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Materials and Methods 

Strains, Plasmids and Growth Conditions 

We used the LTEE ancestors (E. coli strains REL606 and REL607, called ANC and ANC*, 
respectively, in our paper) and evolved clones (listed below) sampled from all 12 populations at 
50,000 generations.  545 

Population Clone ID Population Clone ID 

Ara–1 REL 11330 Ara+1 REL 11392 
Ara–2 REL 11333 Ara+2 REL 11342 
Ara–3 REL 11364 Ara+3 REL 11345 
Ara–4 REL 11336 Ara+4 REL 11348 
Ara–5 REL 11339 Ara+5 REL 11367 
Ara–6 REL 11389 Ara+6 REL 11370 
 
We generated the donor strain for transposon library construction by transforming E. coli 
MFDpir with pSC189, a mobilizable plasmid that carries the mariner transposon but lacks the 
machinery necessary for replication outside the MFDpir host. We grew the donor strains in LB 
with 300 µM DAP (diaminopimelic acid) and 50 mg/L kanamycin. We produced a fresh batch of 550 
donor strains each week, to ensure that the transposon had not been mobilized or disrupted 
essential genes in the donor background. Single gene deletions were constructed by 
recombineering, as previously described (47). We used the pSIM5-tet plasmid carrying a heat-
inducible lambda red recombinase and a tetracycline-resistance gene (48). The kanamycin-
resistance cassette used for recombineering was amplified from the pKD4 plasmid (47). 555 

Transposon Library Construction 

We used a suicide-plasmid delivery system to construct the transposon libraries (49, 50). We 
conjugated dense overnight cultures of the E. coli MFDpir-pSC189 donor and recipient (one of 
the LTEE strains) on a 0.2-µm filter and incubated for 1 h. We resuspended the conjugation 
mixture and plated 1-2 mL on large LB agar plates supplemented with kanamycin (either 50 560 
mg/L or 100 mg/L, depending on selection efficiency). After overnight growth at 30°C, we 
scraped cells from the plates, mixed the resulting mutant library with glycerol, and stored the 
library at –80°C. We plated dilutions of the transposon libraries and verified that they carried 
kanamycin resistance by patching ~50 colonies on LB and LB + kanamycin plates. We only 
retained those libraries where >90% colonies were kanamycin resistant. 565 

Fitness Assays 

We performed bulk fitness assays in DM25 (Davis-Mingioli minimal medium with 25 mg/L 
glucose) held in glass test tubes and incubated at 37°C with 220 rpm orbital shaking. We used 
test tubes, instead of the small Erlenmeyer flasks used in the LTEE, in order to run many fitness 
assays simultaneously. Previous work found no systematic difference in fitness estimates using 570 
glass tubes versus flasks. 



Each fitness assay comprised five 10-mL cultures propagated in parallel. This replication 
increased the bottleneck population size by a factor of five, without introducing any density-
dependent effects. For each assay, we inoculated 50 mL of DM25 with ~5 ´ 105 cells/mL from 
the freezer stock of the transposon library (comparable to the number of cells transferred during 575 
the LTEE), and we then split the volume among five glass tubes. After incubating for 24 h at 
37°C with shaking, we pooled the five tubes. For four days (~26.5 generations in total) we 
diluted 500 µL of each bulk competition into 50 mL fresh DM25 (1:100 daily dilution, as in the 
LTEE) and immediately split the volume among five cultures, as before. We spun down the 
remaining cells, and we stored the pellet frozen for later DNA extraction and analyses. For each 580 
transposon library, we performed two replicate fitness assays, starting from the same aliquot of 
the transposon library from the freezer stock (which served as the time-zero point).  

Recombineering and Pairwise Fitness Assays 

We grew overnight cultures of the strains for recombineering (containing the pSIM5-tet plasmid) 
in LB at 30°C, and we diluted them 100-fold in 50 mL of low-salt LB. When the cultures were in 585 
mid-exponential phase (OD ~0.4), we transferred them to a water bath at 42°C to induce the 
recombinase for 15 min. We then chilled the cultures on ice, and we prepared competent cells 
from the induced cultures by washing and pelleting cells multiple times in 10% glycerol. We 
then transformed the competent cells with 200-500 ng of the recombineering insert, which had 
40 bp identical to the flanking regions of the gene we sought to delete as well as the kanamycin-590 
resistance cassette (primer sequences shown in Part 6 of Detailed Experimental Protocols). The 
recombineering protocol worked successfully for the LTEE ancestor (REL606), but we were 
unable to make deletion mutations in the evolved strains except the 50,000-generation clone 
from population Ara–1 (REL11330), for which we saw a reduced efficiency. We found that the 
limiting factor for most evolved strains was transformation of the recombineering plasmid into 595 
the cell using electroporation. 

For pairwise competitions, we grew overnight cultures of the unmutated parent and the deletion 
mutant in LB. We mixed them 1:1 volumetrically and inoculated the mix in 10 mL of DM25 
with ~5 ´ 105 cells/mL. We spread dilutions from the competition mixture on LB and LB + 
Kanamycin plates at the start of the competition and after one day in DM25. The counts on the 600 
LB + Kanamycin plates correspond to the number of mutant cells, while the counts on the LB 
plates correspond to the total number of cells including both the parents and mutants. We 
estimated the fitness effect of the deletion mutation as the rate of change in the ratio of the 
mutants to the parents, as follows: 
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where log2(100) is the number of generations (doublings) per day during the competition given 
the 100-fold dilutions. 

DNA Extraction, UMI-TnSeq Library Preparation, and Sequencing 

We used the Invitrogen PureLink gDNA extraction kit to extract DNA from ~2 ´ 109 cells for 
each transposon library. We measured DNA concentrations using the Invitrogen Quant-it Kit and 610 
normalized them to 20 ng/µL. We ran 10 µL tagmentation reactions with 5 µL Illumina TDE1 
buffer, 2.5 µL TDE1 enzyme, and 2.5 µL normalized DNA at 55°C for 10 min. We used the 



entire volume of the reaction as the template for PCR1, a low-amplification cycle PCR where we 
added unique molecular identifiers using custom primers (see Part 4 of Detailed Experimental 
Protocols for primer sequences). We cleaned the product of PCR1 with 1.2X serapure beads, 615 
which we eluted in 15 µL dH20. We used the eluant as template for PCR2, where we selectively 
amplified fragments containing the transposon sequence. We cleaned the product of PCR2 with 
1.2X serapure beads, which we eluted in 25 µL dH20. We quantified the concentration of DNA 
of the amplified transposon libraries using the Invitrogen Quant-it Kit, and we diluted and pooled 
all samples to 4 nM. We verified the concentration of the pooled library using the Kapa 620 
Biosystems Illumina qPCR kit. We also prepared whole-genome sequencing libraries for all the 
strains using the tagmentation based-approach from Baym et al (51). Additional details on the 
UMI-TnSeq library preparation are included in Part 3 of the Detailed Experimental Protocols. 
We sequenced the transposon and whole-genome libraries on two lanes of an Illumina NovaSeq 
S4 (paired end, 2 x 150 bp) at the Bauer Core Facility, Harvard University.  625 

