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ABSTRACT 21 

 22 

Spatial learning is peculiar. It can occur continuously and stimuli of the world need to be 23 

encoded according to some spatial organisation. Recent evidence showed that insects categorise 24 

visual memories as whether their gaze is facing left vs. right from their goal, but how such 25 

categorisation is achieved during learning remains unknown. Here we analysed the movements 26 

of ants exploring the world around their nest, and used a biologically constrained neural model 27 

to show that such parallel, lateralized visual memories can be acquired straightforwardly and 28 

continuously as the agent explore the world. During learning, ‘left’ and ‘right’ visual memories 29 

can be formed in different neural comportments (of the mushroom bodies lobes) through 30 

existing lateralised dopaminergic neural feedback from pre-motor areas (the lateral accessory 31 

lobes) receiving output from path integration (in the central complex). As a result, path 32 

integration organises visual learning ‘internally’, without the need to be expressed through 33 

behaviour; and therefore, views can be learnt continuously (without suffering memory 34 

overload) while the insect is free to explore the world randomly or using any other navigational 35 

mechanism. After learning, this circuit produces robust homing performance in a 3D 36 

reconstructed natural habitat despite a noisy visual recognition performance. Overall this 37 

illustrates how continuous bidirectional relationships between pre-motor areas and visual 38 

memory centres can orchestrate latent spatial learning and produce efficient navigation 39 

behaviour. 40 

 41 

List of abbreviations: 42 

PI: Path integration; MB: Mushroom Body; CX: Central complex; LAL: Lateral accessory 43 

lobes; MBON: Mushroom body output neuron. DAN: Dopaminergic neuron 44 

 45 

  46 
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MAIN 47 

 48 

Insect navigators such as ants, bees and wasps rapidly learn the visual surroundings to navigate 49 

efficiently to places of interest such as the nest or food sources 1. These long-term visual 50 

memories are formed in a brain area called the Mushroom Bodies (MBs)2,3. The neural 51 

circuitry of the MBs is ideally suited to encode, store and compare arbitrary input (visual, 52 

olfactory, or other) in a way that enables a visually navigating insect to learn and then assess 53 

whether the visual scene currently perceived is familiar or not 4,5. After learning, the MBs output 54 

‘familiarity signals’ that can be used for guidance along familiar routes or back to place of 55 

interest 4,6,7.  However, how learning is orchestrated in the first place is unclear. 56 

 57 

As during experimental conditioning, experiencing an event bearing an innate positive or 58 

negative valence (so called the US in learning theory) can trigger the learning of the surrounding 59 

visual scenery (which can be viewed as the CS). For instance, experiencing sucrose at a feeder 60 

location will trigger visual learning events that are useful to return to this rewarding place 8–10. 61 

Inversely, ants experiencing a negative event such as falling into a pit-trap will memorise the 62 

visual scenes experienced just before falling as aversive; and hence avoid this region of the 63 

world in the subsequent trips 11,12. These examples involve a reinforcer (reward or punishment) 64 

and thus fall under the umbrella of ‘reinforcement learning’. However, spatial learning also 65 

occurs in the absence of distinctive reward or punishment, for instance, when exploring the 66 

world. Indeed, navigating insects tend to learn continuously: weather along routes, around their 67 

nest (during so-called learning walks or learning flight) but also when at novel albeit quite 68 

neutral locations 13–15. This tendency to learn continuously when exploring the world is shared 69 

with other navigating animals too, and has been dubbed ‘latent learning’ in opposition to 70 

‘reinforcement learning’ in learning theory 16 71 

Whether ‘latent’ or ‘reinforcement-based’, spatial learning implies that the stimuli of the world 72 

are encoded according to some spatial organisation. For navigating ants, it has been suggested 73 

that learning of the visual surroundings may happen only when the ant is facing specific 74 

directions of interests, such as when its gaze is oriented towards the goal 17–21 the anti-goal 6,22,23 75 

or along their route direction 4,7,24–26. At the naïve stage, this directional information can be 76 

provided by path integration (PI). PI continuously provides the insect’s current position 77 

relative to its goal, whether the nest or a food source 27. It has thus been suggested that path 78 
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integration is used to both enable the physical alignment of the insect’s body and gaze towards 79 

its goal (or anti-goal) and trigger a visual learning event at such appropriate times 19,28. 80 

PI is computed in a brain area called the Central complex (CX), the seat of the insect 81 

representation of directions 29–32.  However, how the right information from the path integrator 82 

is mediated to the MBs for orchestrating visual learning remains entirely unknown33. 83 

