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Abstract
A major goal of computational neuroscience is to build accurate models of the

activity of neurons that can be used to interpret their function in circuits. Here, we
explore using functional cell types to refine single-cell models by grouping them into
functionally relevant classes. Formally, we define a hierarchical generative model for cell
types, single-cell parameters, and neural responses, and then derive an
expectation-maximization algorithm with variational inference that maximizes the
likelihood of the neural recordings. We apply this “simultaneous” method to estimate
cell types and fit single-cell models from simulated data, and find that it accurately
recovers the ground truth parameters. We then apply our approach to in vitro neural
recordings from neurons in mouse primary visual cortex, and find that it yields
improved prediction of single-cell activity. We demonstrate that the discovered cell-type
clusters are well separated and generalizable, and thus amenable to interpretation. We
then compare discovered cluster memberships with locational, morphological, and
transcriptomic data. Our findings reveal the potential to improve models of neural
responses by explicitly allowing for shared functional properties across neurons.

Author Summary
Computational neuroscience has its roots in fitting and interpreting predictive

models of the activity of individual neurons. In recent years, more attention has focused
on models of how ensembles of neurons work together to perform computations.
However, fitting these more complex models to data is challenging, limiting our ability
to use them to understand real neural systems. One idea that has improved our
understanding of populations of neurons is cell types, where neurons of the same type
have similar properties. While the idea of cell types is old, recent work has focused on
functional cell types, where the properties of interest are derived from fitted predictive
models of the activity of single neurons. In this work, we develop a method that
simultaneously fits a predictive model of each neuron’s activity and groups neurons into
functional cell types. Compared to existing techniques, this method produces more
accurate models of single-cell neural activity and better groupings of neurons into types.
This method can thus contribute in using cell types to better understanding the
components of neural systems based on our increasingly rich observations of their
functional responses.

1 Introduction
A primary goal of computational neuroscience is to formulate simplifying

assumptions on neural structure and activity that allow for tractable modeling. One
such simplifying assumption that is gaining traction is that all neurons in the brain
belong to a one of a finite number of cell types, and that neurons of the same type have
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similar properties. Many studies have sought to cluster neurons into putative cell types
according to properties of their morphology [1], gene expression [2–4],
electrophysiology [5, 6], and connectivity [7].

We are interested here in functional cell types that group neurons with similar
properties of functional output, which we consider to be their spiking response. Clearly,
there is a strong relationship between this notion and cell types defined on more specific
properties of electrophysiological responses, and potentially transcriptomic and
morphological types as well. However, this functional view of cell types only imputes
value to differences between neurons that are useful in predicting their spiking responses
to stimuli. The work of Teeter et al. [6] took an important step towards identifying
functional cell types from electrophysiology data with a sequential approach.
Specifically, these authors fit functional models of single-neuron responses, and then
clustered the resulting parameter estimates. By using functional model parameters as
features to be clustered, these authors explicitly relate functional cell types to prediction
of neural responses. Like the authors of that work, we believe that this relationship is
crucial to identifying cell types that will help us understand the brain’s function.

The present work has two primary goals: to use the idea of functional cell types to
improve parameter estimates for predictive models of individual neural responses, and
to discover the best possible grouping of cells into types. To meet these twin goals, we
develop an approach that simultaneously estimates single-cell model parameters and cell
types (clusters of those parameters). All of the previous studies on discovering cell types
cited above, except [7], take a sequential approach to defining cell types: they extract
features of interest from each neuron’s data, and then cluster these features using an
unsupervised clustering algorithm. Unlike these sequential approaches, our method
allows estimates of each individual neuron’s parameters to “borrow strength” from other
neurons’ data. As we will show, our simultaneous method leads to more accurate
single-cell models and cell-type clusterings than a matched sequential approach. Even in
real-world situations where there are no “ground truth” cell types, the simultaneous
method yields improved prediction of single-cell responses and clusters that are more
robust to the exclusion of different neurons from training, providing validation for this
approach to discovering cell types.

In greater detail, we define a hierarchical generative model of functional cell types,
single-cell parameters, and neural responses. In our model, each neuron belongs to one
of several possible (unknown) functional cell types; the distribution of parameters for
that neuron’s response model is governed by the (unknown) cell type to which it
belongs. This is a mixture model in which each sample is the entire spike train from a
single neuron, and the distribution of this sample, conditional on its cluster membership,
requires marginalizing out parameters of the response model. To fit this hierarchical
model, we adapt the expectation-maximization (EM) algorithm [8] to simultaneously
estimate the parameters for each neuron’s response model and the functional cell types,
in order to provide a good fit to the spiking response of the recorded neurons.

We apply our method to simulated data, as well as to the in vitro single-cell
characterization (IVSCC) dataset collected by the Allen Institute for Brain Science [9]
(also used in [6]). We verify that our approach accurately recovers the ground truth
model underlying a simulated dataset, and demonstrate that it discovers robust and
interpretable cell types that improve prediction of neural recordings. In particular, we
show that the benefits of applying our method to predict neural activity depend on the
training data in a way that is consistent with the notion of “borrowing strength”; the
improvement is greatest when the training dataset includes more neurons.

For comparison with the simultaneous method, we use a version of the sequential
method with the same model structure, but where single-cell parameters are first fit,
then clustered into cell types. This comparison reveals the potential improvement of
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borrowing strength between neurons.

2 Methods
We begin by formalizing the goals of this work, and then detail two approaches to

meet them: a “sequential method,” based on approaches pervading existing cell-types
research, and a “simultaneous method,” our proposed improvement. We then adapt the
EM algorithm and develop a Bayesian information criterion (BIC) for our model in order
to estimate the parameters and hyperparameters of the model from data, respectively.

Throughout, we use bold symbols (e.g. xi) to denote vectors where the tth element
is denoted e.g. xi(t), and capital Latin letters to denote natural number constants
(N,K, Ti). We use f(z;µz,Σz) to denote the probability density function of a
multivariate Gaussian distribution, and a hat (e.g. β̂i) to denote an estimate.