Data Analysis: Fitness and Essentiality 

We obtained demultiplexed reads from the sequencing core. We filtered reads using a custom 
Python script, retaining only those reads that contained a sequence matching the end of the 
mariner transposon, and we stored the 10-bp unique molecular identifier (UMI) sequence 
separately. We used bowtie2 to map the filtered reads to the reference genome of the LTEE 630 
ancestor, E. coli strain REL606. We extracted coordinates of all the uniquely mapped reads; 
these coordinates correspond to the TA sites in the reference genome. For every TA insertion 
site, we identified corresponding UMIs and mapping coordinates, and we used this combination 
to count the number of distinct biological replicates for each TA site. We obtained a median of 
23 million reads per timepoint in the fitness assays. Approximately 85% of the reads mapped to 635 
the reference genome; ~20% of those reads were discarded as PCR duplicates. We consolidated 
all the data from the bulk fitness assay into a master file for each transposon library; that dataset 
includes the counts for every insertion site at each timepoint in the fitness assay.  

For the downstream analyses, we normalized each insertion by the total sample size. For each 
insertion mutation with at least 5X coverage at the start of the assay, we estimated its fitness as 640 
the slope of the linear fit to its ln(frequency) over time (in number of generations, log2(100) @ 6.7 
per day). As explained elsewhere, this metric differs from the ratio of Malthusian growth rates 
(as used in many other LTEE analyses) by a factor of ln 2 (52). For those mutants that 
disappeared, whether due to chance or the mutant being deleterious, we added a pseudo-count of 
1. For each gene, we then averaged over all the insertion sites using an inverse-variance 645 
weighting approach, excluding the first 10% and last 25% of the gene’s length.  

We estimated the error in the fitness measurement of a gene as the weighted standard error of the 
mean of the fitness estimates for all K interior TA sites within the gene:  
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where n0 and n1 are the number of reads at timepoints 0 and 1, respectively, and K is the number 
of TA sites. Maximum weights were set with n0 and n1 both equal to 100. We define the error in 
the fitness estimate of a gene as the inverse-variance weighted standard error of the mean:  
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The fitness effect of each gene was adjusted by a correction factor equal to the average fitness 
effect of insertions that disrupt pseudogenes. This adjustment ensures that our fitness estimates 
are not influenced by changes in the mean population fitness during the bulk fitness assay. The 
mean of the DFE is: 
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where N and M are the numbers of genes and pseudogenes, respectively. We define the 
uncertainty in the estimate of the mean of the DFE as: 
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We restricted our analysis to those protein-coding genes with at least 5 interior TA sites; we 665 
further required that a gene had at least two trajectories meeting thresholds in both technical 
replicates, and that at least 20% of the gene’s TA sites were used in the fitness estimation. We 
chose these thresholds to ensure that we had sufficient data for every gene that was included in 
our analyses of changes in essentiality, and to exclude potential outlier sites in essential genes 
from contributing to the fitness estimates. We realize that excluding 10% and 25%, respectively, 670 
of the 5’ and 3’ ends of a gene is an imperfect solution, but it greatly reduced the impact of 
outliers. We also excluded all genes with annotations linked to transposons or mobile genetic 
elements, because they might move between sites in the genome. When comparing fitness 
estimates between two strains, we often found that fitness effects were calculated in one strain 
but not the other owing to these arbitrary thresholds. To get around this problem, we calculated 675 
fitness effects in such cases using relaxed thresholds (i.e., at least one trajectory meeting 
thresholds in both replicates, instead of two as otherwise required).  

To classify a gene as differentially essential between ancestral and evolved strains in DM25, we 
required mutations in that gene to have a fitness effect > –0.15 in one strain and < –0.3 in the 
other. The inclusion of the –0.15 threshold was to ensure that the difference in fitness effects 680 
between strains is sufficiently large that it cannot be attributed to measurement noise. The choice 
of the –0.3 threshold is based on numerical simulations of fitness effects for genes that are 
essential for growth in DM25, which we used to identify the most deleterious fitness effect such 
that the overlap in the distributions for an essential gene and a non-essential gene subject to the 
merely deleterious mutations is < 0.05 (Fig. S6).  685 

The simulations were performed as follows:  

• Fit a distribution to the number of reads per TA site from experimental data using the 
ANC strain at the initial timepoint t0 (restrict to sites with at least 10 reads). We fit 



both normal and gamma distributions to the log-transformed number of reads per TA 
site. Both distributions work well, but we report results using the gamma distribution. 690 

• Draw an initial abundance from the fit to experimental data, which is the number of 
reads at t0 and called N0. 

• Estimate the expected number of reads at t1 as follows: 
o E[N1] = N0/100*exp((1 + s)6.64)) = N0*exp(6.64s) if the gene is not essential. 

The value 6.64 equals the number of generations (doublings) of population 695 
growth per day, which offsets the 100-fold daily dilution.  

o E[N1] = N0/100, if the gene is essential, such that the mutant does not grow at 
all. The division by 100 reflects the daily 100-fold dilution without growth. 

o Draw from a Poisson distribution with mean E[N1], which we call N1. 
• Estimate the simulated fitness effect as:  700 

o s = ln((N1 + 1)/N0 + 1))/6.64. 
• Repeat the simulation 5,000 times. 

Even with relaxed thresholds for fitness estimation, there were many cases of genes that were 
nonessential in DM25 in one strain but did not have any estimated fitness in the other strain. To 
determine whether these cases arose because insertion sites were missing by chance, or whether 705 
the gene was differentially essential in LB, we used the following approach:  

• We first define essentiality in LB based on the fraction of TA sites, f, in a gene that 
had at least 5 reads mapping to a site at time 0 (after correcting for sequencing depth). 
We classified those genes with f < 0.1 as essential in LB (Fig. S6A). 

• For the LTEE ancestor REL606, this definition captured 88% of the essential genes in 710 
E. coli K-12 (25), with a false positive rate of only 2%. The area of the receiver-
operator characteristic curve is 0.96 (Fig. S6B), which validates our approach to 
defining a gene as essential in LB. 

