and eluted in 12µL of nuclease-free H2O. The amplified
oligopool was then cloned into a 3rd generation lentiviral vector immediately upstream of a minimal CMV
promoter driving the expression of enhanced green fluorescent protein (EGFP) using a 25µL Golden Gate
reaction containing 250ng backbone plasmid, 2X molar of the purified oligopool, 1µL Esp3I (Thermo Fisher
FD0454), 1µL T4 DNA ligase (NEB M0202L, 400U/µL) and 2.5µL T4 ligase buffer (NEB B0202S). After an
initial 5 minute digestion at 37°C, 30 cycles of 37°C digestion and 16°C ligation were followed by 20 minutes
of ligation at 16°C, 30 minutes of digestion at 37°C and 20 minutes of heat-inactivation at 80°C. The reaction
was purified using DNA Clean & Concentrator-5 (Zymo D4004) and eluted in 6µL of nuclease-free H2O.
2µL were transformed into Endura electrocompetent cells (Biosearch Technologies 60242-2) following the
manufacturer’s protocol. After recovery, the cells were plated on a single large 245mm x 245mm LB plate
with carbenicillin, and serial dilutions were plated on standard sized plates up to 1:1×106 to assess library
coverage. After overnight incubation at 30°C, colonies were counted on the dilution plates to assure a library
coverage of at least 30X. Colonies from the large plate were scraped into liquid suspension and collected into
a 50mL conical tube before the plasmid pool was prepared using NucleoBond Xtra Midi EF (Macherey-Nagel
740420). Subsequent analysis of the plasmid pool using gel electrophoresis confirmed a homogenously sized
plasmid species that was not digestible with Esp3I (Thermo Fisher FD0454).

A.2. Cell lines and culture conditions
Jurkat, K-562, and THP-1 cells were obtained from American Type Culture Collection (TIB-152, CCL-243, and
TIB-202) and grown in RPMI + GlutaMAX (Gibco 61870036) supplemented with 10% FBS (Gibco 26140079),
1x penicillin/streptomycin (Gibco 15140122), 1mM sodium pyruvate (Gibco 11360070) and 10mM HEPES
(Gibco 15630080). Jurkat and K-562 cells were generally maintained between 1×105-1×106 cells/mL, and
THP-1 wells were maintained between 2×105-1×106 cells/mL. All suspension cell lines were split every 2-4
days by counting cell density and diluting cells into a new flask with fresh medium warmed to 37°C. Lenti-X
293T cells were attained from Takara Bio (632180) and grown in DMEM, high glucose, pyruvate (Gibco
11995065) supplemented with 10% FBS (Gibco 26140079) and 1x penicillin/streptomycin (Gibco 15140122).
Lenti-X cells were split every 2-4 days by aspirating medium, treating with TrypLE Express (Gibco 12604021),
and reseeding cells into a new flask with fresh medium warmed to 37°C. Incubator conditions were kept at
37°C, 5% CO2 and >90% RH. All cell lines were routinely tested for mycoplasma contamination every 2-4
months with MycoStrip mycoplasma detection kit (InvivoGen rep-mysnc-100).

A.3. Lentiviral production and titration
Large scale lentiviral production was performed in Lenti-X cells by polyethylenimine (PEI, Polysciences
23966) transfection into confluent T225 flasks containing DMEM, high glucose, pyruvate (Gibco 11995065)
supplemented with 10% FBS (Gibco 26140079) and 10mM HEPES (Gibco 15630080). 40µg of DNA were
transfected into each flask using 2nd generation packaging plasmids pMD2.G (Addgene #12259) and psPAX2
(Addgene #12260) along with the lentiviral plasmid pool at a mass ratio of 1:2:4. After 72 hours of incuba-
tion, lentiviral particles were concentrated 10X using Lenti-X Concentrator (Takara Bio 631232) per the
manufacturer’s instructions, and single use aliquots were frozen at -80°C. Functional titration of each batch
of lentivirus was performed in Jurkat, K-562, and THP-1 cells by transducing 4×104 cells via 90 minute
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spinfection at 1000g and 32°C in 96 well plates with 8µg/mL polybrene (Millipore TR-1003-G). At least five
serial dilutions of lentivirus were used, and transductions were performed in quadruplicate. After overnight
incubation, media containing lentivirus was removed and replaced with fresh media with and without
2µg/mL puromycin (Gibco A1113803). After five days of selection, cell survival in each well was quantified
on a Tecan Spark plate reader using CellTiter-Glo 2.0 Cell Viability Assay (Promega G9242), and percent
survival was calculated as the ratio of luminescence in the presence versus absence of puromycin for each
lentiviral dilution. Finally, functional lentiviral titer was calculated for all dilutions with 5-30% survival and
averaged for each cell line.

