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Experimental studies have shown that in cortical neurons, excitatory and inhibitory incoming
currents are strongly correlated, which is hypothesized to be essential for efficient computations.
Additionally, cortical neurons exhibit strong preference to particular stimuli, which combined with
the co-variability of excitatory and inhibitory inputs indicates a detailed co-tuning of the correspond-
ing populations. Such co-tuning is hypothesized to emerge during development in a self-organized
manner. Indeed, theoretical studies have demonstrated that a combination of plasticity rules could
lead to the emergence of E/I co-tuning in neurons driven by low noise signals from feedforward con-
nections. However, cortical signals are very noisy and originate in highly recurrent networks, which
raises a question on the ability of known plasticity mechanisms to self-organize co-tuned connec-
tivity. We demonstrate that high noise levels combined with random recurrence destroy co-tuning.
However, we demonstrate that introducing structure in the connectivity patterns of the recurrent E/
I network, the recurrence does not hinder but enhances the formation of the co-tuned selectivity. We
employ a combination of analytical methods and simulation-based inference to uncover constraints
on the recurrent connectivity that allow E/I co-tuning to emerge. We find that stronger excitatory
connectivity within similarly tuned neurons, combined with more homogeneous inhibitory connec-
tivity enhances the ability of plasticity to produce co-tuning in an upstream population. Our results
suggest that structured recurrent connectivity controls information propagation and can enhance
the ability of synaptic plasticity to learn input-output relationships in higher brain areas.

I. INTRODUCTION

Input selectivity, the ability of neurons to respond differently to distinct stimuli, is a prevalent mechanism for
encoding information in the nervous system. This selectivity can range from simple orientation selectivity in lower
sensory areas to more complex spatiotemporal pattern selectivity in higher areas [1]. Such selectivity is shown to
be self-organized under the influence of structured input, enabling, for example, the emergence of visual orientation
preference in non-visual sensory areas upon rewiring [2] or changing the whiskers representation in the barrel cortex of
rats depending on the level of sensory input [3]. The mechanisms underlying the emergence of input selectivity have
been the subject of extensive investigation, both through experimental and computational modeling studies [4–7].

Although initially, the stimulus-selectivity was primarily attributed to the excitatory neurons and their network
structure, we now know that inhibitory neurons are also tuned to stimuli, and the coordination of the E/I currents
is a central component of efficient neural computation [8, 9]. In particular, it has been shown that excitatory and
inhibitory inputs are often correlated [10], with preferred stimuli eliciting stronger excitatory and inhibitory responses
within relatively small time windows. [11, 12]. This co-tuning of excitation and inhibition is theorized to be beneficial
for a variety of computations such as gain control [13, 14], visual surround suppression [15, 16], novelty detection [17]
and optimal spike-timing [9, 18].

Although it is still unclear how E/I co-tuning emerges, the dominant view is that it arises via the interaction of
several synaptic plasticity mechanisms [19], a hypothesis that has been reinforced by the findings of multiple theoretical
studies over the last decade. First, it has been demonstrated that different inhibitory plasticity rules can match static
excitatory connectivity [20–23]. More recently, it was also shown that various combinations of plasticity and diverse
normalisation mechanisms allow for simultaneous development of matching excitatory and inhibitory connectivity in
feedforward settings [6, 24], as well as the simultaneous learning of excitatory and inhibitory connectivity in recurrent
settings [25–31].

Most of these plasticity studies use Hebbian-like rules that learn the statistical dependencies of different inputs.
The statistical structure of these inputs can be assumed to have specific features in areas that receive direct sensory
signals, but this assumption becomes less viable in higher areas where neurons receive inputs from highly recurrent
and noisy networks. Thus a question arises on whether the outputs of realistically structured recurrent networks can
have the necessary statistical structure for E/I co-tuning to emerge via synaptic plasticity.

Here, we investigate how the development of co-tuned excitation and inhibition via neuronal plasticity is affected
by biologically plausible levels of noise and recurrence. We combine excitatory and inhibitory plasticity rules [20, 24,
32, 33] in a spiking network to develop detailed co-tuning of excitatory and inhibitory connectivity. We demonstrate
that the ability of these plasticity mechanisms to create co-tuning is significantly reduced in the presence of noise and
random recurrent connectivity. We subsequently build a simple neuronal mass model exhibiting the same dependence
but allowing for analytical understanding of the underlying phenomena. We show that the effects of recurrence and
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FIG. 1. Emergence of tuning in a feedforward network a. A diagram of the network. The purple recurrent connections
are absent in the feedforward version of the model (panels b-f), but will be included in later sections. b. The modified (the
sign of inhibitory activities is inverted) covariance matrix determines the convergence point of the plasticity protocol. Here we
see a near-optimal matrix that leads to very clear co-tuning. c. The development of E and I weights in a feedforward network
with very low noise. d. The relation between E/I weights after 100s in C demonstrates co-tuning: most groups have clearly
distinct weights, and the E and I weights of each group match each other. e. Time-course of the currents incoming onto the
post-synaptic neuron after the convergence of plasticity. The blue E current is canceled after a brief delay by the red I current;
the black trace depicts the sum of the currents. f. The post-synaptic neuron’s response to a brief pulse of input current given
to different groups differs in the resulting firing rates due to the input selectivity.

noise on excitatory/inhibitory co-tuning can be ameliorated by the formation of synapse-type specific assemblies of
neurons. The near-optimal connectivity configurations involve strong excitatory assemblies and weaker inhibitory
assemblies. Finally, we demonstrate that assemblies allow co-tuning to emerge even in sparsely connected networks if
their relative strengths are adjusted for the sparsity level.

II. RESULTS

A. Co-tuning and its self-organization by synaptic plasticity in a low-noise feedforward setting

We use previously studied plasticity mechanisms to generate diverse co-tuned excitatory/inhibitory weights in a
feedforward, low-noise setting. We model a single read-out postsynaptic unit driven by a population of N = 1000
neurons. The pre-synaptic population is divided into M groups Gi, i ∈ {1, . . . ,M}. Each group is comprised of 80%
excitatory and 20% inhibitory neurons, which are driven by an identical, group-specific Poisson spike train — a shared
external input. Additionally, each neuron receives low-intensity independent external noise [20]. This setting leads to
highly correlated firing among neurons of the same input group; it is a commonly used simplified setting for studying
the effect of different plasticity rules Fig. 1a.