• Next, identify all genes that are nonessential (s > –0.15) in DM25 in strain 1, and with 
fitness not calculated in strain 2, with fraction f < 0.1. 715 

• For every such gene, calculate the number of TA sites at time 0 with coverage > 5X 
in both strain 1 (n1) and strain 2 (n2). 

• Calculate the probability of observing n2 or fewer sites, assuming that the expected 
number of sites is n1. 

• Adjust those p-values using the Benjamini-Hochberg False Discovery Rate (FDR). 720 
• Define those genes for which this FDR-adjusted probability is < 0.05 as differentially 

essential in LB for the two strains in question. 

This approach ensures that we are conservative in calling genes differentially essential, 
particularly in those genes with fewer than 10 insertion sites. As an additional control, using the 
same parameters as described above, we did not find any genes that are differentially essential 725 
between the two marked variants of the LTEE ancestors (strains REL606 and REL607, which we 
call Anc and Anc*, respectively) that have repeatedly been shown to have equal fitness.  

Estimating the number of essential genes in the LTEE ancestor in DM25 
We counted the number of genes where disruptions led to a fitness estimate of s < –0.3. To 
account for the fact that some genes may be missing from the initial transposon library by chance 730 



(i.e., due to very few TA sites within the gene’s interior), we excluded those genes with an FDR-
corrected probability > 0.05 (as described for defining differential essentiality in LB). 

Data Analysis: Structural Variation 

The average depth of coverage of the whole-genome sequencing data was > 60X. We used 
breseq (53) to identify regions of the genome that had been deleted in the evolved strains during 735 
the LTEE. We identified deletions > 1 kb using the missing-coverage evidence from the breseq 
output files. To identify duplicated regions, we used the samtools depth command (54) to get 
depth of coverage at every site in the genome, using the ancestral REL606 genome as the 
reference. To account for variability in coverage across the genome, we calculated the 
normalized coverage for each evolved strain relative to REL606. We obtained the coordinates for 740 
duplicated genes by visualizing the normalized coverage and identifying those regions where the 
coverage was consistently 1.5X or higher than the background level. We set the cutoff at >1.5X 
coverage over background because large duplications also have a tendency to be lost when 
clones are being grown, as is done to obtain their DNA for sequencing. 

To identify gene homologs, we used MMseqs2 cluster (with parameters: --min-seq-id 0.4) with a 745 
40% identity threshold for homologs (55). For each evolved clone, we asked whether all but one 
member of the paralogous group had been lost during evolution and, if so, we evaluated whether 
the other member had become essential.   



Supplementary Text  

1. Exclusion of Ara–2 from further analysis 750 

We excluded the Ara–2 sample from all comparisons after we found that fitness measurements in 
this clone were unreliable and systematically biased. In this genetic background, a few insertion 
mutations massively increased in frequency during the fitness assay, depressing the frequencies 
of other mutations. In principle, we might compensate for this effect by excluding the outliers, 
and then correcting the other mutations using pseudogenes as the neutral expectation. However, 755 
the insertion mutations in pseudogenes were also outcompeted in the fitness assay; their counts 
fell to nearly zero on day 4, and the estimated fitness effects for these insertions range from –0.2 
to –0.15. As a consequence, there are two unavoidable problems with using the pseudogenes to 
establish a correction factor for the remainder of the DFE: 

• Measurements of deleterious fitness effects are inherently noisier than nearly neutral 760 
effects, leading to generally larger errors and potentially systematic biases for fitness 
estimates of all other mutations if we used the mean pseudogene value as a correction 
factor. 

• By subtracting a large, constant deleterious fitness effect (nearly –0.2) from all other 
measurements, the distribution of fitness effects in Ara–2 would abruptly end at s @ –0.3. 765 
This approach would effectively truncate the deleterious tail of the DFE, which in other 
backgrounds spans effects as deleterious as –0.6 to –0.3. Consequently, a calculated 
fitness effect of –0.25, for example, could not be meaningfully compared between Ara–2 
and other populations.  

 770 
2. Expression Levels and kdsB Gene Essentiality 

The gene kdsB is essential in E. coli strain K-12. However, there are two copies of kdsB in the 
LTEE ancestor (ANC, REL606), and both copies have high expression levels (33), making each 
copy dispensable. In three evolved populations (Ara–3, Ara+1, Ara+2), one copy of kdsB 
(indicated as kdsB_2 in Table S5) has been lost, making the other copy (kdsB_1) essential. In 775 
strains with two copies of kdsB, whether kdsB_1 is essential or not depends on the expression 
level of kdsB_2. The fitness effect of insertions in kdsB_1 is correlated with the expression level 
of kdsB_2 (Fig. S11); in strains with high expression levels of kdsB_2, the effect of disrupting 
kdsB_1 is less deleterious, and vice versa. This example shows that the presence of a duplicate 
gene is not sufficient to make a gene dispensable; instead, the duplicate must also be expressed at 780 
a high enough level.  



 

 
 
Fig. S1: Distribution of transposon insertions and representation of genes in the transposon 785 
sequencing dataset. (A) Insertions in the ancestor REL606 (a representative example) are distributed 
throughout the genome. (B) Number of insertions at the timepoint zero with at least five mapped reads 
(Note that the total number of available insertions in the ancestor is 211,995). (C) Fraction of genes 
represented (at least 30% of the interior TA sites with 5 or more mapped reads) at the timepoint zero. (D) 
Fraction of genes represented in the ancestor, REL606, that are also represented in the evolved strains.   790 



 
 
Fig. S2: Estimates of fitness effects of TnSeq insertion mutations are highly reproducible and 
consistent with fitness effects of deletions in the same genes. (A) Correlation between technical 
replicates in evolved Ara+1 clone (left) and distribution of measurement errors (right). (B) The fitness 795 
effects estimated from disrupting genes using TnSeq in the LTEE ancestor and by pairwise competitions 
between the unmutated ancestor and clean deletion mutations are consistent. Each point represents an 
independent measurement. (C) Fitness estimates with and without UMI correction are very consistent 
with each other.  



 800 
Fig. S3: Evolved strains from populations Ara–2 and Ara+4 were excluded from further analyses 
because of aberrant properties. (A) The correlation between technical replicates is much worse for 
Ara+4, and the typical measurement error much larger (2.3%), than for other strains (ranges from 0.7 to 
1.2%). (B) Plot of all mutant trajectories in the LTEE Ancestor and Ara–2. (C) Fitness estimates are 
biased in Ara–2 because of the highly negative correction factors based on the pseudogenes (left panel). 805 
As a consequence, the DFE for Ara–2 barely extends below –0.3 (right panel).   



