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Abstract

Odor perception is the impetus for important animal behaviors, most obviously for
feeding but also for mating and communication. There are two predominate modes of
odor processing: odors pass through the front of the nose (orthonasal) while inhaling
and sniffing, or through the rear (retronasal) during exhalation and while eating.
Despite the importance of olfaction for an animal’s well-being and specifically that
ortho and retro naturally occur, it is unknown how the modality (ortho versus retro) is
even transmitted to cortical brain regions, which could significantly affect how odors are
processed and perceived. We show mitral cell neurons in the rat olfactory bulb reliably
transmit ortho versus retro food odor stimuli. Drug manipulations affecting GABAA

that control synaptic inhibition lead to worse decoding of ortho/retro, independent of
whether overall inhibition increases or decreases, suggesting that the olfactory bulb
circuit is naturally structured to encode this important aspect of odors. Detailed data
analysis paired with a firing rate model to capture population trends in spiking statistics
shows how this circuit with baseline inhibition can encode odor modality. We have not
only shown that ortho versus retro information is encoded to downstream brain regions,
but models and analyses reveal the network dynamics that promotes this encoding.

Author summary

Olfaction is instrumental in a variety of animal behaviors, and has two predominate
modes of odor delivery, naturally passing through the front of nose (orthonasal) while
inhaling and sniffing, or through the rear (retronasal) during exhalation and while
eating. Yet it is unknown how the mode of olfaction (ortho or retro) is even encoded to
olfactory cortical brain areas. We show here that the spiking activity of neurons in the
olfactory bulb reliably transmits this information to cortical brain regions. Furthermore,
drug manipulations that either strengthen or weaken inhibition degrades ortho/retro
information, suggesting that the olfactory bulb circuit is naturally structured to
well-encode this important aspect of odor input. Using computational models and
theory, we analyze how the neural network attributes lead to encoding of ortho/retro
input. We show that higher brain regions have access to information about the mode of
processing and detail how this can occur, which should have significant implications for
how odors are perceived since retro odors occur during feeding.
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Introduction 1

Olfaction is driven by odor molecules entering the nasal cavity that induce a cascade of 2

action potentials in the nervous system to transmit and process odor information. 3

There are two routes by which odor molecules can enter the nasal cavity: through the 4

nostrils during inhalation and sniffing (ortho), or from the throat during exhalation 5

and while eating (retro). Orthonasal stimulation is by far the most commonly studied 6

modality despite retronasal naturally occurring during eating. Prior imaging studies 7

have shown differences in the activation of the regions of the nasal epithelium with 8

ortho and retro stimulation [1–3], and Small et al [4] shows that ortho/retro information 9

is transmitted to cortical brain regions in humans but does not detail the mechanisms 10

for this. Thus, how ortho/retro information is transmitted to cortical brain regions is 11

unknown; also, what are the network attributes that promote efficient encoding of ortho 12

versus retro input? 13

These questions are important for several reasons. Humans are able to discriminate 14

whether food odors are delivered ortho or retronasally without being told which 15

modality [5] but it is unknown whether this information is propagated from the ‘bottom 16

up’ or if detection is solely from higher brain regions. Imaging studies have shown that 17

at least with food odors, ortho versus retro are two distinct modalities, rather than 2 18

different routes to the same modality, independent of odor intensity [6]. Moreover, there 19

is evidence that cortical processing depends on ortho versus retro [7], and humans 20

report perceiving smells differently depending on ortho/retro modality [4, 8]. 21

Before odor information reaches the brain, it is processed in the olfactory bulb (OB) 22

and relayed to higher brain regions via excitatory mitral cells (MCs) (and tufted cells). 23

Thus, the OB is critical for determining whether ortho versus retronasal odors are 24

encoded before being conveyed to the brain for processing and perception. More 25

broadly, OB activity is tied to odor perception [9]. While the role of inhibitory cells in 26

influencing the OB processing of ortho versus retro odors is as yet unknown, inhibition 27

has been shown to play a key role in many other aspects of OB processing. OB 28

inhibition is known to alter activity patterns that represent odors [10], granule cells that 29

provide inhibition reflect changes in odor concentration [11], and OB inhibition levels 30

alter odor discrimination dynamics [12]. Thus motivating our experiments consisting of 31

in vivo rat recordings of MCs in the OB with both decreased and increased levels of 32

GABAA synaptic inhibition via drug manipulations. The rats were anesthetized and a 33

double tracheotomy was performed allows the breathing air flow to bypass the nasal 34

cavity, thus allowing precise control of ortho versus retro stimulation. 35

We show that the mode of the input stimuli (ortho versus retro) is indeed 36

transmitted to cortical brain regions. We find the encoding is generally good and well 37

above chance level for the intact circuit and even with altered levels of inhibition. Thus 38

downstream brain regions readily have access to ortho versus retronasal odor modality 39

with spiking activity from the OB. Importantly, the altered circuits with both increases 40

(via Muscimol application, a GABAA agonist) and decreases in inhibition (via 41

Bicuculline, a GABAA antagonist) leads to overall worse encoding. This suggests that 42

the intact OB circuit is optimal for encoding ortho versus retro modality. 43

Our rich data enables investigation of the OB circuit mechanisms that promote this 44

encoding with a computational model. We show how a simple excitatory-inhibitory 45

