1	Detrimental Impact of a Type VI Secretion System on Direct Interspecies Electron
2	Transfer
3	Jessica A. Smith ^{a,b,*} , Dawn E. Holmes ^{a,c,*} , Trevor L. Woodard ^a , Yang Li ^{a,d} , Xinying
4	Liu ^{a,e} , Li-Ying Wang ^a , David Meier ^a , Ingrid A. Schwarz ^b , Derek R. Lovley ^a
5	
6	^a Department of Microbiology, University of Massachusetts Amherst, Morrill IV N
7	Science Center, Amherst, MA 01003, USA
8	^b Department of Biomolecular Sciences, Central Connecticut State University, 1615
9	Stanley Street, New Britain, CT 06050, USA
10	^c Department of Physical and Biological Sciences, Western New England University,
11	1215 Wilbraham Rd, Springfield, MA 01119, USA
12	^d School of Ocean Science and Technology, Dalian University of Technology, Panjin
13	124221, Liaoning, China
14	^e College of Environmental Science and Engineering, Beijing Forestry University,
15	Beijing, 100083, China
16	
17	*These authors contributed equally to this work
18	***Correspondence: jsmith@ccsu.edu
19	
20	
21	
22	
23	

24 ABSTRACT

25 Direct interspecies electron transfer (DIET) is important in anaerobic 26 communities of environmental and practical significance. Other than the need for close 27 physical contact for electrical connections, the interactions of DIET partners are poorly 28 understood. Type VI secretion systems (T6SSs) typically kill competitive microbes. 29 Surprisingly, Geobacter metallireducens highly expressed T6SS genes when DIET-based 30 co-cultures were initiated with Geobacter sulfurreducens. T6SS gene expression was 31 lower when the electron shuttle anthraquinone-2,6-disulfonate was added to alleviate the 32 need for interspecies contact. Disruption of *hcp*, the *G. metallireducens* gene for the main 33 T6SS needle-tube protein subunit, and the most highly upregulated gene in DIET-grown 34 cells, eliminated the long lag periods required for the initiation of DIET. The mutation 35 did not aid DIET in the presence of granular activated carbon, consistent with the fact 36 that DIET partners do not make physical contact when electrically connected through 37 conductive materials. The *hcp*-deficient mutant also established DIET quicker with 38 Methanosarcina barkeri. However, the mutant also reduced Fe(III) oxide faster than the 39 wild-type strain, a phenotype not expected from the loss of the T6SS. Quantitative PCR revealed greater gene transcript abundance for key components of extracellular electron 40 41 transfer in the *hcp*-deficient mutant versus the wild-type strain, potentially accounting for 42 the faster Fe(III) oxide reduction and impact on DIET. The results highlight that 43 interspecies interactions beyond electrical connections may influence DIET effectiveness. 44 The unexpected increase in the expression of genes for extracellular electron transport 45 components when *hcp* was deleted emphasize the complexities in evaluating the 46 electromicrobiology of highly adaptable *Geobacter* species.

IMPORTANCE

48	Direct interspecies electron transfer (DIET) is an alternative to the much more
49	intensively studied process of interspecies H ₂ transfer as a mechanism for microbes to
50	share electrons during the cooperative metabolism of energy sources. DIET is an
51	important process in anaerobic soils and sediments generating methane, a significant
52	greenhouse gas. Facilitating DIET can accelerate and stabilize the conversion of organic
53	wastes to methane biofuel in anaerobic digesters. Therefore, a better understanding of the
54	factors controlling how fast DIET partnerships are established is expected to lead to new
55	strategies for promoting this bioenergy process. The finding that when co-cultured with
56	G. sulfurreducens, G. metallireducens initially expressed a type VI secretion system, a
57	behavior not conducive to interspecies cooperation, illustrates the complexity in
58	establishing syntrophic relationships.
50	

60 INTRODUCTION

61	A better understanding of the physiological characteristics of microbes that
62	participate in direct interspecies electron transfer (DIET) is required in order to determine
63	how both natural and engineered anoxic environments function (1-3). For example, DIET
64	appears to be the primary route for electron exchange between electron-donating bacteria
65	and electron-accepting partners in some types of anaerobic digesters (4, 5). In digesters in
66	which interspecies H ₂ transfer predominates, modifying operating conditions to enhance
67	DIET can accelerate and stabilize the conversion of organic wastes to methane, a needed
68	improvement to this important bioenergy strategy (3, 6). Molecular studies have
69	demonstrated that DIET may be a major process in terrestrial methanogenic
70	environments that are significant sources of atmospheric methane (7), a conclusion that is
71	further supported by the reinterpretation of data on H_2 fluxes in these environments (8).
72	Most of the initial research following the discovery of DIET (9) focused on
73	identifying which microbes have the potential to participate in DIET and the organic
74	substrates that can support DIET (5, 8, 10-21). Study of the expression of genes and
75	proteins that enhance electron exchange between species has also been emphasized (5, 9,
76	10, 13, 22-25). However, other adaptations that promote the switch from a free-living
77	existence to living in close physical association, as is necessary to establish electrical
78	connections for DIET, seem likely.
79	The expression of type VI secretion systems (T6SSs) is expected to be antithetical
80	to interspecies cooperation. Approximately 25% of Gram-negative bacteria have T6SSs
81	that form contractile nanomachines that inject toxins directly into other microbes to
82	eliminate their competition (26-36). T6SSs are important in such polymicrobial

83 environments as the human colon (37-41), cow rumen (42, 43), the plant rhizosphere (44, 84 45), the light organ of the bobtail squid (46), and soil (47-49). In some instances, T6SSs 85 can also be involved in such non-antagonistic behaviors as the modulation of quorum 86 sensing and stress response (50), self-recognition (51-53), and the acquisition of various 87 metals such as zinc, copper, manganese, or iron (48-51, 54-57). 88 Molecular analyses have demonstrated that Geobacter species are important 89 electron-donating partners for DIET in natural environments, such as subsurface 90 terrestrial soils (7) as well as in some anaerobic digesters (4, 5). The often-observed 91 enrichment of *Geobacter* when methane production is stimulated with the addition of 92 conductive materials provides further circumstantial evidence for a role of *Geobacter* in 93 DIET (3, 6, 58). The availability of pure cultures of genetically tractable *Geobacter* 94 species that can participate in DIET in defined co-cultures has enabled elucidation of 95 important electrical contacts for DIET, such as multi-heme *c*-type cytochromes and 96 electrically conductive pili (5, 9, 10, 23, 25, 59), as well as strategies for enhancing DIET 97 with electrically conductive minerals and carbon materials (60-64). 98 However, *Geobacter* species are also often found to be free-living in anaerobic 99 soils and sediments, typically transferring electrons to extracellular electron acceptors 100 such as Fe(III) oxides and humic substances (65). T6SS genes are present in some but not 101 all Geobacter genomes (66, 67) (Table S1; Fig. S1). It might be expected that T6SSs 102 could be beneficial to free-living *Geobacter* species competing against other microbes for 103 resources, but not for developing syntrophic cooperation. Here we report that *Geobacter* 104 metallireducens highly expresses genes coding for its T6SS in the initial stages of 105 establishing a DIET-based co-culture with Geobacter sulfurreducens, a factor possibly