2.1 Goals
In this work we seek a clustering of neurons into cell types that best explains their

functional (spiking) responses. We consider a dataset of spiking responses to stimuli
xi(t), yi(t), t ∈ {1, ..., Ti}, i ∈ {1, ..., N}, where N is the number of neurons, yi(t) is the
number of spikes that the ith neuron fires in the tth time bin, xi(t) is the value of the
stimulus to that neuron in that time bin, and Ti is the duration of that neuron’s
recording (in time bins). Our goals can then be formalized as estimating two quantities
from our dataset:

1. For each neuron, i, . . . , N , parameters β̂i of a predictive model for the ith
neuron’s response, P (yi|xi, β̂i).

2. Functional cell-type assignment of each neuron into one of K types,
k̂i ∈ {1, ...,K}, that best capture the distribution of β̂ across all neurons.

We compare two approaches for achieving these goals: a “sequential method” of first
estimating β̂1, . . . , β̂N , and then clustering these point estimates into cell-type
assignments; and a “simultaneous method” that uses an expectation-maximization
algorithm to estimate both β̂i and k̂i in tandem. The sequential method is motivated
by the approach of Teeter et al. [6], although implementation details differ.

2.2 Sequential Method
The sequential method defines functional cell types in two steps. In the first step,

the data xi,yi for the ith neuron are fit with a single-cell model, which we describe
below, that is parameterized by some vector of parameters βi. In the second step, the
estimated parameters β̂i are clustered with a Gaussian mixture model. See Algorithm 1.

2.2.1 Single-Cell Model

The goal of the single-cell model is to predict yi from xi, using some learned vector of
parameters βi. We assume the conditional independence of time bins in order to
decompose this probability as follows:

PSC(yi|xi;βi) =

Ti∏
t=1

PSC(yi(t)|yi(1), ..., yi(t− 1), xi(1), ..., xi(t);βi). (1)

Here, we use PSC to denote the probability distribution of spiking for a single-cell.
While there are many options for models of single-cell spiking that parameterize this
probability, in this work we use the generalized linear model (GLM) [10], illustrated in
Figure 1A. Specifically, we fit a Poisson GLM on a transformed set of covariates:
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yi(t) ∼ Poisson

exp

T stim−1∑
τ=0

βstim
i (τ + 1)x̃i(t− τdstim) +

T self∑
τ=1

βself
i (τ)yi(t− τ) + β0

i

 .

(2)
In (2):

• βstim
i ∈ RT stim

is the stimulus filter for the ith neuron.
• x̃i(t) =

∑dstim−1
s=0 xi(t− s) is the pre-filtered stimulus, using a rectangular filter of

length dstim. The stimuli we will consider vary much more slowly than the
timescale of spiking, and this feature reduces the dimensionality of βstim

i to
combat overfitting.

• βself
i ∈ RT self

is the self-interaction filter for the ith neuron.
• β0

i is the offset term for the ith neuron.
• Collectively, βi ≡ [βstim

i ,βself
i , β0

i ]>, yielding a total of dim(βi) = T stim + T self + 1
parameters of the single-cell model. We use these superscripts with many symbols
throughout this document, clarifying the component(s) of βi with which they are
associated (the absence of a superscript corresponds to all of βi).

• We take xi(τ) = yi(τ) = 0 for τ < 1. That is, we zero-pad our data.
When we maximize the corresponding log-likelihood with respect to βi, we include

`2 regularization on all parameters except the offset:

β̂i(λ
stim, λself) = arg max

β

{
1

T train
i

logPSC(ytrain
i |xtrain

i ;β)−1

2
λstim||βstim||22−

1

2
λself ||βself ||22

}
.

(3)
In (3), || · ||2 denotes the `2-norm of a vector, and the superscript “train” indicates

that we are using a training set to fit the parameters βi. This optimization problem is
convex. We solve it with the trust-region Newton-conjugate-gradient algorithm
(trust-ncg in the scikit-learn minimize function [11]).

To select the regularization hyperparameters λstim and λself , we use cross-validation.
That is, each neuron’s data is partitioned into L equally-sized bins of adjacent
timepoints, (x1

i , ...,x
L
i ) and (y1

i , ...,y
L
i ). For a logarithmically spaced grid of choices of

λstim ∈ [10−7, 1], λself ∈ [10−7, 1], we then compute the cross-validated log-likelihood,
averaged over all data points from all N neurons:

V ALL(λstim, λself) =
N∑
i=1

1

NTi

L∑
l=1

logPSC(yli|xli; β̂i(λstim, λself)). (4)

In (4), β̂i(λstim, λself) is computed using (3), where the other partitions of the data
((x1

i , ...,x
l−1
i ,xl+1

i , ...,xLi ) and (y1
i , ...,y

l−1
i ,yl+1

i , ...,yLi )) are used for training.
The λstim, λself that maximize this quantity are selected and used to fit β̂i to all of

the data used for cross-validation (i.e. not including test data).
We choose a Poisson GLM in (2) because its log likelihood is convex with respect to

its parameters βi, simplifying estimation. Additionally, the GLM has been widely used
to model single-cell responses (see [12] for a review), and is able to produce a wide
variety of spiking dynamics observed in neural data [13]. The GLM parameters are also
relatively amenable to interpretation: βself

i (τ) (or, respectively, βstim
i (τ + 1)) determines

how a spike (the stimulus) that happened τ time bins in the past affects the probability
that the neuron will spike in the present. Very negative values of βself

i (τ)yi(t− τ) or
βstim
i (τ + 1)x̃i(t− τdstim) suppress spiking at time t; very positive values promote

spiking.
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2.2.2 Cluster Model

After fitting the single-cell model (3), we cluster the fitted self-interaction filters,
{β̂

self

1 , ..., β̂
self

N }, to produce cell-type assignments for each neuron. See the Supplement,
Section S2.1.1 for consideration of the case where all of {β̂1, ..., β̂N}, including the
stimulus filters, are clustered.

