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Figure S1. Characterizing Naegleria contractile vacuoles and their mechanisms. (A) (Left) A 
representative N. gruberi amoeba under agarose illustrates the definition of the orientation angle, θ, 
between the centroid velocity and the contractile vacuole. (Right) A windrose plot shows the 
orientation of the contractile vacuole at the time of pumping relative to the velocity of the cell’s 
centroid at that moment. The histogram depicts 80 pumping events from 15 cells across 5 biological 
replicates. Open colored circles show the average orientation from populations of cells measured on 
5 separate days (2-4 cells and 13-19 pumps per replicate); the gray square shows the average of 



these 5 biological replicates. (B) Alignments produced by T-COFFEE of the hits for V1 subunit G, show 
the sequence similarity of these genes. Residues are colored to indicate amino acids with similar 
properties, with darker shading indicating greater conservation. (C) Alignments of V0 subunits c and a. 
Key residues are highlighted, including those that form the Bafilomycin A binding site (yellow) or are 
functionally disrupted by Bafilomycin A binding (cyan). Residues are based on cryo-EM structures of 
the B. taurus v-ATPase.99 (D) Cells were incubated with or without the vacuolar-type H+ ATPase 
inhibitor Bafilomycin A1 or DMSO (carrier control). Each contractile vacuole bladder was measured at 
its maximum size, and the cumulative contractile vacuole area was calculated over 8 min. Left panels 
show the cumulative area pumped out of the cell for 25 cells: 5 cells each from 5 experiments. The 
right panel shows the area pumped per minute, with each small gray symbol representing a single cell 
(5 cells per experiment), and larger symbols representing experiment-level averages for 5 replicates, 
with symbols coordinated by experiment.
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Figure S2. Naegleria and Dictyostelium contractile vacuole bladders are larger under more hypo-
osmotic stress. Violin plots show the maximum contractile vacuole area for each pumping event in N. 
gruberi (A) or D. discoideum (B) for each of five experimental replicates, which were pooled in Fig. 
2C-D. White lines indicate the median and quartiles. 
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Figure S3. Naegleria and Dictyostelium contractile vacuole emptying can occur in the absence of 
cytoskeletal polymers. (A) N. gruberi cells were treated with DMSO or Latrunculin B, then fixed and 



stained for actin polymer (Alexa-488 conjugated phalloidin) and DNA (DAPI). Maximum intensity 
projections of representative cells are shown, adjusted to the same brightness and contrast settings. 
(B) The same DMSO and Latrunculin data shown in Fig. 3C is shown within the context of a wider drug
panel (including the Arp2/3 complex inhibitor CK-666 and the microtubule inhibitor Nocodazole).
Graphs show the area pumped per minute by Dictyostelium contractile vacuoles, the number of pumps
per minute, and the maximum contractile vacuole area per cell. (C) A D. discoideum cell expressing a
fluorescently-labeled actin-binding protein is shown through a pumping cycle. Line scans bisecting a
contractile vacuole show no enrichment of actin around the pumping bladder.
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10 µm This work
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10 µm This work

ΔP Cytoplasmic 
pressure

~10-1000 Pa Petrie and Koo, Curr. 
Protoc. Cell Biol., 2014
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light microscopy
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Text S2)

Figure S4. Estimating contractile vacuole pore size. (A) Model parameters for the cytoplasmic 
pressure model that allow the contractile vacuole to dispense its entire volume in 1 s. The required 
pore diameter is plotted as a function of the choice of pore width, given a cytoplasmic pressure of 10 
Pa (solid line), 100 Pa (dashed line), or 1000 Pa (dotted line). Any reasonable choice of cytoplasmic 
pressure in between 10 and 1000 Pa (gray shading) allows for a wide range of possible pore 
diameters and pore depths. (B) A table shows the allowable parameters66 representing the results 
shown in (A). 



Supplemental Text 1: Modeling contractile vacuole �illing
1. Introduction

We propose a model in which contractile vacuole dynamics are driven by the competition between the energetic
gain associated with lowering osmotic pressure differences across the contractile vacuole membrane, , and the∆Π

𝐶𝑉

energetic penalty associated with its surface tension, , and the cytosolic elastic energy, .σ 𝐺

2. Initial �illing of the contractile vacuole network

We hypothesize that contractile vacuole helps maintain a constant cytosolic solute concentration for stable cell
functions. Given that environmental solute concentrations rarely change on the time scale of contractile vacuole
pumping events (~1 min), a constant cytosolic concentration leads to a constant osmotic pressure across the
plasma membrane, . To remove excess water in the cytosolic space, contractile vacuoles maintain a solute∆Π

