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Studying and understanding the code of large neural popula-
tions hinge on learning accurate statistical models of population
activity. A new class of such models, based on learning to weigh
sparse nonlinear Random Projections (RP) of the population,
was recently shown to be highly accurate, efficient, and scal-
able. Moreover, RP models have a clear biologically-plausible
implementation as a shallow neural circuit. Here we extend
these models and present RP models that are learned by opti-
mizing the randomly selected sparse projections. This “reshap-
ing” of projections is akin to changing synaptic connections in
the corresponding neural circuit model. When we applied these
Reshaped RP models to recordings of tens of cortical neurons
from behaving monkeys, we found them to be more accurate
and efficient than the previous class of RP models and on par
with backpropagation models. Our exploration of the effect of
adding biological features to these circuit models revealed that
learning reshaped RP models with homeostatic synaptic scaling
yields even more efficient and accurate models. We further show
that homeostatic reshaped RP models, which rely on sparse and
random connectivity, are superior to fully connected network
models. Our results thus suggest a key functional role for home-
ostatic scaling in neural circuits, beyond regulating network ac-
tivity, namely – optimizing performance and efficiency.
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Introduction
The potential “vocabulary” of the spiking patterns of a pop-
ulation of neurons scales exponentially with the size of the
population we may consider. Therefore, mapping the rules
of neural population codes and their semantic organization
cannot rely on direct sampling of the vocabulary for more
than a handful of neurons. Moreover, the stochastic nature
of neural activity implies that the characterization of neural
codes must rely on probability distributions over population
activity patterns. Thus, to describe and analyze the structure
and content of the code with which neural circuits respond to
stimuli or direct action – we need to learn statistical models
of their activity. Such models have been used to study the de-
sign of neural population codes and their content in different
systems: Models of the directional coupling between neu-
rons, such as Generalized Linear Models, have been used to
replicate the stimulus-dependent rates of populations of tens
of neurons (1–4). Maximum entropy models have accurately
captured the joint activity patterns of more than 100 neurons,
using simple statistical features of the population, like firing
rates, pairwise correlations, synchrony, and other low-order
statistics (5–13). They have further been used to explore the
semantic organization of the code (14, 15). Auto-encoders

have also been employed to replicate the detailed structure of
population activity – yielding generative models that can be
used to study the code, but their design is difficult to inter-
pret (16–18). Importantly, scaling these models to hundreds
of neurons is computationally challenging (9, 19, 20) and is,
therefore, a key hurdle in modeling large neural systems.
While statistical models are invaluable for describing and
studying neural codes, it is not immediately clear whether
the brain relies on such models or implements them when
representing or processing information (21, 22). In particular,
much of the analysis of neural codes has focused on decoding
population activity, typically using simple decoders (2, 23–
27), or metrics over the structure of population activity pat-
terns (14, 28, 29). Yet, if neural circuits implement such sta-
tistical models, and in particular, ones that compute the like-
lihood of their inputs – it would be instrumental for carrying
Bayesian computation and decision making (30–32). More-
over, learning such network models would be of key interest,
both as a potential way to improve learning in artificial neu-
ral networks using biological features, and as a way for bi-
ological neural networks to implement efficient learning and
overcome the credit assignment problem (33–38).
Both structured architectural features of neural circuits and
random connectivity patterns have been suggested to en-
able or shape the computation carried out by neural cir-
cuits (30, 39–43). In particular, these computations rely on
the nature of synaptic connectivity and the coupling between
synapses in terms of how they change during learning. Com-
petition mechanisms between synapses or other regulariza-
tion mechanisms have also been suggested to be important
components of computation and learning, for example, in
cortical circuits (44, 45). One such mechanism is the homeo-
static scaling of synaptic plasticity, which has been observed
in vitro and in vivo at the level of incoming synapses to a neu-
ron and outgoing ones (46–49). This mechanism has been
commonly attributed to the regulation of firing rates, while
its computational implications remain mostly unclear, but of
interest computationally and mechanistically (50–54). A re-
lated computational feature has been presented by network
models that include divisive normalization, which has been
suggested to be a key component of computations performed
by cortical circuits (55).
Here, we explore biologically-inspired extensions of a new
family of statistical models for large neural population codes.
Adding biological features and constraints to population
models enabled us to ask how to improve the models, and
how the design of real neural circuits could allow them to
implement such models. Specifically, we expand the Ran-
dom Projections (RP) model (30), which was shown to be
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Fig. 1. Reshaped Random Projections models outperform Random Projections models. (A) A short segment of the spiking activity of 100 cortical neurons used for
the analysis and comparison of different statistical models of population activity (see Methods). (B) Schematics of the neural circuits that implement the different random
projections models we compared: The “standard” Random Projections model, where the coefficients aij that define the projections are randomly selected and fixed whereas
the factors λi are learned (see text). The Reshaped Random Projections model, where the coefficients aij that define the projections are tuned and the factors λis are
fixed. The backpropagation model, where we tune both the aijs and λis. (C) The predicted probability of individual populations’ activity patterns as a function of the
observed probability for RP, Reshaped and Backpropagation models. Gray funnels denote 99% confidence interval. (D) Average performance of models of the three classes
is shown as a function of the number of projections, measured by log-likelihood, over 100 sets of randomly selected groups of 50 neurons. Reshaped models outperform
RP models and are on par with backpropagation; the shaded area denotes the standard error over 100 models. (E-F) Mean firing rates of projection neurons and mean
correlation between projections. Reshaped models show lower correlations and lower firing rates compared to RP and backpropagation models. Standard errors are smaller
than marker’s size, hence invisible.