To cluster the coefficient estimates, we fit a Gaussian mixture model (GMM) with
weights πk, means µself

k , and covariances Σself
k , k ∈ {1, ...,K}. We assume the covariance

matrices are diagonal. We fit the GMM with the GaussianMixture class from
scikit-learn [11]. Collectively, we refer to these parameters of the clustering as
ΩK ≡ {π1, ...πK ,µ

self
1 , ...,µself

K ,Σself
1 , ...,Σself

K }. Thus we write the clustering as:

Ω̂K ← arg max
ΩK

N∑
i=1

log
K∑
k=1

πkf(β̂
self

i ;µself
k ,Σself

k ). (5)

Once we have fit the GMM to the parameter estimates {β̂
self

1 , ..., β̂
self

N }, the
maximum likelihood estimate (MLE) for the cell type of each neuron is

k̂i ← arg max
k

π̂kf(β̂
self

i ; µ̂self
k , Σ̂self

k ), i = 1, ..., N. (6)

Data: xi(t), yi(t), t = 1, ..., Ti, i = 1, ..., N, K, dstim

Result: Ω̂K ≡ {π̂k, µ̂self
k , Σ̂self

k }, k = 1, ...,K, β̂i, k̂i, i = 1, ...N
/* Step 1: Estimate response model parameters β1, ...,βN */
for a logarithmically spaced grid of λstim, λself do

V ALL(λstim, λself)← 0
for i = 1, ..., N do

Partition the ith neuron’s data into L equally-sized bins of adjacent time
points, (x1

i , ...,x
L
i ) and (y1

i , ...,y
L
i )

for l=1,...,L do
β̂i(λ

stim, λself)←
arg maxβ

{
L

(L−1)Ti

∑
l′ 6=l logPSC(yl

′

i |xl
′

i ;β) + 1
2λ

stim||βstim||22 + 1
2λ

self ||βself ||22
}
.

V ALL(λstim, λself)←
V ALL(λstim, λself) + 1

NTi
logPSC(yli|xli; β̂i(λstim, λself)).

end
end

end
λ̂stim, λ̂self ← arg maxλstim,λself V ALL(λstim, λself).
β̂i ← arg maxβ logPSC(yi|xi;β) + 1

2 λ̂
stim||βstim||22 + 1

2 λ̂
self ||βself ||22, i = 1, ..., N .

/* Step 2: Cluster estimated βself
i into cell types ki. */

Ω̂K ← arg maxΩK

∏N
i=1

∑K
k=1 πkf(β̂

self

i ;µself
k ,Σself

k ) (Fit a standard GMM)

k̂i ← arg maxk π̂kf(β̂
self

i ; µ̂self
k , Σ̂self

k ), i = 1, ..., N
Algorithm 1: Sequential method.

2.3 Simultaneous Method
In the simultaneous method, we define a generative model for the data xi(t), yi(t)

over all neurons, given that there are K classes. In this model, the response to stimuli
will be determined by latent variables, which we denote by βi = [βstim

i ,βself
i , β0

i ]>, that
are distributed according to a Gaussian distribution, f(β;µk,Σk), given membership in
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class k. Class membership is given by the categorical distribution with parameters
π1, ..., πK .

We take {x1, ...,xN} as fixed inputs, and let
ΩK = {π1, ..., πK ,µ

self
1 , ...,µself

K ,Σself
1 , ...,Σself

K } denote the set of all parameters of the
generative model with K classes. We use the same symbols for the simultaneous and
sequential methods to emphasize their shared structure and facilitate comparisons.

We write the joint likelihood of a combination of latent variables and data for the
ith neuron as

Pjoint(k,β,yi|xi; ΩK) = P (yi|k,β,xi; ΩK)P (β|k,xi; ΩK)P (k|xi; ΩK). (7)

We then make the following assumptions:
1. P (yi|k,β,xi; ΩK) ≡ PSC(yi|xi;β), where PSC was defined in (1) and (2). Thus,

the spiking response of the ith neuron given its single-cell parameters βi is
conditionally independent of ki and is not a function of ΩK .

2. P (β|k,xi; ΩK) ≡ f(β;µk,Σk), so that the single-cell parameters for the ith
neuron are independent of xi.

3. The matrix Σk is diagonal for k = 1, ...,K, so that the elements of βi are
mutually independent, given ki.

4. P (k|xi; ΩK) = P (k; ΩK) ≡ πk. Thus the cluster label for the ith neuron is
independent of xi,µk, and Σk.

With these assumptions, we re-write (7) as

Pjoint(k,β,yi|xi; ΩK) = PSC(yi|xi;β)f(β;µk,Σk)πk. (8)

Recalling that we used superscripts to represent the components of
βi ≡ [βstim

i ,βself
i , β0

i ]>, we denote the components of the cluster means as
µk = [µstim

k ,µself
k , µ0

k]>, and likewise for the covariances, with Σstim
k ,Σself

k , (σ0
k)2

diagonally stacked to form Σk (recall that Σk is diagonal).
As with the sequential method, we assume that βstim

i and β0
i are independent of the

cell type ki. (See the Supplement, Section S2.1.2 for the case where all parameters are
cell-type-dependent.) Specifically:

• µstim
1 = ... = µstim

K = 0, Σstim
1 = ... = Σstim

K = (1/λstim) ∗ I. This amounts to
applying `2 regularization to the stimulus filters, as in the sequential method.

• The prior for β0
i , f(β0

i ;µ0
k, (σ

0
k)2), is flat. That is, no regularization is applied to

the offset term; we can think of this as taking (σ0
k)2 →∞.

Thus (8) may be further factorized as

Pjoint(k,β,yi|xi; ΩK) ∝ PSC(yi|xi;β)f(βstim
i ; 0, (1/λstim) ∗ I)f(βself

i ;µself
k ,Σself

k )πk.
(9)

This hierarchical model has two hyperparameters, K,λstim, a set of global parameters
describing the cell types, ΩK , and latent variables for the ith neuron, ki and βi.

To obtain the likelihood of the data, we marginalize over the latent variables:

P (yi|xi; ΩK) =
K∑
k=1

∫
Pjoint(k,β,yi|xi; ΩK)dβ. (10)

We further assume that the spiking activity of each neuron is independent, and so
the likelihood of an entire dataset is simply a product over neurons:

P (y1, ...,yN |x1, ...,xN ; ΩK) =
N∏
i=1

P (yi|xi; ΩK). (11)
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A B
Fig 1. A: The Poisson GLM (2) used to model the spiking response of a single neuron. B: The generative model (11) for the
simultaneous method.

2.3.1 EM Algorithm

We adapt the expectation-maximization (EM) algorithm [8] for the generative model in
(9) to find the MLE of ΩK ,

Ω∗K = arg max
ΩK

P (y1, ...,yN |x1, ...,xN ; ΩK) (12)

(see (11)). Each yi and xi correspond to a single independent neuron (each yi is a
sample, in common EM language), with associated latent variables ki and βi; the global
parameters of our model are ΩK .