- 106 lengthening the adaptation period required for DIET-based growth of the co-culture and
- 107 accounting for the ability of conductive materials to accelerate DIET.
- 108

109 Materials and Methods

110 Laboratory strains and culture conditions

- 111 *Geobacter* cultures were obtained from our laboratory culture collection and
- 112 routinely cultured under strict anaerobic conditions, as previously described (68). G.
- 113 *metallireducens* was grown in Fe(III) citrate (FC) medium (69) with 20 mM ethanol
- provided as the sole electron donor and 56 mM Fe(III) citrate as the sole electron
- acceptor, or with 20 mM acetate as the donor and 50 mM Fe(III) oxide as the acceptor. G.
- sulfurreducens was grown in medium with 10 mM acetate provided as the sole electron
- donor and 40 mM fumarate as the sole electron acceptor (NBAF medium) (68). Co-
- 118 cultures were initiated with equal amounts of both organisms in anaerobic pressure tubes
- 119 containing 10 mL of NBF medium (acetate-free NBAF), with 10 mM ethanol provided as
- the sole electron donor and 40 mM fumarate as the electron acceptor. When noted,
- additions of anthraquinone-2,6, -disulfonate (AQDS) were made from a concentrated
- stock to provide a final concentration of 50 µM. In some instances, granular activated
- 123 carbon (GAC; 8-20 mesh (Sigma-Aldrich)) was added at 0.1g/ 10 ml.
- 124
- grown in co-culture with *G. metallireducens* with ethanol as the electron donor, as

Methanosarcina barkeri was obtained from our laboratory culture collection and

- 126 previously described (59).
- 127
- 128

129 Analytical techniques

130	Organic acids were monitored with high performance liquid chromatography
131	(HPLC), as previously described (70). Changes in ethanol concentration were monitored
132	with gas chromatography, as previously described (4). Methane was monitored in the
133	headspace by gas chromatography with a flame ionization detector (SHIMADZU, GC-
134	8A), as previously described (71). Fe(II) concentrations were determined by first
135	incubating samples for 1 hour in 0.5N HCl and then measuring Fe(II) with a ferrozine
136	assay at an absorbance of 562 nm (72).
137	Illumina sequencing and data analysis
138	For all experimental conditions, total RNA was extracted from triplicate samples
139	at mid-log phase growth when succinate concentrations reached approximately 25 mM
140	using the RNeasy Mini Kit (Qiagen) according to the manufacturer's instructions.
141	Samples were treated with Turbo DNA-free DNase (Ambion, Austin, TX), and the RNA
142	samples were tested for genomic DNA (gDNA) contamination by PCR amplification of
143	the 16S rRNA gene. mRNA was enriched using the MICROBExpress kit (Ambion),
144	according to the manufacturer's instructions.
145	Directional libraries were prepared with the ScriptSeq [™] v2 RNA-Seq Library
146	Preparation Kit (Epicentre) and single end sequencing was performed on a Hi-Seq 2000
147	platform at the Deep Sequencing Core Facility at the University of Massachusetts
148	Medical School in Worcester, Massachusetts. The program FASTQC
149	(http://www.bioinformatics.babraham.ac.uk/projects/fastqc/) was used to visualize and
150	quality check all raw data. Initial raw non-filtered libraries contained an average of
151	13175155.5 +/- 1758892 and 10227370.2 +/ 1558219.6 reads in the DIET and quinone-

152	mediated inters	pecies electron	n transfer ((OUIET)) libraries th	nat were ~	100 base	pairs long.
-								· · · · · · · · · · · · · · · · · · ·

- 153 Sequences from all of these libraries were trimmed and filtered with Trimmomatic
- 154 (bolger 2014) yielding an average of 9286241 +/- 1665081.9 and 12393095 +/-
- 155 1719373.9 reads for the DIET and QUIET libraries.
- 156 Mapping of mRNA reads
- 157 Trimmed and filtered mRNA reads from triplicate samples for the two different
- 158 co-culture conditions (DIET and QUIET) were mapped against the *G. metallireducens*
- strain GS-15 genome (NC_007517) and the G. sulfurreducens strain PCA genome
- 160 (NC_002939) downloaded from IMG/MER (img.jgi.doe.gov) using ArrayStar software
- 161 (DNAStar). Common dispersion (Disp) and biological coefficient of variation (BCV)
- values between DIET and QUIET replicates were calculated with the edgeR package in
- 163 Bioconductor (73). Common dispersion and BCV values for DIET and QUIET libraries
- 164 were Disp=0.01953 and BCV=0.1398 and Disp=0.11752 and BCV=0.3428, respectively.
- 165 A multidimensional scaling (MDS) plot was also generated with edgeR software and
- showed that replicates from the DIET and QUIET libraries clustered together but
- 167 separately from each other (Fig. S2).
- 168 Once the quality of RNAseq libraries was determined, differential expression
- studies were done with the edgeR package in Bioconductor (73). Genes with p-values \leq
- 170 0.05 and fold changes ≥ 2 were considered differentially expressed. Using these criteria,
- 171 945 G. metallireducens genes and 967 G. sulfurreducens genes were up-regulated in
- 172 DIET-grown co-cultures and 603 G. metallireducens genes and 848 G. sulfurreducens

173 genes were up-regulated in QUIET-grown co-cultures (Table S2).

175 Quantitative RT-PCR

176	Quantitative RT-PCR was conducted with mRNA extracted from triplicate
177	cultures of G. metallireducens wild-type and Δhcp (Gmet_0280) strains grown by Fe(III)
178	oxide respiration, in co-culture with M. barkeri, or in co-culture with G. sulfurreducens.
179	Cells were harvested during the mid-logarithmic phase by centrifugation at 4,000 rpm for
180	15 min at 4°C. After centrifugation, the pellets were frozen in liquid nitrogen and stored
181	at -80°C until RNA extraction procedures were performed. Total RNA from sample
182	pellets was extracted as previously described (74). Complementary DNA (cDNA) was
183	generated from mRNA using the Invitrogen SuperScript IV First Strand Synthesis
184	System (ThermoFisher Sci).
185	Primer pairs used for qRT-PCR are provided in Table S3. Three different
186	housekeeping genes were used as external controls; <i>recA</i> which codes for recombinase A,
187	proC which codes for pyrroline-5-carboxylate reductase, and rpoB which codes for the
188	beta subunit of RNA polymerase. Power SYBR green PCR master mix (Applied
189	Biosystems, Foster City, CA) and an ABI 7500 real-time PCR system were used to
190	amplify and to quantify all PCR products. Each reaction mixture consisted of forward and
191	reverse primers at a final concentration of 200 nM, 5 ng of gDNA, and 12.5 μl of Power
192	SYBR green PCR master mix (Applied Biosystems). Relative levels of expression of the
193	studied genes were calculated by the $2^{-\Delta\Delta CT}$ threshold cycle (CT) method (75).
194	Mutant construction
195	Primers used for construction of gene replacement mutants and complement
196	strains are listed in Table S4. Deletion mutants were made by replacing the gene of
197	interest with a spectinomycin antibiotic resistance cassette (76). All restriction digestions