highly accurate at the level of more than 100 neurons in dif-
ferent systems, and which relies on a random set of sparse
and non-linear features of the population. Importantly, in ad-
dition to being accurate and requiring little amounts of train-
ing data, RP models can be readily implemented by a simple
neural circuit model – suggesting how real neural circuits can
learn a statistical model of their own inputs. We then asked
whether we can make these models better by “reshaping” the
randomly chosen projections, and show that we can indeed
achieve highly accurate models using significantly fewer pro-
jections. Using biologically-plausible circuits that would im-
plement RP models, we further asked how would adding bi-
ological characteristics to the reshaping of projections affect
the model. We found that reshaping that incorporates home-
ostatic scaling results in more accurate models that are also
more efficient. Thus, we present a new class of accurate and
efficient statistical models for large neural population codes
that demonstrates a clear computational benefit of homeo-
static synaptic scaling and its potential role in biological neu-
ral networks and artificial ones.

Results
The Random Projections (RP) model is a class of highly ac-
curate, scalabale, and efficient statistical models of the joint
activity patterns of large populations of neurons (30, 31).

These models are based on random and sparse nonlinear
functions, or “projections", of the population: Given a
recording of the spiking activity of a neuronal population,
the model gives a probability distribution over a discrete time
representation of the activity (e.g., 10-20 ms bins), using a
set of random non-linear functions of the population activity,

fi(~x) = σ
(∑

aijxj−θj
)
, (1)

where aij are randomly sampled coefficients such that most
of them for any i are zero (i.e., the set is sparse), θj are
thresholds, and σ(·) are nonlinear functions, (e.g., the Heav-
iside step function). The RP model is defined as the max-
imum entropy distribution p(~x) (56), which is consistent
with the observed average values of the random projections
〈fi〉p = 〈fi〉data (See Methods). This distribution is unique,
given by

pRP (~x) = 1
Z

exp
(
−
∑
i

λifi(~x)
)
, (2)