A.4. High-throughput measurements of promoter activity
8×107 Jurkat, K-562, or THP-1 cells were transduced in duplicate via 90 minute spinfection at 1000g and 32°C
in 50mL conical tubes with 8×106 infection units (IUs) of virus and 8µg/mL polybrene (Millipore TR-1003-G)
for a multiplicity of infection (MOI) of 0.1 and a library coverage of 400X. After transfer to T225 flasks and
overnight incubation, media containing lentivirus was removed and replaced with fresh media containing
2µg/mL puromycin (Gibco A1113803). After five days of selection, cells were expanded a further 2-10 days
in the absence of puromycin to dilute dead cells and attain at least 4×107 cells (2000X coverage) for sorting.
Selected cells were sorted into four 25% bins of EGFP fluorescence using a BD FACSAria Fusion Special
Order Research Product. At least 2×107 total cells were sorted for a library coverage of 1000X. Cells from
each bin were pelleted, and the supernatant was removed for short-term storage at -20°C.

A.5. Library preparation and sequencing
Genomic DNA was extracted from sorted cell pellets using Quick-DNA Midiprep Plus Kit (Zymo D4075)
using the manufacterer’s instructions. Next generation sequencing (NGS) libraries were prepared using two
consecutive PCR steps. In PCR1, the promoters contained in each sorted bin were amplified from the total
amount of corresponding genomic DNA using 4µL of each 100µM primer and 400µL NEBNext Ultra II Q5
Master Mix (NEB M0544X). Each 800µL reaction was divided into 8×100µL reactions in a 96 well PCR plate
before thermocycling at 98°C for 30s, followed by 20 cycles of 98°C for 10s, 63°C for 30s and 65°C for 45s,
with a final extension at 65°C for 5 minutes. All eight completed reactions for each bin were combined into
a single tube and vortexed thoroughly before 50µL were purified using a 0.7X AMPure XP bead cleanup
(Beckman Coulter A63881). Sequencing adapters and barcodes were then added to the promoter amplicons
in PCR2 by combining 2µL of purified PCR1, 2µL of index primers at 10µM each and 25µL NEBNext Ultra II
Q5 Master Mix (NEB M0544X). The 50µL reaction was thermocycled at 98°C for 30s, followed by 7 cycles of
98°C for 10s and 65°C for 75s, with a final extension at 65°C for 5 minutes. The PCR2 products were run on
a 2% agarose gel, and each produced a single 428bp band, which was extracted using Monarch DNA Gel
Extraction Kit (NEB T1020L). Gel-extracted PCR2 products from each bin were then quantified by Qubit
1X dsDNA HS Assay (Thermo Fisher Q33231) and pooled at equimolar ratios before requantification with
Qubit and fragment analysis with Agilent 2100 Bioanalyzer using the High Sensitivity DNA Kit (Agilent
Technologies 50674626). Prepared libraries were loaded onto the Illumina NextSeq 2000 at 750-850pM and
sequenced using 300 cycle v3 kits with P1 or P2 flow cells (Illumina 20050264 and 20046813) to attain at
least 1000X sequencing coverage for each replicate.

A.6. Sequencing analysis
Raw BCL files were converted to fastq files and demultiplexed with bcl-convert v4.0.3 (Illumina). Paired-end
reads were trimmed, merged and filtered using fastp (Chen et al., 2018) followed by dereplication and
counting with seqfu (Telatin et al., 2021). Only reads with zero mismatches to a promoter in our library were
counted, and only promoters with at least five reads in each replicate across all cell lines were considered in
downstream analyses.

A.7. Quantifying expression strength of promoters
The expression strength of each promoter was calculated as the log (base 2) ratio of reads in the highest
quartile EGFP bin to the lowest quartile EGFP bin after adding one read to each bin, and the average
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expression strength (across the two replicates) was calculated for each promoter in each cell line.

B. Generation of promoter sequences for the experimental dataset
We constructed a promoter library for the experiments described above, which was then used to train and
fine-tune our models, containing the following types of sequences.