198 were carried out according to manufacturer's instructions. PCRs were done using the 199 JumpStart Taq DNA polymerase (Sigma-Aldrich). Primer pairs were used to amplify by 200 PCR flanking regions of approximately 500 bp downstream and upstream of the target 201 genes using the appropriate genomic DNA as a template. PCR products were digested 202 with the AvrII (CCTAGG) (NEB, Beverly, MA) restriction endonuclease, ethanol 203 precipitated, and ligated with T4 DNA ligase (NEB). The ligation reaction was loaded 204 onto a 1% agarose gel, and a 1 kb band was purified using the Qiaquick Gel Extraction 205 Kit (Qiagen) and cloned into pCR2.1 TOPO cloning vector. Sequences of the cloned 206 products were verified by Sanger sequencing. The spectinomycin cassette was digested 207 with XbaI (TCTAGA) (NEB) from pUC19-Spr^r loxP (76), and the recombinant plasmid 208 was digested with AvrII. The spectinomycin resistance cassette was cloned into the 209 plasmid to complete the construction of the mutant alleles. Plasmids bearing mutant 210 alleles were linearized and concentrated by ethanol precipitation. The linearized 211 plasmids were electroporated as described previously (76). Antibiotics were added for 212 selection purposes only. Replacement of wild type alleles by mutant alleles was verified 213 by PCR and Sanger sequencing.

Gmet_0280 was complemented *in trans* by amplifying the gene with its native ribosome binding site (RBS) using *G. metallireducens* genomic DNA as a template. The resulting PCR product was then digested and cloned under control of a constitutive lac promoter into pCM66 (77) and electroporated into the Gmet_0280-deficient strain, as previously described (76).

219

220

221 Data availability

222 Illumina sequence reads have been submitted to the SRA NCBI database under

BioProject PRJNA722959 and Biosample SAMN18796025.

224 Results and discussion

225 Increased expression of G. metallireducens T6SS genes during DIET

226 Comparing gene expression patterns in defined co-cultures growing via DIET 227 versus co-cultures growing with the exchange of diffusible electron shuttles has proven to 228 be an effective strategy for identifying mechanisms for electron transfer during DIET (23, 229 24). Therefore, co-cultures of G. metallireducens and G. sulfurreducens were grown in 230 medium with ethanol as the electron donor and fumarate as the electron acceptor as 231 previously described (9, 78). The two species must cooperate to share electrons in this 232 medium because only G. metallireducens can utilize ethanol as an electron donor and 233 only G. sulfurreducens uses fumarate as electron acceptor (9). AQDS (50 μ M) was added 234 to one set of co-cultures to promote quinone-mediated interspecies electron transfer 235 (QUIET) in which the two species remain free-living and AQDS serves as an electron 236 shuttle between them (78). However, in the absence of AQDS the two species must form 237 tight physical association for direct electron transfer from G. metallireducens to G. 238 sulfurreducens because G. metallireducens cannot produce H_2 or formate as electrons 239 shuttles when metabolizing ethanol (22, 23). 240 The initial AQDS-amended and unamended co-cultures were sampled for gene 241 expression analysis after they had reduced ca. 25 mM of the 40 mM fumarate available. 242 DIET-grown G. sulfurreducens had higher transcript abundances for genes previously 243 found to be important in DIET (Table S2c). These included genes for over 25 *c*-type

244 cytochromes, including omcS, omcB, omcX, and omcI, which encode multi-heme, outer-245 surface *c*-type cytochromes. The gene coding for the pilin monomer, PilA, which is 246 assembled into electrically conductive pili (79) was also 63-times more highly expressed 247 in DIET-grown cells. 248 Transcripts for 19 different *c*-type cytochrome genes were also >2-fold more 249 abundant in DIET-grown G. metallireducens (Table S2a). These included Gmet_0930, 250 which codes for an octaheme outer membrane *c*-type cytochrome and Gmet_0910, the 251 gene for the outer membrane c-type cytochrome, OmcF, from the PccF porin-cytochrome 252 complex (59). Both Gmet_0930 and Gmet_0910 are important for Fe(III) oxide reduction 253 and DIET-based growth (17, 59, 80). Gmet_2029, which codes for a lipopolysaccharide 254 protein likely to be involved in biofilm formation and required for Fe(III) oxide reduction 255 (80), was expressed more than 3 fold higher in DIET-grown cells, but *pilA* was not more 256 highly expressed by DIET-grown G. metallireducens cells (Table S2a). 257 Other genes that would not be expected to be involved in electron transfer were 258 also more highly expressed in G. metallireducens cells growing by DIET (Table 1; Table 259 S2a). The two genes with the greatest increase in abundance of transcripts in DIET-260 versus QUIET-grown cells were Gmet 2080 and Gmet 2078, annotated as 'T6SS needle 261 tube protein TssD' and 'T6SS protein ImpB'. Transcripts for other T6SS proteins were 262 also much more abundant in DIET- versus QUIET-grown G. metallireducens (Table 1). 263 This included 13 of the genes needed to construct the T6SS nanomachine in other 264 microbes (26, 31, 81). Furthermore, genes coding for all putative T6SS effectors, 265 immunity proteins, and effector chaperones in G. metallireducens, with the exception of 266 Gmet_0291 which codes for a putative chaperone protein, were at least 5-times more

267 highly expressed in DIET-grown G. metallireducens cells (Table 1). Only some of the G.

268 sulfurreducens T6SS-related genes were highly expressed in DIET- versus QUIET-

269 grown cells (Table S5).

270 Disrupting the *hcp* gene in *G. metallireducens* accelerates adaption to DIET

271 The high expression of T6SS genes in *G. metallireducens* during growth via

272 DIET was surprising because a primary function of the T6SS is elimination of competing

species (31, 32, 34, 82-84). To determine whether expression of the T6SS by G.

274 *metallireducens* impacted DIET, the gene for the Hcp needle-tube protein (Gmet_0280),

the most highly differentially expressed gene in DIET- versus QUIET-grown cells (Table

S2A), was disrupted by replacing the gene with a spectinomycin resistance cassette.

277 As previously described (9), co-cultures established in ethanol-fumarate medium 278 with wild-type G. metallireducens required over 25 days to begin DIET, monitored as the 279 accumulation of succinate from fumarate reduction (Fig. 1a). In contrast, there was a 280 shorter lag in adaption to DIET in co-cultures initiated with the Hcp-deficient strain of G. 281 metallireducens (Fig. 1a). Large aggregates (1-2 mm diameter) were visibly apparent in 282 the co-cultures with the Hcp-deficient strain of G. metallireducens even when the co-283 cultures were first established. In contrast, as previously reported (9), in co-cultures 284 established with wild-type G. metallireducens large aggregates only appeared after 285 multiple successive transfers of the co-cultures. The Hcp-deficient strain also produced 286 visible aggregations in Fe(III) citrate medium, which was not observed in the wild-type 287 strain (Fig. S3).

