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Abstract
Perception of sounds and speech involves structures in the

auditory brainstem that rapidly process ongoing auditory stim-
uli. The role of these structures in speech understanding can be
investigated by measuring their electrical activity using scalp-
mounted electrodes. Typical analysis methods involve averag-
ing responses to many short repetitive stimuli. Recently, re-
sponses to more ecologically relevant continuous speech were
detected using linear encoding models called temporal response
functions (TRFs). Non-linear predictors derived from complex
auditory models may improve TRFs. Here, we compare pre-
dictors from both simple and complex auditory models for esti-
mating brainstem TRFs on electroencephalography (EEG) data
from 24 subjects listening to continuous speech. Predictors
from simple models result in comparable TRFs to those from
complex models, and are much faster to compute. We also dis-
cuss the effect of data length on TRF peaks for efficient estima-
tion of subcortical TRFs.
Index Terms: Auditory Brainstem Response (ABR), deconvo-
lution, speech-ABR, temporal response function (TRF), EEG.

1. Introduction
The human auditory system consists of several subcortical and
cortical structures that rapidly process incoming sound signals
such as speech. Electroencephalography (EEG) measurements
of the aggregate activity of these neural structures have been
instrumental in understanding the mechanisms underlying nor-
mal hearing and hearing impairments [1, 2, 3]. One important
measure is the morphology of the auditory brainstem response
(ABR), and the amplitude and latency of ABR peaks have been
widely used in many clinical settings such as neonatal hearing
screening [4]. However, conventional methods to detect the
ABR rely on averaging responses over multiple trials of non-
natural, short stimuli such as clicks, chirps or speech syllables
[5].

Recently, a method to estimate ABR-like responses to con-
tinuous ongoing speech was developed [6, 7], allowing for the
exploration of subcortical mechanisms using responses to eco-
logically relevant speech stimuli. One method to estimate these
subcortical responses is the temporal response function (TRF),
a linear encoding model of time-locked neural responses to con-
tinuous stimuli [8]. TRFs have been widely used for estimating
cortical responses to speech [9, 10, 11, 12, 13], but few studies
have investigated subcortical TRFs [6, 14, 15, 16, 17].

Electrical responses that are generated in the brainstem and
measured at the scalp are small compared to the amplitude of
the on-going EEG (low SNR). They are subsequently difficult
to detect, requiring a large amount of data for reliable TRFs
[6, 14]. Additionally, subcortical processes rapidly time-lock

to fast stimulus fluctuations, and a measurement system with
precise synchronization (sub-millisecond) between the stimu-
lus and the measured EEG is essential to detect these responses.
Another concern is that TRFs which linearly map the sound
stimulus to the EEG ignore several highly non-linear process-
ing stages in the auditory periphery [18]. One study has recently
shown that predictors derived from auditory models that incor-
porate non-linear stages can lead to improved subcortical TRFs
[19]. Another recent study showed that auditory-model-derived
predictors outperform previously used envelope predictors even
for cortical TRFs [20].

In this work, we compared predictors derived from auditory
models in terms of their suitability for estimating subcortical
TRFs. We computed predictors from simpler filterbank mod-
els [21] with or without adaptation [22] and compared them
to a more complex auditory nerve model [23] that has been
previously used to fit subcortical TRFs [19]. TRFs were esti-
mated from EEG data recorded from 24 participants listening
to continuous speech. Prior work indicates that the most promi-
nent feature of subcortical TRFs is the wave V peak [6, 16].
This peak was used as the primary measure of performance in
our study. Additional measures such as the computational time
taken to generate predictors and the amount of data required for
fitting TRFs for each predictor type are also reported.