B.1. Class I (9991 promoters)
These promoters were extracted from the promoters of endogenous differentially expressed (DE) genes.
Gene expression data from LL-100 (Quentmeier et al., 2019) and CCLE (Barretina et al., 2012) were used
to identify DE genes. Although we measure expression in Jurkat, K-562 and THP-1 cells, the cell types
used for this DE analysis were Jurkat, THP-1 and NK-92. We later switched from NK-92s to K-562s due to
experimental difficulties. DE genes were identified by DESeq2 (Love et al., 2014). Briefly, for each of the
three cell lines, we identified a set of “globally" up/down-regulated genes that were up/down-regulated
in that cell line and related cell lines (other immune cells of the same type), when compared to all other
cell lines. For each of the three cell lines, we also identified a set of “locally" up/down-regulated genes that
were up/down-regulated in that cell line and related cell lines when compared to the other two chosen cell
lines and cell lines related to them. For each cell line, we took the intersection of its globally and locally
up/down-regulated genes and considered the 1111 top DE genes per cell line (711 up-regulated and 400
down-regulated). Following the rationale from section 5.3.1, we extracted three 250bp promoter sequences
for every gene – [TSS - 300bp, TSS - 50bp), [TSS - 100bp, TSS + 150bp), and [TSS + 100bp, TSS + 350bp) – to
get a total of 3333 promoters per cell line and 9991 promoters overall (after removing duplicates) to test in
our experiments.

B.2. Class II (7998 promoters)
Promoters in this class were constructed using HOMER (Heinz et al., 2010), a motif detection tool. We
supplied the DE genes identified above for the Class I promoters to HOMER, analyzing the [TSS - 300bp,
TSS + 50bp] regions of these genes to identify enriched motifs. HOMER identifies two types of enriched
motifs, known motifs (which we obtained from Vierstra et al. (2020)) and de-novo motifs. We identified
known motifs that were enriched with q-values less than 0.05 and de-novo motifs that were enriched with
p-values less than 1e-10. For each cell type, we then generated 2666 promoters, 1500 using motifs enriched
in that cell type’s upregulated genes and 1166 using a mix of motifs enriched in that cell type’s upregulated
genes and motifs enriched in the other two cell types’ downregulated genes. To generate the promoters, we
inserted up to 18 randomly sampled motifs from the above set into an endogenous promoter segment, ([TSS
- 100bp, TSS + 150bp)) from an upregulated gene in NK-92s. The exact inserted sequence for each motif was
obtained by sampling from its PWM. This process resulted in inserting more than 100bp of motifs into the
original 250bp endogenous promoter segment for ∼ 77% of the Class II promoters.

B.3. Class III (2011 promoters)
Finally, we extracted sequences from the promoters of endogenous highly expressed genes, which were
chosen as follows:

1. 1004 genes with the lowest coefficient of variation in their TPM values across all cell lines in the CCLE
dataset (restricted to those with a TPM of at least 1).

2. 1007 genes that were up-regulated in all three of the selected cell lines (and related cell lines) vs. all
other cell lines in the CCLE dataset, identified using DESeq.

We used the [TSS - 100bp, TSS + 150bp) regions of these genes as 250bp promoter sequences to test in our
experiments.
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C. Modelling details
C.1. Architectures of baseline models
The motif occurrences-based FCN used as a baseline has 4 layers. We use FIMO (Grant et al., 2011) to extract
the number of occurrences of clustered TF-binding motifs (Vierstra et al., 2020) in the sequences in the
fluorescence dataset (FIMO is run with default arguments and we retain detected motif occurrences with
q-value < 0.01). Vectors containing these occurrence counts for all motifs are input to the FCN. Then, 4 fully
connected layers with 2048, 1024, 1024 and 512 neurons are applied to get embeddings for each input (each
layer except the last uses ReLU activations). These embeddings are then used by a linear output layer to
make the fluorescence predictions.
The baseline CNN has 4 convolutional layers followed by 2 fully connected layers. One-hot encoded

sequences are fed as inputs to the network. Then 4 1D length preserving convolutional layers with 512,
768, 768 and 1024 filters of size 5 are applied. Two 1D max pooling layers of size 5 are applied between the
second and third layer, and after the last layer. The outputs of the CNN are flattened and passed through 2
fully connected layers with 2048 neurons (and with ReLU activation) and 1024 neurons. The final outputs of
this network are then used by a linear output layer to make the fluorescence predictions.
Note that all convolutional layers in both the baseline CNN and our main transformer-based model use

ReLU activation and are followed by batch norm and dropout (0.1 dropout probability) layers.

C.2. Hyperparameters
1. We use a cluster consisting of GPU-enabled nodes to train our models. The nodes either use Nvidia

A40s or V100s.
2. All models are trained using the AdawW optimizer (Loshchilov and Hutter, 2017).
3. For regression tasks, we Z-score all target values before fitting models.
4. All models trained from scratch to predict fluorescence use a 1e-5 learning rate, 1e-4 weight decay,

and 96 batch size. They are trained for a maximum of 50 epochs but if the average Spearman’s rank
correlation coefficient of the fluorescence data’s validation set does not improve for 5 epochs, we stop
training.