(E-I) reciprocally coupled pair captures the modality dependent differences in 46

population firing rate. We model trial-to-trial spike rate variability to be largely 47

consistent with our data and so that the model can encode orth-/retro-like stimuli. We 48

find that modality encoding is degraded when inhibition is either increased or decreased, 49

as observed in our data. Given the commonality of reciprocally coupled 50

excitatory-inhibitory circuits, these results may apply outside of the OB, specifically to 51

where stimuli have temporal differences. 52
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Results 53

We collected spike data with multi-electrode array recordings of urethane anesthetized 54

rats in the OB mitral cell layer, where each cell (MC) was subject to the same odor 55

delivered with ortho and retro stimulation (Fig 1Ai), repeated for 10 trials for each 56

modality. In addition, two drugs were applied to alter the circuit: a GABAA antagonist 57

(Bicuculline) and a GABAA agonist (Muscimol). See Table 1 for details of data 58

collected. For reference, Fig 1Aii shows the population-averaged firing rate (first get 59

trial-average firing rate for each MC, then average over all MCs) by modality for a given 60

drug preparation, with t = 0 denoting time of odor presentation that is held for 1 s. 61

This is commonly referred to as the peri-stimulus time histogram (PSTH). 62

Table 1. Number of rats and respective individual cells for each drug
preparation subject to the food odor Ethyl Butyrate (EB).

No Drug Bicuculline Muscimol

Rats 8 4 3
Cells 913 413 419

Individual MCs encode ortho versus retro 63

To remain agnostic to how higher brain regions decode population activity, we 64

predominately consider individual MCs encoding of odor modality. Individual MC 65

coding is also a logical first step [13]. We use net spiking rate to account for large 66

variation of spontaneous spiking within individual trials [14] and to account for state 67

changes, i.e., drug preparations result in significant changes in spontaneous spiking (Fig 68

2B). Specifically, the net spiking rate x⃗k for the kth trial, k = 1, 2, ..., N , is the sum of 69

the evoked spike counts (normalized by time window Tev = 0.9 s) minus the spikes in 70

the spontaneous state (normalized by time window Tsp = 2 s): 71

x⃗k =
1

Tev

(
# Evoked spikes in Tev

)
− 1

Tsp

(
# Spontaneous spikes in Tsp

)
(1)

(see Eq (4) in Materials and methods). The time windows were systematically 72

chosen from a range of possible values, see S1 Fig and Materials and methods for 73

details. To assess whether MCs might prefer one modality over the other, we compare 74

the trial-averaged net spiking rate for ortho and retro as a measure of selectivity (Fig 75

1Aiii, a tuning ‘curve’ with 2 points). Most MCs ‘prefer’ or spike more with retro than 76

ortho (≈ 63%), and the proportions do not vary much as drug preparations change. 77

We define decoding accuracy as the fraction of trials correctly classified by a 78

threshold that maximizes decoding accuracy, so this is a measure of information 79

accessible by an ideal observer from each MC individually (Fig 1B). We only consider 80

Ethyl Butyrate (EB), a common food odor, because only food odors are perceived 81

retronasally [4]. Moreover, numerous studies have shown that non-food odors delivered 82

retronasally degrade human perception of odors [5, 6, 8]. 83

The OB circuit is naturally structured to well-encode ortho versus retro. Figure 1C 84

shows the spiking activity of individual MCs encode (measured by decoding accuracy) 85

ortho versus retro for the vast majority of cells. There is a wide range of decoding 86

accuracies varying between 0.5 (i.e., chance) and 1 (i.e., perfect decoding), with no drug 87

the mean decoding accuracy is 0.74, and both Mus and Bic have lower average 88

decoding accuracies of 0.69 for both. Further, the differences in the mean decoding 89

accuracy are all statistically significant (α = 0.01) using three tests: two-sample t−test 90

(pND,Bic = 2.2× 10−10, pND,Mus = 1.6× 10−7), Wilcoxon rank sum test 91
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Fig 1. Individual mitral cells encode olfaction mode. Ai) Experiment setup to
test whether OB MCs encode ortho versus retro stimulation, with example raster plot
for 1 MC. Aii) Population-averaged firing rate (trial-avg for each MC then
population-averaged), i.e., PSTH for each modality and drug preparation; t = 0 denotes
when Ethyl Butyrate (food odor) is presented. Aiii) The proportion of population that
are ortho (or retro) selective, i.e., ortho selective ⇔ higher trial averaged (net) firing
rate for ortho than retro. B) Schematic of how decoding accuracies are calculated for
each MC: using net spike rate. C) Distribution of decoding accuracies of MC with 3
different preparations: intact no drug (gray), less inhibition via Bic (green) and more
inhibition via Mus (purple). Mean decoding accuracy for no drug is 0.74, with Bic and
Mus the means are: 0.69; these differences are all statistically significant (α = 0.01 with
two-sample t−test assuming unequal var, Wilcoxon rank sum test, and one-way
ANOVA). Net spikes in a given trial is the number of evoked spikes (0.9 s window)
minus spontaneous spikes (2 s window). Windows were determine systematically to
maximize decoding accuracy p−values, see S1 Fig and Materials and methods.

(pND,Bic = 1.2× 10−6, pND,Mus = 1.5× 10−10), and one-way ANOVA 92

(pND,Bic = 9.2× 10−9, pND,Mus = 6.4× 10−8). See Table 2 for these p−values. 93

Table 2. Population Decoding Accuracy: significance (p−values) of average
(over MC) decoding accuracies shown in Figure 1C. Using 3 tests: two-sample
t−test assuming unequal variance, Wilcoxon rank sum test, and one-way ANOVA.