We corroborate the findings of [19] by confirming that the
predictor derived from a complex model of the auditory nerve
outperforms the rectified speech predictor. Interestingly, our
results indicate that predictors from simpler models can reach
almost the same performance for estimating wave V peaks as
complex models, with the added advantage of being more than
50 times faster to compute. These simpler models, combined
with TRF analysis, could lead to efficient algorithms for fu-
ture ’neuro-steered’ hearing aids [24], and encourage the use of
more ecologically relevant continuous speech stimuli in clinical
applications.

2. Methods
2.1. Experimental setup

EEG data was collected from 24 participants with clinically
normal hearing (14 males, mean age 37.16, standard devation
9.64). All participants provided informed consent and the study
was approved by the ethics committee for the capital region of
Denmark (journal number 22010204). EEG data was recorded
while participants were seated listening to continuous segments
from a Danish audiobook of H.C. Andersen adventures read by
Jens Okking. The 2-channel audio was averaged to form a mono
audio channel which was then highpass filtered at 1kHz using a
1st order Butterworth filter. The participants were instructed to
relax and listen to the story. There were 8 trials, each consisting
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of 4 to 5 minute segments from the audiobook. The single chan-
nel speech segments were scaled to have the same root mean
square (r.m.s.) value as a 1 kHz pure tone at 72 dB SPL, and
was presented using an RME Fireface UCX soundcard (RME
Audio, Haimhausen Germany) and Etymotic ER-2 (Etymotic
Research, Illinois, USA) insert earphones, which were shielded
using a grounded metal box to avoid direct stimulus artifacts on
the EEG. Later analysis confirmed that stimulus artifacts were
not present in the estimated TRFs.

2.2. EEG data collection and preprocessing

A Biosemi 32-channel EEG system was used with a sampling
frequency of 16,384 Hz and a fifth order cascaded integrator-
comb anti-aliasing filter with a -3 dB point at 3276.8 Hz. Addi-
tional reference electrodes were placed on the mastoids and ear-
lobes, as well as above and below the right eye. Data analysis
was conducted in MATLAB (version R2021a) and the Eelbrain
Python toolbox (version 0.38.1) [25] using only the Cz channel
placed at the scalp center, which was re-referenced to the aver-
age of the two mastoid electrodes. The data was highpass fil-
tered using a first order Butterworth filter with cutoff frequency
of 1 Hz. To remove power line noise, the signal was passed
through FIR notch filters at all multiples of 50 Hz until 1000 Hz,
with transition bandwidths of 5 Hz. Simple artifact removal was
performed by zeroing out 1 second segments around parts of the
EEG data that had amplitudes larger than 5 standard deviations
(s.d.) above the mean, similar to prior work[6]. Finally, only
the data from 1 to 241 seconds of each trial was used for further
analysis to avoid onset effects and to have the same amount of
data in each trial.

Detecting subcortical responses requires precise synchro-
nization between the EEG and the audio stimuli. Hence, to
avoid trigger jitters and clock drifts, the output of the audio
interface was fed to the BioSemi Erg1 channel via an opti-
cal isolator to maintain electrical separation between the mains
power and the data collection system (StrimTrak, BrainProd-
ucts GmbH, Gilching, Germany). The recorded signal from the
StimTrak was used to generate predictors for the TRF analysis.

2.3. Auditory models

Predictors were computed using several auditory models, de-
scribed below in order of increasing complexity. For all mod-
els, the input was the audio stimulus, as recorded by the Strim-
Trak system. The lags inherent in the output of each model
were accounted for by shifting the generated predictors to max-
imize the correlation with the rectified speech predictor, similar
to prior work [19]. Since brainstem responses are largely ag-
nostic to stimulus polarities, a pair of predictors were generated
for each model, using an input stimulus pair with the original
stimulus and the stimulus with opposite sign. In line with prior
work [6, 19], TRFs were fit to each polarity separately and then
averaged together.

2.3.1. Rectified speech (RS)

Previous studies have shown that the rectified speech signal can
be used to estimate subcortical TRFs to continuous speech [6].
This method was used for the first predictor pair, termed RS,
which was formed by rectifying the speech stimulus (and the
stimulus with opposite sign).