We outline the two steps of the EM algorithm here, and unpack them in detail in
Section S1:

• E-step: for i = 1, ..., N , we compute the posterior distribution over latent variables
ki,βi, given the data and the current estimate of global parameters Ω̂K . We call
this Qi(k,β):

Qi(k,β) ≡ P (k,β|xi,yi; Ω̂K)

=
Pjoint(k,β,yi|xi; Ω̂K)

P (yi|xi; Ω̂K)
=

Pjoint(k,β,yi|xi; Ω̂K)∑K
k=1

∫
Pjoint(k,β,yi|xi; Ω̂K)dβ

. (13)

Due to the complexity of the denominator of the right hand side of (13), we
cannot compute the right-hand side exactly. Therefore we employ a weighted
Gaussian approximation for Pjoint(k,β,yi|xi; Ω̂K):

Pjoint(k,β,yi|xi; Ω̂K) ≈ Zi,kf(β;mi,k, ci,k). (14)

This approximation allows us to simplify (13) as follows:

Pjoint(k,β,yi|xi; Ω̂K)∑K
k=1

∫
Pjoint(k,β,yi|xi; Ω̂K)dβ

≈ Zi,kf(β;mi,k, ci,k)∑K
k=1

∫
Zi,kf(β;mi,k, ci,k)dβ

=
Zi,k∑K
k=1 Zi,k

f(β;mi,k, ci,k). (15)

The normalized weights Zi,k∑K
k=1 Zi,k

appear repeatedly in what follows, so we denote
them

Z̃i,k ≡
Zi,k∑K
k=1 Zi,k

. (16)
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This, along with (13) and (15), allows us to write

Qi(k,β) ≈ Z̃i,kf(β;mi,k, ci,k). (17)

Our E-step now consists of finding the optimal Zi,k,mi,k, ci,k to make the
approximation in (17) as good as possible (more detail in Section S1.1).

• M-step: update the estimate of the global parameters Ω̂K by maximizing an
approximation to a lower bound on log(P (y1, ...,yN |x1, ...,xN , Ω̂K)):

Ω̂K = arg max
ΩK

N∑
i=1

K∑
k=1

∫
Z̃i,kf(β;mi,k, ci,k) logPjoint(k,β,yi|xi; ΩK)dβ. (18)

Latent Variable Estimates Once the EM algorithm has converged to a final point
estimate of ΩK , which we denote Ω∗K , we may also want to compute point estimates of
ki and βi. While it is tempting to estimate both simultaneously as
(k̂i, β̂i) = arg maxk,β Pjoint(k,β,yi|xi; Ω∗K), this approach will tend to assign neurons to
clusters with smaller estimated variances.

Instead, we estimate ki for each neuron by maximizing the likelihood with βi
marginalized out:

k̂i = arg max
k

∫
Pjoint(k,β,yi|xi; Ω∗K)dβ ≈ arg max

k

∫
Zi,kf(β;mi,k, ci,k)dβ

= arg max
k

Zi,k. (19)

After estimating ki, we estimate β̂i by maximizing the likelihood with respect to it,

β̂i = arg max
β

Pjoint(k̂i,β,yi|xi; Ω∗K) ≈ arg max
β

Zi,k̂if(β;mi,k̂i
, ci,k̂i)

= mi,k̂i
. (20)

Summary of EM algorithm The overall EM algorithm is spelled out in Algorithm
2.

2.4 Model Selection
Since the true value of K is generally unknown, we consider two separate criteria for

estimating K̂, as well as the other hyperparameter λ̂stim for the simultaneous method:
Bayesian information criterion (BIC) and cross-validation log-likelihood on held-out
neurons (CVLL, considered in Section S5.1). For the simultaneous method, both
criteria are applied to the approximate marginal log-likelihood for the hierarchical
model, LLi ≡ log

∑K
k=1 Zi,k ≈ logP (yi|xi; Ω̂k), as computed in (S3). For the sequential

method, both criteria are applied to the GMM log-likelihood,
LLi ≡ log

∑K
k=1 π̂kf(β̂i; µ̂k, Σ̂k). (The λ hyperparameters were already selected using

(4).) Both BIC and CVLL are evaluated for a range of K (and λstim for the
simultaneous method), to select the optimal set of hyperparameters.

We use the following heuristic for BIC:

BIC =
N∑
i=1

LLi −
dof(Ω̂K)

2
log(N). (21)

Above, dof(Ω̂K) is the number of degrees of freedom in Ω̂K , equal to
dof({π̂k})+dof({Σ̂k})+dof({µ̂k}) = K−1+K ∗T self +K ∗T self = K ∗ (2∗T self +1)−1

(recall that
∑K
k=1 π̂k = 1 and that each Σ̂k is diagonal).
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Data: xi(t),yi(t) for t = 1, ..., Ti, i = 1, ..., N, K, dstim

Result: π̂k, µ̂k, Σ̂k for k = 1, ...,K, k̂i, β̂i for i = 1, ..., N

For i ∈ {1, . . . , N}, β̂i ← arg maxβ P (yi|xi,β), using (2)
ΩK ← GMM fit to β̂1, ..., β̂N
repeat

/* E-Step: approximate distributions over latent variables
ki,βi */

for i = 1, ..., N do
mi,k = arg maxβ logPjoint(k,β,yi|xi; ΩK) k = 1, ...,K
c−1
i,k = −diag(∇2

β logPjoint(k,β,yi|xi; ΩK))
∣∣
β=mi,k

k = 1, ...,K

Zi,k ← Pjoint(k,β,yi|xi; ΩK)
∣∣
β=mi,k

√
(2π)dim(β)|ci,k| k = 1, ...,K

Z̃i,k ← Zi,k/
∑K
k′=1 Zi,k′ k = 1, ...,K

end
/* M-Step: update estimates of global parameters π̂k, µ̂k, Σ̂k */
for k = 1, ...,K do

π̂k ← 1
N

∑N
i=1 Z̃i,k

µ̂self
k ←

∑N
i=1 Z̃i,km

self
i,k∑N

i=1 Z̃i,k

Σ̂self
k ←

∑N
i=1 Z̃i,kdiag(cselfi,k +mself

i,k m
self>
i,k −µ̂self

k µ̂self>
k )∑N

i=1 Z̃i,k

end
until convergence;
k̂i ← arg maxk Z̃i,k, i = 1, ..., N

β̂i ←mi,k̂i
, i = 1, ..., N

Algorithm 2: EM algorithm for simultaneous model. See Sections S1.1 and S1.2
for detailed derivations of each step.