Relationship t−test Rank Sum ANOVA

Bic < ND 2.2× 10−10 1.2× 10−6 9.2× 10−9

Mus < ND 1.6× 10−7 1.5× 10−10 6.4× 10−8
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Drug effects on mean population activity 94

To better understand the dynamics of MC decoding accuracy, we consider how GABAA 95

(ant-)agonists effect population activity. Although population activity is a simple and 96

coarse measure that neglects individual cell heterogeneity, it still can be insightful for 97

determining average or expected trends. A characteristic of an individual MC that 98

might be indicative of encoding fidelity is the distance between the trial-averaged (net) 99

spike rate of ortho and retro stimulation |µR − µO| (Fig 1B). We expect larger distances 100

to coincide with better decoding accuracy than smaller distances, if all other factors are 101

equal. Fig 2A shows very strong correlations (Pearson’s and Spearman’s rank) between 102

|µR − µO| and decoding accuracies for all drug preparations, although other factors 103

affect decoding accuracy (e.g., trial-to-trial variance) since there is dispersion for a given 104

decoding accuracy value. Nevertheless, this motivates considering the 105

population-averaged spiking activity as a means to better understand the dynamics of 106

decoding accuracy. 107
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The affects of the GABAA (ant-)agonists on population firing rate depend on the 108

odor modality; only ortho evoked firing rates show statistically significant differences in 109

the mean (over MC population) PSTH. In comparing the population firing rates for a 110

given modality (ortho or retro), rather than comparing ortho versus retro for a given 111

drug preparation (Fig 1Aii), we find some stark differences (Fig 2B). As expected, Mus 112

(increased inhibition) causes firing rates to decrease and Bic (less inhibition) causes 113

firing rates to increase compared to no drug, especially in the spontaneous state. 114

However, the evoked firing rates are only significantly different (α = 0.01) with ortho 115

stimulation, and not significantly different with retro stimulation. This holds for nearly 116

all time points (see * in p−value plots of two sample t−test with unequal variance). 117

This effect is clear in the right-most column of Fig 2B. 118

If we assume these population trends (Fig 2B) hold individually for MCs (drugs only 119

effect spiking rate with ortho but not retro), then we might expect decoding accuracies 120

to change in specific ways: if ortho spiking is less than retro with no drug, then Bic 121

should increase spiking (shift histograms to the right) causing more overlap and lower 122

decoding accuracy. For exposition purposes, these results are detailed in S2 File and 123

S3 Fig. 124

Drug effects on trial-to-trial variability 125

In addition to the mean (net) spiking rate over trials, the trial-to-trial variability plays a 126

key role in decoding accuracy differences. Here we consider the variance of spiking 127

activity over trials for each MC and test whether the population average is different 128

across drug preparations. We find with Mus application, the average trial variability is 129

smallest, followed by Bic, then no drug (i.e., Mus < Bic < no drugs) – this trend holds 130

for ortho and only somewhat for retro. The significance measured by p−values of this 131

relationship are in Tables 3 and 4 for ortho and retro trials, respectively, using the same 132

three statistical tests as before. For ortho stimulation, Mus < no drugs is significant for 133

all three tests (α = 0.01), while Bic < no drug and Mus < Bic are only significant with 134

Wilcoxon rank sum test. For retro stimulation, again only the Wilcoxon rank sum test 135

shows this relationship is significant (all with α = 0.01 except for Bic < ND for retro 136

where p = 0.027). Overall, the Bic < ND relationship is not as strong as the others, and 137

the trend Mus < Bic < no drugs is stronger with ortho stimulation. 138

Table 3. Ortho stimulation only: significance (p−values) of average (over
MC) trial variance differences between drugs with various statistical tests.
Using same 3 tests as before; ND=‘no drug’.

Relationship t−test Rank Sum ANOVA

Mus < ND 1.8× 10−3 9.0× 10−8 0.022
Mus < Bic 0.028 1.1× 10−14 0.027
Bic < ND 0.85 5.6× 10−5 0.86

Table 4. Retro stimulation only: significance (p−values) of average (over
MC) trial variance differences between drugs with various statistical tests.
Using same 3 tests as before; ND=‘no drug’.

Relationship t−test Rank Sum ANOVA

Mus < ND 0.065 1.7× 10−4 0.145
Mus < Bic 0.42 2.6× 10−7 0.41
Bic < ND 0.43 0.027 0.48

Within all of the 3 drug preparations, the average trial variances for ortho versus 139
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retro are statistically indistinguishable. 140

Model connects network dynamics and decoding accuracy 141

To reveal the neural network dynamics that explain our experimental data results, we 142

use a firing rate model of the spiking activity. Our rich data set with 3 total drug 143

preparations enables a model framework that is highly constrained by data [15–17]. In 144

addition, we incorporate known differences in temporal dynamics of ORN inputs to 145

MCs with ortho versus retro stimulation, supported by experiments [1–3,18,19]. Ortho 146

stimulation results in fast increase and fast decrease of ORN inputs to MCs while retro 147

input results in slower increase and slower decrease ORN inputs than ortho (Fig 3B). 148

Although it is not definitive, Fig 2c of [3] suggests that the amplitude of ORN inputs 149

with ortho are larger than retro (Fig 3B). We develop a principled model that is 150

structurally the same with both odor modalities but will effectively have different 151

dynamics stemming from different ORN inputs [20]. 152

We first set out to implement an OB model that accounts for the large changes in 153

population PSTH with GABAA (ant-)agonists with ortho stimulation only, and small 154