 
Fig. S4: Differences in the DFE are largely driven by the deleterious tail of fitness effects (Z-test, ∗ 
0.01 < p < 0.05). Here, we compared the means of the DFE for the populations excluding mutations with a 
fitness effect s < –0.3, as these measurements are noisier, and prone to biases due to differences in 810 
number of surviving cells, and therefore generations of growth after recovery from the freezer stock.  



 
 
Fig. S5: Signature of parallelism in fitness effect changes is robust to the choice of thresholds for 
defining neutral and deleterious fitness effects. The number of genes with varying fitness vastly 815 
exceeds what would be expected from pure randomness in all these plots. The expectation is an average 
over 10,000 simulations, and therefore it can be < 1.  



 
Fig. S6: Defining gene essentiality in LB and DM25. (A) LB: Distribution of fraction of sites with 
coverage  ³ 5 at t0 in the fitness assay in the ancestor, REL606. Genes with that fraction < 0.1 are 820 
classified as essential and genes with fraction > 0.45 as nonessential. (B) Classification of gene 
essentiality in LB is reliable when compared to data from Goodall et al. (25). (C) DM25: We simulated 
the fitness estimates for a truly essential gene (no growth during the assay) and for genes with true fitness 
effects ranging from –0.45 to –0.2. We found the most deleterious effect, s = -0.3, where the overlap 
coefficient is < 0.05. This overlap represents the probability of observing the same fitness effect in a truly 825 
essential gene and in a gene disruption that is highly deleterious, and therefore the limit of our fitness 
assay to distinguish essentiality from significant growth deficit. See Methods: Data Analysis: Fitness and 
Essentiality for a detailed description of these simulations. 



 
Fig. S7: Verification of differential gene essentiality for two genes (gdhA and sspA) in the ancestor 830 
and an evolved clone from population Ara–1, obtained by generating clean gene deletion mutants in 
both genetic backgrounds. For both genes, the prediction of differential essentiality from TnSeq is 
consistent with competition assays using the deletion mutants. For gdhA in the Ara–1 background, both 
methods classify the gene as essential (s < –0.3). The difference between the two methods can be large for 
essential genes, because the measurement errors for both methods are very large as a consequence of the 835 
rapid disappearance of unfit mutants that results in extremely low counts.   



 
Fig. S8: Signature of parallelism in changing gene essentiality is robust to the choice of thresholds 
for defining differential essentiality. The number of genes with changed essentiality vastly exceeds 
what would be expected from pure randomness in all these plots. The expectation is an average over 840 
10,000 simulations, and therefore it can be < 1.  



 
Fig. S9: Parallelism in gene essentiality changes, partitioned by two different media. (A) Partitioning 
changes in essentiality by growth medium. Parallel changes in gene essentiality in (B) LB and (C) DM25 
media. We estimated the expected number of parallel changes from chance alone by shuffling the gene 845 
essentiality and fitness profiles 10,000 times and counting how often the same genes had altered 
essentially in at least m populations. The expectation is an average over 10,000 simulations, and therefore 
it can be < 1. 



 

Fig. S10: Changes in gene essentiality in DM25 are not related to differences in expression levels. 850 
(A) Nonessential genes tend to have lower expression levels. The pattern shown for Ara–1 occurs in all 
LTEE clones (see Jupyter Notebook generate_figures_main.ipynb section on expression levels 
comparison). (B) Changes in gene essentiality do not reflect systematic differences in expression levels 
between the ancestor and evolved strains. Here, we show all genes with altered essentiality in any evolved 
strain. We compare the expression level of the gene in the ancestor and the evolved strain with altered 855 
essentiality for all these genes. The baseline expression levels are generally higher in the evolved strains; 
when comparing strains, we therefore normalized the expression levels of each gene by the total number 
of reads that mapped to the strain.  



 
Fig. S11: Fitness effect of disrupting kdsB_1 gene is correlated with expression (transcripts per 860 
million, TPM) of kdsB_2. A fitness effect could not be directly calculated for the outlier Ara–4 strain, 
owing to the mutants’ rapid loss from the bulk competition assay. Pearson r = 0.884, p = 0.0083 
excluding Ara–4; Pearson r = 0.714, p = 0.0083 with Ara–4 set to maximum deleterious effect of –
ln(100)/log2(100)  @ –0.693.  
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Detailed Experimental Protocols: 
 
Part 1: Constructing Transposon Libraries 
NOTE: This protocol is adapted from one provided by Thao Truong in the Thomas Bernhardt 
Lab in the Department of Microbiology at HMS. Many thanks to Thao for sharing this protocol 875 
and helping with initial troubleshooting. 
 
Materials 
Use DAP at final concentration of 300 uM in plates and liquid media  

- Sigma 33240-1G (2,6-Diaminopimelic acid)) 880 
- Make 60 mM solution in 50 mL water, dissolve by vigorous stirring, store at 4C 

Millipore MFilters 
- 0.45 um catalog #HAWP02500 

 
Regular sterile petri dishes (100 mm diameter) 885 
Large sterile petri dishes (150 mm diameter) 
 
Donor Strain 
Freshly transform competent donor MFDλpir with plasmid pSC189 for maximum efficiency, and 
then select on LB agar plates supplemented with Kan 50 ug/mL). The plasmid has both Kan and 890 
Amp resistance genes, but selection on Kan was more effective. 
 
Transformants were occasionally heterogeneous in size, and some were mucoid-like. We used 
colonies that were non-mucoid and sometimes small without problems. 
 895 
Optimization 
After running some simulations on the effect of library complexity (i.e., how many unique 
colonies one would expect after conjugation reactions), we found that complexity should have 
little effect on the precision of fitness estimates. That result occurs because, given a fixed 
number of reads, there is a tradeoff between having more reads for fewer TA sites, on the one 900 
hand, and fewer reads per TA site in each gene. In our experiments, we aimed to produce 
libraries with a complexity of at least 250,000. Such complexity is crucial for analysis of gene 
essentiality but is not strictly required for accurate fitness estimates. 
 
To increase library complexity: 905 

- Use freshly prepared MFDλpir/pSC189 (i.e., within 4-5 days of transformation) 
- Scale up accordingly. For some genetic backgrounds, we increased the number of large 

plates on which we spread the libraries. Achieving high-complexity libraries was not a 
problem for most of the LTEE isolates, with the exception of the 50,000-generation clone 
REL11370 from population Ara+6. 910 

 
Day 1 
Streak relevant strains on agar plates 

- MFDlpir/pSC189 on LB with DAP and Kan 50 (ug/mL)  
- Recipient strains on LB 915 

 
 



Day 2 
Start 2-3 mL overnight cultures of each strain. A total of 5 mL of the donor strain is sufficient for 
two recipient strains. If more is required (e.g., more than two recipients), scale up the number of 920 
donor cultures. Grow the cultures either shaking or rolling at 37 C overnight, with ~16 hours of 
growth at most. 
 