2.5 Evaluation Metrics
Throughout the results, we use several metrics to assess how accurately each method

estimates clustering and parameters.
To assess clustering, we use the adjusted Rand score (ARS) (see [14] 25.1.2.2), which

compares two labelings of a set of neurons. The ARS is symmetric in its inputs, equals 1
if the two labelings agree perfectly, and equals 0 if the two labelings are as similar as
expected by chance. In Section 3.1, we compute ARS to compare estimated clusters to
ground truth labels of simulated data. In Section 3.2, we use ARS to compare two sets
of estimated clusters, obtained using two different sets of training neurons. This gives
us a measure of how robust the clustering is to the inclusion or exclusion of subsets of
neurons from training.

To assess accuracy of parameter estimation, we use the root-mean-squared error

(RMS),
√

1
T stim

∑T stim

t=1 (βstim(t)− β̂stim(t))2, when ground truth is available. For the
self-interaction filter, we exclude coefficients whose true value is less than −4, as
parameter inaccuracies in this regime have a minimal effect on the likelihood.

When the ground truth is not available, we use two separate metrics to evaluate
GLM parameter estimates for a given neuron based on how well they explain held-out
test data. We use the average negative log-likelihood (ANLL) to evaluate the
performance of each GLM on test data, in terms of the same quantity that was used to
train it,

ANLLi ≡ −
1

T test
i

log(PSC(ytest
i |xtest

i ; β̂i)). (22)
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We also compute the explained variance ratio (EVratio), following [6]. To compute
EVratio, we require that the test data consists of neural responses to repeated
presentations of a single stimulus waveform. Calculating the EVratio for the parameter
estimate of a given neuron then consists of three steps:

1. Simulate the response of a GLM with the estimated parameters to the test
stimulus. Because our model is stochastic, we simulate a large number (3000) of
responses by repeatedly sampling from (2), and average the simulated spike trains
to produce the average model prediction.

2. Smooth the spiking response to each presentation of the test stimulus, as well as
the average model prediction, with a Gaussian kernel with a standard deviation of
10ms. We refer to the neuron’s smoothed response to the jth of P presentations of
the test stimulus as stPSTHj , which is an abbreviation for single peristimulus
time histogram. We average these quantities to obtain the smoothed average
response, defined as PSTHD ≡ 1

P

∑P
j=1 stPSTHj . We let PSTHM denote the

smoothed average model prediction.
3. Define EVratio as the ratio of the trial averaged explained variance between
PSTHM and stPSTHj to that between PSTHD and stPSTHj. That is,

EVratio =

∑P
j=1EV (stPSTHj , PSTHM )∑P
j=1EV (stPSTHj , PSTHD)

, (23)

where

EV (PSTH1, PSTH2) =
var(PSTH1) + var(PSTH2)− var(PSTH1 − PSTH2)

var(PSTH1) + var(PSTH2)
.

(24)
Note that (24) will equal 1 if PSTH1 = PSTH2, and will equal zero if PSTH1 and

PSTH2 are independent; it can be seen as the scaled covariance between the PSTH1

and PSTH2. A very high value of EVratio (near 1) would thus indicate that the
average model prediction covaries with the individual trial responses almost as well as
the trial-averaged response (and thus that the model fits the data well); a very low
value (near 0) would indicate that the average model prediction has low covariance with
the individual trial responses.

3 Results
In Section 2, we detailed two methods to identify cell types from neural spiking

responses, the sequential approach and our simultaneous approach. The sequential
approach consists of individually tuning the parameters of a generalized linear model
(GLM, Section 2.2.1) to fit each neuron’s responses and then clustering those
parameters (Section 2.2). The simultaneous approach makes use of a hierarchical
probabilistic framework to simultaneously estimate both the GLM parameters and their
cluster labels (Section 2.3). Crucially, the simultaneous approach “borrows strength”
from other neurons’ data, allowing for improved estimates of the GLM parameters, in
addition to improved estimates of cell types.

In this section, we first demonstrate that the simultaneous method recovers the
ground truth parameters used to generate simulated data (Section 3.1). We then apply
it to the in vitro single-cell characterization (IVSCC) dataset collected by the Allen
Institute for Brain Science [9] (Section 3.2). Specifically, we model the spiking response
of chemically-isolated neurons in mouse primary visual cortex to an injected pink noise
current. This dataset provides an excellent benchmark for these methods, as it contains
large amounts of high-quality data collected from many different neurons.
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Importantly, these neurons were chosen from a variety of different transgenic lines in
an attempt to sample a diverse set of cells that will be useful for characterizing cell
types. To this end, the transgenic line of each recorded neuron has been made available
in the dataset, as well as information about the cell’s location and morphology. This
enables us to compare the putative cell types we extract to these other recorded
properties of neurons, (Section 3.2.2, see [6] for a similar analysis on the same data).

We demonstrate that our novel simultaneous method produces single-cell models
that generally predict spiking responses in the IVSCC dataset better than individually
fitted models. We further show that the choice of metric used to quantify this
improvement leads to different implications regarding which neurons’ models are most
improved, and how the improvement scales with the number of neurons and amount of
data used per neuron. We demonstrate that the clusters of IVSCC neurons discovered
by our simultaneous method have properties that generally make them amenable to
interpretation. We also interpret the discovered clusters by comparing membership in
each with the available information about each cell’s transgenic line, location, and
morphology. For all of these analyses, we use the sequential method and its individually
fit GLMs for comparison.

Throughout, we fix the dimensions of βstim
i and βself

i to T stim = 10 and T self = 20,
respectively, and use a downsampling factor of dstim = 5 for stimulus filters. We use 2
ms time bins, so this corresponds to filtering the last 40 ms of spiking history and the
last 100 ms of stimulus.