(or no statistically significant) changes in population PSTH with retro (Fig 2B). We use 155

a reciprocally coupled 2 cell E-I network (Fig 3A), consistent with OB networks that 156

have many such E-I pairs (granule cells and MCs, as well as periglomerular cells and 157

MCs, are reciprocally connected with fast dendrodendritic synapses [21]). We do not 158

distinguish between different GABAA inhibitory neurons so that the network dynamics 159

are easier to understand, all of which is partially justified by our focus on individual 160

MC decoding accuracy. We model the drug effects Bic (Mus) by decreasing (increasing) 161

the coupling strength from I to E cell by 25% of the baseline value (wEI = 0.2 with no 162

drugs, arbitrary units, see Eqs (5)–(6) and Table 7). 163

We hypothesize that short-term plasticity could be a factor in explaining the 164

differences of population firing between ortho/retro with GABAA (ant-)agonists 165

because of known temporal differences in (ORN) inputs. There is indeed evidence of 166

plasticity in the OB circuit [22,23], specifically for short-term synaptic depression in the 167

main OB [24] and from MC to granule cells [25]. Since the relative differences in firing 168

rate with ortho are already large without plasticity (1st column in Table 5), honing in 169

on decreasing the firing rate differences in retro (3rd column in Table 5) would make the 170

model more consistent with the data (Fig 2B). We use short-term synaptic depression 171

as a means to nonlinearly change the retro firing rates to diminish the differences 172

because retro has longer lasting stimuli; we found that short-term facilitation made the 173

model much less consistent with our data. 174

Table 5. Relative differences of firing rate model between no drug and inhibitory drugs in both modalities.

All percent differences are relative to no drug:
∣∣∣∫ Tev

0
ADrug

E (t) dt−
∫ Tev

0
ANo Drug

E (t) dt
∣∣∣/ ∫ Tev

0
ANo Drug

E (t) dt.

Relative Differences (%)
Ortho Retro

Without Depression With Depression Without Depression With Depression

No Drug / Bicuculline 61.14 51.46 20.97 8.88
No Drug / Muscimol 48.29 47.18 16.84 8.69

Figure 3C shows comparisons of various model outputs (Eqs (5)–(11)). The model 175

indeed follows the firing rate modulation with GABAA (ant-)agonists with both odor 176

modalities, and whether or not synaptic depression is included. Specifically, ortho MC 177

firing rates (top left in Fig 3) with different drug preparations are well-separated, while 178

the retro MC firing rates are pretty close together (bottom left in Fig 3). The effects of 179

synaptic depression further narrows the differences in retro population PSTH among all 180

3 drug applications, while with ortho the differences across drug preps remain large (see 181
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Fig 3. Firing rate model can capture effects of drugs, results are enhanced
with synaptic depression. A) Schematic of reciprocally coupled E-I pair. B) Fixed
ORN input profiles for ortho and retro based on experiments [1–3,18,19] (see main
text). C) Wilson-Cowan firing rate model (Eqs (5)–(11)) output for ortho (top row)
and retro (bottom row) stimulation, compared when synaptic depression is included
(solid lines) or not included (dashed lines). Left column - E cell (MC) output, center
column - I cell output, and right column - synaptic strengths (WIE).

Table 5 for relative differences). Taken together, synaptic depression makes the model 182

more inline with the data (Fig 2B). With retro stimuli and all 3 drug preparations, the 183

E→I synaptic connections are depressed for longer so that the I-cell fires less, giving a 184

boost to E-cell firing. In both modalities, there is overall higher E (MC) firing with 185

short-term synaptic depression because of less inhibition (for all 3 drug preparations). 186

Synaptic depression effectively diminishes the reciprocal loop so that the inhibitory drug 187

effects are weakened. 188

With the neural dynamics captured in our model, we turn to connecting the model 189

to decoding accuracy. The firing rate model does not explicitly have trial-to-trial 190

variability, which is an important component to decoding accuracy of a given trial. 191

Therefore, we next investigated decoding using a simple parametric model of trial 192

variability, the negative binomial distribution. Specifically, for each drug (No 193

Drug/Bic/Mus) and each input (ortho/retro), we fit a negative binomial distribution to 194

the distribution of outcomes. The two distribution parameters were chosen so that: 1) 195
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the mean of distribution coincided with the model spiking rate
1

Tev

∫ Tev

0

AE(t) dt (solid 196

curves in Fig 3C, left column), and 2) the decoding accuracy equaled the decoding 197

accuracy observed in the experimental data. 198

The negative binomial distribution has distribution:
Γ(x+ r)

x!Γ(r)
ρr(1− ρ)x with 199

parameters: ρ ∈ (0, 1) and r > 0. We manually (by trial and error) determine the 200

parameter ρ for each modality and drug preparation, which are all the same ρ except for 201

retro with Mus (see Table 7), after which the r parameter is determined: 202

r =
ρ

1− ρ

(
1

Tev

∫ Tev

0

AE(t) dt

)
(2)

since the mean of the negative binomial is
r(1− ρ)

ρ
. We chose ρ for each regime so that 203

the resulting decoding accuracy would match the averages from the experiments: 0.74 204