where λi are Lagrange multipliers, and Z is a normalization
factor or the “partition function", which can be found numer-
ically. When applied to cortical data from multiple areas (see,
e.g., Figure 1A), this model proved to be highly accurate us-
ing small amounts of training data (30). Importantly, unlike
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many other statistical models of population activity, RP mod-
els have a simple, biologically plausible neural circuit that
can implement them. Figure 1B shows such a feed-forward
circuit with one intermediate layer and an output neuron,
where the random coefficients of the sparse projections, aij ,
are the synaptic weights connecting the input neurons ~x to
an intermediate layer of neurons fi. Each intermediate neu-
ron implements one projection of the input population. The
Lagrange multipliers, λi, are the synaptic weights connecting
the intermediate layer to the output neuron, whose membrane
potential or output gives the log-likelihood of the activity pat-
tern of ~x, up to a normalization factor.
The model in eq. 2 harbors a duality between the projections,
fi, and their coefficients, λi: In the maximum entropy for-
malism of the RP model, the projections are randomly sam-
pled and then fixed, and their corresponding weights, λi’s,
are tuned to maximize the entropy and satisfy the constraints.
Alternatively, we consider the case of training the model by
keeping the λi’s fixed and changing or tuning the projections
fi to maximize the likelihood. In the corresponding neural
circuit, this would imply that we would learn a circuit that
implements the statistical model by training the sparse set of
synaptic connections, aij , which define the projections, in-
stead of training the synaptic weights, λi.
Notably, a variant of the RP model in which projections that
were weighted by a low value of λi are pruned and replaced
with new random projections proved to be more accurate than
the original RP model, while using fewer projections (30).
This procedure of pruning and replacement is a crude form of
learning of the model through changing the projections, and
finding more efficient ones. We asked here whether instead of
the heuristic pruning and replacement, we can directly learn
more accurate and efficient models by tuning the projections.

Reshaping random projections give more accurate
and compact models. We, therefore, learned a new class of
statistical models for populations of tens of cortical neurons
from the prefrontal cortex of monkeys performing a visual
classification task (57). These statistical models use random
projections and are learned by tuning the projections: Given
an initial draw of sparse projections, the random weights that
define the projections, aij , are changed to maximize the like-
lihood of the model:

∆aij = ηλi

(〈
∂σ(~x)
∂aij

〉
p

−
〈
∂σ(~x)
∂aij

〉
data

)
, (3)

where η is the learning rate. Unlike the RP model presented
in (30), here we used a sigmoid function for the nonlinearity
of the projections,

σ(x) = 1
1 +e−βx

, (4)

where β sets the slope of the sigmoid. In this formulation,
the model ranges from an independent model of the popula-
tion for β → 0, to the original RP model (30) for β →∞.
The rule for changing the projections (eq. 3) means that the
set of inputs to each projection neuron is retained, but their

relative weights are changed, and so the projections are “re-
shaped”. We focus henceforth on the case of all λi = 1, which
we term the Reshaped Random Projections (Reshaped RP)
model, which is given by

pReshape(~x) = 1
Z

exp
(
−
∑
i

fi(~x)
)
. (5)

We compared between the RP and the Reshaped RP mod-
els by quantifying their performance on the same set of ini-
tial projections. To that end, we first learned the RP model
as in (30), using a Heaviside non-linearity for the projec-
tions, and compared them to RP models that used a sigmoid
non-linearity (where both models used the same set of ran-
dom projections). The latter models were found to be more
accurate (see Supplementary Figure 1). We then learned a
Reshaped RP model in which we optimize the same initial
projections while keeping λi = 1. We note that while in its
maximum entropy formulation, the RP model is the unique
solution to a convex optimization problem, the Reshaped RP
models are not guaranteed to reach a global optimum. We
also considered a third class of models, ones in which the pro-
jections and the Lagrange multipliers λi are optimized simul-
taneously, similar to backpropagation-based learning used to
train feed-forward networks (see Methods). Figure 1C shows
an example of the ability of the sigmoid RP models, Re-
shaped Random Projections models, and backpropagation-
based models to predict the probability of individual activ-
ity patterns for one group of 20 neurons, recorded from the
cortex of behaving monkeys (57). The activity patterns are
predicted by the reshaped RP model to an accuracy that is
within the sampling noise level (denoted by the 99% confi-
dence interval funnel), and is similar to the performance of
the full backpropagation model. The standard RP model, in
comparison, has many more patterns that are outside the 99%
confidence interval funnel. We quantified the performance
of the three classes of models by calculating the mean log-
likelihood of the models over 100 groups of 50 neurons on
held out datasets, as a function of the number of projections
that we used (Fig. 1D). The reshaped models outperform the
RP ones for a low number of projections, whereas when many
projections are used, the performances of all three models
converge to a similar value.
To compare the “mechanistic” nature of these different mod-
els, we calculated the mean correlation between the projec-
tions within each model class, and the average values of each
projection (where the average is over the population activ-
ity patterns), which correspond to the mean firing rates of
the neurons in the intermediate layer. Interestingly, the firing
rates of the neurons in the intermediate layer are considerably
lower for the reshaped models, and this sparseness in activ-
ity becomes more pronounced as a function of the number of
projections (Figure 1E). We further find that the correlations
between the projections in the reshaped models are consid-
erably lower compared to RP and backpropagation models
(Figure 1F).
Thus, the reshaped projection models suggest a way to learn
more accurate models of population activity, by the tuning
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Fig. 2. Homeostatic Reshaped RP models outperform RP models and bounded RP models. (A) Schematic drawing of the different models we studied: standard RP
model, unconstrained reshaped model, and two types of constrained reshaped models: Bounded models in which each synapse separately obeys