The post-synaptic neuron can discriminate the inputs from different groups (by responding with a different firing
rate) if the feedforward projections from each group are sufficiently diverse. Specifically, groups with stronger con-
nections will elicit stronger post-synaptic responses upon activation, while groups with weaker connections will elicit
weak or no response upon activation Fig. 1f. Moreover, connections from neurons with highly correlated firing (i.e.,
from the same group) should have a similar strength. To quantify this feature of the network, we define a diversity
metric:

D = 1− 1

M · Std (WE)

M∑
i=1

Std(WE
Gi
), (1)

where W k, k ∈ {E, I} is the set of (E or I) feedforward connection weights and W k
Gi
, k ∈ {E, I} is the subset of
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(E or I) feedforward connection weights from input group i. Diversity D ∈ [0, 1] equals unity when the feedforward
connections from each group are similar within a group, but different across groups; D is close to zero when there is
no difference between groups.

An important network feature that helps optimize the network’s coding capabilities is the balance between incoming
excitatory and inhibitory input currents [8, 34]. Balanced excitatory/inhibitory inputs emerge both structurally and
dynamically in recurrent networks [12, 35, 36]. For a post-synaptic neuron to be balanced, the average inhibitory
current must be equal to the average excitatory current. In the simple setting we are studying, this can be achieved
in two ways. First, by setting all the inhibitory connections to a constant such that their sum equals the sum of
all excitatory connections. Alternatively, one can set the inhibitory connections of each group to match the group’s
excitatory connections. The latter setting creates a detailed balance between excitation and inhibition [13, 20] which
results in the canceling of the excitatory and inhibitory inputs following a small delay generated by the difference in
the synaptic timescales, Fig. 1e. This specific type of E/I balance has been linked to efficient coding [8, 9] and the
processing of multiple signals [13]. To quantify detailed balance, we use the Pearson correlation coefficient between
the mean excitatory and inhibitory weights of each group,

B =
Cov

(
⟨WE

G ⟩, ⟨W I
G⟩,
)

Std
(
⟨WE

G ⟩
)
· Std

(
⟨W I

G⟩
) , (2)

where ⟨W k
G⟩ =

(
⟨W k

G1
⟩, ⟨W k

G2
⟩, . . . , ⟨W k

Gm
⟩
)
, k ∈ {I, E} and ⟨W k

Gi
⟩ is the average projection weight from the excitatory

(k = E) or inhibitory (k = I) neurons in group i. In networks with high balance B the strength of incoming E and I
currents is highly correlated.

We then verify that high diversity (D ≈ 1) and detailed balance (B ≈ 1) can organically emerge via a combination
of plasticity mechanisms in the feedforward connections. Specifically, the excitatory connections follow a triplet STDP
rule [33] that implements Hebbian learning using triplets of spikes. The inhibitory connections follow a homeostatic
learning rule that adjusts inhibitory weights in order to maintain a constant post-synaptic firing rate [20]. We
additionally use a competitive normalization mechanism in both inhibitory and excitatory connections that has been
applied previously to networks of rate units [24]. This normalization mechanism, in addition to preventing runaway
plasticity, also leads to the emergence of detailed E/I co-tuning by amplifying small transient differences between the
firing rates of different input groups which leads to the development of distinct connections. This plasticity protocol
consistently generates near-perfect detailed E-I balance and creates strong input selectivity, Fig. 1c-d.

The point at which the feedforward weights converge is fully determined by the covariance matrix of the presynaptic
neurons’ activities. Specifically, it has been demonstrated [6, 20, 24] that the fixed points of the weight dynamics are
eigenvectors of the modified covariance matrix:

C =

〈(
EET −IET

EIT −IIT
)〉

(3)

where E and I the firing rates of the presynaptic excitatory and inhibitory neurons, respectively, and ⟨⟩̇ stands for the
average over time, Fig. 1b. We verify that in our model the feedforward weights indeed converge to an eigenvector of
this matrix (see Appendix B).

B. Noise and recurrent connectivity compromise the ability of STDP to produce E/I co-tuning

Strictly feed-forward and low noise circuits are unrealistic approximations whose dynamics might deviate critically
from the ones observed in real brain networks. Thus, we introduce either noise, or recurrent connectivity, both of
which are ubiquitously present in biological networks [37, 38], in our network and investigate how they affect the
emerging E/I co-tuning by changing the structure of the activity covariance matrix.

Noise decorrelates the activity of neurons from the same input group, which reduces weight diversity. We control
noise level by changing the fraction of signal spikes that all neurons of the same group receive and the noise spikes
coming from an independent Poisson process. As the ratio of noise to signal increases, the cross-correlations within each
input group decrease, while the cross-correlations between neurons of different input groups remain very low, Fig. 2b.
The effect of this in-group decorrelation is an increased variability in the learned projections to the postsynaptic
neuron from neurons of the same input group and thus a decrease in the resulting diversity. At the same time,
increased noise has only a small effect on the correlation between E and I populations as measured by the balance
metric, which visibly declines only once the noise becomes overwhelmingly stronger than the input (more than 80%
incoming spikes are not shared between neurons of the same group), Fig. 2a.
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FIG. 2. Noise and Recurrence Destroy E/I Co-Tuning. a. An increase in the noise the network receives leads to a
reduction in diversity (green) and after some point also balance (purple). b. This decrease is caused by increase in in-group
correlation. c. As the noise increases (indicated above the panel) spiking activity becomes more asynchronous. d. An increase
in the recurrent coupling strength leads to a rapid decrease in balance and diversity, which is caused by (e.) an increase of the
between-group correlation. f. The spiking activity becomes more synchronous as the coupling strength increases.

Recurrent connectivity in the pre-synaptic network introduces cross-correlations between the neurons from different
input groups, which compromises both the diversity and balance. To test the extent of this impact, we connect all-to-
all N presynaptic neurons(creating a fully connected recurrent network) and use the coupling strength W as a control
parameter. Changing W , we can control the ratio between the input received from the feedforward connections
(whose rate and connection strength is fixed) and the other neurons in the network via recurrent connections. The
recurrent connectivity increases cross-correlations between groups while maintaining correlation within each input
group, Fig. 2e. The effect of these cross-correlations is stronger than the effect of the noise since they affect both the
diversity and the E/I balance, both of which decline as the recurrent connections become stronger Fig. 2d.

The combination of noise and recurrent connectivity usually fuses the two previous effects with in-group and
between-group correlations, converging at some intermediate value as the noise and recurrent connection strength
increase, which severely impacts both tuning metrics Fig. 3c-d.