Recently, it was shown that ants (and likely wasps 34) may not learn views specifically when 84 

facing the goal or anti-goal direction, but when facing left and right from their goal 35. Left-to-85 

the-goal and right-to-the-goal memories explains why ants can recognise egocentric views 86 

when misaligned with their goal and trigger the appropriate turning commands 34–36, but 87 

summon an explanation for how left/right categorisation of visual memories is achieved 88 

neurally during learning. 89 

 90 

Here we show how such categorisation can be achieved neurally and continuously, providing a 91 

mechanistic explanation for spatial, latent learning. We analysed the movements of ants 92 

displaying learning walks around their nest, and used computational modelling to show that 93 

existing neural feedback from pre-motor area (the lateral accessory lobes, LAL) receiving the 94 

path integration output from the CX, can organise the formation of these lateralized visual 95 

memories in the MBs. Our biologically constrained architecture shows that learning events can 96 

then be achieved randomly or continuously; literally sparing both the need to ‘control the timing 97 

of learning’ as well as the need to align the agent’s body in any particular direction. 98 

Remarkably, the MBs can support continuous learning of thousands of views without suffering 99 

memory overload, because only novel information recruits new synapses. After learning, the 100 

architecture can produce remarkably robust homing performance in reconstruction of complex 101 

natural habitats 37, as observed in homing ants 38–41. 102 

 103 

Ants look in all directions during learning walks.  104 

 105 

During learning walks, naïve ants display meandering trajectories around their nest, often 106 

exploring different directions multiple times before venturing further 21. Artificially restraining 107 

these exploratory movements (in both time and space) reduces the ants’ subsequent 108 

navigational performance based on terrestrial cues, showing that they do learn the scenery 109 

during these exploratory behaviours 39,41. At a finer scale, these meandering trajectories are 110 

interspaced with regular slowing down up to complete halts, producing behaviours so-called 111 

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 10, 2023. ; https://doi.org/10.1101/2023.03.09.531867doi: bioRxiv preprint 

https://doi.org/10.1101/2023.03.09.531867
http://creativecommons.org/licenses/by-nc/4.0/


votes or scans, whose expression varies across species and individuals42,43. Slowing down and 112 

pausing helps the ants obtain a stable (and thus non-blurry) view and therefore surely 113 

contributes to visual learning. This is corroborated by the fact that these pauses are typically 114 

displayed in situation when learning is needed 9,11,15,19,44–48. It was shown in some species that 115 

ants tend to display longer pauses when their gaze is aligned towards the nest 19,43 or anti-nest22 116 

directions. 117 

 118 

Here, by analysing the learning walks recorded at high frame rate of two species of ants 119 

(Myrmecia croslandi and Melophorus bagoti), we found no systematic association between 120 

such pauses and some particular nest-centred or allocentric directions (Fig. 1c, Extended data 121 

Fig. 3). In contrasts, ants (pausing or not) exposed their gaze to a large, homogenous diversity 122 

of directions and locations around their nest (Fig. 1c, Extended data 3). While we acknowledge 123 

that ants may sometimes pause for a longer period of time while looking in the direction of their 124 

goal, what is clear is that learning walks are rather optimised to collect a diverse sample of 125 

views in all directions. This is in line with previous works showing that pauses and scans are 126 

not tightly controlled by the relation with the ant and its environment, but rather are the result 127 

of 'blind' internal motor processes such as the continuous production of regular oscillations in 128 

the ant's angular and forward speed 22,49 as well as the random triggering of pauses 42. This 129 

stochasticity is further highlighted by the great variability in the expression of learning walks 130 

observed across individuals 50. 131 

 132 

 133 

Visual learning in the MB lobes can be organised by lateralized dopaminergic feedback 134 

from pre-motor areas. 135 

 136 

Previous works have suggested that ants and wasps categorise views as whether their gaze is 137 

oriented towards the left vs. right in relation to the nest heading direction 34,35; but if ants look 138 

in all directions during their learning walks, how do they achieve such a left vs. right 139 

categorisation? 140 

 141 

We realised that due to the Path integration – the ability to integrate compass and distance 142 

information to keep track of the nest relative position 51 – the output of the Central complex 143 