∑
ij
|aij | < θ during

learning, and Homeostatic input reshaped models, where we fix the total synaptic weight of incoming synapses
∑

ij
|aij | = φ. (B) The mean log-likelihood of the models

is shown as a function of the total available budget. The Homeostatic input reshaped RP models give optimal results for a wide range of values of available synaptic budget,
outperforming the bounded models and the RP model. (C) The mean log-likelihood of the models is shown as a function of the total used budget. Aside from the bounded
models, all other models are the same as in (B) by construction. For high available budget values, bounded models show better performance while utilizing a lower synaptic
budget, similar to the unconstrained reshape model. (D) Comparison of the performance of 100 individual examples of each model class and their corresponding RP model,
where all models relied on the same set of initial projections. Homeostatic input models outperformed the RP models in all cases (all points are above the diagonal), while all
bounded models were worse (points below the diagonal). (E-F) The mean correlation and firing rates of projections as a function of the model’s cost. Homeostatic models
show low correlations and mean firing rates, similar to unconstrained reshaped models. Note that in panels B, C, E, and F, the standard errors are smaller than the marker
size, and are therefore invisible.

of projections. These models are also more efficient, re-
quiring fewer projections, which have lower firing rates (i.e.,
reshaped projections use fewer spikes), and are less corre-
lated. Given their accuracy and efficiency, we next asked
how adding biological features or constraints to a Reshaped
RP circuit may affect its performance and efficiency.

Homeostatic reshaping of random projections gives
more accurate and synaptically efficient models. We
next studied the effect of adding two classes of biological fea-
tures or constraints to the model, on the performance and na-
ture of the Reshaped RP circuit model. The first constraint is
based on the biophysical limits on individual synapses, and so
we bound the maximal strength of individual synapses such

that the strength of all synaptic weights are smaller than a
“ceiling” value: |aij |<θ. The other is a homeostatic normal-
ization of the synaptic weights, following the synaptic rescal-
ing that has been observed experimentally (49). We consider
multiple homeostatic mechanisms of this kind later on, but
begin here with fixing the total sum of the incoming synap-
tic strength of each projection such that

∑
j |aij |= φ. Thus,

when the strength of one synapse increases (decreases), the
strength of the rest of the incoming synapses decreases (in-
creases) such that the total synaptic weight incoming into the
projection is kept constant.

To compare the effect of these constraints, we used the same
set of initial random projections, and then learn by reshaping
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Fig. 3. Homeostatic model variants show similar results. (A) Schematic draw-
ings of the different homeostatic models we compared: Homeostatic input models in
which we fixed the total synaptic weight of the incoming synapses

∑
j
|aij | = φ;

Homeostatic output models in which we fixed the total synaptic weight of the outgo-
ing synapses

∑
i
|aij |= φ; and Homeostatic circuit models in which we fixed the

total synaptic weight of the whole synaptic circuit
∑

ij
|aij | = φ. (B) The mean

log-likelihood of models, shown as a function of the total used budget. All three
homeostatic model variants show a similar behavior. (C) and (D) Mean correlation
between the projection neurons and firing rates as a function of the model cost.
Again, all three homeostatic constraints show a similar behavior. Note that in pan-
els B, C, and D, the standard errors over 100 models are smaller than the marker’s
size and are, therefore, invisible.