𝑃𝑀

concentration higher than the cytosolic concentration, and therefore, establish an osmotic pressure across the
contractile vacuole membrane, . Water intake leads to a volume increase in the contractile vacuole network∆Π

𝑐𝑣

prior to its pumping event. Here we derive a simple relation between the two osmolarity differences during the
initial �illing stage of the contractile vacuole network. From Darcy’s law, the instantaneous �low rate across a
semipermeable membrane is given by,

𝑞 =− 𝑘
µ Π

where is the instantaneous �low rate per unit area, is the membrane permeability, is the �luid viscosity, and𝑞 𝑘 µ Π
is the osmotic pressure across the membrane.

Therefore, the volumetric �low rates across the plasma membrane and the contractile vacuole membrane are given
by,

𝑄
𝑃𝑀

= 𝐴
𝑃𝑀

𝑘
µ ∆Π

𝑃𝑀

𝑄
𝐶𝑉

= 𝐴
𝐶𝑉

𝑘
µ ∆Π

𝐶𝑉

where is the instantaneous volumetric �low rate, is the surface area, and the subscripts and indicate𝑄 𝐴 𝑃𝑀 𝐶𝑉
plasma membrane and contractile vacuole membranes, respectively. The membrane permeabilities for the plasma
membrane and the contractile vacuole membranes are assumed to be the same, supported by similar membrane
staining patterns via FM4-64.

In this analysis, we assume that the cytosolic volume remains constant, agreeing with the experimental observation
that the cell area does not signi�icantly change during the contractile vacuole cycle. A constant cytosolic volume
requires equal amounts of in�lux across the plasma membrane and out�lux across the contractile vacuole
membrane, or mathematically, . Rearranging this steady-state condition, we reached the following𝑄

𝑃𝑀
= 𝑄

𝐶𝑉

relation,

Eq 1∆Π
𝐶𝑉

=
𝐴

𝑃𝑀

𝐴
𝐶𝑉

∆Π
𝑃𝑀

As shown in Eq 1, the osmotic pressure across the contractile vacuole membrane, , is inversely proportional to∆Π
𝐶𝑉

the total surface area of the contractile vacuole networks, . Assuming that the plasma membrane maintains a𝐴
𝐶𝑉

constant surface area, , and a constant osmotic pressure difference, , having a larger contractile vacuole𝐴
𝑃𝑀

∆Π
𝑃𝑀

surface area will allow water to �low into the CV at a lower . This could indicate that having a CV network with∆Π
𝐶𝑉



more surface area is more ef�icient at establishing and maintaining an osmotic gradient, as it would require less
vacuolar type proton pump activity—and therefore less ATP—than a CV network with less surface area.

3. Orders-of-magnitude estimation of the critical size of contractile vacuole network

As the contractile vacuole network �ills, the increased membrane tension and cytosolic pressure result in a
prominent energetic penalty. The competition between the energetic gain of lower osmotic pressure and the
energetic penalty determines a critical size of the contractile vacuole network. Here we derive an
orders-of-magnitude estimation of this critical vacuole size as a function of its environmental and intrinsic
parameters.

The cell free energies (F) pertinent to our analysis are the energies contributed by the osmotic pressure differences
( and ) and the tension of the plasma and contractile vacuole membranes ( and ), as well as the∆Π

𝑃𝑀
∆Π

𝐶𝑉
σ

𝑃𝑀
σ

𝐶𝑉

cytosolic elastic energy (GV). Collectively, the system free energy is expressed as the following equation,

𝐹 =  − ∆Π
𝑃𝑀

𝑉
𝑐𝑦𝑡𝑜𝑠𝑜𝑙

− ∆Π
𝐶𝑉

𝑉
𝐶𝑉

+ σ
𝑃𝑀

(𝐴
𝑃𝑀

− 𝐴
𝑃𝑀,0

) + σ
𝐶𝑉

(𝐴
𝐶𝑉

− 𝐴
𝐶𝑉,0

) + 𝐺𝑉
𝑐𝑦𝑡𝑜𝑠𝑜𝑙

where the cytosolic elastic energy is approximated as a linear function of the cytosol volume via an elastic modulus,
, and a resting membrane area is assumed for the plasma membrane, , and the contractile vacuole𝐺 𝐴

𝑃𝑀, 0

membrane, .𝐴
𝐶𝑉,0

In this orders-of-magnitude analysis, we approximated the cell and the contractile vacuole network as spherical
objects with radii of and , respectively. Another approximation using cylindrical objects yields a similar trend,𝑟