We develop a formal description of the effect of noise and recurrence on the covariance structure in a simplified
linear neural mass model. To this end, we consider M = 8 mesoscopic units instead of the previously studied M
inter-connected groups, represented by continuous rate variables xj(t), j = 1, . . . ,M . These units evolve in time,
subject to stochastic white noise. The linear approximation is justified for any system at a stationary state with a
constant average firing rate, and it serves as a simplified model for a wide range of parameters of the spiking network
(for details on the linear model and its relation to the spiking network, see Appendix C).

In this simplified case, it is possible to derive analytical equations for all the relevant in- and between-group
covariances, which yield the correlation coefficients. These covariances are the solution to a linear system of equations,
which can be solved exactly using numerical methods. Furthermore, one can find close-form solutions in some simple
scenarios. For example, in the case of a completely homogeneous network, where all coupling weights are the same,
correlation coefficients can be written explicitly (see Appendix C). If the coupling strength increases W → +∞ all
correlations grow to 1 as 1 − O(1/W 2), while they decrease to MW/(M − 1)2 + O(r−2) when increasing the noise
to signal ratio r → 0+. Both cases eliminate any possible differentiation between the groups, thus compromising the
ability of the plasticity mechanisms to create diversity D. Another observation is that in the linear network, increasing
noise affects the correlation coefficient quadratically, while coupling increases it linearly. Therefore, increasing the
coupling has a larger impact on the co-tuning, a consequence that is recovered in the spiking network, Fig. 2.
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FIG. 3. Optimized assemblies of neurons restore the co-tuning in recurrent noisy networks. Top row — networks
with uniform connectivity, bottom — networks with inferred optimal assembly strengths. a. Diagram of the network, with
uniform connectivity and inferred optimal assembly strengths. b. Stimulus-driven activity of the networks with (bottom) and
without (top) assemblies. c. Approximate posterior distributions of excitatory and inhibitory assemblies strength. d. Balance
in homogeneous (top) and optimized assemblies (bottom) networks with different strengths of noise and coupling. e. Same
for diversity. Assemblies restore co-tuning even with strong noise if given sufficient coupling strength, but for homogeneous
networks, the strong coupling is detrimental to the development of co-tuning.

C. Neuronal type-specific assemblies restore the ability of STDP to produce co-tuning

A homogeneous all-to-all connectivity is not a realistic assumption that could be particularly detrimental for the
self-organization of co-tuning. Next, we examine the impact of different types of inhomogeneous connectivity. In
particular, we study whether stronger recurrent connectivity between neurons of the same input group would lead to
beneficial correlations in the activity of the network (we treat each input group as a neuronal assembly). We define a
metric of assembly strengths as a ratio of the average input from the same group and type (E/I) neurons to the total
average input from the given type of neurons:

rab =
Cab

in

Cab
in + Cab

out

=
W ab

in

W ab
in + (M − 1) ·W ab

out

, a, b ∈ {E, I}, (4)

where Cab
in in the total input a neuron of type b receives from neurons of type a, for a, b ∈ {E, I}, of its own input

group and Cab
out is the total input a neuron of type b receives from neurons of type a, for a, b ∈ {E, I}, from all

other input groups. In our network, we keep all connections of the same type equal, thus, Cab
in = p·N

M · W ab
in and

Cab
out =

p·(M−1)·N
M ·W ab

out, where p is the probability of connection between two neurons, W ab
in the connection strength

between neurons of the same group and W ab
out the connection strength between neurons of different groups. We vary

assembly strengths for each type of connection rEE , rEI , rIE , and rII while keeping the total input to a neuron
Cab

in + Cab
out = p·N

M · (W ab
in + (M − 1) ·W ab

out) =: p · N ·W constant. Here W is a coupling strength, same as in the
network without assemblies. Thus, we can vary the fraction of input coming to a neuron from its own input group
without changing the average recurrent E or I input it receives.

For the reduced linear neural mass model, we compute analytically the optimal assembly strengths, (Appendix C).
We find that for all combinations of noise and sufficiently strong recurrent connectivity, the optimal connectivity is
to have very strong excitatory assemblies (high rEE and rEI) and uniform inhibitory connectivity (low rIE and rII).
This connectivity allows the correlating excitatory currents to remain mostly within the input group/assembly and
maintain high in-group correlation while inhibitory currents are diffused and reduce correlations between groups.

The reduced model does not account for many essential features of the spiking network, like sparsity of connections,
in-group interactions between neurons of the same type, and non-stationary dynamical states of the groups. Therefore,
although the analytic solution obtained for the linear neural mass model can serve to develop intuition, the results
need to also be validated for the spiking recurrent network. Particularly, we seek to estimate the effect of various
assembly strengths on the covariance structure of the spiking network’s activity and, thus, on balance and diversity.
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FIG. 4. Changes of the various assemblies strengths differently affect balance and diversity. a. We sequentially
vary the value of each assembly strength, while keeping the rest of the parameters fixed at the maximum aposteriori (MAP)
solution (d). b. A decrease in the E → E assembly strength (REE) introduces synchronous burst-like events that jeopardize
co-tuning and weight diversity. Further reduction of the E → E assembly strength results in sparse, asynchronous spiking which
significantly reduces tuning quality. c. Reduction of E → I assembly strength first leads to synchronous inhibitory firing across
groups and further reduction leads to persistent activity of the whole inhibitory population combined with bursts of excitatory
activity that prevent the development of diversity. e. Decreasing the I → E assembly strength leads to persistent activation of
a single group of neurons (which affects the tuning only marginally). While the increase of the I → E assembly strength leads
to oscillatory behavior of the whole network. f. Weakening the I → I assemblies decreases the weight diversity by introducing
occasional synchronous bursts in the network, while strengthening them leads to asynchronous inhibitory activity.

We search for all combinations of assembly strength rEE , rEI , rIE , rII that lead to the detailed E/I balance (B ≈ 1)
and maximum weight diversity (D ≈ 1), mathematically formalized as the posterior destitution of parameters. To this
end, we use the sequential Approximate Bayesian Computation (ABC) [39] to minimize the loss function defined to be
zero when the in-group correlations are equal one and all between-group correlations vanish (for details, see Methods).
This method allows us to find the approximate posterior distribution of network parameters. This distribution can
later be tested on whether it leads to the self-organization of co-tuning in the post-synaptic neuron.