them, each time with a different value of their corresponding
parameters, φ or θ. We estimated the likelihood of each of
the models on 100 groups of 50 neurons, over 100 random
sets of 150 projections. To quantify the “synaptic budget”
of each model, we measured the total sum of the absolute
values of synaptic weights available to each model in units
of the total synaptic strength of the initial set of projections
(this is equivalent to defining the total sum of the synaptic
weights of the initial set of projections as “1”, and then mea-
suring total synaptic weights in these units). For the models
with bounded synapses, the total available synaptic budget
is given by the number of synapses times θ, whereas for the
homeostatic constraint, it equals φ times the number of pro-
jections in the model. Figure 2B shows the log-likelihood of
each model class vs. the total available synaptic budget of
the different models: For a wide range of synaptic budgets,
the homeostatic models outperform the bounded models, and
only for very high values of available synaptic budget, the

performance of the bounded models is on par with the home-
ostatic models.
The differences between the homeostatic scaling models and
the bounded synaptic strength models are further reflected in
Figure 2C, where we show the performance of each model
class as a function of the total sum of synaptic weights that
is used by the model at the end of the training

∑
ij |aij |. We

note that the curve of the homeostatic model is identical to
the one from Figure 2B by definition, but the curve of the
bounded models shows that at a certain value of θ the sum
of the synaptic weights starts to decrease and converges to
that of the unconstrained reshaped model. The poor perfor-
mance of the bounded models compared to that of the home-
ostatic ones suggests that the coupled changes in the synap-
tic weights improve learning. Specifically, during reshaping,
the homeostatic models “redistribute” their budget and move
synaptic “mass" from less important synapses to more im-
portant ones. This redistribution of resources results in accu-
rate models even for relatively low values of synaptic weights
– making them more efficient in terms of the total synaptic
weight needed.
The dominance of the homeostatic learning over the bounded
synaptic weights is clear not just for the average over models,
but also at the level of the individual model. Figure 2D shows
the performance of the homeostatic and bounded models that
are initialized with the same set of random projection. As is
evident, all the bounded constraint models are inferior to the
RP ones, whereas all the homeostatic constraint models are
superior to the RP models (and clearly all the homeostatic
models are superior to the corresponding bounded models).
We further find that the mean firing rates of the reshaped pro-
jections, as well as the correlations between them, are lower
in the homeostatic models compared to the bounded models
(Figure 2E-F), making them more energetically efficient (in
terms of spiking activity), consistent with efficient coding by
decorrelated neural populations (58, 59).
We explored two other homeostatic synaptic scaling rules
for the reshaping of projections (Fig. 3A). In the first, we
fixed and normalized the outgoing synapses from each neu-
ron, such that that

∑
i |aij | = φ. In the second, we kept the

total synaptic weight of the whole circuit fixed
∑
ij |aij |= φ.

Figure 3B shows that the performance of the models that use
these different homeostatic mechanisms is surprisingly sim-
ilar in terms of the model’s likelihood over the test data, as
well as the firing rates of the projection neurons (Fig. 3C),
and correlations between them (Fig. 3D).
Having established the computational benefits and efficiency
of reshaped projection models that rely on homeostatic scal-
ing, we turned to ask how the connectivity itself, rather than
the synaptic weights, may affect the performance of the mod-
els.

Homeostatic reshaping of random projections is on
par with optimal projections and better than a fully
connected network. The benefits of reshaping the projec-
tions raises the question of the importance of the nature of
the specific random projections, that are then reshaped. We,
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Fig. 4. Models that rely on projections that use random connectivity show
similar performance to models that use the correct connectivity. (A) Synthetic
population activity data is sampled from an RP model with known connectivity (i.e.,
the “ground truth” model; see Methods). (B) Homeostatic reshaped random pro-
jections models that differ in their connectivity are learned to fit the synthetic data.
The “True connectivity” model uses projections whose connectivity is identical to
the “ground truth” model. The “Random connectivity” model uses projections that
are randomly sampled using sparse random connectivity. The “Full connectivity”
model is a homeostatic reshaped model that uses projections with full connectivity.
(C) The mean log-likelihood of the models is shown as a function of the model’s
cost. The true connectivity model is only slightly better than the random connectiv-
ity model, with both outperforming the full connectivity model for low model budget
values. (D) The mean correlation between the activity of the projection neurons,
shown as a function of the model cost. We note that true and random connectivity
models are indistinguishable. (E) The firing rates of the projection neurons, shown
as a function of the model cost. Note that in panels D, and E, the standard errors
are smaller than the markers’ size and are, therefore, invisible.