2.3.2. Gammatone spectrogram predictor (GT)

Incoming sounds undergo several stages of non-linear process-
ing in the human ear and cochlea. The gammatone filterbank
is a simple linear approximation of this system [26]. A gam-
matone filterbank consisting of 31 filters from 80-8000 Hz with
1 equivalent rectangular bandwidth (ERB) spacing was applied
to the stimulus pair and the resulting amplitude spectra were
averaged over all bands to generate the second predictor pair,
which was termed GT. The Auditory Modeling Toolbox (AMT)
version 1.1.0 [27] (function auditoryfilterbank with default pa-
rameters) was used.

2.3.3. Simple model without adaptation (OSS)

The next predictor pair, termed OSS, was generated using the
auditory model provided in [22], which is based on the adap-
tation model in [21]. The implementation in AMT (function
osses2021) was used. This model consists of an initial head-
phone and outer ear pre-filter (stage 1), a gammatone filterbank
(stage 2), and an approximation of inner hair cell transduction
using rectification followed by lowpass filtering (stage 3). The
next stage of the model consists of adaptation loops (stage 4),
which approximate the adaptation properties of the auditory
nerve. The initial prefilter was omitted since it is not required
for stimuli presented with insert earphones. The adaptation
stage was also omitted for this version of the model. Therefore
only stages 2 and 3 were used, and the resulting signals with
31 center frequencies (similar to GT) were averaged together to
form the predictor pair.

2.3.4. Simple model with adaptation (OSSA)

The adaptation loops (stage 4) of the previous auditory model
[22] were now included (i.e., stages 2, 3 and 4 were used). The
31 channel output from the adaptation loops were averaged to-
gether to generate a pair of predictors, termed OSSA.

2.3.5. Complex model (ZIL)

Finally, a more complex auditory model [23] was used to gen-
erate predictors, and was termed ZIL. This model has been re-
cently used to estimate subcortical TRFs [19] and consists of
several stages approximating non-linear cochlear filters, inner
and outer hair cell properties, auditory nerve synapses and adap-
tation. The implementation in the Python cochlea package [28]
was used with 43 auditory nerve fibers with high spontaneous
firing rates and center frequencies logarithmically spaced be-
tween 125 Hz and 16 kHz, in line with previous work [19].
To speed up computation, an approximation of the power-law
adaptation was used [19]. The outputs of this model are the
mean firing rates of the auditory nerves, which were averaged
to form the final predictor pair.

2.4. Temporal response function estimation

The TRF is the impulse response of the neural system. TRFs
were fit for each predictor using the frequency domain method
outlined in previous studies [6, 14] and shown in eq. (1).

TRF = F−1

{∑N
i=1 wiF{xi}∗F{yi}∑N
i=1

1
N
F{xi}∗F{xi}

}
(1)

Here, F denotes the Fourier transform, N is the number of
trials, xi, yi and wi are the predictor, EEG signal and weight for
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trial i, and ∗ denotes the complex conjugate. The trial weights
wi were set to be the reciprocal of the variance of the EEG data
of trial i normalized to sum to 1 across trials. In line with prior
work [14], this was done to down-weight noisy (high variance)
EEG trials. This frequency domain method results in TRFs with
lags from −T/2 to T/2 where T is the data length.

Two TRFs were estimated separately for each predictor
pair, and then averaged together. These TRFs were then band-
pass filtered between 30-1000 Hz using a delay compensated
FIR filter and then smoothed using a Hamming window of
width 2 ms. The smoothing step was necessary since this unreg-
ularized TRF approach resulted in noisy estimates for the OSS
and OSSA models (see Discussion). The TRF segment from
-10 to 30 ms was extracted for further analysis. Finally, the
baseline activity (mean of the TRF segment from -10 to 0 ms)
was subtracted from each TRF. To investigate the effect of data
length, TRFs were estimated on consecutively increasing num-
ber of trials (4, 8, 12, ..., 32 minutes). This resulted in 8 TRFs
for each predictor that allowed for quantifying the improvement
of TRF estimation with increasing data length.