Networks with optimized assemblies regain the ability to develop E/I co-tuning. Assembly strengths that are drawn
from an approximate posterior result in a covariance structure very similar to the one observed in a feedforward/low
noise network, which allows the plasticity to produce near-optimal co-tuning of the feedforward connections, Fig. 3d-e.
We find that the optimal assembly structure involves very strong E → E and E → I assemblies and medium-strength
I → E and I → I, Fig. 3 c. This is in contrast to the neural mass model result, which predicted optimal performance
for uniform inhibitory weights.

Changes in inhibitory and excitatory connectivity are known to affect network dynamics differently [40]. To inves-
tigate the relative importance of the different connection types, we perturb various assemblies away from the optimal
solutions. We study how fast the balance and diversity deteriorate as the parameters are shifted away from the
optimal solution inferred with ABC Fig. 4a. We find that E → E and I → E assemblies have a stronger impact on
co-tuning and weight diversity compared to the E → I and I → I assemblies Fig. 4b-f.

D. The sparsity of a network’s recurrent connectivity shifts the optimal assembly structure

Biological neural networks are usually very sparsely connected [41–43] and the sparsity of connections is associated
with distinct dynamics [44]. We observed that the impact of noise and recurrence on the deterioration of balance and
weight diversity in sparse networks without assemblies is qualitatively similar to fully connected networks. Thus, we
examined the ability of neuronal assemblies to produce activity that restores balance and weight diversity in sparsely
connected recurrent networks that receive noisy input.
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The optimal assembly strength values are shifted for different sparsity levels. We use ABC to discover the approxi-
mate posterior distribution of assembly strengths for 5 different levels of sparsity, corresponding to the probability of
connection p = 1.0, p = 0.75, p = 0.5, p = 0.25, and p = 0.1. We preserve the total input per neuron across different
sparsities by scaling the coupling strength inversely proportional to p. The optimal strength of most assemblies is
reduced as the connection probability is decreased, Fig. 5c. Specifically, we find that all but E → E assemblies
should be weaker in sparser networks, with the greatest decrease observed in the I → I assemblies, which completely
disappear for very sparse networks.

As sparsity increases, the ability of assemblies to improve the tuning diminishes. The overall loss after 21 ABC steps
is larger for the sparse networks than for fully-connected networks and increases with sparseness, Fig. 5b. Therefore,
despite an improvement in the tuning metrics for most sparse networks (compare dashed and solid lines in Fig. 5a),
particularly diversity is strongly affected by sparseness and cannot be recovered by assemblies at the same extent as for
the fully connected networks, Fig. 5a. This reduced effectiveness is expected given the smaller number of connections
and the greater variance in the network’s connectivity.

III. DISCUSSION

Input selectivity is a universal attribute of brain networks that is maintained across brain hierarchies, including
in brain areas that only receive input from highly recurrent networks. Here, we demonstrated that two ubiquitous
features of biological networks, namely internal noise and recurrent connectivity between different sub-networks, can
impact the statistics of inputs coming from a population in ways that completely prevent known plasticity mechanisms
[6, 20, 21, 24] from forming any kind of input selectivity in neurons found in higher areas.

We hypothesized that the strongly negative effects of the recurrent connectivity on the ability of STDP to produce
co-tuning are to a great extent due to the biologically unrealistic, homogeneous connectivity we used as a baseline.
Cortical networks consist of hundreds of interacting neuron types, each characterized by distinct dynamics and highly
detailed local connectivity patterns. It is natural to assume that the neural activity that is produced by such net-
works can hardly be approximated by random networks without any spatial structure or any distinction between the
connectivity patterns of E and I units. Our findings indicate that non-uniform network connectivities, even of a much
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simpler nature than the intricate patterns of actual brain networks, can have a very significant impact on the ability
of known STDP rules to produce E/I co-tuning in higher areas.

Cortical networks are known to be highly clustered [45] and the clustering seems to have functional as well as
spatial criteria. For example, neurons that share common input [46] or targets [47] are more likely to form recurrent
connections amongst themselves. Additionally, there is strong evidence that groups of highly interconnected neurons
(neuronal assemblies) share common functions within recurrent networks [31, 48, 49]. Moreover, evidence has accu-
mulated [50, 51] that different neurons type (excitatory and inhibitory subtypes) follow distinct spatial connectivity
patterns, which have implications for neural computation.

The ubiquitous presence of neuronal assemblies and the fact that different neuron types seem to follow different
connectivity patterns, along with the evidence for the creation of distinct dynamics in networks [29] with clustered
excitatory connectivity, led us to explore the possibility that different neuron types may form overlapping functional
assemblies of varying strengths. Our results suggest that such overlapping, synaptic type-specific assemblies can have
a very strong effect on the dynamics of a recurrent network and can effectively control the ability of STDP to produce
E/I co-tuning in upstream areas.

Despite the general biological plausibility of the inferred network structure, the extent to which it is realized in the
in vivo networks remains unclear. Although we identify different assembly strengths for networks of different sparsity,
a general finding is that excitatory assemblies should ubiquitously be stronger than the corresponding inhibitory ones.
The formation of E/I assemblies via synaptic plasticity has been extensively studied [20, 24, 25, 28] and it has been
demonstrated that a variety of plasticity mechanisms can lead to stable, matching E/I assemblies. Still, the question
of different assembly strengths for different connection types has not been fully explored. Potential mechanisms that
can control the formation of assemblies of varying strengths is variation in the learning rates of different synaptic
types or the presence of multiple plasticity mechanisms that regulate assembly formation on various connection types.
Additionally, the presence of different regulatory interneurons, which has been linked with assembly formation [52],
could potentially play a role in modulating the relative assembly strengths of different connections. Finally, the varied
clustering levels observed in cortical networks may act as a driving force of assembly formation, favoring stronger
excitatory assemblies.

For the purposes of our study, we parameterized the network topology by adopting a quantitative metric for the
strength of different types of neuronal assemblies. This approach allowed the efficient simulation-based inference [53]
of the optimal assembly strengths as well as the analytical treatment of a linear model with analogous connectivity
constraints. However, direct optimization of each individual recurrent weight to find optimal recurrent connectivity
for E/I co-tuning to emerge would almost certainly deliver an even better solution than our simplified parametriza-
tion. Such optimization could potentially be achieved by one of several gradient-based methods for training spiking
networks [54, 55] or alternatively via an evolutionary algorithm [56]. It is an open question whether this optimal
recurrent connectivity would maintain any features of the topology we identified via our parameter inference method,
although the analytic solution of the simplified linear model suggests the existence of a general pattern that is not
limited to the specific network parametrization we chose.