The Hcp-deficient *G. metallireducens* strain did not have a substantial advantage
over wild-type cells if granular activated carbon (GAC) was added to the co-cultures

290	(Fig. 1b). In the presence of GAC, which is electrically conductive, G. metallireducens
291	and G. sulfurreducens attach to the GAC surface rather than producing dual-species
292	aggregates and the cells are not close enough for DIET via electrically conductive pili or
293	c-type cytochromes (60). Deletion of the genes for these biological electrical connections
294	does not inhibit DIET in the presence of GAC, suggesting that GAC is a highly effective
295	conduit for DIET (60). Co-cultures established with the Hcp-deficient G. metallireducens
296	or wild-type G. metallireducens grew at the same rate when AQDS was provided as an
297	electron shuttle for QUIET (Fig. 1c). Like GAC, AQDS also eliminates the need for
298	direct cell-to-cell contacts for interspecies electron transfer (78).
299	Disrupting the gene for Hcp from G. sulfurreducens (Δ GSU3174) did not
300	substantially decrease the lag time required for initiation of co-culture metabolism under
301	conditions that require DIET for growth (Fig. 1d). This is consistent with the observation
302	that G. sulfurreducens did not increase expression of genes for most T6SS components in
303	DIET- versus QUIET-grown cells (Table S5).
304	To determine the potential impact of T6SS expression on Geobacter interactions
305	with methanogens, co-cultures of G. metallireducens and M. barkeri were initiated as
306	previously described (10) in medium with ethanol as the electron donor. As previously
307	described (10), there was a lag period of more than 30 days in co-cultures initiated with
308	wild-type G. metallireducens (Fig. 2). In contrast, there was very little lag in co-cultures
309	initiated with the Hcp-deficient G. metallireducens strain. While studies have focused on
310	T6SSs targeting bacterial and eukaryotic cells (85, 86), the effect of T6SSs on archaeal

311 cells requires further study (87).

bioRxiv preprint doi: https://doi.org/10.1101/2023.03.02.530876; this version posted March 2, 2023. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

312 **Disrupting the** *hcp* gene in *G. metallireducens* has unexpected impact on

313 extracellular electron transfer

314 The impact of the *hcp* deletion on extracellular electron transfer was evaluated. 315 The Hcp-deficient strain grew faster than wild-type G. metallireducens when insoluble 316 Fe(III) oxide was provided as the electron acceptor (Fig. 3). A complement strain 317 containing the *hcp* gene *in trans* grew at rates similar to the wild-type strain, 318 demonstrating that elimination of the T6SS impacted extracellular electron transfer 319 capabilities. 320 Quantitative RT-PCR (Fig. 4) revealed that, compared to the wild-type strain, the 321 Hcp-deficient strain of G. metallireducens more highly expressed genes for key outer-322 surface components previously shown to be important in extracellular electron transfer 323 (Fig. 4; Table S6). These included genes for PilA, the monomer that is assembled into 324 electrically conductive pili that are required for Fe(III) oxide reduction and DIET (25), as 325 well as genes for the outer surface *c*-type cytochromes (Gmet_0930 and Gmet_0910) and 326 a lipopolysaccharide protein (Gmet_2029) that are required for Fe(III) oxide reduction 327 and expected to play an important role in DIET (23, 59, 80). 328 Increased expression of these genes is a likely explanation for the accelerated 329 Fe(III) oxide reduction and may also have contributed to accelerated DIET. The 330 biosynthetic and energetic costs of deploying T6SS machinery is high (88). Therefore, it

may be that eliminating some of this cost by deleting *hcp* enabled a greater investment in

332 expression of outer-surface proteins important for extracellular electron transfer. Notably,

333 T6SS genes were not up-regulated in *G. metallireducens/G. sulfurreducens* co-cultures

that had undergone long-term adaptation to growth via DIET (23), suggesting that

lowering expression of T6SS genes is part of *G. metallireducens*' adaptive response to
DIET-based growth.

337 Implications

338 The results demonstrate that the expression of a T6SS can be detrimental for the 339 establishment of DIET consortia and offer a new insight into the mechanisms by which 340 conductive materials might facilitate DIET. It has previously been considered that 341 conductive materials that are larger than cells, such as GAC, biochar, or carbon cloth 342 accelerate the initiation of DIET because: 1) expression of electrically conductive pili and 343 some outer-surface cytochromes is no longer necessary, conserving energy; and 2) it is 344 easier for an electroactive microbe to establish electrical contact with a large conductive 345 surface than small, disperse electrical contacts on another microbial cell (1, 89). The 346 results presented here suggest that another benefit, in some instances, may be that 347 conductive surfaces alleviate the need for close physical contact between DIET partners 348 (60-62). Thus, DIET partners can 'socially distance' to avoid the possible negative 349 impact of close physical associations as electrons zoom through the conductive material 350 enabling the cells to connect remotely.

G. metallireducens' high expression of its T6SS is clearly not in its best interest in the context of DIET in a defined laboratory co-culture, but *G. metallireducens* seems unlikely to exemplify the *Geobacter* species that participate in DIET in natural communities. *G. metallireducens* was recovered from an enrichment culture that selected for microbes rapidly growing via Fe(III) oxide reduction (69, 90), conditions likely to favor interspecies competition, not cooperation. Not all *Geobacter* species possess a T6SS (Table S1). Many other microbes that participate in DIET lack a T6SS, including

358 Prosthecochloris aestaurii (16), Syntrophus aciditrophicus, (8), Rhodoferax

359	ferrireducens	(13), Desulfovibric	o sp. JY (15), an	nd Rhodopseudomona	s palustris ((18, 20)
-----	---------------	---------------------	-------------------	--------------------	---------------	----------

- 360 (Table S1b).
- 361 The finding that deletion of a major gene necessary for T6SS function in *G*.
- 362 *metallireducens* unexpectedly increased expression of key components for extracellular
- 363 electron transfer emphasizes a frequent problem in studies of *Geobacter*
- 364 electromicrobiology. Adaption to gene deletions often result in changes in the mutant's
- 365 physiology beyond the direct function of the missing protein (65, 91, 92). Thus, multiple
- 366 experimental approaches are warranted when developing models for *Geobacter*
- 367 extracellular electron exchange.
- 368 **References**
- 369 1. Lovley DR. 2017. Syntrophy Goes Electric: Direct Interspecies Electron Transfer.
- *Annu Rev Microbiol* 71:643-664.
- 2. Van Steendam C, Smets I, Skerlos S, Raksin L. 2019. Improving anaerobic digestion
- 372 via direct interspecies electron transfer requires development of suitable

373 characterization methods. *Curr Opin Biotechnol* 57:183-190.

