Supplementary Table 1

Variable	Types		Sample numbers		Group
Education	Low M	Medium High	52	$412 \quad 181$	Social
Income	Normal	High	404	240	Social
Maternal age (median 32.07)	Below median	(Above median	323	322	Social
Maternal BMI	<25	≥ 25	410	231	Social
Race	Caucasian	Non-caucasian	615	30	Social
$A B$ usage during pregnancy	No	Yes	410	234	Prenatal
Fishoil during pregnancy	No	Yes	324	320	Prenatal
Preeclampsia	No	Yes	615	30	Prenatal
Smoking during pregnancy	No	Yes	599	46	Prenatal
$A B$ usage during birth	No	Yes	627	18	Perinatal
Birth induction	No	Yes	426	219	Perinatal
Delivery method	Vaginal	CS	509	136	Perinatal
Gestational age (weeks)	<37	≥ 37	25	620	Perinatal
Hospitalized after birth	No	Yes	571	74	Perinatal
Low birth weight (<2.5kg)	No	Yes	626	19	Perinatal
Mother $A B$ usage during birth	No	Yes	440	202	Perinatal
Sex	Female	Male	310	335	Perinatal
Weight at birth	<3.5	≥ 3.5	285	360	Perinatal
$A B$ usage before 6 months old	No	Yes	560	79	Postnatal
$A B$ usage before 1 year old	No	Yes	343	296	Postnatal
Cat or dog at home	No	Yes	420	222	Postnatal
Cow milk introduced in diet, age in days (median 214 days)	Below median	A Above median	325	320	Postnatal
Daycare at sampling time	No	Yes	132	511	Postnatal
Egg introduced in diet, age in days (median 257 days)	Below median	n Above median	323	322	Postnatal
Fish introduced in diet, age in days (median 212 days)	Below median	n Above median	325	320	Postnatal
Older siblings	No	Yes	286	359	Postnatal
Duration of exclusion breastfeeding	<120	≥ 120	277	368	Postnatal
Still breast fed at sampling time	Mixed	No breastfeeding	93	550	Postnatal
Type of living environment	Urban	Rural	304	340	Postnatal

Supplementary Table S1

Environmental exposure characteristics of the infant samples. Column "types" shows the composition of each exposure. Column "numbers" depicts the number of samples (N) for each factor. The group column shows how each variable is grouped.

Supplementary Table 2

	Host phylum	Host family	Number of vOTUs			Virulent/ temperate
			temperate	virulent	unknown	
1	Actinobacteria	Bifidobacteriaceae	253	80	221	0.32
2	Actinobacteria	Other	33	58	58	1.76
3	Bacteroidetes	Bacteroidaceae	238	180	1035	0.76
4	Bacteroidetes	Barnesiellaceae	6	1	39	0.17
5	Bacteroidetes	Flavobacteriaceae	4	11	38	2.75
6	Bacteroidetes	Odoribacteraceae	2	7	25	3.50
7	Bacteroidetes	Prevotellaceae	42	15	148	0.36
8	Bacteroidetes	Rikenellaceae	11	8	58	0.73
9	Bacteroidetes	Tannerellaceae	41	66	186	1.61
10	Bacteroidetes	Other	20	89	140	4.45
12	Firmicutes	Clostridiaceae	257	49	332	0.19
13	Firmicutes	Erysipelotrichaceae	101	19	133	0.19
14	Firmicutes	Lachnospiraceae	1058	63	1066	0.06
15	Firmicutes	Paenibacillaceae	47	1	138	0.02
16	Firmicutes	Peptostreptococcaceae	99	2	182	0.02
17	Firmicutes	Ruminococcaceae	672	13	1089	0.02
18	Firmicutes	Streptococcaceae	48	26	181	0.54
19	Firmicutes	Veillonellaceae	399	0	303	0.00
20	Firmicutes	Other	778	32	1236	0.04
21	Proteobacteria	Enterobacteriaceae	160	0	316	0.00
22	Proteobacteria	Sutterellaceae	59	0	111	0.00
23	Proteobacteria	Other	78	38	285	0.49
24	Verrucomicrobia	Akkermansiaceae	67	17	72	0.25
26	Other	Other	466	220	1815	0.47

8 Supplementary Table S2
9 Number of different lifestyle vOTUs.

Supplementary Figure 1

Supplementary Figure S1

Relative abundance of vOTUs across all samples grouped by their host bacterial family.

Supplementary Figure 2

Supplementary Figure S2

A-B) The effect size of exposures on virome variation calculated by db-RDA on Bray-Curtis
(A) and Sorensen-Dice (B) dissimilarity matrices.

Supplementary Figure 3

Supplementary Figure 3

A) Heatmap of Spearman's rank correlation between the differentially abundant vOTUs and 16S rRNA (V4 region) data blocks. The rows represent the 91 vOTUs, and the columns represent the 110 bacterial OTUs. Virome contigs were labeled according to their host family. Bacterial OTUs were labeled according to their family.
B) Phylogenetic tree showing genetic relationships of vOTUs.

Supplementary Figure 4

Supplementary Figure 4

A-D) Barplots showing p-values and effect sizes of db-RDA analysis for bacterial variation based on Bray-Curtis (A-B) and Sorensen-Dice (C-D) dissimilarity matrices. P-values were calculated by an ANOVA-like permutation test $(\mathrm{n}=999)$.

Supplementary Figure 5

E) Heatmap of Spearman's rank correlation between the differentially abundant vOTUs and whole-genome shotgun metagenome data blocks.

Supplementary Figure 5

A) Distribution of gene annotations to KEGG databases.

39 B-C) Procrustes correlation between the virome data and bacterial 16S rRNA gene data.
40 Sorensen-Dice was used to generate distance matrices, the results of db-RDA were taken into the procrustes analysis. The triangle represents the virome samples and the circle represents the bacteria samples.
D) KOs (enzymes and E.C. numbers) that are associated with metabolism pathways.