(no drug), 0.69 (Bic and Mus). 205

The results are summarized in Fig 4A–C. We simulated 50,000 trials and found the 206

optimal threshold to determine decoding accuracy. 207

To further validate our model, we test whether the specified parameter values for ρ 208

robustly results in the no drug case generally has better decoding accuracy than Bic and 209

Mus. We start with the base model of spiking rate:
1

Tev

∫ Tev

0

AE(t) dt (solid curves in 210

Fig 3C, left column) and perturb these values to get different means: 211

µ∗ =
1

Tev

∫ Tev

0

AE(t) dt±MO/R, where MO ∈ {−2, . . . , 4}Hz on 25 equally spaced 212

points and MR ∈ {−6, . . . , 9}Hz on 31 equally spaced points. Once a mean is specified, 213

we use the same p (Table 7) and set r∗ to correspond to the mean µ∗: 214

r∗ =
ρ

1− ρ
µ∗, (3)

and simulate 50,000 trials to get a decoding accuracy value for each set of parameters. 215

We have 775 decoding accuracy values corresponding to the different (µ∗
O, µ

∗
R) 216

combinations for each drug preparation; Figure 4D shows decoding accuracy as a 217

function of |µ∗
R − µ∗

O|. Although the decoding accuracies can vary for a given drug 218

preparation, the figure convincingly shows that the no drug case generally has better 219

decoding accuracy, consistent with our results from experiments – also, the distribution 220

of decoding accuracies in Fig 4D are similar to Fig 1C. 221

We check whether our model results are consistent with the trial-to-trial variability 222

of our data by calculating the variances of spike rate over trials, which is simply 223

r(1− ρ)

ρ2
for the negative binomial distribution. The values listed in Table 6 show that 224

trial variance is consistent with the data: Mus < ND < Bic, except for retro Mus firing 225

that has the largest variance. Recall in our data that the trends for variance of spike 226

rate were weakest with retro stimulation with larger p−values (Table 4). 227

Table 6. Simulated trial variance of the model:
r(1− ρ)

ρ2
=

µ

ρ
.

Muscimol No Drug Bicuculline

Ortho 25.44 48.17 72.96
Retro 369.41 134.86 146.84
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Fig 4. Model decoding accuracies with simulated trial variability. A)–C):
Histograms of simulated (net) spiking rate assuming negative binomial trial-to-trial

variability with the mean set to:
1

Tev

∫ Tev

0

AE(t) dt (see Eqs (5)–(11), and solid curves

in left column of Fig 3 for AE(t)). D) Systematically varying the mean to show that
the specified ρ parameter (Table 7) in negative binomial distribution generally results in
no drug having best decoding accuracy (see main text for details). Red circles
correspond to regimes in A)–C).

Population decoding results 228

Thus far we have focused on decoding odor modality using the response of individual 229

MCs. While this approach avoids making assumptions about how higher level cortical 230

regions might use the population as a whole [13], population coding is known to be 231

important for complicated tasks [26]. Thus, we next applied standard population coding 232

metrics to assess how well odor modality can be decoded from populations of MCs. ). 233

We will show that modality is well-encoded, but that the differences with drug 234

preparation are greatly diminished. 235

We applied two approaches to population decoding. First, we used principal 236

component analysis (PCA) to project the population response onto a two-dimensional 237

subspace of highest variance, and then applied linear discriminant analysis (LDA) to 238

find an optimal decoder in that subspace (PCA+LDA). Second, we used a support 239

vector machine (SVM), a common supervised learning algorithm to (nonlinearly) 240

classify data. With both methods, we find odor modality is still encoded well above 241

chance (Fig 5B,C). Not only is the average decoding accuracy (across recordings) higher 242

than before (Fig 1C) but there are no longer decoding accuracies near chance level (0.5). 243

This is perhaps expected because these metrics (PCA+LDA, SVM) exploit the higher 244
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Fig 5. Population decoding of ortho versus retro is reliable and robust to
altered inhibition. A) Each drug preparation has a different number of recordings
and each have different number of simultaneously recorded MCs. Showing recording
number and MC population size (sorted in ascending order). B) Decoding accuracies
(one for each simultaneous recording) for all drug preparations using a 2D PCA
dimension reduction following by LDA. Inset shows variance explained by PCA (sorted)
by recording. C) Decoding accuracies using full dimensional support vector machine
(SVM) classification. Average decoding accuracies by both methods (B)–C)) are
statistically indistinguishable (minimum p−value for all relationships and all 3
statistical tests is: p ≥ 0.32 for PCA+LDA, p ≥ 0.13 for SVM).

dimensional spiking rates for a binary classification task. Note that nearly 35% of 245

recordings with no drug and Mus have perfect decoding accuracy (Fig 5B,C). 246

In contrast to the case of a single MC’s encoding (Fig 1C), we do not find any 247

statistically signficant differences between the mean decoding accuracy across drug 248

preparations. In fact, the minimum p−value for all relationships and all 3 statistical 249

tests is p ≥ 0.32 for PCA+LDA, p ≥ 0.13 for SVM. 250

With these population coding metrics that amount to a binary classification problem 251

in a high-dimensional space, the ‘advantages’ of the intact circuit are diminished to the 252

point that the average decoding accuracy is no longer statistically significantly better 253

than Bic and Mus. 254

Discussion 255

We have shown that MCs in the OB encode odor modality with our experimental data, 256

and developed an OB model inspired by many prior studies and constrained by our rich 257

data to analyze some of the network components of these dynamics. Despite reports 258

that humans are able to discriminate whether food odors are delivered ortho or 259

retronasally without being told which modality [5], it was previously unknown how this 260

information was encoded to early cortical regions via the OB until this current study. 261