5. We use a 1e-5 learning rate and 1e-4 weight decay during pretraining and joint training. If the SuRE
MPRA dataset is used for pretraining/joint training, we use a batch size of 12. Otherwise, we use a
batch size of 96.

6. We pretrain for a maximum of 50, 10, 20, 10 and 8 epochs on RNA-Seq, TF-binding, Sharpr-MPRA,
SuRE MPRA and all MPRA data respectively. Again, we stop training if the validation loss does not
decrease for 5 epochs. In every epoch, if using more than one dataset for pretraining, we cycle through
each dataset to sample batches and an epoch is done when we have run through the largest dataset
fully. This leads to smaller datasets being run through more than once in an epoch but we tend to use
similar sized datasets making this less of an issue.

7. During joint training, as the fluorescence dataset is small compared to some of the other datasets, in
every epoch, we run through the full fluorescence dataset but only run through an equal number of
batches for the other datasets. This is done to avoid overfitting on the fluorescence data’s training
set - if we use the same scheme as pretraining, we would run through the fluorescence data multiple
times in an epoch which might cause overfitting. We jointly train for a maximum of 50 epochs but if
the average Spearman’s rank correlation coefficient of the fluorescence data’s validation set does not
improve for 5 epochs, we stop training.

8. Fine-tuning is performed for a maximum of 50 epochs but if the average Spearman’s rank correlation
coefficient of the fluorescence data’s validation set does not improve for 5 epochs, we stop training. We
again use a 1e-5 learning rate, 1e-4 weight decay, and 96 batch size.

9. Linear probing is also performed for a maximum of 50 epochs but if the average Spearman’s rank
correlation coefficient of the fluorescence data’s validation set does not improve for 5 epochs, we stop
training. We use a higher 1e-3 learning rate, 1e-4 weight decay, and 96 batch size.
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D. Performance of training strategies onmultiple splits of the fluorescence dataset
Table S.1 summarizes the prediction performances obtained using various training strategies when 5 different
train, test, and validation splits are used.

Pretraining Tasks Transfer Method Jurkat K-562 THP-1
𝑟 𝜌 𝑟 𝜌 𝑟 𝜌

- Train from scratch 0.6389 ± 0.0036 0.5996 ± 0.0093 0.6152 ± 0.0082 0.6043 ± 0.0045 0.5672 ± 0.0131 0.4742 ± 0.0136
All RNA-Seq Linear Probing 0.4974 ± 0.0180 0.4528 ± 0.0153 0.4949 ± 0.0184 0.4803 ± 0.0137 0.4497 ± 0.0206 0.3937 ± 0.0078
TF-binding Linear Probing 0.4141 ± 0.0109 0.4491 ± 0.0155 0.4164 ± 0.0106 0.4607 ± 0.0161 0.3294 ± 0.0107 0.3532 ± 0.0101

Sharpr-MPRA Linear Probing 0.5850 ± 0.0110 0.5596 ± 0.0101 0.5813 ± 0.0198 0.5887 ± 0.0093 0.5097 ± 0.0253 0.4597 ± 0.0100
SuRE MPRA Linear Probing 0.6355 ± 0.0123 0.6053 ± 0.0112 0.6329 ± 0.0124 0.6302 ± 0.0072 0.5574 ± 0.0229 0.4901 ± 0.0154
All MPRA Linear Probing 0.6454 ± 0.0097 0.6176 ± 0.0087 0.6415 ± 0.0118 0.642 ± 0.0085 0.5732 ± 0.0169 0.5033 ± 0.0083
All Tasks Linear Probing 0.6247 ± 0.0165 0.5774 ± 0.0170 0.6235 ± 0.0136 0.595 ± 0.0150 0.5591 ± 0.0209 0.4692 ± 0.0197

All RNA-Seq Fine-tune 0.6279 ± 0.0091 0.5885 ± 0.0106 0.6052 ± 0.0148 0.5916 ± 0.0074 0.5530 ± 0.0183 0.4701 ± 0.0133
TF-binding Fine-tune 0.6138 ± 0.0148 0.5784 ± 0.0133 0.5940 ± 0.0134 0.5916 ± 0.0084 0.5327 ± 0.0181 0.4523 ± 0.0212