- Zhao Z, Li Y, Zhang Y, Lovley DR. 2020. Sparking anaerobic digestion: promoting
 direct interspecies electron transfer to enhance methane production. *iScience*
- 37623:101794.
- 4. Morita M, Malvankar NS, Franks AE, Summers ZM, Giloteaux L, Rotaru AE, Rotaru C,
- Lovley DR. 2011. Potential for direct interspecies electron transfer in methanogenic
 wastewater digester aggregates. *MBio* 2:e00159-11.
- 380 5. Rotaru AE, Shrestha PM, Liu FH, Shrestha M, Shrestha D, Embree M, Zengler K,
- 381 Wardman C, Nevin KP, Lovley DR. 2014. A new model for electron flow during

382		anaerobic digestion: direct interspecies electron transfer to Methanosaeta for the
383		reduction of carbon dioxide to methane. <i>Energy Environ Sci</i> 7:408-415.
384	6.	Park J-H, Kang H-J, Park K-H, Park H-D. 2018. Direct interspecies electron transfer
385		via conductive materials: A perspective for anaerobic digestion applications.
386		Bioresource Technol 254:300-311.
387	7.	Holmes DE, Shrestha PM, Walker DJF, Dang Y, Nevin KP, Woodard TL, Lovley DR.
388		2017. Metatranscriptomic Evidence for Direct Interspecies Electron Transfer
389		between Geobacter and Methanothrix Species in Methanogenic Rice Paddy Soils.
390		Appl Environ Microbiol 83.
391	8.	Walker DJF, Nevin KP, Holmes DE, Rotaru AE, Ward JE, Woodard TL, Zhu J, Ueki T,
392		Nonnenmann SS, McInerney MJ, Lovley DR. 2020. Syntrophus conductive pili
393		demonstrate that common hydrogen-donating syntrophs can have a direct electron
394		transfer option. <i>ISME J</i> 14:837-846.
395	9.	Summers ZM, Fogarty HE, Leang C, Franks AE, Malvankar NS, Lovley DR. 2010.
396		Direct exchange of electrons within aggregates of an evolved syntrophic coculture of
397		anaerobic bacteria. <i>Science</i> 330:1413-5.
398	10.	Rotaru AE, Shrestha PM, Liu F, Markovaite B, Chen S, Nevin KP, Lovley DR. 2014.
399		Direct interspecies electron transfer between Geobacter metallireducens and
400		Methanosarcina barkeri. Appl Environ Microbiol 80:4599-605.
401	11.	Wang L-Y, Nevin KP, Woodard TL, Mu B-Z, Lovley DR. 2016. Expanding the diet for
402		DIET: electron donors supporting direct interspecies electron transfer (DIET) in
403		defined co-cultures. Frontiers in Microbiol 7:236.
404	12.	Walker DJF, Adhikari RY, Holmes DE, Ward JE, Woodard TL, Nevin KP, Lovley DR.
405		2018. Electrically conductive pili from genes of phylogenetically diverse
406		microorganisms. <i>ISME J</i> 12:48-58.

407	13.	Yee M, Rotaru A. 2020. Extracellular electron uptake in <i>Methanosarcinales</i> is
408		independent of multiheme <i>c</i> -type cytochromes. <i>Sci Rep</i> 10:372.
409	14.	Yee MO, Snoeyenbos-West O, Thamdrup B, Ottosen L, Rotaru A-E. 2019.
410		Extracellular electron uptake by two Methanosarcina species. Front Energy Research
411		7:29.
412	15.	Zheng S, Li M, Liu Y, Liu F. 2021. Desulfovibrio feeding Methanobacterium with
413		electrons in conductive methanogenic aggregates from coastal zones. Water
414		Research 202:117490.
415	16.	Ha PT, Lindemann SR, Shi L, Dohnalkova AC, Fredrickson JK, Madigan MT, Beyenal
416		H. 2017. Syntrophic anaerobic photosynthesis via direct interspecies electron
417		transfer. Nat Commun 8:13924.
418	17.	Zhou J, Smith JA, Li M, Holmes DE. 2023. Methane production by <i>Methanothrix</i>
419		thermoacetophila via direct interspecies electron transfer with Geobacter
420		metallireducens. bioRxiv doi:10.1101/2023.02.13.528421:2023.02.13.528421.
421	18.	Huang L, Liu X, Zhang Z, Ye J, Rensing C, Zhou S, Nealson KH. 2022. Light-driven
422		carbon dioxide reduction to methane by Methanosarcina barkeri in an electric
423		syntrophic coculture. <i>ISME J</i> 16:370-377.
424	19.	Zhou J, Holmes DE, Tang HY, Lovley DR. 2021. Correlation of Key Physiological
425		Properties of Methanosarcina Isolates with Environment of Origin. Appl Environ
426		Microbiol 87:e0073121.
427	20.	Liu X, Huang L, Rensing C, Ye J, Nealson KH, Zhou S. 2021. Syntrophic interspecies
428		electron transfer drives carbon fixation and growth by <i>Rhodopseudomonas</i> palustris
429		under dark, anoxic conditions. <i>Sci Adv</i> 7.
430	21.	Zheng S, Liu F, Wang B, Zhang Y, Lovley DR. 2020. A Methanobacterium capable of
431		direct interspecies electron transfer. Env Sci and Technol 54:15347-15354.

432	22.	Shrestha P, Rotaru A, Aklujkar M, Liu F, Shrestha M, Summers Z, Malvankar NS,
433		Flores D, Lovley DR. 2013. Syntrophic growth with direct interspecies electron
434		transfer as the primary mechanism for energy exchange. Env Microbiol Rep 5:904-
435		910.
436	23.	Shrestha PM, Rotaru AE, Summers ZM, Shrestha M, Liu F, Lovley DR. 2013.
437		Transcriptomic and genetic analysis of direct interspecies electron transfer. Appl
438		Environ Microbiol 79:2397-404.
439	24.	Holmes DE, Rotaru AE, Ueki T, Shrestha PM, Ferry JG, Lovley DR. 2018. Electron and
440		Proton Flux for Carbon Dioxide Reduction in Methanosarcina barkeri During Direct
441		Interspecies Electron Transfer. Front Microbiol 9:3109.
442	25.	Ueki T, Nevin K, Rotaru A, Wang L, Woodard T, Lovley DR. 2018. Geobacter strains
443		expressing poorly conductive pili reveal constraints on direct interspecies electron
444		transfer mechanisms. <i>mBio</i> 9:e01273–18.
445	26.	Gallique M, Bouteiller M, Merieau A. 2017. The Type VI Secretion System: A Dynamic
446		System for Bacterial Communication? Front Microbiol 8:1454.
447	27.	Cianfanelli FR, Monlezun L, Coulthurst SJ. 2016. Aim, Load, Fire: The Type VI
448		Secretion System, a Bacterial Nanoweapon. Trends Microbiol 24:51-62.
449	28.	Wang J, Brodmann M, Basler M. 2019. Assembly and Subcellular Localization of
450		Bacterial Type VI Secretion Systems. Annu Rev Microbiol 73:621-638.
451	29.	Silverman JM, Brunet YR, Cascales E, Mougous JD. 2012. Structure and regulation of
452		the type VI secretion system. Annu Rev Microbiol 66:453-72.
453	30.	Schwarz S, Hood RD, Mougous JD. 2010. What is type VI secretion doing in all those
454		bugs? Trends in Microbiol 18:531-537.
455	31.	Coulthurst S. 2019. The Type VI secretion system: a versatile bacterial weapon.
456		Microbiol 165:503-515.