3.1 Application to simulated datasets shows that the simultane-
ous method accurately recovers ground truth parameters

First, we compare how well each method recovers the true parameters of a
generative model from simulated data. To create these data, we use the same stimuli
that were presented in the IVSCC dataset, and simulate responses of GLMs with
identical, fixed stimulus filters βstim

i and offsets β0
i = 5, and with self-interaction filters

βself
i sampled from a GMM with equal cluster sizes π1 = · · · = πK and fixed µself

k (see
Figure 2A,B for fixed parameters, Section S4 for more details). We vary the number of
clusters K and the within-cluster variance σ2 (σ2I = Σself

k , ∀k ∈ {1, ...,K}).
We fit the simultaneous and sequential methods to the data, and then plot several

accuracy metrics for σ2 ∈ [10−2, 10−5/6]. We use an “oracle” approach to determine the
hyperparameters for both methods, using the K that was used to generate the data,
and λ hyperparameters that most accurately recover β (by RMS) on 10 held-out “oracle”
datasets.

Our simultaneous method outperforms the sequential method in terms of clustering
accuracy (Figure 2C), recovery of single-cell parameters βstim

i (Figure 2D) and βself
i

(Figure 2E), and estimation of within-cluster variance (Figure 2F). These results
demonstrate that, by borrowing strength across neurons, the simultaneous method
provides better estimates of single-cell model parameters and cell types.

To determine how well each method can recover the true K, we evaluate the
Bayesian information criterion (BIC) for both methods (Figure 3, see Section S5.1 for
validation loss on held-out neurons). Here we use oracle to select the λ hyperparameters,
but fit models with K = 1, ..., 8 and select the value of K with the highest BIC (see
Section 2.4). We see in Figure 3 that the simultaneous method is better able to recover
the true number of clusters.
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A B

C D

E F
Fig 2. Performance of sequential and simultaneous methods on simulated data.
A: The true stimulus filter βstim

i for each simulated neuron.
B: The true cluster means µself

k used to generate simulated datasets, and those estimated by the sequential and simultaneous
methods, µ̂self

k , fit with the correct K = 5.
C-F: Mean ± SEM over 50 simulated datasets of accuracy measures, as a function of σ and shown for both K = 3 and K = 5.
When K = 3, the three clusters with leftmost µself

k in panel B are used. For each condition (K and σ) and for each measure of
accuracy, the simultaneous method’s performance is statistically significantly better than that of the sequential method, except for
ARS with K = 3 and σ = 10−5/6 (evaluated using the Wilcoxon signed rank test: uncorrected P-value<0.002).

3.2 Application to neural data shows that the simultaneous method
is a useful tool for modeling and understanding real neural
data

To evaluate the simultaneous method on neural data, we apply Algorithm 2 to
spiking data recorded from 634 cells in mouse primary visual cortex (IVSCC dataset [9],
region ‘VISp’). These spikes are in response to repeated current injections of pink noise
stimuli. Across the entire dataset, only two specific instantiations of pink noise are used,
which we refer to as “Noise 1” and “Noise 2”; we selected only cells that received at least
three presentations of both, and were labeled with a transgenic cre-line. In order to
evaluate how well our method generalizes to new stimuli, all fitting and model selection
was done on Noise 1 stimuli, and Noise 2 stimuli were withheld for testing. In applying
Algorithm 1, we partitioned each neuron’s data into equally-sized bins of adjacent time
points so that each element of the partition contains a separate presentation of the
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A B
Fig 3. Model selection of K̂. Frequencies of K̂ estimated via Bayesian information criterion over 50 simulated datasets with
the same µk as in Figure 2, and σ = 10−2 (A) or 10−5/6 (B), the maximum value that does not result in degenerate simulations.
Black lines indicate the true value of K. The summary below each plot reports the mean ± SEM of the estimated value of K̂
across the 50 datasets, for each value of K and each method.

Noise 1 stimulus.
We used BIC to perform model selection with the simultaneous method, selecting

K̂ = 12 (Figure 4A, see Section S5.1 for model selection using cross-validation on
held-out neurons). The discovered cell types are distinct, have smoothed self-interaction
filters, and suggest different computational roles for some of the types, as their
self-interaction filters have qualitatively different shapes (Figure 4B).

We compare these results to those obtained from individually fitting GLM models
for each neuron and then clustering those models’ self-interaction filters βself

i (the
sequential method), and find that the estimated K̂ is much higher, at least 19 (Figure
4C). The resulting cluster centers for the K = 12 (same K as Figure 4B) are all
bunched on top of each other near 0 and have higher variances (Figure 4D). We
hypothesize that this difference arises from the simultaneous method’s ability to borrow
strength across different neurons in the same cluster, pulling their parameters closer
together toward an improved estimate of their center. By contrast, the sequential
method weakly pulls all parameter estimates into a region near 0 with its standard `2
penalty, and then fits highly overlapping clusters that are densely packed to fill this
region. The cluster weights, πk, shown in the legend, also support this description: the
simultaneous method’s clusters have much more variable weights (<0.03-0.2), as well as
shapes, compared to the sequential method’s (weights 0.6-0.12).

3.2.1 Generalization performance demonstrates improved parameter esti-
mates

In order to demonstrate that the differences in parameter estimates between the
simultaneous and sequential methods reflect meaningful differences in the descriptions
of the underlying biological system, we show that the simultaneous method generalizes
better to held-out data. We examine two types of generalization to assess how well each
method accomplishes each goal (Section 2.1): namely, generalization to held-out time
bins and to held-out neurons. Without knowledge of ground truth single-cell parameters
or cell types, this is the best assessment we can make of each method’s accuracy. To
accomplish this, we partition the neurons into four sets, using each in turn for
evaluation after fitting and performing model selection with BIC on the other three, in
addition to withholding Noise 2 responses from training.