IV. MATERIALS AND METHODS

A. Neuron Model

We modelled all neurons of our networks as leaky integrate-and-fire (LIF) neurons with leaky synapses. The
evolution of their membrane potential is given by the ODE

Cm ·
dV (t)

dt
= gleak · (Vrest − V (t)) + gI(t) · (VI − V (t))− gE(t) · (VE − V (t)), (5)

where Vrest is the neuron’s resting potential, VE , VI are the excitatory and inhibitory reversal potentials and gleak the
leak conductance. Additionally, the excitatory and inhibitory conductances gE , gI decay exponentially over time and
get boosts upon excitatory or inhibitory pre-synaptic spiking respectively, as

τE ·
dgE(t)

dt
= −gE(t) + gE ·

∑
j

WE
j ·
∑
f

δ(t− tfj ),

τI ·
dgI(t)

dt
= −gI(t) + gI ·

∑
j

W I
j ·
∑
f

δ(t− tfj ).

(6)
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Here tfj denotes the time at which the f -th spike of the j−th neuron happened. When the membrane potential reaches
the spiking theshold Vth, a spike is emitted, and the potential is changed to a reset potential Vreset. Values of the
constants used in simulations can be found in Appendix D.

B. Network Input

The external input to each of the 1000 pre-synaptic neurons is the mixture of two Poisson spike trains. The first
Poisson spike train is shared with all the other neurons of the same group, while the second Poisson spike train is the
individual noise of the neuron,

Ctotal = Csignal + Cnoise, (7)

where Csignal ∼ Poisson((1− c) · r) and Cnoise ∼ Poisson(c · r). Here, r is the total firing rate of the input, and c is the
strength of the noise. Csignal is the same for all neurons of the same input group, while Cnoise is individual to each
neuron

Plasticity

1. Triplet excitatory STDP

The feedforward excitatory connections are modified according to a simplified form of the triplet STDP rule [32],
which has been shown to generalize the Bienenstock–Cooper–Munro (BCM) rule [4] for higher-order correlations [33].
The firing rates of the pre-synaptic excitatory neurons and the post-synaptic neuron are approximated by traces with
two different timescales,

τestdp1 · dy
E
k

dt
= −yEk +

∑
f

δ(t− tfk),

τestdp2 · dz
E
k

dt
= −zEk +

∑
f

δ(t− tfk),

τestdp1 · dx1

dt
= −x1 +

∑
f

δ(t− tfx),

τestdp2 · dx2

dt
= −x2 +

∑
f

δ(t− tfx),

(8)

where τestdp1 < τestdp2 are the two timescales of the plasticity rule, yEk , z
E
k and x1, x2 represent the slow and fast traces

of the k-th excitatory pre-synaptic and the single post-synaptic neuron respectively. tfk and tfx are the firing times of
the pre and post-synaptic neurons. The connection weights are updated upon pre and post-synaptic spiking according
to

∆WE
k = ηE ·ALTP · x1 · zEk ·

∑
f

δ(t− tfk)− ηE ·ALTD · x2 · yEk ·
∑
f

δ(t− tfx), (9)

where ηE is the excitatory learning rate and ALTP , ALTD the amplitudes of long term depression and potentiation
respectively.

2. Inhibitory STDP

We used the homeostatic STDP rule first proposed in [20] for the inhibitory feedforward connections. Approxima-
tions of the firing rates are kept via a trace for each of the pre-synaptic inhibitory neurons as well as the post-synaptic
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neuron,

τ istdp · dy
I
k

dt
= −yIk +

∑
f

δ(t− tfk),

τ istdp · dx
dt

= −x+
∑
f

δ(t− tfx),

(10)

where τ istdp is the single timesclae of the plasticity rule, yIk and x are the traces of the the kth inhibitory pre-

synaptic and the single post-synaptic neuron, and tfk , tfx are the spike times of the kth inhibitory pre-synaptic and
the post-synaptic neuron respectively. The connection weights are updated upon pre and post-synaptic spiking as

∆W I
k = ηI · (x− 2ρ0τ

stdp) ·
∑
f

δ(t− tfk) + ηI · yIk ·
∑
f

δ(t− tfx). (11)

Here, ηI is the inhibitory learning rate, and ρ0 is the target rate of the post-synaptic neuron.

3. Synaptic Scaling

Due to the instability of the triplet STDP rule, some sort of normalization mechanism is necessary to constrain
weight development. We use the novel competitive normalization protocol first proposed in [24], which we adapt for
spiking neurons. The normalization is separately applied to both excitatory and inhibitory incoming connections,

WA
k ←WA

k

(
1− ηN + ηN ·

WA
target∑NA

i=1 W
A
i

)
, A ∈ {E, I}. (12)

Where WA
target is the target total weight of each connection type and ηN is the normalization learning rate. The

normalization maintains the sum of the excitatory and the sum of the inhibitory feedforward connections weights
close to the set target total weights WE

target and W I
target.

C. Approximating the posterior distribution of the model parameters

To estimate the set of parameters that lead to high in-group correlations and low out-group correlations, we used
simulation-based inference [53]. The basic idea is to use simulation with known parameters to approximate the
full posterior distributions for the model given the required output, i.e., the distribution of parameters and samples
from which produce the required correlation structure. To approximate the posterior distribution we use sequential
Approximate Bayesian Computation (ABC) [39]. We define a loss function that maximizes in-group correlations and
minimizes between-group correlations,

L = −αC2
in − β

[
(1− CE→E

out )2 + (1− CE→I
out )2 + (1− CE→I

out )2
]
.

We define a uniform prior p(θ). A set of parameters θ = [ree, rei, rie, rii] is sampled from it and used to run the
simulations for 3 seconds. From the simulation results, correlations are computed, which allows us to obtain the loss.
We accept a parameter set if the loss is below the error ϵ, and keep sampling until the number of accepted samples is
60. We use the kernel density estimate on the accepted samples to obtain an approximate posterior. Next, we rescale
this approximate posterior with the original prior to obtain a proposal distribution that we use as a prior in the next
step of the ABC. In each step, we reduce ϵ by setting it to the 75th percentile of the losses for the accepted samples
(see [39] for more details). As a rule, we run 20 to 30 steps of the sequential ABC until the loss converges. We run
separate fits for networks with different levels of sparsity with connection probabilities p = 0.1, 0.25, 0.5, 0.75, 1.0. The
fitting was done using a modified version of the simple-abc toolbox.