Day 3 
Wash cells  925 

1. For each strain, spin 1 mL of culture at 15,000 rpm for 1 min in Eppendorf tubes. Pellet 1 
mL of donor cells for each conjugation. 

2. Remove supernatant 
3. Resuspend in 1 mL LB + DAP to wash cells 
4. Spin again at 15,000 rpm for 2 min 930 

 
Mate cells 

1. Sterilize tweezers in 70% ethanol and then flame 
2. For each mating (donor + recipient) transfer a filter to a plate of normal LB + DAP 
3. Multiple filters can be placed on one plate as long as the filters are not touching 935 
4. For each control (donor only, recipient only), transfer 1 filter to a plate of normal LB + 

DAP 
 
Mate donor + recipient cells 

1. Resuspend donor cells from one Eppendorf tube in ~100 µL of LB DAP 940 
2. Transfer this volume to the Eppendorf tube containing the pelleted recipient, resuspend 

the cell mixture, and transfer them to the filter 
3. Repeat this procedure for each recipient 

 
For the controls, plate the donors or recipients alone directly on LB + Kan 50 agar plates.  945 
 
Working quickly, transfer the mating plates (including controls) to a 37 C incubator or room, 
keeping the plates upright to avoid disturbing the filters.  Incubate the plates upright (i.e., with 
filters facing up) for only 1 h. 
 950 
Plate libraries 

1. During incubation, prepare 15-mL conical tubes with media for plating steps, and 1.5-mL 
tubes for serial dilutions 

2. Sterilize tweezers in 70% ethanol and flame 
3. Transfer each filter from mating into a 15-mL conical tube containing 2 mL of LB + Kan 955 

50 without DAP. This medium is the same as subsequently used for plating libraries, 
except the plating medium also has agar. The liquid volume can be increased if the 
multiple filters are used 

4. Vortex the tube for 1 min 
5. Serially dilute 100 µL from the tube across 4 successive 1.5-mL tubes, each containing 960 

900 µL LB + Kan 
6. Spread 100 µL from the second, third, and fourth dilutions onto regular size plates that 

contain LB + Kan. Given the plating volume, these effectively become 10-3, 10-4, and 10-5 
dilutions when calculating the library complexity. 



7. From the undiluted mating mixture (from step 2), spread 300 µL each onto 3 large 965 
LB+Kan plates.  

8. Incubate all plates at 30 C for ~18-24 hours. 
 
NOTE: the incubation duration is sufficient for colonies to form on the plates during mating, 
while avoiding colonies on the donor-only and recipient-only controls 970 
 
Day 4  
 
Calculate the library complexity (number of unique colonies in the transposon library) from the 
dilution series and the total volume plated on large LB+Kan plates (for 3 plates, the total volume 975 
is 900 µL. 
 
A successful experiment typically has library complexity of ~106 . If complexity is lower: 

1. Increase the number of LB+Kan plates, and therefore the volume plated 
2. Increase the volume of recipient used in a mating reaction from 1 mL to 1.5-2.5 mL 980 

 
Freeze library aliquots 

1. Scrape cells from the large LB+Kan plates using a cell spreader and ~4 mL of LB per 
plate. 

2. After scraping all plates, pool the resulting cells. 985 
3. Add glycerol from a 50% solution such that the final concentration of glycerol for the 

transposon library was ~17%. 
4. Vortex the libraries and transferred 0.5-mL aliquots into 1.5-mL Eppendorf tubes. 
5. Freeze aliquots at –80 C. 

 990 
Estimate CFUs and confirm exconjugants have transposon  

1. Scrape ~50 µL from a frozen aliquot and serially diluted in LB. 
2. Spread 100 µL of 10-5, 10-6, 10-7 dilutions on LB plates to determine viable counts. We 

expected ~109-1010 CFU/mL, but some libraries yielded lower numbers because those 
LTEE isolates do not grow as well on LB.  995 

3. The next day, count colonies and patch~100 colonies on to LB and LB + Kan plates to 
verify that all clones are KanR, as expected if they harbor the transposon. Patch a KanS 
colony as a control. 

4. If all, or at least the vast majority (>90%), of tested colonies are not KanR, then redo the 
experiment.  1000 

 
Troubleshooting inefficient kanamycin selection: 

- For some genetic backgrounds, the conjugation is highly efficient, and too many cells are 
plated, leading to inefficient kanamycin selection. One approach is to reduce how many 
cells are plated on Kan. A rule of thumb is to reduce the volume plated based on what 1005 
fraction of patched colonies are KanS 

- If that does not resolve the low %KanR colonies, plate the cells on LB+Kan100 agar 
plates after the conjugation step. This does not affect growth of the conjugants in any way 
(the KanR colonies grow normally up to a concentration of Kan500), but significantly 
improves the efficiency of selection. 1010 



Part 2: Fitness Assays 
 
Media and growth conditions: 
 1015 
All fitness assays are performed in DM25 (Davis-Mingioli minimal medium). The following 
recipe makes one 1000-ml batch. Note also that E. coli cannot use citrate to support growth; it 
serves only as a chelating agent in this medium.  

1. Potassium phosphate dibasic trihydrate (Sigma P5504)- 7 g 
2. Potassium phosphate monobasic anhydrous (Sigma P5379)- 2 g 1020 
3. Ammonium sulfate (EMD AX1385) - 1 g 
4. Sodium citrate (Sigma C7254) - 0.5 g 
5. Water - 1000 ml 

Immediately after autoclaving, add the following from sterile stock solutions (kept in 100-ml 
bottles covered in foil) 1025 

1. 10% Glucose - 250 µL (Stock solution: 10 g glucose (Sigma G8270)in 100 mL 
water autoclaved and covered in foil) 

2. 10% Magnesium sulfate - 1000 µL (Stock solution: 10 g MgSO4 (Sigma M7506) 
in 100 mL water autoclaved and covered in foil) 

3. 0.2% Thiamine/Vitamin B1) - 1000 µL (0.2 g thiamine hydrochloride (Sigma 1030 
T4625) in 100 mL water filter sterilized; do NOT autoclave) 

All fitness assays are performed in 15mm glass test tubes, and incubated at 37C and 220rpm 

NOTE: While this is different from the traditionally used Erlenmeyer Flasks, from personal 
communication with Tanush Jagdish (Murray and Desai Labs at Harvard), any well-mixed glass 
container is a good substitute. We decided to use glass tubes for the convenience of being able to 1035 
do many fitness assays in parallel. 