1
𝑟

2

but a different functional form, between the vacuole critical size and the osmotic pressure. The resting membrane
areas, and , are independent of the instantaneous radii, and . The �irst derivative of the system free𝐴

𝑃𝑀, 0
𝐴

𝐶𝑉,0
𝑟

1
𝑟

2

energy is written as,

𝑑𝐹 =− 4π∆Π
𝑃𝑀

𝑟
1
2𝑑𝑟

1
− 𝑟

2
2𝑑𝑟

2( ) − 4π∆Π
𝐶𝑉

𝑟
2
2𝑑𝑟

2
+ 8πσ

𝑃𝑀
𝑟

1
𝑑𝑟

1
+ 8πσ

𝐶𝑉
𝑟

2
𝑑𝑟

2
+ 4π𝐺( 𝑟

1
2𝑑𝑟

1
− 𝑟

2
2𝑑𝑟

2( )
Following the steady-state cytosolic volume assumption, we recognize that and𝑑𝑉

𝑐𝑦𝑡𝑜𝑠𝑜𝑙
= 4π 𝑟

1
2𝑑𝑟

1
− 𝑟

2
2𝑑𝑟

2( ) = 0

the elastic energy term vanishes, which suggests that the cytosolic elastic energy does not affect the critical
contractile vacuole network size prior to pumping. To obtain the critical size at which the contractile vacuole
expels, we calculate at which , and it has the following form,𝑟

2
* 𝑑𝐹

𝑑𝑟
2

= 0

Eq 2𝑟
2
* =

2σ
𝐶𝑉

𝑟
1

∆Π
𝐶𝑉

𝑟
1
−2σ

𝑃𝑀

where we have invoked the relation derived from the steady-state cytosolic volume assumption.
𝑑𝑟

1

𝑑𝑟
2

=
𝑟

2
2

𝑟
1

2

As shown in Eq 2, a lower osmotic pressure across contractile vacuole membrane, , corresponds to a larger∆Π
𝐶𝑉

contractile vacuole network radius, , qualitatively agreeing with the simple relation derived in Eq 1. To have a𝑟
2

*

more quantitative intuition of the system, we perform an order-of-magnitude estimation by assuming that
mN/m for membrane tension and µm. From Eq 2, we can estimate that for a𝑂(σ

𝑐𝑣
) = 𝑂(σ

𝑃𝑀
) = 1 𝑂(𝑟

1
) = 10

wide range of solute concentration differences across the contractile vacuole membrane ( 0 mM), the0. 1 − 1

contractile vacuole radius is predicted to be on the order of 1 µm, or µm, consistent with our𝑂 𝑟
2
*( ) = 1 

experimental observations.



To further link this model with experimental data, we derive a relation between and . A quadratic equation𝑟
2

* ∆Π
𝑃𝑀

in is derived by combining Eq 1 and Eq 2 as the following,𝑟
2

*

𝑟
2

2 + 𝑟
1
𝑟

2
+

∆Π
𝑃𝑀

2σ 𝑟
1

3 = 0

To simplify the model, here we assume that as the contractile vacuole and the plasma membrane exhibitσ
𝑃𝑀

= σ
𝐶𝑉

similar membrane staining patterns, indicating that these two membranes possess similar compositions, and
therefore, similar surface energies.

Taking the positive solution for the quadratic equation, we derived the following expression for ,𝑟
2

*

Eq 3𝑟
2

* =
𝑟

1

2 ( 1 +
2∆Π

𝑃𝑀

σ 𝑟
1

− 1)

As shown in Eq 3, a higher environmental solute concentration, corresponding to a lower solute concentration
difference and subsequently a lower , will result in a decrease in , or a smaller contractile vacuole network.∆Π

𝑃𝑀
𝑟

2
*

This qualitatively agrees with the experimental observation that an increase in the environmental sorbitol
concentration results in smaller contractile vacuole networks prior to pumping, suggesting that this simple model
can capture the essential dynamical processes in contractile vacuole networks.
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1 Introduction

Here, we develop a physical model for how a cell rapidly expells the contents of its contractile vacuole. This works extends
off of previously-published models of contractile vacuole expulsion (Naitoh et al., 1997) and applies them to the specific
geometry of cells under confinement. The following section presents the basic assumptions of the model. The subsequent
sections explore different possible drivers of vacuole expulsion, and their predictions for experimental data.

2 Basic model assumptions

Here we present the basic assumptions of the model.