D. Reduced model

The dynamics of the system can be studied analytically using a simplified, reduced linear model. Here, each pair of
variables (xi, yi) represents the excitatory and inhibitory mean firing rate of a neuron group. In theory, these variables
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display complicated non-linear interactions that arise from the microscopic details of the LIF spiking network and
synapse dynamics. However, in the stationary state –and away from any critical point– a linearised model can capture
the essential features of the correlations between different populations.

Internal noise, modeled as independent Poisson trains to each individual neuron, becomes Gaussian white noise
in the large-population limit, characterized by zero mean and variance σint. Each population is affected by different
internal fluctuations. For simplicity, external noise, which is applied as the same train of Poisson spikes to all the
neurons inside an input group, will also be approximated as a Gaussian white noise of mean η0 and variance σext.

Therefore, the simplified linear model reads

ẋi =axi + byi +
1

M − 1

∑
j ̸=i

(
WEExj +WEIyj

)
+ σintξ

x
i (t) + σextηi (t) + η0, (13a)

ẏi =cxi + dyi +
1

M − 1

∑
j ̸=i

(
W IExj +W IIyj

)
+ σintξ

y
i (t) + σextηi (t) + η0, (13b)

where M is the number of populations, a, b, c, d are parameters controlling in-group recurrent coupling, and WEE ,
WEI , W IE , W II are couplings between different clusters. Internal noise for each population is represented by ξx,yi (t),
while external noise is notated as ηi(t). All noises are uncorrelated, meaning that〈

ξci ξ
c′

j

〉
=δcc′δijδ (t− t′) , (14a)

⟨ξci (t) ηj (t′)⟩ =0 ∀i, j, t, t′, (14b)

⟨ηi (t) ηj (t′)⟩ =δijδ (t− t′) , (14c)

with c, c′ = {x, y}, and where ⟨. . .⟩ represents an ensemble average, i.e., an average over noise realizations. From
this model, it is possible to obtain closed equations for Pearson correlation coefficients (see Appendix C for details).
Notice that stochastic differential equations are never complete without an interpretation, and we choose to interpret
these in the Itô sense, which will be relevant for computations.
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Appendix A: Alternative plasticity protocol

We examined whether our results are dependent on the particular plasticity protocol we used [24] and we verified that
they hold for alternative plasticity mechanisms. At first, we examine our result’s robustness with respect to the form
of the excitatory and inhibitory learning rules used, while maintaining the same competitive normalization protocol
[24]. We find that replacing the triplet rule [33] with a classic spike pair Hebbian rule [57] leads to no discernible
effect in the quality of the tuning. Furthermore, we examine a variety of different LTD and LTP amplitudes in the
excitatory plasticity as well as several terget rates ρ0 for the inhibitory plasticity without observing any noticeable
changes on our main findings

a

b

c

d

FIG. 6. Alternative plasticity protocol. a. : For diversity to emerge, there needs to be a mechanism that enforces
inhomogeneity in the pre0synaptic firing rates, such as pulses of input. b. Given such a mechanism, the weights converge
rapidly, in a state of near-perfect E/I co-tuning (c), leading to very tight balance of incoming E/I currents (d).

Moreover, we studied both the triplet [33] and pair Hebbian rules [57] combined with a subtractive normalization
mechanism that has been previously used in plasticity studies [17] :

∆WE
k =

∑NA

i=1 W
E
ik −W target

NE
(A1)

In 2016 [6] it was demonstrated that subtractive normalization only on the excitatory connections will lead to all
the weights converging on the same point due to the inhibitory plasticity creating a moving threshold. In order to
prevent this collapse of the receptive field, enformed inhomogeneity on the firing rates of different groups is needed.
We solved this problem by giving the network’s input as pulses of 500 mS, enforcing inhomogeneous firing rates which
result in the emergence of diverse and balanced receptive fields.

We verified that the co-tuning achieved this setting, similarly to the mechanism presented in the main text, suffers
from the intoduction of noise and recurrent connectivity. Furthermore, the assembling principles that we derived
for the original network, seem to have a similarly beneficial effect on this setting, restoring the original covariance
structure of the network’s activity and leading to detailed co-tuning between the E and I feedforward connections.
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Appendix B: Convergence of weights to an eigenvector of the covariance matrix

We verify that our model agrees with the analytics of previous studies [6, 20, 24] that the convergence point of the
weights is an eigenvector of the modified covariance matrix:

C =

〈(
EET −IET

EIT −IIT
)〉

(B1)

where E, I are the activities of the excitatory and inhibitory populations respectively.
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FIG. 7. Weights converge to an eigenvector of the covariance matrix. A: The estimated covariance matrix for a
feedforward network. B. We verify that the convergence point of the weights is an eigenvector of the covariance matrix.

Specifically, we multiply the converged weight vector with a numerical calculation of the covariance (estimated via
binning of the spike trains with a bin size of 1 mS) and verify that the resulting product is approximately equal to a
multiple of the original weight matrix.

Appendix C: Reduced model calculations

1. Derivation of the equations

In this Appendix, we start from main text Eqs. (IVD),

ẋi =axi + byi +
1

M − 1

∑
j ̸=i

(
WEExj +WEIyj

)
+ σintξ

x
i (t) + σextηi (t) + η0, (C1a)

ẏi =cxi + dyi +
1

M − 1

∑
j ̸=i

(
W IExj +W IIyj

)
+ σintξ

y
i (t) + σextηi (t) + η0. (C1b)

where we consider N groups composed by excitatory xi(t) and inhibitory yi(t) populations (i = 1, . . . , N) coupled
linearly (see also Methods). We will derive closed expression for the correlation coefficients. We would like to remark

that ⟨⟩̇ means an ensemble average over noise realizations. All stochastic equations are to be interpreted in the Itô
convention[58].

First of all, we redefine the noise terms, which will prove convenient later to simplify the algebra. For this reason,
we define

ξ1i (t) = σintξ
x
i (t) + σextηi (t) , (C2a)

ξ2i (t) = σintξ
y
i (t) + σextηi (t) , (C2b)
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which are Gaussian white noises with zero mean and correlation matrix

〈
ξ1i (t) ξ

1
j (t

′)
〉
=
〈
ξ2i (t) ξ

2
j (t

′)
〉
=δijδ (t− t′)

(
σ2
int + σ2

ext

)
, (C3a)〈

ξ1i (t) ξ
2
j (t

′)
〉
=δijδ (t− t′)σ2

ext. (C3b)

To start with, one can obtain the average values for the stationary rates by applying averages to both sides of
equations C1 and imposing the stationary state condition, ⟨ẋi⟩ = ⟨ẏi⟩ = 0. Once this is done, it is immediate to solve
the resulting linear system and check that ⟨x∗

i ⟩, ⟨y∗i ⟩ ∝ η0, where the star (*) indicates that these values correspond
to the stationary state. Hence, making η0 = 0 the mean values vanish. One can demonstrate that correlations do not
depend on η0, and hence we can make η0 = 0 without loss of generality. Conceptually, this means just shifting up or
down the baseline of fluctuations of the firing rate, which does not affect the fluctuations themselves.