Imaging studies of the human mouth have shown that with food odors, ortho stimuli 262

delivery versus retro are two distinct modalities, rather than 2 different stimulus routes 263

to the same modality, independent of odor intensity [6]. Based on in vivo rat data, we 264

found significant differences in decoding accuracies (our proxy for encoding assuming an 265

ideal observer) for classifying ortho and retronasal odors given different drug effects, but 266

the intact (no drug) circuit had the best (average) decoding accuracy, suggesting that 267

the OB is naturally structured to encode this important aspect of odor input. 268

Our model framework used prior results, data constraints [15–17], and simplicity to 269

account for many results from our data. Prior work [1–3,18,19] showed differences in 270

temporal aspects of ortho versus retro ORN inputs. We used it to investigate the circuit 271

components that promote efficient coding of individual mitral cells with drug 272

manipulations of inhibitory synapses. Further data analysis revealed that inhibitory 273
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drugs have a stronger effect on the population firing with ortho stimulation than retro. 274

Using these insights, we constructed a simple firing rate model that captures the various 275

drug effects for ortho versus retro stimulus, using only a pair of E-I cells. Including 276

synaptic depression enhanced the differing drug effects. Lastly, we simulated 277

trial-to-trial variability by negative binomial random variable with mean defined by the 278

firing rate model output that captured both decoding accuracy trends and some aspects 279

of spike rate trial variability. That is, our model captures the trend that intact circuit 280

generally has better decoding accuracy than with bicuculline and muscimol, and spike 281

rate trial variance ordering: muscimol < no drug < bicuculline was apparent with ortho 282

stimulation. 283

There have been prior studied that implemented an OB circuit model with varying 284

levels of realism, but none that we are aware of that uses an OB model to account for 285

coding of odor modality and dynamics. We previously developed a realistic biophysical 286

OB network model [20] and used it to account for different neural network dynamics 287

(trial-averaged) with ortho/retro inputs, but did not focus on decoding accuracy for a 288

given trial. We note that there have been biophysical models of particular OB 289

cells [27, 28] and of the OB network [29,30], and various models to investigate coding of 290

mixed odors [31] and learning new odors (and their concentration levels) [32], but none 291

that we know of that focus on coding of odor modality. 292

A limitation of this study is our focus on only 1 odor (EB, a food odor). We did 293

collect data from non-food odor (1-Hexanol) in our experiments, but since only food 294

odors are naturally delivered retronasally [4], we did not include 1-Hexanol in our study. 295

Moreover, it is well-known that non-food odors delivered retronasally degrade human 296

perception of odors [5, 6, 8]. Our data was collected from anesthetized rats with forced 297

air to model ortho/retro [2, 33,34] which has clear advantages: control and a fair 298

decoding ‘task’ so that ortho and retro are mechanically similar with same stimulus 299

duration. In addition to the intact circuit, our data also had both increased and 300

decreased GABAA synaptic inhibition with direct manipulations in the OB. Via pooling 301

data from many rats, we had a large number MCs. Another limitation is that the rats 302

were not awake and were not eating. We are currently unaware of any data with awake 303

rodents that record MC spiking activity for the purposes of comparing ortho and retro 304

(food) odors during feeding. There are freely available MC spike data with awake 305

rodents (mice in [35,36]) but not during feeding and not with direct manipulation of OB 306

inhibitory synapses. 307

Our results predominately center on population averages of individual MC decoding 308

accuracy because it is a logical first step [13]. Given the importance of population 309

coding for many complicated tasks [26], we also considered 2 standard population 310

decoding accuracies measures: PCA+LDA and SVM and found in both cases that the 311

intact circuit was not statistically significant better (on average). However, decoding 312

accuracy was again much higher than chance levels and better compared to average 313

individual MC decoding accuracy. Developing a heterogeneous OB model that accounts 314

for the population coding results and dynamics is daunting and beyond the scope of this 315

current study. 316

Materials and methods 317

Ethics statement 318

All procedures were carried out in accordance with the recommendations in the Guide 319

for the Care and Use of Laboratory Animals of the National Institutes of Health and 320

approved by University of Arkansas Institutional Animal Care and Use Committee 321

(protocol #14049). Isoflurane and urethane anesthesia were used and urethane overdose 322
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was used for euthanasia. 323

Code availability 324

See https://github.com/michellecraft64/Modality for MATLAB code 325

implementing the data analysis and firing rate model. 326

Electrophysiological recordings 327

See provided GitHub code for statistical summary of experimental data. 328

All procedures were carried out in accordance with the recommendations in the 329

Guide for the Care and Use of Laboratory Animals of the National Institutes of Health 330

and approved by University of Arkansas Institutional Animal Care and Use Committee 331

(protocol #14049). Data were collected from 11 adult male rats (240-427 g; Rattus 332

Norvegicus, Sprague-Dawley outbred, Harlan Laboratories, TX, USA) housed in an 333

environment of controlled humidity (60%) and temperature (23◦C) with 12h light-dark 334

cycles. The experiments were performed in the light phase. 335

Surgical preparations. Anesthesia was induced with isoflurane inhalation and 336

maintained with urethane (1.5 g/kg body weight (bw) dissolved in saline, 337

intraperitoneal injection (ip)). Dexamethasone (2mg/kg bw, ip) and atropine sulphate 338