2.1 The base model

In all versions of the model, we assume that all of the contents of the vacuole exit through a single pore of constant radius
and thickness. The fluid in the vacuole is assumed to be an incompressible Newtonian fluid (water) engaging in laminar flow
through the pore. The flow through this pore is therefore determined by the Hagen–Poiseuille law for laminar flow through
a cylinder:

∆P =
8πηLP vP

AP
, (1)

where ∆P is the pressure difference between either side of the pore, η is the dynamic viscosity of the fluid, LP is the
thickness of the pore, vP is the average velocity of the fluid through the pore, and AP is the cross-sectional area of the pore.
Solving for the velocity of the fluid...

vP =
AP∆P

8πηLP
. (2)



The volumetric flow rate through the pore is thus the average fluid velocity mulitplied by the cross-sectional area of the
pore, or dV

dt = Av. This gives a volumetric flow rate of...

dV

dt
= AP v =

A2
P∆P

8πηLP
.

= γ∆P

(3)

where γ =
A2

P

8πηLP
is the inverse of the resistance to flow through the pore.

To calculate the volume of the vacuole over time, one simply needs to integrate the amount of volume lost over time, and
subtract it from the initial volume:

V (t) = V0 −
∫ t

0

dV

dt

= V0 −
∫ t

0

γ∆P

(4)

where AP , LP , and η are constants. At this point, where subsequent models can diverge is how ∆P depends on other
model parameters (such as the volume, area, or diameter of the vacuole), which are themselves changing over time as the
vacuole expells its contents. Further subsections will explore these different choices for ∆P (t).

2.2 Validation of laminar flow

Laminar flow is defined as a flow in which fluid particles follow along smooth paths in layers, where each layer moves smoothly
past the adjacent layers with little or no mixing. For flow through a cylinder, laminar flow occurs when a dimensionless
parameter called the Reynolds number Re becomes smaller than ≈ 2,100. The Reynolds number for a cylinder is defined as:

Re =
ρvD

η
(5)

where ρ is the density of the fluid, v is the mean speed of the fluid, D is the diameter of the cylinder, and η is the dynamic
viscosity of the fluid. For the case of the vacuole: The density of water is ρw = 103 kg

m3 = 10−24 kg
nm3 , the diameter of the pore

is at largest D = 1µm = 103nm, and the dynamic viscosity of water is temperature-dependent η = 2.414 · 10−8 · 10
247.8

(TK−140) ,
which is 9 · 10−7 pN ·ms

nm2 at 25C and 7 · 10−7 pN ·ms
nm2 at 37C. At a velocity of v = 10nm

ms (exiting the 10µm vacuole in 1 second),
the Reynolds number would be 10−5, so we are indeed at low Reynold’s number.

3 Cytoplasmic pressure model

3.1 Model assumptions

Here, we take the base model presented in Section 2.1, and proceed assuming cytoplasmic pressure drives the contents out
of the vacuole. In particular, we assume the pressure inside the vacuole equals the cytoplasmic pressure, and that the cyto-
plasmic pressure is constant throughout expulsion.

We can assume cytoplasmic pressure is constant because the following logic: (1) The only way for cytoplasmic pressure
to change is for the concentration of the cytoplasm to change; (2) The only way for the concentration of the cytoplasm to
change is by a flow of water across the cell or vacuole membrane. (3) Because the rate of vacuole expulsion is roughly sixty
times faster than the rate of vacuole swelling, we know the flow of water through the open pore is much faster than the
rate at which water flows across the intact cell and vacuole membranes; (4) For simplicity, we will thus assume the flow of
water across the cell and vacuole membranes is approximately zero during the expulsion phase, and the cytoplasmic pressure
remains constant.

3.2 Vacuole volume over time

Mathematically, the simplest possible assumption one can make for ∆P in Eq. 4 is that it is constant in time. Because AP ,
LP , and η are also constants, the volumetric flow rate is constant. In this case, the total volume in the vacuole over time is...

V (t) = V0 −
∫ t

0

γ∆P

= V0 − γ∆Pt.

(6)



3.3 Time to dispense entire volume

To solve for the time is takes to completely empty the vacuole, we can set V (tE) = 0 and solve for tE :

0 = V0 − γ∆PtE

tE =
V0

γ∆P

=
V08πηLP

A2
P∆P

(7)

We can now plug in estimates for a few parameters and get a sense of how large the cytoplasmic pressure has to be in
order to expel the contents of a vacuole in ≈ 1 sec. Let’s say the height of the vacuole is H ≈ 104nm, and the radius is
R = 5·103nm, making the initial volume V0 ≈ 1012nm3. We can also estimated that the diameter of the pore is DP ≈ 103nm,
the area of the pore is AP = π((DP /2)

2 ≈ 106nm2, and the length of the pore is LP ≈ 103nm. Assuming the contents of

the vacuole behave as water, the dynamic viscosity of water is temperature-dependent η = 2.414 · 10−8 · 10
247.8

(TK−140) , which is

≈ 10−6 pN ·ms
nm2 at typical experimental temperatures (≈ 20C − 40C). Plugging these values in gives t = 3∗10−2pNms/nm2

∆P . If a
typical vacuole expells it’s fluid in ≈ 1 sec, then we can deduce ∆P ≈ 3 · 10−5pN/nm2 (30 Pa, or 3 · 10−4 atm).