The simultaneous method discovers individual parameters for each neuron β̂i (20)
that allow for better prediction of the held-out responses to Noise 2 than those found by
the sequential method (3). We measure this using each fitted GLM’s average negative
log-likelihood (ANLL) of the held-out data ((22), Figure 5A), as well as its explained
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A B

C D
Fig 4. IVSCC Dataset: The simultaneous method explains the data with a smaller number of less overlapping
clusters. A: BIC for the simultaneous method over a range of K; BIC determines K̂ = 12 as optimal. Each dot reports the result
of running Algorithm 2 from a different random initialization. B: Cluster centers µk of self-interaction filters fit to data using the
simultaneous method; shaded region is ±

√
diag(Σk). Only the 9 clusters with at least 20 neurons are shown from the model with

BIC-selected K = 12. C: By contrast, the standard BIC of a GMM fit to individually fitted self-interaction filters (the sequential
method) suggests an optimal K̂ of at least 19. Each dot reports the result of performing the GMM fit, (5), from a different
random initialization. D: The clusters of self-interaction filters with at least 20 neurons found by the sequential approach with
K = 12 are bunched up closer to the origin, such that the clusters overlap significantly.

variance ratio, (EVratio, how well the mean smoothed model prediction captures the
variability in smoothed spike trains across trials, relative to the true cross-trial mean,
see (23), Figure 5C). Likewise, we use ARS to measure stability of the cluster
assignments k̂i when each of the folds of neurons are held-out from training, and find
that the simultaneous method generally finds more stable clusters (positive values in the
cells of Figure 5F).

Next, we restricted our analysis to subsets of training trials and subsets of neurons.
Recall that each presentation of the Noise 1 stimulus was applied at least three times;
we subset the trials so that exactly one, two, or three presentations of Noise 1 was
retained per neuron. Furthermore, earlier we split the neurons into four folds and fit the
model on three of the four folds; here we instead fit the model on only one, two, or three
of the four folds. Finally, we used all Noise 2 presentations for all of the remaining folds
as test data.

We find that the relative improvement of the simultaneous method is greater when
data from more neurons is used (Figure 5B, D, and F, although not significantly in F).
This has a simple interpretation: providing more neurons allows for more borrowing of
strength to improve parameter estimates, and thus improves all generalization measures.

The results of varying the number of stimulus presentations per neuron are more
ambiguous: ARS benefits the most from the use of the simultaneous method rather
than the sequential method when there are fewer presentations, ANLL when there are
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more, and effects for EVratio are not significant. These discrepancies can be linked to
the observation that different populations of neurons are responsible for the
improvement of each metric between methods (Figure 5E). Neurons with fewer spikes in
their response will naturally have a good ANLL (see Figure 5A; it is easy to predict zero
spikes) and bad EVratio (see Figure 5C; the inter-spike intervals are very high, so
relative jitter in predicted spikes hurts more). Therefore, the simultaneous method
improves the EVratio of these neurons the most, while it improves the ANLL of those
with many spikes the most, as in each case those neurons leave the most room for
improvement. Given that different populations of neurons are responsible for changes in
ANLL and EVratio, it is no surprise that these metrics scale differently with the number
of presentations used for training. ARS is not computed on a neuron-by-neuron basis,
so we cannot easily attribute its difference in scaling to a different population of
neurons, but it is clearly assessing performance in a very different way than ANLL and
EVratio. Together, these results show that the choice of evaluation metric can
drastically affect conclusions about model performance and how it scales with dataset
sizes, suggesting that the best practice is to consider many metrics, as we do here.

Additional details about Figure 5 are provided in Supplementary Section S3.

3.2.2 Comparison to metadata suggests relationships between discovered
cell types and measured genetic and anatomical properties of neurons

The IVSCC dataset contains limited morphological, locational, and transcriptomic
information about each cell in addition to the electrophysiological recordings. We will
now investigate whether the electrophysiological cell types that we discover are related
to these metadata, in the same spirit as [2] and [6]. Note, however, that these metadata
do not constitute a “ground truth” for functional cell types as we have defined them:
they merely provide different dimensions along which neurons can be clustered; any
similarities (or lack thereof) between discovered types and the metadata do not suggest
better or worse performance of the clustering algorithm. However, as none of the
metadata is supplied to either clustering algorithm, any similarities that do exist may
provide insights into how functional properties of cells relate to morphological,
transcriptomic, or location factors.

Many metadata labels belonged to certain clusters discovered by the sequential
method much more or less often than expected by chance: namely, dendrite types, most
transgenic lines, and some cortical layers (Figure 6A). Moreover, clusters with similar
indices k (ordered by the mean values of their estimated self-interaction filters so that∑T self

t=1 µ̂self
1 (t) > · · · >

∑T self

t=1 µ̂self
K (t), and used in Figures 4B and D and 6) tend to have

similar correlations with specific attributes (especially dendrite type). This suggests
that these attributes may not be linked to cell type per se, but rather to an
electrophysiological feature that varies continuously between cell types. Certain layers
(2/3, 4, and 6b) and transgenic lines (Pvalb, Tlx3, and, many others to a lesser extent)
are strongly overrepresented in a very small number of clusters and strongly
underrepresented in the others. These results suggest that there are meaningful
relationships between the functional cell types discovered by our method and these
genetic and anatomical factors.

Results obtained using the sequential method’s clusters are generally similar, albeit
reflecting differences in cluster structure seen in Figure 4. Because the cluster means are
relatively bunched, the ordering of their indices,

∑T self

t=1 µ̂self
1 (t) > · · · >

∑T self

t=1 µ̂self
K (t), is

messier than that of the simultaneous method, limiting our ability to discriminate
attributes as being linked to cell-type versus continuous features.

We see from Figure 6 that certain attributes tend to be characterized by a small
number of clusters in both the simultaneous and sequential methods. For example,
neurons in the Pvalb cre line tend to be assigned to clusters 0 and 1 by the
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simultaneous method, and to clusters 0 and 4 by the sequential method.

4 Discussion
In this work, we leverage a hierarchical probabilistic framework to advance our

ability to identify cell types from neural responses and improve our models of individual
neurons. We find that, even applied to relatively noiseless in vitro recordings, our
method provides substantial gains over independently fit single-cell models, in terms of
its ability to predict the response to a held-out stimulus. We demonstrated that these
gains increase as our method is applied to datasets of increasingly many neurons, and
highlighted the importance of using multiple evaluation metrics. Compared to clustering
individually fitted neuron models, our method discovers cell types that are more robust
to the exclusion of different groups of neurons from training, are more amenable to
interpretation, and reveal trends of scientific interest in terms of correlations between
cluster membership and other information available about each neuron.