(0.4mg/kg bw, ip) were administered before performing surgical procedures. 339

Throughout surgery and electrophysiological recordings, core body temperature was 340

maintained at 37◦C with a thermostatically controlled heating pad. To isolate the 341

effects of olfactory stimulation from breath-related effects, we performed a double 342

tracheotomy surgery as described previously [2]. A Teflon tube (OD 2.1mm, upper 343

tracheotomy tube) was inserted 10mm into the nasopharynx through the rostral end of 344

the tracheal cut. Another Teflon tube (OD 2.3mm, lower tracheotomy tube) was 345

inserted into the caudal end of the tracheal cut to allow breathing, with the breath 346

bypassing the nasal cavity. Both tubes were fixed and sealed to the tissues using 347

surgical thread. Local anesthetic (2% Lidocaine) was applied at all pressure points and 348

incisions. Subsequently, a craniotomy was performed on the dorsal surface of the skull 349

over the right olfactory bulb (2mm × 2mm, centered 8.5mm rostral to bregma and 350

1.5mm lateral from midline). 351

Olfactory stimulation. A Teflon tube was inserted into the right nostril was used 352

to deliver orthonasal stimuli, and the left nostril was sealed by suturing. The upper 353

tracheotomy tube inserted into the nasopharynx was used to deliver odor stimuli 354

retronasally. Odorized air was delivered for 1 s in duration at 1 minute intervals, with a 355

flow rate of 250ml/min and 1% of saturated vapor. Two odors were used: Ethyl 356

Butyrate (EB, a food odor) and 1-Hexanol (Hex, a non-food odor). Here we limited 357

our analysis to EB trials because food odors are perceived ortho- and retro-nasally [4]; 358

non-food odors do not naturally occur retronasally. 359

Electrophysiology. A 32-channel microelectrode array (MEA, A4x2tet, 360

NeuroNexus, MI, USA) was inserted 400µm deep from dorsal surface of OB targeting 361

tufted and mitral cell populations. The MEA probe consisted of 4 shanks (diameter: 362

15µm, inter-shank spacing: 200µm), each with eight iridium recording sites arranged in 363

two tetrode groups near the shank tip (inter-tetrode spacing: 150µm, within tetrode 364

spacing 25µm). Voltage was measured with respect to an AgCl ground pellet placed in 365

the saline-soaked gel foams covering the exposed brain surface around the inserted 366

MEAs. Voltages were digitized with 30 kHz sample rate (Cereplex + Cerebus, 367

Blackrock Microsystems, UT, USA). Recordings were band-pass filtered between 300 368

and 3000Hz and semiautomatic spike sorting was performed using Klustakwik software, 369

which is well suited to the type of electrode arrays used here [37]. 370
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Data analysis 371

Data was collected in vivo from the mitral cell (MC) layer in the olfactory bulb (OB) 372

of multiple anaesthetised rats using a multi-electrode array recording. The data 373

consisted of spike recordings of multiple MC spike responses to Ethyl Butyrate (EB, a 374

food odor) and 1-Hexanol (Hex, a non-food odor) presented by the two routes of 375

stimulation, orthonasally and retronasally, for a total of 20 trials (10 ortho, 10 retro). 376

The spike counts were calculated using 100ms overlapping time windows over duration 377

of a 30 s trial. However, we consider the spontaneous state to be 3 s before odor onset 378

(defined as t = 0), and the evoked state to be the 1 s of odor presentation as well as 1 s 379

of activity after odor is no longer present (i.e., 2 s total evoked state time). Further, 380

three separate drug preparations were used in order to analyze inhibitory effects on MC 381

spiking responses: no drug (control), Bicuculline (GABAA antagonist, i.e., decreasing 382

inhibition), and Muscimol (GABAA agonist, i.e., increasing inhibition). See Table 1 for 383

total number of rats and respective individual cells for each drug preparation. 384

Details for defining single cell decoding 385

We used a form of linear discriminant analysis (LDA) to define decoding accuracy. 386

Decoding accuracy is defined as the fraction of trials correctly classified by a threshold 387

that maximizes decoding accuracy. The net spiking rate x⃗k for the kth trial, 388

k = 1, 2, ..., N , is the sum of the evoked spike counts (normalized by time window Tev) 389

minus the spikes in the spontaneous state (normalized by time window Tsp). Letting 390

sk(t) be the spike train of the kth trial that is either = 0 (no spike) or = δ(t− t∗) (spike 391

at t∗), we have: 392

x⃗k =
1

Tev

∫ Tev

0

sk(t) dt−
1

Tsp

∫ 0

−Tsp

sk(t) dt (4)

where again t = 0 is the time the odor is presented. There are N = 20 trials total (10
ortho/10 retro) for each individual cell. Then, we define multiple thresholds θ:{

θ = xk − ϵ, xk = max(x⃗k)

θ = xk + ϵ, else

where an optimal threshold θ∗ is determined for each individual cell as the θ that results 393

in the most accurate separation of ortho/retro observations. 394

In order to more efficiently analyze the differences in decoding accuracy with 395

different drug preparations, we selected the time windows that resulted in the most 396

significant differences. We evaluated decoding accuracy from 100ms to 1 s in 100ms 397

increments in the evoked state for each drug preparation. We then used a two sample 398

t−test assuming unequal variances between no drug preparation and Bicuculline as well 399

as no drug preparation and Muscimol. This resulted in 10 different p−values 400

corresponding to each time window where the most significant p−values for both 401

combinations of no drug/Bicuculline and no drug/Muscimol determined the optimal 402

time window. Additionally, we repeated this process with three different lengths of time 403

in the spontaneous state (1 s, 2 s, and 3 s) with which the evoked summed spike counts 404

were normalized. The optimal time windows for EB odor were set to Tev = 900ms and 405