therefore, asked how the initial random “wiring” of the pro-
jections affects the performance of the model, and whether
non-random projections would result in even better models.
To quantify the effects of the projections’ connectivity on the
performance and efficiency of reshaped models, we used sim-
ulated population activity that we generated using RP mod-
els that were trained on real data. By using synthetic data
that was generated by a known model, we can compare the
learned models to the “ground truth” in terms of connectivity,
as well as extensively sampling of activity patterns from the
model.

We learned homeostatic reshaped models for the synthetic
data, using different initial connectivity structures (Fig-
ure 4A-B): (i) A “true” connectivity model in which we re-
shaped a random projections model that has the same con-
nectivity as the projections of the model that generated the
data. (ii) A Random connectivity model in which we re-
shaped projections with sparse and connectivity that is ran-
domly sampled and is independent of the model that gen-
erated the synthetic data. (iii) A full connectivity model in
which we reshaped random projections with full connectiv-
ity, i.e., all input neurons are connected to all the projections,
but with random initial weights. We carried out homeostatic
reshaping of the projections in all three models with different
values of θ. Surprisingly, the true and random connectivity
models performed very similarly (Figure 4C). Although the
full connectivity model contains the “ground truth” connec-
tivity, and could recreate the true connectivity by canceling
out unnecessary synapses during reshaping – we find that the
full connectivity models are inferior to the other models, ex-
cept for the case of high model costs.
The mean correlations between projections at the end of re-
shaping and the mean firing rates of the models that use the
true and random connectivity were also very similar (Fig-
ure 4D-E), whereas the full connectivity models showed,
again, very different behavior. These results reflect another
computational benefit of homeostatic reshaping: there is no
need to know the optimal circuit connectivity, and there is no
apparent benefit to all-to-all connectivity, which would be ex-
pensive in terms of the energetic cost, the space needed, and
the biological construction. Thus, starting from random con-
nectivity and optimizing the circuit under homeostatic con-
straints seems to provide optimal results.
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Normalized in-dgeree Model cost / Norm. in-degree

0.51 0.68 0.85 1.02 1.19Model cost (a.u.)
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..
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Fig. 5. Fixed ratio between optimal in-degree values of the Reshaped models
and their cost. (A) The performance of the tested models, shown as a function
of the normalized in-degree of the projections (0–disconnected, 1–fully connected)
for different values of the model’s cost. (B) The performance of the tested models,
shown as a function of the cost, normalized by the in-degree of the projections.
Curves of different cost values coincide, suggesting a fixed optimal cost/activity
ratio. The standard errors over 100 models are smaller than the size of markers
and are, therefore, invisible.

Optimal sparseness of reshaped Projections models
under homeostatic constraints . Given the inefficiency of
the fully connected reshaped projections model, we quanti-
fied the effect of the sparseness of the projections on reshaped
RP models. We recall that for the standard RP model, sparse
projections were optimal for a wide range of network sizes
(30)), and so we measured the performance of homeostatic
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Fig. 6. Different homeostatic models produce a similar behavior using different projection sets. (A) Schematic drawing of how projections rotate during reshaping:
starting from the initial projections (grey lines), they rotate to their reshaped orientation (black lines) by angle θi. (B) Rotation angles after reshaping, shown for different pairs
of models. All four panels show models that initialized with the same set of projections. The different labels specify the constraint type and strength, namely, the specific
value of φ and θ. (C) The mean rotation angle of the projections due to reshaping, shown as a function of the model synaptic budget. (D) A histogram of rotation angles
of the projections after learning in the case of the unconstrained reshape models and different homeostatic input (top) and homeostatic circuit (bottom) models. The legend
specifies the constraint type and strength, namely, the specific value of φ and θ. (E) A histogram of the firing rates of the same sets of models from (D).

reshaped RP models for different values of in-degree of the
projections, while keeping the total synaptic budget of the
models fixed. We found that different synaptic budgets have
a different optimal in-degree (Figure 5A), and that the value
of the optimal in-degree seems to grow with the total synaptic
budget.
We further estimated the efficiency of the models by the
synaptic cost per connection in the projections (Figure 5B).
We find that curves for different total synaptic costs seem to
coincide and have a similar peak value – suggesting an opti-
mal ratio between the total available resources and the num-
ber of synapses.