In order to compute correlations, we need to evaluate the second order moments between different populations, as
⟨xiyj⟩ or ⟨x2

i ⟩. A possible way of doing this is realising that we have a linear system, thus starting from the analytical
solution of the multidimensional Orstein-Uhlenbeck process [59]. However, this approach will yield a linear system
with N(N + 1)/2 variables to solve for, which are all the elements of the (symmetric) correlation matrix. But all
the groups are identical (or indistinguishable), so we expect correlations not to depend on the particular population
chosen. Therefore, all the equations will be reduced to just 6 covariances: ⟨xixj⟩, ⟨xiyj⟩, ⟨yiyj⟩, ⟨x2

i ⟩, ⟨xiyi⟩ and ⟨y2i ⟩.
In this context, it is conceptually simpler to obtain equations for the evolution of the second moments, and then

evaluate them in the stationary state. We report here in detail the computation of two of these moments as an
example, giving just the final answer for the other four, which is performed in an analogous way.

First, we define Xij = xixj , and then look for the time evolution of Xij , i.e., Ẋij . Notice that this a non-linear
change of variables, and thus Itô’s lemma is required. The lemma tells us that if we have a change of variables z = z(x⃗)
then one has to include the second-order terms in the expansion,

dz =
N∑
i=1

∂xi
zdxi︸ ︷︷ ︸

Chain rule

+
1

2

N∑
i=1

∂xi
∂xj

zdxidxj︸ ︷︷ ︸
Itô’s lemma

. (C4)

The terms dxi can be obtained as ẋidt. It is important to remark that in this procedure noise terms are rewritten
as the differential of the Wiener processes, i.e., ηi(t)dt = dWi. After applying the Itô lemma above, only terms up to

order dt should be taken into account. Recall that dWi(t) ∝
√
dt. Finally, one just divides again by dt to recover the

stochastic differential equation and applies the ensemble average.
For Xij , this reads as

d ⟨xixj⟩
dt

= ⟨ẋixj⟩+ ⟨xiẋj⟩+
1

2
⟨ẋiẋj⟩ =

a ⟨xixj⟩+ b ⟨yixj⟩+
WEE

M − 1

∑
k ̸=i

⟨xkxj⟩+
WEI

M − 1

∑
k ̸=i

⟨ykxj⟩+

+ a ⟨xixj⟩+ b ⟨xiyj⟩+
WEE

M − 1

∑
k ̸=j

⟨xixk⟩+
WEI

M − 1

∑
k ̸=j

⟨xiyk⟩+〈
ξ1i xj

〉
+
〈
xiξ

1
j

〉
+
〈
ξ1i ξ

1
j

〉
+O

(
dt2
)
, (C5)

where all the averages between the noise and the variable yield 0, due to Itô’s prescription. The next step is to
simplify the sums involving correlations. As it was discussed above, since clusters are indistinguishable all the terms
are exactly the same. However, notice that an index k running from 1 to N will inevitably hit k = j, and this has to
be taken into account separately, since the correlation with a population inside of my group is different to that of a
population outside of it. Then,

∑
k ̸=i

⟨xkxj⟩ = (M − 2) ⟨xixj⟩+
〈
x2
i

〉
, (C6)

allowing us to simplify the equation. At this step we simplify the notation by letting Xij = ⟨xixj⟩, Zij = ⟨xiyj⟩,
Yi = ⟨y2i ⟩, etc., leading to
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1

2
Ẋij =

(
a+

M − 2

M − 1
WEE

)
Xij +

(
b+

M − 2

M − 1
WEI

)
Zij +

1

M − 1

[
WEEXi +WEIZi

]
. (C7)

The same procedure can be repeated for all the other correlations, such as

d
〈
y2i
〉

dt
= ⟨2yiẏi⟩+

1

2

〈
2ẏ2i
〉
=

2c ⟨xiyi⟩+ 2d
〈
y2i
〉
+

2W IE

M − 1

∑
k ̸=i

⟨yixk⟩+
2W II

M − 1

∑
k ̸=i

⟨yiyk⟩+ 2
〈
yiξ

2
i

〉
+
〈
ξ2i ξ

2
i

〉
=

2c ⟨Zi⟩+ 2d ⟨Yi⟩+ 2W IE ⟨Zij⟩+ 2W II ⟨Yij⟩+ σ2
int + σ2

ext, (C8)

where now the correlation between noises yields a non vanishing value. This operation is repeated with all the
remaining terms, in order to find a linear system of differential equations with 6 variables and 6 equations,

1

2
Ẋi =aXi + bZi +

[
WEEXij +WEIZij

]
+

1

2

(
σ2
int + σ2

ext

)
, (C9a)

1

2
Ẏi =cZi + dYi +

[
W IEZij +W IIYij

]
+

1

2

(
σ2
int + σ2

ext

)
, (C9b)

Żi =cXi + (a+ d)Zi + bYi +
[
W IEXij +

(
WEE +W II

)
Zij +WEIYij

]
+ σ2

ext, (C9c)

1

2
Ẋij =

(
a+

M − 2

M − 1
WEE

)
Xij +

(
b+

M − 2

M − 1
WEI

)
Zij +

1

M − 1

[
WEEXi +WEIZi

]
, (C9d)

1

2
Ẏij =

(
d+

M − 2

M − 1
W II

)
Yij +

(
c+

M − 2

M − 1
W IE

)
Zij +

1

M − 1

[
W IIYi +W IEZi

]
, (C9e)

Żij =

(
c+

M − 2

M − 1
W IE

)
Xij +

(
b+

M − 2

M − 1
WEI

)
Yij +

(
a+ d+

M − 2

M − 1

(
WEE +W II

))
Zij+ (C9f)

+
1

M − 1

[
W IEXi +WEIYi +

(
WEE +W II

)
Zi

]
. (C9g)

This system can be solved in the stationary limit, when all the derivatives of the left-hand side are zero. From these,
one is able to obtain the Pearson correlation coefficients. Notice that since correlation with itself is always unity, there
is only four coefficients remaining: the correlation between excitation and inhibition inside a group C int

EI = Z∗
i /
√
X∗

i Y
∗
i ,

and all three between-group correlations, Cext
EE = X∗

ij/X
∗
i , C

ext
II = Y ∗

ij/Y
∗
i , and Cext

EI = Z∗
ij/
√

X∗
i Y

∗
i .