Daily Transfers: 

1. For each transposon library, estimate the density of cells (CFU/mL in the frozen library) 
2. Extract DNA from at least 5x108 CFU/mL thawed transposon library. This serves as 

time-point 0. 1040 
3. Seed 5 glass test tubes with 10mL of DM25 with ~5x106 cells from the transposon library 

for one fitness assay 
4. Incubate and 37C at 220 rpm for 24 hours. 
5. Pool the five cultures corresponding to the same fitness assay into a 50mL falcon tube. 

Mix thoroughly by vortexing. 1045 
6. Transfer 0.5mL of the pooled cultures into 49.5mL of DM25 and mix well by vortexing 
7. Pellet the remaining overnight culture by centrifuging at 4300 rpm for 30 mins, removing 

most of the supernatant, suspending in 1ml of DM25, and centrifuging at 16,000 rpm for 
2 mins.  

8. Store the cell pellets at -20C. Call this time-point 1. 1050 
9. Pipette 10mL of the diluted cultures into labelled glass test tubes and incubate again at 

37C and 220 rpm for 24 hours 



10. Repeat steps 3-8 until time-point 4. 

NOTE: By having 5 cultures per fitness assay, we increase the population size by a factor of 5, 
reducing noise from the daily dilution of cells into fresh media. We still continue to grow the 1055 
cultures in 10mL volumes to replicate the conditions of LTEE as closely as possible, and avoid 
any potential density dependent effects in fitness measurements.   



Part 3: UMI-TnSeq Sequencing Library Preparation Protocol 
 
Step 1: DNA Extraction 1060 
 

1. Use the Invitrogen PureLink gDNA extraction kit to extract gDNA from upto ~2x109 
cells (usually 1mL overnight culture in LB has this many cells, ~50 mL of overnight 
culture for LTEE isolates) 

2. Measure concentration of gDNA using Invitrogen Quant-It Kit  1065 
3. Normalize concentrations of different preps to ~20 ng/µL  

 
Step 2: Nextera Tagmentation Reaction 
 

1. (for 10 µL reactions) Mix 5 µL buffer, 2.5 µL TDE1 enzyme, 2.5 µL of gDNA 1070 
(approximately 50ng) in a PCR tube. Vortex briefly and pulse centrifuge the reaction 
mixture. 

2. Incubate at 55℃ for 10 mins in a thermocycler, keep on ice right after (or in the fridge at 
4C if not doing the PCRs instantly) 

 1075 
NOTE: this protocol uses Nextera TDE1 Tagmentase enzyme, but in principle, this can be 
adapted to the Illumina Library Prep Kit which uses a bead-linked transpososome. 
 
Step 3: PCR 1 - adding unique molecular identifiers 
 1080 

1. Make 10	µM working stocks of all primers (listed in Part 4). 
2. Make a list of barcode combinations for each sample (ensure that the barcodes are color 

balanced). The barcode combinations used in this study are shown in Part 5.  
3. Aliquot 3	µL each of forward (TnSeq_1F) and reverse primer (TnSeq_1R_xx; choose the 

PCR 1 reverse primer according to the barcode combinations you’ve determined in step 1085 
2) in PCR tubes, add all 10	µL of the Nextera tagmentation reaction (serves as template).  

4. Add 15 µL of the Q5 master mix and mix with pipette. Vortex briefly and pulse 
centrifuge the reaction mixture 

5. Run the following PCR program: 
 1090 

1 95℃ 3:00 

2 98℃ 0:30 

3 68℃ 0:30 

4 72℃ 1:00 

5 Go to 2 2X 

6 72 ℃ 3:00 

7 12℃ hold 

  



Step 4: SPRI Bead Cleanup 
 

1. Perform magnetic bead cleanup using ~1.2X serapure beads (home-brewed, the exact 
ratio will vary for AmpPure XP beads) 1095 

2. Elute in 15 µL dH20 
 
Step 5: PCR 2 - amplification and addition of Illumina barcodes and adapter sequences 
 

1. Make 10	µM working stocks of all primers. 1100 
2. Aliquot 5 µL each of forward (TnSeq_2F_yy; choose the PCR 2 forward primer 

according to the barcode combinations you’ve determined in step 2) and reverse primer 
(TnSeq_2R) in PCR tubes, add all 15 µL of the cleaned up PCR1 product 

3. Add 25 µL Q5 master mix and pipette up and down to mix. Vortex briefly and pulse 
centrifuge the reaction mixture 1105 

4. Run the following PCR program:  
 

1 95℃ 3:00 

2 98℃ 0:30 

3 68℃ 0:30 

4 72℃ 1:00 

5 Go to 2 18X 

6 72 ℃ 3:00 

7 12℃ hold 

 
Step 6: SPRI Bead Cleanup 
 1110 

1. Perform magnetic bead cleanup using ~1.2X serapure beads (home-brewed, the exact 
ratio needs to varied if you’re using AmpPure XP beads) 

2. Elute in 25 µL dH20 
 
Step 7: Quantifying Sequencing Libraries 1115 
 

1. Use QuantIT Kit (or an equivalent) to estimate concentration of the libraries after PCR2.  
2. Run a few of the libraries on a 2% Agarose Gel, with a 50bp ladder, and get an 

approximate sense of the average fragment size  
3. Dilute and all libraries to approximately 4nM and pool the libraries together. 1120 
4. Perform a qPCR (KAPA Quantit Kit or an equivalent) on the pooled libraries. Make sure 

to run two dilutions (1:10,000, 1:20,000) 
5. Calculate the concentration of the pooled library using the calibration curve. 
6. Run the pooled library on an Agilent BioA high sensitivity DNA chip to get a more 

accurate sense of fragment size distribution.  1125 



7. Ensure that there are no primer dimers. With the current protocol, primer dimers are 
expected at ~125bp in case of unsuccessful bead clean-up. Re-calibrate your beads and 
ensure they’re size selective if you observe primer dimers. 

8. Dilute libraries to 4nM (or the appropriate concentration for the sequencing platform) 
 1130 
Bead Clean-up Protocol: 
 
The bead clean-up step is most effectively done in PCR strips with a compatible magnetic rack, 
using a multichannel pipette. 
 1135 

1. Suspend sample in 1.2x the volume of beads, and mix. Incubate at room temperature for 
10 mins 

2. Place on magnetic rack, allow beads to pellet and pipette off supernatant 
3. Add 100 µL of freshly prepared 70% ethanol  
4. Move the PCR strip to adjacent location (this will move the beads through the ethanol, 1140 

washing them) 
5. Remove the supernatant. 
6. Repeat steps 3-5 
7. Leave tube open on the bench and let the ethanol evaporate 
8. Remove the tube from the magnetic rack and resuspend pellet in an appropriate volume 1145 

of eluant (e.g. 20 µL molecular grade water) 
9. Incubate for 10 mins at room temperature 
10. Pellet the beads on the magnetic stand until the eluate is clear. Transfer the supernatant to 

fresh PCR strips or eppendorfs.  