457	32.	Hood RD, Singh P, Hsu F, Guvener T, Carl MA, Trinidad RR, Silverman JM, Ohlson BB,
458		Hicks KG, Plemel RL, Li M, Schwarz S, Wang WY, Merz AJ, Goodlett DR, Mougous JD.
459		2010. A type VI secretion system of <i>Pseudomonas aeruginosa</i> targets a toxin to
460		bacteria. <i>Cell Host Microbe</i> 7:25-37.
461	33.	MacIntyre DL, Miyata ST, Kitaoka M, Pukatzki S. 2010. The <i>Vibrio cholerae</i> type VI
462		secretion system displays antimicrobial properties. Proc Natl Acad Sci USA
463		107:19520-4.
464	34.	Murdoch SL, Trunk K, English G, Fritsch MJ, Pourkarimi E, Coulthurst SJ. 2011. The
465		Opportunistic Pathogen Serratia marcescens Utilizes Type VI Secretion To Target
466		Bacterial Competitors. J Bacteriol 193:6057-6069.
467	35.	Russell AB, Peterson SB, Mougous JD. 2014. Type VI secretion system effectors:
468		poisons with a purpose. <i>Nat Rev Microbiol</i> 12:137-48.
469	36.	Jani AJ, Cotter PA. 2010. Type VI secretion: not just for pathogenesis anymore. <i>Cell</i>
470		Host Microbe 8:2-6.
471	37.	Russell AB, Wexler AG, Harding BN, Whitney JC, Bohn AJ, Goo YA, Tran BQ, Barry NA,
472		Zheng H, Peterson SB, Chou S, Gonen T, Goodlett DR, Goodman AL, Mougous JD.
473		2014. A type VI secretion-related pathway in Bacteroidetes mediates interbacterial
474		antagonism. Cell Host Microbe 16:227-236.
475	38.	Sana TG, Flaugnatti N, Lugo KA, Lam LH, Jacobson A, Baylot V, Durand E, Journet L,
476		Cascales E, Monack DM. 2016. Salmonella Typhimurium utilizes a T6SS-mediated
477		antibacterial weapon to establish in the host gut. Proc Natl Acad Sci USA 113:E5044-
478		51.
479	39.	Roelofs KG, Coyne MJ, Gentyala RR, Chatzidaki-Livanis M, Comstock LE. 2016.
480		Bacteroidales Secreted Antimicrobial Proteins Target Surface Molecules Necessary
481		for Gut Colonization and Mediate Competition In Vivo. <i>mBio</i> 7.

482	40.	Zhao W, Caro F, Robins W, Mekalanos JJ. 2018. Antagonism toward the intestinal
483		microbiota and its effect on Vibrio cholerae virulence. Science 359:210-213.
484	41.	Logan SL, Thomas J, Yan J, Baker RP, Shields DS, Xavier JB, Hammer BK,
485		Parthasarathy R. 2018. The Vibrio cholerae type VI secretion system can modulate
486		host intestinal mechanics to displace gut bacterial symbionts. Proc Natl Acad Sci USA
487		115:E3779-E3787.
488	42.	Wan B, Zhang Q, Ni J, Li S, Wen D, Li J, Xiao H, He P, Ou HY, Tao J, Teng Q, Lu J, Wu W,
489		Yao YF. 2017. Type VI secretion system contributes to Enterohemorrhagic
490		Escherichia coli virulence by secreting catalase against host reactive oxygen species
491		(ROS). <i>PLoS Pathog</i> 13:e1006246.
492	43.	Auffret MD, Dewhurst RJ, Duthie CA, Rooke JA, John Wallace R, Freeman TC, Stewart
493		R, Watson M, Roehe R. 2017. The rumen microbiome as a reservoir of antimicrobial
494		resistance and pathogenicity genes is directly affected by diet in beef cattle.
495		Microbiome 5:159.
496	44.	Bernal P, Llamas MA, Filloux A. 2018. Type VI secretion systems in plant-associated
497		bacteria. Environ Microbiol 20:1-15.
498	45.	Records AR. 2011. The type VI secretion system: a multipurpose delivery system
499		with a phage-like machinery. Mol Plant Microbe Interact 24:751-7.
500	46.	Speare L, Cecere AG, Guckes KR, Smith S, Wollenberg MS, Mandel MJ, Miyashiro T,
501		Septer AN. 2018. Bacterial symbionts use a type VI secretion system to eliminate
502		competitors in their natural host. Proc Natl Acad Sci USA 115:E8528-E8537.
503	47.	Ma LS, Hachani A, Lin JS, Filloux A, Lai EM. 2014. Agrobacterium tumefaciens deploys
504		a superfamily of type VI secretion DNase effectors as weapons for interbacterial
505		competition in planta. Cell Host Microbe 16:94-104.

506 48.	Troselj V,	Treuner-Lange A, S	logaard-Andersen L	, Wall D. 2018.	Physiological
---------	------------	--------------------	--------------------	-----------------	---------------

- 507 Heterogeneity Triggers Sibling Conflict Mediated by the Type VI Secretion System in
- an Aggregative Multicellular Bacterium. *mBio* 9.
- 509 49. Thiery S, Kaimer C. 2020. The Predation Strategy of *Myxococcus xanthus*. Front
 510 *Microbiol* 11:2.
- 51150.Weber B, Hasic M, Chen C, Wai SN, Milton DL. 2009. Type VI secretion modulates512quorum sensing and stress response in *Vibrio anguillarum. Environ Microbiol*

513 11:3018-28.

- 514 51. Alteri CJ, Himpsl SD, Pickens SR, Lindner JR, Zora JS, Miller JE, Arno PD, Straight SW,
- 515 Mobley HL. 2013. Multicellular bacteria deploy the type VI secretion system to 516 preemptively strike neighboring cells. *PLoS Pathog* 9:e1003608.
- 517 52. Wenren LM, Sullivan NL, Cardarelli L, Septer AN, Gibbs KA. 2013. Two independent
 518 pathways for self-recognition in *Proteus mirabilis* are linked by type VI-dependent
- 519 export. *mBio* 4.
- 520 53. Konovalova A, Petters T, Sogaard-Andersen L. 2010. Extracellular biology of
 521 *Myxococcus xanthus. FEMS Microbiol Rev* 34:89-106.
- 522 54. Chen WJ, Kuo TY, Hsieh FC, Chen PY, Wang CS, Shih YL, Lai YM, Liu JR, Yang YL, Shih
- 523 MC. 2016. Involvement of type VI secretion system in secretion of iron chelator
 524 pyoverdine in *Pseudomonas taiwanensis. Sci Rep* 6:32950.
- 525 55. Wang T, Si M, Song Y, Zhu W, Gao F, Wang Y, Zhang L, Zhang W, Wei G, Luo ZQ, Shen
 526 X. 2015. Type VI Secretion System Transports Zn²⁺ to Combat Multiple Stresses and
- 527 Host Immunity. *PLoS Pathog* 11:e1005020.
- 528 56. Han Y, Wang T, Chen G, Pu Q, Liu Q, Zhang Y, Xu L, Wu M, Liang H. 2019. A
- 529 *Pseudomonas aeruginosa* type VI secretion system regulated by CueR facilitates
- 530 copper acquisition. *PLoS Pathog* 15:e1008198.