2. Solutions for the homogeneous network

In some special cases it is possible to give a simple solution in closed form for the correlation coefficients. One
example is the homogeneous network: when all weights are identical, and an intrinsic decay is added to both the
excitatory and inhibitory populations (i.e., with c = WEE = W IE = +W , b = W IE = W II = −W and a = W − 1,
d = −W − 1) the solution reads

C int
EI =

r2 (M − 1)
2
+W 2 (1− r)

2
M√

M2 (1− r)
4
W 4 + (M − 1) (1− r)2W 2 [M(2− 4(1− r)r)− (1− r)2] + (M − 1)4 [2(r − 1)r + 1]

2
, (C10a)

Cext
EI =

W 2 (1− r)
2
M√

M2 (1− r)
4
W 4 + (M − 1) (1− r)2W 2 (M(4(r − 1)r + 2)− (r − 1)2) + (M − 1)4(2(r − 1)r + 1)2

, (C10b)

Cext
EE =

(1− r)2W ((W + 1)M − 1)

M(1− r)2W 2 + (M − 1)(1− r)2W + (1−M)2 [1− 2(1− r)r]
, (C10c)

Cext
II =

(1− r)2W ((W − 1)M + 1)

M(1− r)2W 2 − (M − 1)(1− r)2W + (1−M)2 [1− 2(1− r)r]
(C10d)
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where we additionally defined r as the signal-to-noise ratio, σint = rσ, σext = (1− r)σ. This analytical solution has
some interesting features. First, notice it does not depend on the total amount of noise σ that the system receives,
but only on the ratio between external and internal noise. Second, if W → ∞ all correlations go to 1. Expanding
in series around ϵ = 1/W = 0, one can see that all coefficients are C = 1 − O(1/W 2) for large coupling. It is also
possible to study the limiting values of the noise. r = 1 makes all the between-group correlations equal to zero, while
coupling determines the in-group value. On the other hand, when r ≪ 1, one gets

C int
EI ≃ Cext

EI ≃
MW 2

(M − 1)2
+O(r2), (C11a)

Cext
EE ≃ −Cext

II ≃
W

M − 1
+O(r2). (C11b)

meaning that the external correlations grow linearly with the coupling, but quadratically with the signal to noise
ratio: a small increase in coupling needs to be followed by a larger increase in signal intensity in order to recover the
previous tuning. As a result, coupling has a larger impact in tuning than the signal to noise ratio, a effect that can
be measured in the full spiking network.

Finally, we see that between-group correlations also tend to zero as the limit M → +∞ is taken, since in that case,
the input that a module receives from all others becomes just white noise. A finite number of clusters (or a finite
connectivity among them) is thus required for tuning.

3. Clustering optimisation
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FIG. 8. Analytical results for optimal clustering

Optimizasion of the clustering for the fully-connected network can be done by minimising a loss function which
depends on the correlations. A simple possibility is to employ minimum squares,
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Lan[C; p] =
(
1− C int

EI

)2
+
(
Cext

EE

)2
+
(
Cext

EI

)2
+
(
Cext

II

)2
. (C12)

The solution and associated optimal correlations are shown in 8. There are several key remarks following from this
figure:

1. Even for very large clustering and extremely low signal to noise ratio, the clustering is able to provide an in-group
correlation close to unity combined with low between-group correlations, thus ensuring co-tuning.

2. Inhibition to excitation never clusters. Inhibitory neurons act over excitatory individuals regardless of their
cluster.

3. Excitatory connections are clustered. In particular, excitatory connections always project to inhibitory neurons
in their own cluster, but not to other ones. Excitatory-to-excitatory connectivity is also strongly clustered,
except for large coupling.

4. Inhibition controls excitation for large W . If one keeps highly clustered excitation and increases the coupling,
the dynamics of single modules becomes unstable at a critical value Wc(r). However, the network can remain
stable if the excitatory clustering is reduced and the amount of inhibition in the group increases, which can be
accomplished by increasing rII .

5. When the signal to noise ratio is close to one, clustering becomes mostly irrelevant, since system is driven by
the external input which allows co-tuning easily.

Notice that the optimization algorithm automatically finds solutions where the equations are well-defined –i.e.,
where the system reaches a stationary state– thus selecting to increase the inhibitory clustering when W goes over
the instability threshold.

Therefore, the analytical approach is able to find a good candidate for the optimal clustering depending on the
network dynamics. Although it cannot be directly applied to the spiking network, which is able to display richer
dynamics, tells us that as rule of thumb excitatory clustering should be as high as possible while avoid crossing an
instability threshold. If this happens, inhibition needs to be increased.

Appendix D: Tables of parameters

We mostly used the neuron model parameters from the original inhibitory STDP paper [20]

Network Model
Symbol Description Value
N Number of neurons 1000
NE Number of E neurons 800
NI Number of I neurons 200
M Number of input groups 8
gleak Leak conductance 10 nS
Vrest Resting potential -60 mV
Vreset Reset potential -60 mV
Vth Spiking threshold -50 mV
VE Excitatory reversal potential 0 mV
VI Inhibitory reversal potential -80 mV
Cm Membrane capacitance 200 pF
τref Absolute refractory period 5 ms
τE Decay time constant of E conductance 5 ms
τI Decay time constant of I conductance 10 ms
gE E weight scaling constant 1.4 nS
gI I weight scaling constant 3.5 nS
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Plasticity Rules
Symbol Description Value

τestdp1 Slow eSTDP timescale 50 ms

τestdp2 Fast eSTDP timescale 10 ms
ηE eSTDP learning rate 0.0025
ALTP Long term potentiation amplitude 1.0
ALTD Long term depression amplitude 0.1
τ istdp iSTDP timescale 10 ms
ηI iSTDP learning rate 0.01
ρ0 iSTDP target rate 3 Hz
ηN Normalization learning rate 0.003
WE

target Excitatory normalization target 5.0
W I

target Inhibitory normalization target 5.0

ABC Optimization
Symbol Description Value
α weight of in-group correlation 0.1
β weight of between-group correlations 0.3
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