Tsp = 2 s, see S1 Fig. 406

Population Decoding 407

The two methods are applied to each population of simultaneously recorded MCs. 408

PCA+LDA: For each recording, Principle Components Analysis (PCA) was applied 409

to the concatenated matrix X of size 20 × N , where N is the number of MCs (Fig 5A), 410
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rows 1–10 correspond to the net spiking rate with ortho and rows 11–20 correspond to 411

retro. We only use the first two principal components and apply Linear Discriminate 412

Analysis (LDA) to find a line in the 2-dimensional plane that maximizes classification 413

accuracy [38]. We used built-in MATLAB routines pca, fitcdiscr, predict (see 414

GitHub for code). 415

SVM: We use support vector machine with supervised ‘learning’ to classify data into 416

orth or retro. We use a nonlinear classification method with Gaussian kernels, and 417

Bayesian optimization to find the best kernel scale and box constraints for the SVM (we 418

insured that for all recordings and drug preparations, the objective was minimized 419

within the allowable function evaluations). After the SVM is fit to the data, the 420

decoding accuracy is the correct classification rate obtained from the MATLAB function 421

kfoldLoss using 10-fold cross-validation. We used built-in MATLAB routines (see 422

GitHub for code). 423

Firing Rate (FR) model 424

Assuming a large population of densely coupled neurons, we use a space-clamped 425

Wilson-Cowan rate model of coupled E-I cells: Mitral (MC, excitatory) and 426

Periglomerular (PGC, inhibitory). The models of the respective cell firing rate, Aj(t) 427

j ∈ (M,P ), are represented by the following ordinary differential equations: 428

τE
dAE

dt
= −AE(t) + F

(
worn,EIorn(t)− wEISE(t)

)
(5)

429

τI
dAI

dt
= −AI(t) + F

(
worn,IIorn(t) + wIESI(t)

)
(6)

where the synaptic term, Sj j ∈ (E, I), is defined by alpha-synapses with rise and 430

decay time scales (same τrise, τdecay for E/I) as follows: 431

τdecay
dSj(t)

dt
= −Sj(t) +Xj(t) (7)

432

τrise
dXj(t)

dt
= −Xj(t) + τriseAj(t) (8)

In Eqs 5 and 6, Ij(t) is the sum of external currents (e.g., cortical feedback, stimulus 433

input, etc.) that varies over time to account for stimulus input, worn,j are the coupling 434

strengths of olfactory receptor neuron (ORN) input to j, wjk are the coupling 435

strengths from cell k to j, and the transfer function F is a threshold linear function: 436

F (x) = max(x, 0). (9)

Without synaptic depression, we fix wIE = 1. With synaptic depression, we set 437

wIE(t) = 1 + wM (t), where wM (t) is governed by: 438

τw
dwM

dt
= −wM + Fd

(
AE(t)

)
(10)

Fd(x) =
2

1 + ex
− 1. (11)

The trial-to-trial variability of net spiking rate is modeled as a negative binomial 439

random variable: 440

µNB =
r(1− p)

p
(12)

Given output from the Wilson-Cowan model AE(t), we set: 441
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Table 7. Parameter values in firing rate model (Eqs (5)–(11)). Last 2 rows
describe the parameter p in simulated trial variability using negative
binomial distribution.

Parameter Value

τE 10ms
τI 5.5ms
τdecay 10ms
τrise 2ms
τw 100ms

Drug Preparation:
No Drug Bic Mus

wEI 0.2 0.15 0.25
p for ortho 0.12 0.12 0.12
p for retro 0.12 0.12 0.04

µNB =
1

Tev

∫ Tev

0

AE(t)dt (13)

by manually determining the p parameter in the negative binomial distribution (see 442

Table 7) for each drug preparation, and setting the parameter r = µNBp/(1− p). 443

Supporting information 444

S1 Fig. Varying windows for spike count. Net spike counts in a given trial were 445

total spike counts in evoked window minus total spike counts in spontaneous window. 446

Vertical axes show p−values (log-scale) from comparisons of average decoding accuracies 447

with different drug preparations using two different statistical tests: two sample t−test 448

assuming unequal variance (A) and Wilcoxon rank sum test (B). Open circles compares 449

no drug to Bic, closed circles compare no drug to Mus, and colors denote different 450

spontaneous time windows (see legend). C), D) are similar to A),B) except the first 451

300ms of the evoked state are removed to test whether decoding accuracies increase and 452

are significant (they were not); this was based on the population PSTH being similar for 453

ortho and retro immediately after stimulus onset (Fig 1Aii). Decoding accuracies are 454

significantly different (α = 0.01, denoted by dashed black line) for a large range of 455

spontaneous and evoked windows; we chose 2 s for spontaneous and 0.9 s for evoked 456

(keeping the entire time, not excluding the first 300ms) because they largely gave the 457

smallest p−values. All with EB (food odor). 458

S2 File. Detailing ‘Decoding accuracy dynamics from drug effects on 459

population-averaged firing rates.’ 460

S3 Fig. Decoding accuracy dynamics from drug effects on 461

population-averaged firing rates. 462
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