531	57.	Lin I. Zhang	w. Cheng	I. Yang X. Zhu K	. Wang Y. Wei G.	Oian PY, Luo ZO). Shen X. 2017.
				1) I GING I I DING I I	,		

- 532 A *Pseudomonas* T6SS effector recruits PQS-containing outer membrane vesicles for
- iron acquisition. *Nat Commun* 8:14888.
- 534 58. Martins G, Salvador AF, Pereira L, Alves MM. 2018. Methane production and
- 535 conductive materials: a critical review. *Environ Sci Technol* 52:10241-10253.
- 536 59. Holmes DE, Zhou J, Smith JA, Wang C, Liu X, Lovley DR. 2022. Different outer
- 537 membrane *c*-type cytochromes are involved in direct interspecies electron transfer
 538 to *Geobacter* or *Methanosarcina* species. *mLife* 1:272-286.
- 539 60. Liu F, Rotaru A, Shrestha P, Malvankar N, Nevin K, Lovley D. 2012. Promoting direct
- 540 interspecies electron transfer with activated carbon. *Energy Environ Sci* doi:DOI:
- 541 10.1039/c2ee22459c.
- 542 61. Chen S, Rotaru A-E, Liu F, Philips J, Woodard TL, Nevin KP, Lovley DR. 2014. Carbon
 543 cloth stimulates direct interspecies electron transfer in syntrophic co-cultures.
- 544 Bioresource Tech 173:82-86.
- 545 62. Chen S, Rotaru A-E, Shrestha PM, Malvankar NS, Liu F, Fan W, Nevin KP, Lovley DR.
- 546 2014. Promoting interspecies electron transfer with biochar. *Sci Rep* 4:5019.
- 547 63. Kato S, Hashimoto K, Watanabe K. 2012. Methanogenesis facilitated by electric
- 548 syntrophy via (semi)conductive iron-oxide minerals. *Environ Microbiol* 14:1646-
- 549 1654.
- 550 64. Liu F, Rotaru A-E, Shrestha PM, Malvankar NS, Nevin KP, Lovley DR. 2015. Magnetite
 551 compensates for the lack of a pilin-assoicated *c*-type cytochrome in extracellular
 552 electron exchange. *Environ Microbiol* 17:648-655.
- 553 65. Lovley DR, Ueki T, Zhang T, Malvankar NS, Shrestha PM, Flanagan KA, Aklujkar M,
 554 Butler JE, Giloteaux L, Rotaru AE, Holmes DE, Franks AE, Orellana R, Risso C, Nevin

555		KP. 2011. <i>Geobacter</i> : the microbe electric's physiology, ecology, and practical
556		applications. Adv Microb Physiol 59:1-100.
557	66.	Russell AB, Singh P, Brittnacher M, Bui NK, Hood RD, Carl MA, Agnello DM, Schwarz
558		S, Goodlett DR, Vollmer W, Mougous JD. 2012. A widespread bacterial type VI
559		secretion effector superfamily identified using a heuristic approach. Cell Host
560		Microbe 11:538-49.
561	67.	Boyer F, Fichant G, Berthod J, Vandenbrouck Y, Attree I. 2009. Dissecting the
562		bacterial type VI secretion system by a genome wide in silico analysis: what can be
563		learned from available microbial genomic resources? BMC Genomics 10:104.
564	68.	Coppi MV, Leang C, Sandler SJ, Lovley DR. 2001. Development of a genetic system for
565		Geobacter sulfurreducens. Appl Environ Microbiol 67:3180-7.
566	69.	Lovley DR, Giovannoni SJ, White DC, Champine JE, Phillips EJ, Gorby YA, Goodwin S.
567		1993. Geobacter metallireducens gen. nov. sp. nov., a microorganism capable of
568		coupling the complete oxidation of organic compounds to the reduction of iron and
569		other metals. Arch Microbiol 159:336-44.
570	70.	Nevin KP, Richter H, Covalla SF, Johnson JP, Woodard TL, Orloff AL, Jia H, Zhang M,
571		Lovley DR. 2008. Power output and columbic efficiencies from biofilms of Geobacter
572		sulfurreducens comparable to mixed community microbial fuel cells. Environ
573		Microbiol 10:2505-14.
574	71.	Holmes DE, Giloteaux L, Orellana R, Williams KH, Robbins MJ, Lovley DR. 2014.
575		Methane production from protozoan endosymbionts following stimulation of
576		microbial metabolism within subsurface sediments. Frontiers in Microbiol 5.
577	72.	Anderson RT, Lovley DR. 1999. Naphthalene and Benzene Degradation under
578		Fe(III)-Reducing Conditions in Petroleum-Contaminated Aquifers. Bioremediation J
579		3:121-135.

580	73.	Robinson MD, McCarthy DJ, Smyth GK. 2010. edgeR: a Bioconductor package for
581		differential expression analysis of digital gene expression data. Bioinformatics
582		26:139-40.
583	74.	Holmes DE, Risso C, Smith JA, Lovley DR. 2012. Genome-scale analysis of anaerobic
584		benzoate and phenol metabolism in the hyperthermophilic archaeon Ferroglobus
585		placidus. ISME J 6:146-57.
586	75.	Livak KJ, Schmittgen TD. 2001. Analysis of relative gene expression data using real-
587		time quantitative PCR and the 2(-Delta Delta C(T)) Method. <i>Methods</i> 25:402-8.
588	76.	Tremblay PL, Aklujkar M, Leang C, Nevin KP, Lovley D. 2012. A genetic system for
589		<i>Geobacter metallireducens</i> : role of the flagellin and pilin in the reduction of Fe(III)
590		oxide. Environ Microbiol Rep 4:82-8.
591	77.	Marx CJ, Lidstrom ME. 2001. Development of improved versatile broad-host-range
592		vectors for use in methylotrophs and other Gram-negative bacteria. Microbiol
593		147:2065-2075.
594	78.	Smith JA, Nevin KP, Lovley DR. 2015. Syntrophic growth via quinone-mediated
595		interspecies electron transfer. Front Microbiol 6:121.
596	79.	Lovley DR, Holmes DE. 2020. Protein Nanowires: The Electrification of the Microbial
597		World and Maybe Our Own. J Bacteriol 202:e00331-20.
598	80.	Smith JA, Lovley DR, Tremblay PL. 2013. Outer cell surface components essential for
599		Fe(III) oxide reduction by Geobacter metallireducens. Appl Environ Microbiol 79:901-
600		7.
601	81.	Navarro-Garcia F, Ruiz-Perez F, Cataldi A, Larzabal M. 2019. Type VI Secretion
602		System in Pathogenic Escherichia coli: Structure, Role in Virulence, and Acquisition.
603		Front Microbiol 10:1965.