2.5. Performance metrics and statistical tests

The most prominent feature of ABR TRFs is the wave V peak
that occurs around 5-10 ms [6, 15, 16]. The amplitude of this
wave V peak was used as the primary metric for comparing
TRFs from each predictor type. The SNR of the wave V peak
was computed, similar to prior work [6]. First, the TRF peak
between 5-10 ms was automatically detected, and the power
in a 5 ms window around the peak was computed as a mea-
sure of the signal power S. Next, the noise power N was esti-
mated as the average TRF power in 5 ms windows in the range
-500 to -20 ms. Finally, the wave V SNR was computed as
SNR = 10 log10(S/N).

The amplitudes and latencies of the TRF wave V for each
predictor for each participant were also extracted. The consis-
tency of individual wave V was investigated using correlations
of wave V amplitudes and latencies across predictors. The over-
all execution times to generate each predictor and the Pearson
correlations between predictors are also reported in Table 1.

Statistical analysis was performed using a linear mixed ef-
fects (LME) model with wave V SNR as the dependent factor,
predictor type and data length as fixed effects, and participant
number as a random effect. Two participants were excluded
from these tests since they did not have data from all trials. Post-
hoc two-tailed paired t-tests with Holm-Sidak correction were
used to test for pairwise differences in wave V SNR across pre-
dictors for the TRFs fit on all 8 trials.

3. Results
3.1. Subcortical TRFs for predictors derived from auditory
models

A comparison of the computational time required to generate
each predictor and their correlations with the simplest (RS) and
the most complex (ZIL) models are provided in Table 1. The
computations were performed on an AMD Ryzen 7 PRO 5850U
1.9 GHz CPU with 32 GB RAM. Note that even the approxi-
mate ZIL model is more than 50 times slower than the others.

The TRFs for the five predictors over all 24 subjects are
shown in Fig. 1. The TRF shows a clear wave V peak for all
predictors. The wave V peak latency slightly varies across the
predictor types, even after removing lags arising from the mod-
els themselves by shifting each predictor to have the maximum

Table 1: Predictor comparison

Predictor
Computation

Time
(1 s input)

Correlation
with RS

Correlation
with ZIL

RS - - 0.316
GT 0.0521 s 0.461 0.550
OSS 0.0563 s 0.438 0.496
OSSA 0.0680 s 0.262 0.577
ZIL 4.1208 s 0.316 -

correlation with RS (see Discussion).
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Figure 1: TRFs for each predictor. The mean and standard error
of the mean (s.e.m.) across 24 subjects is shown. Clear wave V
peaks are seen for all TRFs.

3.2. Interaction of data length and predictor type on sub-
cortical TRFs

The amount of data required for clear wave V peaks was in-
vestigated by fitting TRFs on an increasing number of 4 minute
trials. The wave V SNR was used as the metric to compare
TRFs across predictors and data lengths as shown in Fig. 2. Al-
most all subjects reached above zero SNR with 12 minutes of
data for all models except RS, and the LME found a significant
interaction between data length and predictor type (F28,588 =
4.66, p < 0.001). Two further trends were observed; 1) models
with filterbanks (GT, OSS) had on average higher SNR com-
pared to RS, 2) models with adaptation and level dependency
(OSSA, ZIL) had on average higher SNR compared to filter-
banks. Interestingly, wave V SNR of the simpler OSSA model
was comparable to the more complex ZIL model. For the TRFs
fit on 32 minutes of data, pairwise t-tests with Holm-Sidak cor-
rection revealed that wave V SNR was significantly higher for
all model conditions compared to RS (all p < 0.015), and for
OSSA and ZIL vs. OSS and GT (all p < 0.001).