We argue that these improvements stem from the simultaneous method’s ability to
“borrow strength” between the spike trains of different neurons. That is, while both
approaches can be thought of as applying regularization to the estimation of single-cell
parameters for each neuron, β̂i, in the simultaneous case this regularization is informed
by the spiking responses of other neurons, bringing more data to bear on the estimation
problem.

Compared with using sequential approaches that separately fit single neuron models
and then cluster their parameters, using this hierarchical generative model framework
requires more advanced statistical methods for parameter estimation and model
selection. However, appropriate choices of models and approximations allow for
tractable and improved parameter estimation. We make particular choices for the
single-cell response model (GLM), which parameters are related to cell type
(self-interaction filters, βself

i ), and how (normal distribution), but our algorithm can
generalize to any choices for these. However, these choices, along with the choice to use
a Gaussian approximation for variational inference, allow for a simpler algorithm that
can make use of off-the-shelf convex optimizers.

Overall, our method provides an unsupervised approach to the categorization of
dynamical properties that differ among neurons. This approach complements
well-established dynamical categories such as “Type I” and “Type II” neurons, as
discussed in e.g. [15–17] that are established based on mathematical properties of their
underlying differential equations models: specifically, the bifurcation that leads to a
neuron’s spiking. An interesting avenue for future work would be to compare these
categories with what we find with the present approach.

Hierarchical generative models can easily be modified to incorporate multimodal
data (as in [7]), so long as appropriate distributions for each modality can be specified.
Thus our method could be used to identify multimodal cell types in terms of their
transcriptomic and/or morphological properties as well as their functional ones, as an
alternate approach to previous work ( [18,19]). Indeed, our approach can be easily
applied to clustering problems outside of neuroscience, whenever there exists a cluster
structure among individual entities, and each entity generates many samples of data,
requiring only a change of how the data is described by a GLM.

That our approach provides the greatest performance improvements with data from
many neurons may make it well-suited for application to in vivo recordings of brain
activity. Modern recording technologies allow experimenters to simultaneously measure
the activity of hundreds to thousands of neurons at a time. However, the noise inherent
to the data and the effect of unmeasured inputs on in vivo activity limit the accuracy of
fitted parameters of single-cell neural dynamical models. In this work, our simultaneous
method improves the accuracy of fitted parameters, suggesting that it may be able to
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overcome these challenges.
Applying this algorithm to in vivo neural recordings is an exciting avenue for future

work. This would require expanding the framework to include connections between
observed neurons and noisy inputs from unobserved ones. There has been much
research on cell-type-specific connectivity suggesting that certain types are more likely
to synapse on each other, and affect each other in stereotyped ways [20–24]. Including
aspects of connectivity and/or noisy inputs with the cell-type-specific parameters β may
thus lead to improved estimates of network effects on neural activity. For example,
Jonas and Kording use a similar generative model and simultaneous approach that
predicts connectivity between cells as well as data about each cell’s position [7].
Although their method was applied to data about measured anatomical connectivity,
such approaches could be modified to work with inferred connectivity instead. Given
the long-term goal of identifying functional cell types from in vivo data, using this
method to identify cell types according to inferred intrinsic electrophysiological
parameters together with inferred connectivity parameters is a promising direction.

Such network models with functional cell types that such an algorithm may produce
can complement the growing body of theoretical literature regarding such
networks [25,26]. Such work provides ideas about how to interpret cell-type-specific
properties and interactions that our method may discover in the context of a neural
circuit; in return, our method’s discovery of cell-type structure in neural data would
highlight the biological relevance of such theoretical work.
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A B

C D

E F
Fig 5. IVSCC generalization performance: the simultaneous method produces single-cell models and
clusterings that generalize better, especially when fitted to more neurons. Additional details about this figure are
available in Section S3.
A: ANLL (lower is better) for each held-out neuron’s single-cell model, evaluated on responses to the test stimulus (Noise 2), using
the MAP β̂i (20) of the simultaneous method with (hyper)parameters K,λstim, Ω̂K estimated from the training neurons, versus
those found by the sequential method. Color encodes number of spikes for each neuron in the evaluation data.
B: Median relative difference between methods in ANLL of held-out neurons, evaluated on responses to the test stimulus, as a
function of how many neurons and how much data from each were used in training (more negative values indicate that the
simultaneous method is better). White asterisks indicate a significant relative difference; white bars indicate adjacent cases of
training data subselection where the relative differences were significantly different. Differences pooled across all vertically
(horizontally) adjacent conditions showed a significant, p = 3× 10−4, (p = 5× 10−26) trend, with more presentations (neurons)
yielding greater improvement by the simultaneous method.
C: Same analysis as A, but with EVratio (see (23); higher values indicate that the simultaneous method is better).
D: Same analysis as B, but with EVratio. Pooled vertical differences showed no significant trend (p > 0.1); horizontal differences
showed a significant (p = 5× 10−3) trend, with more neurons yielding greater improvement by the simultaneous method.
E: Relative differences between methods of EVratio (shown in C) versus ANLL (shown in A); color encodes number of spikes.
Neurons with many (few) spikes show only improved ANLL (EVratio) in the simultaneous method.
F: Same analysis as B, but for the similarity of cluster assignments k̂i between model fits with different held-out neurons,
measured by ARS (more positive values indicate that the simultaneous method is better). Pooled vertical differences showed a
significant (p = 5× 10−2) trend, with fewer presentations yielding greater improvement by the simultaneous method; horizontal
differences showed no significant trend (p > 0.1).
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A: Simultaneous

B: Sequential

Fig 6. IVSCC metadata is related to discovered cell types. Z-scored fraction of cells with an attribute in each cluster.
Cluster identities in panel A (B) are the same as in Figure 4B (D), obtained using the simultaneous (sequential) method (fitted
with BIC-selected K = 12 clusters, showing only clusters with at least 20 neurons). Attributes are spiny or aspiny dendrites,
location (hemisphere and cortical layer), and Cre line. Note the ARS between the cluster and metadata labels in each title.

Z-scores are calculated as Z(a)
i = (p̂

(a)
i − p̂i)/

√
p̂

(a)
i (1− p̂(a)

i )/N (a) + p̂i(1− p̂i)/N , where p̂i is the empirical probability that a cell

is in cluster i and p̂(a)
i is the empirical probability that a cell with attribute a is in cluster i, N is the number of cells, and N (a) is

the number of cells with attribute a.
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