Part 4: Primers for UMI-TnSeq Library Preparation 1150 
 

TnSeq_1R_01 
CAAGCAGAAGACGGCATACGAGATGGCGAATGGTCTCGTGGGC
TCGGAGAT 

TnSeq_1R_02 
CAAGCAGAAGACGGCATACGAGATCGATAGAGGTCTCGTGGGCT
CGGAGAT 

TnSeq_1R_03 
CAAGCAGAAGACGGCATACGAGATTTGCGTCAGTCTCGTGGGCT
CGGAGAT 

TnSeq_1R_04 
CAAGCAGAAGACGGCATACGAGATATGATTAAGTCTCGTGGGCT
CGGAGAT 

TnSeq_1R_05 
CAAGCAGAAGACGGCATACGAGATTCTTCATCGTCTCGTGGGCT
CGGAGAT 

TnSeq_1R_06 
CAAGCAGAAGACGGCATACGAGATTCAGTACGGTCTCGTGGGCT
CGGAGAT 

TnSeq_1R_07 
CAAGCAGAAGACGGCATACGAGATCATACCTCGTCTCGTGGGCT
CGGAGAT 

TnSeq_1R_08 
CAAGCAGAAGACGGCATACGAGATGGCCAGAAGTCTCGTGGGC
TCGGAGAT 

TnSeq_1R_09 
CAAGCAGAAGACGGCATACGAGATGGTCAAGTGTCTCGTGGGCT
CGGAGAT 

TnSeq_1R_10 
CAAGCAGAAGACGGCATACGAGATAACTCTCTGTCTCGTGGGCT
CGGAGAT 

TnSeq_1R_11 
CAAGCAGAAGACGGCATACGAGATCTAGGTTAGTCTCGTGGGCT
CGGAGAT 

TnSeq_1R_12 
CAAGCAGAAGACGGCATACGAGATTCCGGCGGGTCTCGTGGGC
TCGGAGAT 

TnSeq_1R_13 
CAAGCAGAAGACGGCATACGAGATACGATCGCGTCTCGTGGGCT
CGGAGAT 

TnSeq_1R_14 
CAAGCAGAAGACGGCATACGAGATGTTATGCTGTCTCGTGGGCT
CGGAGAT 

TnSeq_1R_15 
CAAGCAGAAGACGGCATACGAGATCAGTCGGTGTCTCGTGGGCT
CGGAGAT 

TnSeq_1R_16 
CAAGCAGAAGACGGCATACGAGATAACCGCAAGTCTCGTGGGCT
CGGAGAT 

TnSeq_1F 
CTCTTTCCCTACACGACGCTCTTCCGATCTAANNNNNTTGGGGG
ACTTATCAGCCAACCT 

  

TnSeq_2F_01 
AATGATACGGCGACCACCGAGATCTACACGGACGTAGACACTCT
TTCCCTACACGACGCT 

TnSeq_2F_02 AATGATACGGCGACCACCGAGATCTACACGATGCCAGACACTCT



TTCCCTACACGACGCT 

TnSeq_2F_03 
AATGATACGGCGACCACCGAGATCTACACTCGGATGCACACTCT
TTCCCTACACGACGCT 

TnSeq_2F_04 
AATGATACGGCGACCACCGAGATCTACACATAACTTCACACTCT
TTCCCTACACGACGCT 

TnSeq_2F_05 
AATGATACGGCGACCACCGAGATCTACACTTCTGGCTACACTCT
TTCCCTACACGACGCT 

TnSeq_2F_06 
AATGATACGGCGACCACCGAGATCTACACCCGGTAACACACTCT
TTCCCTACACGACGCT 

TnSeq_2F_07 
AATGATACGGCGACCACCGAGATCTACACCAATGCCTACACTCT
TTCCCTACACGACGCT 

TnSeq_2F_08 
AATGATACGGCGACCACCGAGATCTACACAGATAAGAACACTCT
TTCCCTACACGACGCT 

TnSeq_2F_09 
AATGATACGGCGACCACCGAGATCTACACCCTAATCTACACTCT
TTCCCTACACGACGCT 

TnSeq_2F_10 
AATGATACGGCGACCACCGAGATCTACACCATCTCCGACACTCT
TTCCCTACACGACGCT 

TnSeq_2F_11 
AATGATACGGCGACCACCGAGATCTACACACGCAGTCACACTCT
TTCCCTACACGACGCT 

TnSeq_2F_12 
AATGATACGGCGACCACCGAGATCTACACTTCCTCTAACACTCT
TTCCCTACACGACGCT 

TnSeq_2F_13 
AATGATACGGCGACCACCGAGATCTACACGGTTCGTAACACTCT
TTCCCTACACGACGCT 

TnSeq_2F_14 
AATGATACGGCGACCACCGAGATCTACACGTAACGAGACACTCT
TTCCCTACACGACGCT 

TnSeq_2F_15 
AATGATACGGCGACCACCGAGATCTACACAAGAGAGTACACTCT
TTCCCTACACGACGCT 

TnSeq_2F_16 
AATGATACGGCGACCACCGAGATCTACACTGCGTAGCACACTCT
TTCCCTACACGACGCT 

TnSeq_2R CAAGCAGAAGACGGCATACGA 
  



Part 5: Primer Combinations for Samples: 
 

 primer combination         

format (x,y) (1R_x, 2F_y)   Fitness assay time point    

          

genetic background t0 t1 t1 t2 t2 t3 t3 t4 t4 

REL606 (1,1) (2,1) (3,1) (4,1) (5,1) (6,1) (7,1) (8,1) (9,1) 

REL607 (1,2) (2,2) (3,2) (4,2) (5,2) (6,2) (7,2) (8,2) (9,2) 

REL11330 (Ara–1) (1,3) (2,3) (3,3) (4,3) (5,3) (6,3) (7,3) (8,3) (9,3) 

REL11333 (Ara–2) (1,4) (2,4) (3,4) (4,4) (5,4) (6,4) (7,4) (8,4) (9,4) 

REL11364 (Ara–3) (1,5) (2,5) (3,5) (4,5) (5,5) (6,5) (7,5) (8,5) (9,5) 

REL11336 (Ara–4) (1,6) (2,6) (3,6) (4,6) (5,6) (6,6) (7,6) (8,6) (9,6) 