3.3. Individual amplitudes and latencies of wave V

Finally, the individual wave V amplitudes and latencies for the
OSSA and ZIL predictors were compared as shown in Fig. 3.
The OSSA model showed a high degree of correlation with the
ZIL model (0.973 for the peak amplitudes and 0.926 for the
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Figure 2: Effect of predictor type and data length on wave V SNR. Boxplots are shown across 24 subjects.

peak latencies), confirming that both models provide TRF wave
V estimates that are consistent across subjects. However, the
ZIL model has a shorter mean latency, also seen in Fig. 1 (see
Discussion). Nevertheless, this correlation analysis indicates
that the simpler OSSA model may provide a good trade-off be-
tween computational efficiency and reliable wave V peaks.
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Figure 3: Individual wave V peak amplitudes and latencies.
Scatterplots across subjects and the correlation between OSSA
and ZIL are shown.

4. Discussion
In this work, we compared the suitability of several predictors
for estimating subcortical TRFs to continuous speech. Results
indicate that the addition of filterbanks and adaptation stages to
the predictor models greatly improves estimation of wave V in
the TRFs over rectified speech predictors. We show that even
simpler models may allow for robust wave V peaks with around
12 minutes of data. These simple models give wave V estimates
that are comparable to a more complex model, even though the
complex model is 50 times slower to compute. However, it must
be noted that OSSA wave V SNRs were comparable to ZIL only
after smoothing the TRFs using a 2 ms Hamming window (see
Methods), perhaps because the OSSA TRFs were noisier. Other
methods such as regularized regression, which is widely used
for cortical TRFs [29, 30, 31], or direct estimation of TRF peaks
[32] may be able to overcome this issue. Nevertheless, our cor-
relation analysis revealed that these smoothed TRFs resulted in
wave V peak amplitudes and latencies for OSSA and ZIL that
were consistent across subjects.

This work does not provide an exhaustive list of auditory
models or predictors for estimating subcortical TRFs. We also

do not directly compare the performance of the auditory mod-
els themselves (see [33]), but only evaluate their suitability to
generate predictors for subcortical TRFs. Several other mod-
els [34, 35] could be utilized to generate predictors, although
our work suggests that simple models are reliable enough to fit
TRFs with clear wave V peaks.

It must be noted that although the wave V peak was used as
the primary metric of performance, the conventional click ABR
consists of several other morphological features [36]. The wave
V peak was selected here to both be consistent with prior work
[6, 19, 16], and because it was the only consistent feature that
was detected in all subjects. TRFs using ZIL had shorter wave
V peak latencies (see Figures 1 and 3). It is possible that the
wave V from the ZIL model is earlier since the ZIL model bet-
ter incorporates peripheral non-linearities. This may provide a
predictor that is similar to intermediate signal representations in
the auditory pathway near the wave V generators, which could
in turn result in an earlier estimated wave V. Further investiga-
tion is needed to disentangle the effects of model lags in order
to ascertain whether these latency differences are meaningful
properties of the ABR. Future work could also explore if other
features of the conventional ABR can be reliably detected using
subcortical TRFs.

Finally, this work only analyses subcortical responses to
speech stimuli. Recent work indicates that complex auditory
model predictors (ZIL) provide significant advantages over rec-
tified speech when estimating subcortical TRFs for music [22].
Future work could investigate the suitability of simpler auditory
model predictors for estimating TRFs for non-speech stimuli.

5. Conclusions
This work provides a systematic comparison of predictors de-
rived from auditory peripheral models for estimating subcorti-
cal TRFs to continuous speech. Our results indicate that simple
models with filterbanks and adaptation loops may suffice to es-
timate reliable subcortical TRFs. Such efficient algorithms may
pave the way toward the use of more ecologically relevant nat-
ural speech for investigating hearing impairment and for future
neuro-steered hearing aids.
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