Different Homeostatic mechanisms for reshaping ran-
dom projections models result in different projection
sets. Homeostatic reshaping of random projections proved
to be highly accurate and efficient for the three homeostatic
model variants we tried, and were similar also in their effi-
ciency in terms of total synaptic costs. We, therefore, asked
whether we can identify other features that differentiate be-
tween the homeostatic models. Since each projection defines
a hyperplane in the space of population activity patterns, re-
shaping can be interpreted as a rotation or a change of the
angle of these hyperplanes, depicted schematically in Fig-
ure 6A. We, therefore, compared the different homeostatic
variants of the reshaped projections models by initializing
them from the same set of random projections, and evaluating
the corresponding rotation angles, θ, of all of the projections

due to the reshaping. Figure 6B shows an example of the
rotations of the same initial projections for one model under
different reshaping constraints, highlighting the substantial
differences between them.
Figure 6C shows the mean rotation angle over 100 homeo-
static models as a function of synaptic cost – reflecting that
the different forms of homeostatic regulation results in dif-
ferent reshaped projections. Figure 6D shows the histogram
of the rotation angles of several homeostatic models, as well
as the unconstrained reshape model. Again, we find signif-
icant differences between the homeostatic models in terms
of the firing rates of the projection neurons after reshaping,
as well as for different parameter values of the same homeo-
static mechanism (Figure 6E).

Discussion

We presented a new family of statistical models for large neu-
ral populations that is based on sparse and random non-linear
projections of the population, which are adapted during learn-
ing. This new family of models proved to be more accurate
than the highly accurate Random Projections class of models,
using fewer projections and incurring a lower “synaptic cost"
in terms of the total sum of synaptic weights of the model.
Moreover, we found that homeostatic reshaping of the projec-
tions gave even more accurate and efficient models in terms
of synaptic weights, and was optimal for models that relied
on random and sparse initial connectivity (compared to fully
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connected models).
Our results suggest a computational role for the experimen-
tally observed homeostatic scaling of synapses during learn-
ing. Going beyond its customary justification as a “regular-
izer” of firing rates in neural circuits – in our Reshaped RP
models, homeostatic plasticity optimizes the performance of
network models and their efficiency in scenarios of limited
resources and random connectivity. Moreover, the similarity
of the performance of models that use different homeostatic
synaptic mechanisms suggests a possible universal role for
homeostatic mechanisms in computation.
The shallowness of the circuit implementation of the Re-
shaped Random Projections model implies that the learning
of these models does not require the backpropagation of in-
formation over many layers, which distinguishes deep arti-
ficial networks from biological ones. Moreover, the local-
ity of the reshaping process itself points to the feasibility of
this model in terms of real biological circuits. The biologi-
cal plausibility is further supported by the robustness of the
model to the specific connectivity used for the reshaped mod-
els, and to the specific choice of the homeostatic mechanism
we used.
A key remaining issue for the biological feasibility of the
RP family of models is the feedback signal from the read-
out neuron to the intermediate neurons. The noise-dependent
learning mechanism for RP models presented in (30) and for
other local feedback and synaptic learning mechanisms that
approximate backprogapation (35) offers clear directions for
future study. Our results may also be relevant for learning
in artificial neural networks, whose training relies on non-
convex approaches that necessitate different regularization
techniques (60). The homeostatic mechanism we focused on
here is a form of “hard" L1 regularization, but on the sum
of the weights. This approach limits the search space, com-
pared to regularization over the weights themselves, but de-
fines coupled changes in weights, in a manner highly effec-
tive for the cortical data we studied. We, therefore, hypoth-
esize that homeostatic scaling may be beneficial for artificial
architectures (see, e.g., (37)).

Materials and Methods
Experimental Data. Extra-cellular recordings were per-
formed using Utah arrays from populations of neurons in the
prefrontal cortex of macaque monkeys performing a direc-
tion discrimination task with random dots. For more details
see (57).