REL11339 (Ara–5) (1,7) (2,7) (3,7) (4,7) (5,7) (6,7) (7,7) (8,7) (9,7) 

REL11389 (Ara–6) (1,8) (2,8) (3,8) (4,8) (5,8) (6,8) (7,8) (8,8) (9,8) 

REL11392 (Ara+1) (1,9) (2,9) (3,9) (4,9) (5,9) (6,9) (7,9) (8,9) (9,9) 

REL11342 (Ara+2) (1,10) (2,10) (3,10) (4,10) (5,10) (6,10) (7,10) (8,10) (9,10) 

REL11345 (Ara+3) (1,11) (2,11) (3,11) (4,11) (5,11) (6,11) (7,11) (8,11) (9,11) 

REL11348 (Ara+4) (1,12) (2,12) (3,12) (4,12) (5,12) (6,12) (7,12) (8,12) (9,12) 

REL11367 (Ara+5) (1,13) (2,13) (3,13) (4,13) (5,13) (6,13) (7,13) (8,13) (9,13) 

REL11370 (Ara+6) (1,14) (2,14) (3,14) (4,14) (5,14) (6,14) (7,14) (8,14) (9,14) 
  1155 



Part 6: Primers for Recombineering: 
 
recomb_insert_reverse CTTTCTACGTGTTCCGCTTC 

nadR_recomb_confirm_f CTAACGTACCGAAAAAAGCGC 

nadR_recomb_KanR_f 
GCGTGTTCGACGACTTATAATGAGGAATACGGAGGGAGA
TGTGTAGGCTGGAGCTGCTT 

nadR_recomb_KanR_r 
AACTTATTTTATACCTCGCCTTTGAGCCGTTTCATCGCGGC
ATATGAATATCCTCCTTA 

nadR_recomb_confirm_r CCCGTGCAGGTTTTTTCAAAC 

rbsD_recomb_confirm_f CGGATAGACATTTAACGCTGC 

rbsD_recomb_KanR_f 
ATCGATGCCTTTAAGCTGAAGTAATGCTTCCATGACGGCC
GTGTAGGCTGGAGCTGCTT 

rbsD_recomb_KanR_r 
AACTGTGGGTCAGCGAAACGTTTCGCTGATGGAGAAAAA
ACATATGAATATCCTCCTTA 

rbsD_recomb_confirm_r TTTCATGGTTAATCACCATGTAAAACG 

lacA_recomb_confirm_f GTGGGTCAAAGAGGCATGATG 

lacA_recomb_KanR_f 
CAGCGTATCAGGCAATTTTTATAATTTAAACTGACGATTC
GTGTAGGCTGGAGCTGCTT 

lacA_recomb_KanR_r 
AACATATCAGGACGGAATGATCGCAATGAACATGCCAAT
GCATATGAATATCCTCCTTA 

lacA_recomb_confirm_r CTTAATTTCCGTGTTCACGCTTAG 

dctA_recomb_confirm_f CATGAAAATGTCACGGAAGAAGTGA 

dctA_recomb_KanR_f 
CCCGCACTCGGGGAAGGGAGTGCGGGCATAAGTGATGAG
AGTGTAGGCTGGAGCTGCTT 

dctA_recomb_KanR_r 
ATAACCTTACAAGATCTGTGGTTTTACTAAAGGACACCCT
CATATGAATATCCTCCTTA 

dctA_recomb_confirm_r GCTCAAACTTTTTAACCTTTTTGTTTCAAT 

gdhA_recomb_confirm_f TTGCTTTCCTGGGTCATTTTTTTCTT 

gdhA_recomb_KanR_f 
CATAAGCACAATCGTATTAATATATAAGGGTTTTATATCT
GTGTAGGCTGGAGCTGCTT 

gdhA_recomb_KanR_r 
AGCGTAGCGCCATCAGGCATTTACAACTTAAATCACACCC
CATATGAATATCCTCCTTA 

gdhA_recomb_confirm_r AATACTCATAAACGCCTGAAATTTTGC 

fecE_recomb_confirm_f CGGATGGACGATGAGTATTGGTAA 

fecE_recomb_KanR_f 
TTTCATTCAGTCGTGGTTTGGTTCTTACGGCCTGTGCAATG
TGTAGGCTGGAGCTGCTT 

fecE_recomb_KanR_r TGCGCCGTGGTTTGTCTGGTTGCTTGTGAGAATGCGATAA



CATATGAATATCCTCCTTA 

fecE_recomb_confirm_r CGATCTGCTGGCGAGAATTAT 

ydiJ_recomb_confirm_f TACTGGCATTGTCGCTTCAAGG 

ydiJ_recomb_KanR_f 
ATAGCATTCAGTGCTTCCAGGGTGATTTTCCGTTTCCATAG
TGTAGGCTGGAGCTGCTT 

ydiJ_recomb_KanR_r 
TATCGACCTACATCACAGACCGCAGGAAAGGGTCAATATA
CATATGAATATCCTCCTTA 

ydiJ_recomb_confirm_r GCCTTCCTGCAACACGAAAT 

sspA_recomb_confirm_f GCATATTCCATAGGAACCTGCAC 

sspA_recomb_KanR_f 
TAGGGACGACGTGGTGTTAGCTGTGACAAATCCATACAGA
GTGTAGGCTGGAGCTGCTT 

sspA_recomb_KanR_r 
CTGGTAGCAGTAAAAATTCTGACTATACCTGGAGGTTTTC
CATATGAATATCCTCCTTA 

sspA_recomb_confirm_r GGGTATTGCTCATTTTTTGTTTGATT 

proC_recomb_confirm_f CCAAATTGTCATAAAGTCATCCTTTGTT 

proC_recomb_KanR_f 
AACAATGAATTTCACGGCAGGAGTGAGGCAATGGAAAAG
AGTGTAGGCTGGAGCTGCTT 

proC_recomb_KanR_r 
AACCGCACCGAAGTGGCGGCCTGACGTCCGGCGAAAGTC
ACATATGAATATCCTCCTTA 

proC_recomb_confirm_r GCTGAACCCACAAATGAGTCAC 

ppc_recomb_confirm_f CCTTAAGGATATCTGAAGGTATATTCAGAATTTG 

ppc_recomb_KanR_f 
ACCCTCGCGCAAAAGCACGAGGGTTTGCAGAAGAGGAAG
AGTGTAGGCTGGAGCTGCTT 

ppc_recomb_KanR_r 
ACAGGGCTATCAAACGATAAGATGGGGTGTCTGGGGTAA
TCATATGAATATCCTCCTTA 

ppc_recomb_confirm_r CACCGCTTTTACGTGGCTTTAT 
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