Sharpr-MPRA Fine-tune 0.6358 ± 0.0127 0.6056 ± 0.0173 0.6158 ± 0.0195 0.6211 ± 0.0108 0.5610 ± 0.0228 0.4841 ± 0.0145
SuRE MPRA Fine-tune 0.6635 ± 0.0122 0.6340 ± 0.0099 0.6510 ± 0.0116 0.6497 ± 0.0075 0.5931 ± 0.0221 0.5154 ± 0.0138
All MPRA Fine-tune 0.6814 ± 0.0106 0.6402 ± 0.0077 0.6684 ± 0.0108 0.6591 ± 0.0053 0.6179 ± 0.0193 0.5310 ± 0.0120
All Tasks Fine-tune 0.6610 ± 0.0153 0.6172 ± 0.0104 0.6542 ± 0.0172 0.6348 ± 0.0080 0.5988 ± 0.0219 0.5039 ± 0.0163
Test Set Replicate Concordance 0.7900 ± 0.0271 0.7348 ± 0.0116 0.7267 ± 0.0247 0.6875 ± 0.0093 0.6561 ± 0.0423 0.4987 ± 0.0133

Table S.1: Summary of prediction performances obtained using various training strategies. The averages and standard
deviations are computed over 5 different models that are fit using 5 different train, test and validation splits of the
fluorescence data.

E. Performance of models on pretraining or joint-training tasks
Table S.2 shows the performance of our pretrained and jointly trained models on all additional tasks used
for pretraining or joint training (note that joint training is performed together with the experimental
fluorescence dataset). 𝑟 denotes the Pearson correlation coefficient and 𝜌 denotes the Spearman’s rank
correlation coefficient between the predictions and targets, Acc stands for accuracy, and F1 stands for
F1-score. For the RNA-Seq datasets (LL-100, CCLE and Roadmp), the metrics shown in the table are obtained
by averaging the metrics over all cell types in the datasets. Similarly, for the TF-binding datasets, the metrics
shown in the table are obtained by averaging the metrics over all ChIP-seq datasets. For the Shapr-MPRA
dataset, note that we have 12 outputs per input sequence, 4 of them being predictions for the average
promoter-driven expression (average over the two replicates) in K-562 and HepG2 cells when the input
sequence is bundled with either a minimal TATA promoter (minP) or strong SV40 promoter (SV40P). The
table shows metrics obtained using these 4 outputs. Our results are very similar to those obtained by Movva
et al. (2019). For the SuRE MPRA dataset, the table shows the average accuracy in predicting the K-562 and
HepG2 expression bins with the average being computed over the 4 individuals from whose genomes the
sequences were extracted.

Tasks Training Strategy LL-100 CCLE Roadmap TF-binding Sharpr-MPRA SuRE MPRA
𝑟 𝜌 𝑟 𝜌 𝑟 𝜌 Accuracy F1 K-562 minP 𝜌 HepG2 minP 𝜌 K-562 SV40P 𝜌 HepG2 SV40P 𝜌 K-562 Acc HepG2 Acc

All RNA-Seq Pretraining 0.4493 0.4390 0.4673 0.4711 0.4379 0.4413 - - - - - - - -
TF-binding Pretraining - - - - - - 0.9747 0.9746 - - - - - -

Sharpr-MPRA Pretraining - - - - - - - - 0.3369 0.2261 0.1350 0.2090 - -
SuRE MPRA Pretraining - - - - - - - - - - - - 0.4018 0.3435
All MPRA Pretraining - - - - - - - - 0.2803 0.2100 0.1493 0.2223 0.4011 0.3429

All RNA-Seq Joint Training 0.4612 0.4495 0.4754 0.4786 0.4385 0.4435 - - - - - - - -
TF-binding Joint Training - - - - - - 0.5154 0.4989 - - - - - -

Sharpr-MPRA Joint Training - - - - - - - - 0.1350 0.0903 0.0565 0.0868 - -
SuRE MPRA Joint Training - - - - - - - - - - - - 0.4018 0.3435
All MPRA Joint Training - - - - - - - - 0.1259 0.1359 0.0775 0.1658 0.3649 0.3129

Table S.2: Prediction performance of models on the pretraining or joint-training tasks.
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F. Additional Figures

Figure S.1: We collect two replicate measurements of fluorescence and the scatter plots above show the correlation
between these two measurements in each cell type (columns). The first row of plots shows the correlation for the test
set used in Table 3 and the second row shows the correlation across all samples.

Figure S.2: Scatter plots showing the correlation between our motif influence estimates in each cell type and the
changes in experimentally-measured expression in the presence of that motif. Significance of expression changes is
computed using a t-test, and q-values < 0.05 are deemed significant (orange).
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