Data Pre-processing. Neural activity was discretized using
20 ms bins, such that in each time bin a neuron was active
(’1’) if it emitted a spike in that bin and silent (’0’) if not.
Recorded data was split randomly into training sets and held-
out test sets: 100 different random splits were generated for
each model setup, consisting of 160,000 samples in the train-
ing set and 40,000 in the test set.

Constructing Sparse Random Projections. Following
(30), the coefficients aij of the random projections are set

using a two stage process. First, the connectivity of the pro-
jections is set such that the average in-degree of the pro-
jections matches a predetermined sparsity value: each in-
put neuron connects to each projection with a probability
p = indegree/n, where n is the number of neurons in the
input layer. The corresponding aij coefficients are then sam-
pled from a Gaussian distribution, aij ∼N (1,1), and the re-
maining aij values are set to zero. The threshold of each
projection, θi, was set to 1.
The average in-degree of sparse models used here was 5, un-
less specified otherwise in the text. For the fully connected
models indegree= n (i.e., sparsity=0).

Training RP models. Given empirical data X and a set of
projections defined by aij , we train the RP models by search-
ing for the parameters λi that maximize the log-likelihood of
the model given the data, argmaxλi

(L(X)), where L(X) =∑
~x∈X logpRP (~x). This is a convex function whose gradient

is given by

∇λi
L(X) = 〈fi〉X−〈fi〉pRP

. (6)

We found the values λi that maximize the log-likelihood by
gradient descent with momentum or ADAM algorithms. We
computed the empirical expectation in 〈fi〉X by summing
over the training data, and the expectation over the probabil-
ity model 〈fi〉pRP

by summing over synthetic data generated
from pRP using Metropolis–Hasting sampling.
For each of the empirical marginals 〈fi〉X, we used the Clop-
per–Pearson method to estimate the distribution of possible
values for the real marginal given the empirical observation.
We set the convergence threshold of the numerical solver
such that each of the marginals in the model distribution falls
within a CI of one SD under this distribution, from its empir-
ical marginal.

Reshaping RP models. Given empirical data X, we op-
timize the RP models by modifying the coefficients aij
such that the log-likelihood of the model is maximized,
argmaxaij (L(X)). Starting from an initial set of projec-
tions, a0

ij , using the update rule of equation 3, we optimize
the projections by applying the gradient descent with mo-
mentum algorithm. Importantly, only non-zero elements of
a0
ij are optimized.

Optimizing backpropagation models. Full backpropaga-
tion models are optimized using the learning rules of the
trained RP models and the reshaped models simultaneously
in each gradient descent step, i.e., eqs. 3 and 6.

Homeostatic reshaping of RP models. The homeostatic
RP models are reshaped as follows: We first define a set of
unconstrained projections where the coefficients ãij are ran-
domly sampled. Each of the projections is then normalized
homeostatically, such that aij are a function of this uncon-
strained set: aij = φ · ãij/

∑
k |ãik|, where φ is the available

synaptic budget for each projection. We then optimize ãij to
maximize the log-likelihood of the model given the empir-
ical data X: argmaxãij (L(X)). The computed constrained
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projections aij are then used in the resulting homeostatic RP
model.

Bounded reshaping of RP models. Similar to reshaping
homeostatic RP models, we define a set of unconstrained pro-
jections ãij , where the projections are a function of this un-
constrained set: aij = min(max(ãij ,−θ) ,θ), where θ is the
“ceiling” value of each synapse.

Generating synthetic data from RP models with known
connectivity. Synthetic neural activity patterns were ob-
tained by training RP models on real neural recordings as
described above and then generating data from these models
using Metropolis-Hastings sampling.
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Supplementary Note 1: Step and Sigmoid Random Projections models comparison
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Supp. Fig. 1. Sigmoid Random Projections models outperform Step Random Projections models. (A) Average performance of
models as a function of the number of projections, measured by log-likelihood. Sigmoid RP models outperform step RP models. (B-C)
Mean firing rates of projection neurons and mean correlation between projections, step RP models show slightly lower correlations and
firing rates compared to sigmoid RP models. In all panels shaded area denotes standard error over 100 models.
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