604	82.	LeRoux M, De Leon JA, Kuwada NJ, Russell AB, Pinto-Santini D, Hood RD, Agnello
605		DM, Robertson SM, Wiggins PA, Mougous JD. 2012. Quantitative single-cell
606		characterization of bacterial interactions reveals type VI secretion is a double-edged
607		sword. Proc Natl Acad Sci USA 109:19804-19809.
608	83.	Basler M, Ho BT, Mekalanos JJ. 2013. Tit-for-tat: type VI secretion system
609		counterattack during bacterial cell-cell interactions. Cell 152:884-894.
610	84.	Carruthers MD, Nicholson PA, Tracy EN, Munson RS, Jr. 2013. Acinetobacter
611		baumannii utilizes a type VI secretion system for bacterial competition. PLoS One
612		8:e59388.
613	85.	Hernandez RE, Gallegos-Monterrosa R, Coulthurst SJ. 2020. Type VI secretion
614		system effector proteins: Effective weapons for bacterial competitiveness. Cellular
615		Microbiol 22:e13241.
616	86.	Monjarás Feria J, Valvano MA. 2020. An Overview of Anti-Eukaryotic T6SS Effectors.
617		Frontiers in Cellular and Infection Microbiol 10.
618	87.	Gallegos-Monterrosa R, Coulthurst SJ. 2021. The ecological impact of a bacterial
619		weapon: microbial interactions and the Type VI secretion system. FEMS Microbiol
620		Rev 45.
621	88.	Basler M. 2015. Type VI secretion system: secretion by a contractile nanomachine.
622		Philos Trans R Soc Lond B Biol Sci 370.
623	89.	Lovley D. 2017. Happy together: microbial communities that hook up to swap
624		electrons. <i>ISME J</i> 11:327-336.
625	90.	Lovley DR, Phillips EJP. 1988. Novel mode of microbial energy metabolism: organic
626		carbon oxidation coupled to dissimilatory reduction of iron or manganese. Appl
627		Environ Microbiol 54:1472-1480.

628	91.	Lovley DR, Holmes DE. 2022. Electromicrobiology: the ecophysiology of
629		phylogenetically diverse electroactive microorganisms. Nat Rev Microbiol 20:5-19.
630	92.	Smith JA, Tremblay PL, Shrestha PM, Snoeyenbos-West OL, Franks AE, Nevin KP,
631		Lovley DR. 2014. Going wireless: Fe(III) oxide reduction without pili by <i>Geobacter</i>
632		sulfurreducens strain JS-1. Appl Environ Microbiol 80:4331-40.
633		
634		
635		
636		
637		
638		
639		
640		
641		
642		
643		
644		
645		
646		
647		
648		
649		
650		
651		

652 Figures and Figure Legends

- **Figure 1.** The impact of deletion of a key T6SS component on DIET. Metabolism of (A)
- 654 DIET co-cultures initiated with the wild-type or *hcp*-deficient strain of *G*.
- 655 *metallireducens* and wild-type *G. sulfurreducens*, (B) GAC-supplemented co-cultures
- 656 initiated with the wild-type or *hcp*-deficient strain of *G. metallireducens* and wild-type *G*.
- 657 sulfurreducens, (C) QUIET co-cultures initiated with the wild-type or hcp-deficient strain
- of *G. metallireducens* and wild-type *G. sulfurreducens*, and (D) DIET co-cultures
- 659 initiated with the wild-type or GSU3174-deficient strain of G. sulfurreducens and wild-
- 660 type G. metallireducens. Each point and error bars represent the average and standard
- 661 deviation of triplicate measurements.

Figure 2. Methane production from DIET co-cultures initiated with the wild-type or *hcp*-

664 deficient strain of *G. metallireducens* and wild-type *M. barkeri* during the first transfer.

Each point and error bars represent the average and standard deviation of triplicate

666 measurements.

Figure 3. Fe(II) production by wild-type *G. metallireducens*, Δhcp , and complemented

- Δhcp strains during growth with acetate (20 mM) provided as the electron donor and
- 679 Fe(III) oxide (50 mM) provided as the electron acceptor. Results and error bars represent
- triplicate cultures. The growth rate for Δhcp was 1.5 (p-value=0.002) and 1.4 (p-
- 681 value=0.02) times greater than wild-type or complemented Δhcp strains.

- **Figure 4.** Results from quantitative RT-PCR using primers targeting various genes that
- 688 code for proteins shown to be involved in extracellular electron transfer. mRNA used as
- 689 template was extracted from cultures of *G. metallireducens* growing by Fe(III) respiration
- 690 with acetate (20 mM) as the electron donor and Fe(III) oxide (50 mM) as the electron
- 691 acceptor (Fe(III)-oxide), growing in co-culture with M. barkeri (DIET GM-MB), or
- 692 growing in co-culture with G. sulfurreducens (DIET GM-GS). Results were calculated
- 693 from triplicate biological and technical replicates using three different housekeeping
- 694 genes as references (*proC*, *recA*, and *rpoB*).
- ⁶⁹⁵ *represents p-values < 0.05; ** represents p-values <0.01. Further details regarding qRT-
- 696 PCR results and p-values are available in Table S6.

698

bioRxiv preprint doi: https://doi.org/10.1101/2023.03.02.530876; this version posted March 2, 2023. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

Table 1 Differences in transcript abundance for all 13 core T6SS genes in *G. metallireducens* grown via DIET compared to QUIET and for genes coding for putative T6SS effector and associated immunity proteins (P-value cutoff ≤ 0.05).

ND: no difference

tse: T6SS effector protein; tsi: T6SS immunity protein

Gene	Name	Annotation	Fold-change DIET vs. QUIET	p-value
Core T6SS	Genes			·
Gmet_0273	tssL	membrane core complex protein	129.56	1.38×10^{-6}
Gmet_0274	tssM	membrane core complex protein	47.98	8.99x10 ⁻²⁶
Gmet_0275	tssA	baseplate complex protein	91.34	2.71×10^{-23}
Gmet_0278	tssB	Sheath protein	703.55	1.71×10^{-21}
Gmet_0279	tssC	Sheath protein	44.18	4.29×10^{-27}
Gmet_0280	hcp	inner tube protein	1397.32	1.74×10^{-30}
Gmet_0286	vrgG	puncturing device	44.88	9.12×10^{-15}
Gmet_3310	tssJ	membrane core complex protein	27.08	5.50×10^{-10}
Gmet_3311	tssK	baseplate complex protein	5.69	4.86x10 ⁻⁸
Gmet_3312	tssE	baseplate complex protein	44.53	3.93×10^{-3}
Gmet_3313	tssF	baseplate complex protein	136.45	7.68×10^{-7}
Gmet_3314	tssG	baseplate complex protein	52.36	1.78×10^{-3}
Gmet_3315	tssH	ClpV1 protease involved in sheath recycling	11.47	5.50×10^{-11}
Effector/ Im	munity	Genes		
Gmet_0284	tsi l	NTF-domain protein (immunity protein)	14.01	1.02×10^{-8}
Gmet_0285	tse1	peptidoglycan-binding D-alanyl-D-alanine	15.92	$9.05 \mathrm{x} 10^{-10}$
		carboxypeptidase		_
Gmet_0287	tse2	fatty acid metabolism protein	5.16	7.36×10^{-5}
Gmet_0288		PAAR-like DUF4150 domain protein	126.78	1.76×10^{-6}
Gmet_0290	tse3	PGAP1 domain protein; phospholipase	7.71	1.31×10^{-8}
Gmet_0291		DUF2169 domain chaperone protein	ND	