This value is actually at the lower end of measured intracellular pressures (≈ 10 - 1000 Pa, according to https://doi.

org/10.1002%2F0471143030.cb1209s63), and is well below the typical rupture force of the plasma membrane (≈ 10kPa,
according to https://doi.org/10.1016%2Fj.bpj.2016.11.001). Therefore a reasonable range of cytoplasmic pressures are
expected to be sufficient to drive contractile vacuole expulsion.

3.3.1 Useful conversions

1Pa =
N

m2

=
1012pN

1018nm2

= 10−6 pN

nm2

(8)

In other words, pN
nm2 = 1MPa (about 10X atmospheric pressure).

3.4 Predictions for 2D microscopy data

Typically in microscopy experiements, vacuole size is tracked by its cross-sectional area as viewed from above, rather than
the full 3D volume. Here we derive Eq. 6 in terms of the cross-sectional area, to make predictions for experimental data.

3.4.1 Spherical vacuole

As an exercise, as first assume the vacuole takes the shape of a sphere. Rewriting the volume in terms of its diameter,
V = 4

3πR
3 = 1

6πD
3, the change in the vacuole diameter over time is predicted to be:

1

6
πD3 =

1

6
πD3

0 − γ∆Pt

D3 = D3
0 −

6γ∆P

π
t

= D3
0 −

3A2
P∆P

4π2ηLP
t

(9)

where the diameter cubed scales linearly with time.

3.4.2 Cylindrical vacuole

In a context where the cell is confined to a defined height in the out-of-plane dimension, the vacuole takes the approximate
shape of a cylinder. Rewriting the volume in terms of the cylindrical barrel’s diameter, V = πR2H = 1

4πD
2H, and the the

change in vacuole diameter over time is thus...



1

4
πD2H =

1

4
πD2

0H − γ∆Pt

D2 = D2
0 −

4γ∆P

πH
t.

= D2
0 −

A2
P∆P

2π2ηLPH
t.

(10)

where the diameter squared scales linearly with time. Perhaps more usefully we can re-write this in terms of the cross-
sectional area of the cylinder, where V = AH...

AH = A0H − A2
P∆P

8πηLP
t

A = A0 −
A2

P∆P

8πηLPH
t

(11)

Thus if cytoplasmic pressure is driving vacuole expsulsion, we expect to find the cross-sectional area to scale linearly with
time.

4 Membrane tension model

4.1 Model assumptions

Here, we take the base model presented in Section 2.1, and proceed assuming membrane tension drives the contents out of
the vacuole.

4.2 Vacuole volume over time

If the pressure inside the vacuole is dominated by membrane tension, then we can define the pressure in the vacuole using
Laplace’s law.

4.2.1 Spherical vacuole

For the pressure inside a sphere, Laplace’s law is as follows:

∆P =
4T

DV
(12)

where T is the membrane tension, which is constant, and DV . Re can start by rewriting the volume V in terms of D...

V =
4

3
π

(
DV

2

)3

=
πD3

V

6

dV =
πD2

V

2
dD

(13)

And then rewriting dV
dt in terms of D.

dV

dt
= −γ∆P

πD2
V

2

dD

dt
= −γ

4T

DV

(14)

Isolating DV and t on either side

D3
VdD = −8γT

π
(15)

and integrating...



∫ D

D0

D3
VdD = −

∫ t

0

8γT

π

D4

4
− D4

0

4
= −8γT

π
t

D4 = D4
0 −

32γT

π
t

(16)

4.2.2 Cylindrical vacuole

For the pressure inside a cylinder, Laplace’s law is as follows:

∆P =
2T

DV
(17)

where the pressure inside a cylinder differs only by a factor of 2 from that of a sphere of equivalent diameter. Following
the same logic as for a sphere, we find...

D4 = D4
0 −

16γT

π
t (18)

Thus if membrane tension is driving vacuole expsulsion, we expect to find the (cross-sectional area)2 to scale linearly with
time.
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