(CX) to the Lateral Accessory Lobe (LAL) provides the desirable information:  the left (or 144 

right) LAL’s hemisphere activity correlates with moments when the nest relative position is on 145 
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the left (or right) of the ant current heading direction 32,52. The LAL are pre-motor areas sending 146 

steering commands to neurons descending to the thorax 49,53. When PI is controlling guidance 147 

for homing, these lateralized output signals are used to trigger ‘turn left’ and ‘turn right’ 148 

compensatory motor commands to align the insect’s body towards its nest, hence resulting in 149 

homing behaviour. However, when PI is not used to home –such as when ant display a learning 150 

walk – we reason that the LAL’s output could nonetheless be used, not for steering, but to 151 

control ‘internally’ whether the current view should be categorised as left or right from the goal 152 

during learning (Fig. 1a). 153 

 154 

Interestingly, the insect brain possesses the perfect neural candidate to do so: direct 155 

dopaminergic projections from the LALs to the MBs lobes 54(Fig. 1a), that is, where long-term 156 

visual memories are formed due to dopamine release 55,56. The left and right dopaminergic 157 

feedback from the LAL –which could thus indicate in real time whether the nest is left or right 158 

of the current heading – project to different compartments of the MBs lobes (see Fig. 4D of 54); 159 

so that ‘left-to-the-goal’ and ‘right-to-the-goal’ memories could be formed in the input synapses 160 

of different MB output neurons (MBONs), literally updating separated memory banks as the 161 

individual explores the scene: the ‘left-to-the-goal’ memory bank is updated when the nest 162 

direction is on the left side of the insects current facing direction, and vice versa.  Note that 163 

other neural candidates could equally achieve the desired LAL-to-MBs learning signals, albeit 164 

indirectly. For instance, some feedback from pre-motor areas modulate dopaminergic neurons 165 

that in turn, trigger synaptic modulation in the MBs lobes 57,58. 166 

 167 

 168 

Homing can be achieved through opponent lateralized signals from the MBs to the CX.  169 

 170 

Once the views are memorised and categorised as left vs right, subsequent homing – based on 171 

these learnt views –  requires to convey the familiarity signals from the MB lobes to the LAL 172 

for steering. We have strong behavioural and neurobiological evidence to constrain our 173 

explanation of how this might happen. 174 

1- Connectomic 52 and experimentation in ants 35 shows that navigation based on learnt 175 

views is achieved indirectly, by updating a goal heading compass direction, likely in the 176 

fan-shaped body of the CX, which in turns control steering in the LAL.  Interestingly, 177 

this seems to work only if the familiarity signals sent to the CX are decorrelated between 178 
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the left and right hemispheres, with the signal from the left (and right) hemisphere 179 

indicating when the animal current heading is biased towards the left (or right) 180 

compared to the goal direction 35.  181 

2-  Connectomic suggests that the MBs lobes send the familiarity signals to the CX either 182 

directly 59, or through one relay in the dorsal brain areas (such as the SIP) 52, where most 183 

MBONs converge ipsilaterally (59.  Such a relay notably enables the integration of 184 

antagonist MBON (and other) signals conveying opposite valences through simple 185 

inhibition ([good - bad], or [bad – good]) 60. This produces an opponent-like process 186 

which improves the estimation of the valence of the current situation and appears to be 187 

at play during visual navigation in ants 6,23. 188 

3-  Some dopaminergic neurons from the left and right LAL – which are thought here to 189 

organise learning at the first place (see previous section) – both project bilaterally in the 190 

MB lobes in a symmetrical manner (see Fig.4D 54, suggesting that both left and right 191 

hemispheric MBs encode both left and right view memories in two different MBs lobes 192 

compartments each (4 different compartments in total) (Fig. 1a ‘DAN’). 193 

We realised here that these three points naturally converged into one picture (Fig.1a,b), which 194 

produces a set of predictions:  195 

1- In each hemisphere, ‘left and right memories’ are formed in MBs compartment 196 

conveying opposite valence, in a symmetrical manner (Fig. 1a ‘DAN’, point 3 above).  197 

2- During homing, the resulting ‘left and right familiarity signals’ (mediated by different 198 

MBONs) are then integrated ipsilaterally (in the dorsal brain area relay) as an opponent 199 

process (Fig. 1b ‘MBON’, point 2 above).  200 

3- Due to the symmetry, this integration is achieved in an opposite manner in each 201 

hemisphere (Left – Right familiarity in the left hemisphere; and Right – Left familiarity 202 

in the right hemisphere) Fig. 1b ‘SIP’).  203 

4- Both opponent signals are then sent to the CX ipsilaterally, providing the desired 204 

uncorrelated left and right familiarity input to the CX (point 1 above) (Fig. 1b, ‘FB’).  205 

 206 

A robust circuit for navigation in noisy visual environments. 207 

 208 

To proof-test the validity of this circuit as a whole, we modelled both the MBs and the CX 209 

based on connectomic data as achieved before (for MB: 4, for CX: 32), and coupled these two 210 
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brain regions using the mentioned LAL-to-MBs connections for learning views, and MB-SIP-211 

CX connections for using views (Fig. 1, Extended data Fig. 1). This circuit was implemented 212 

into an agent with ant-eye-like resolution (10°/pixel, Fig.1.h), immersed in a realistic VR 213 

reconstruction of Myrmecia ants’ natural habitat 37 (Fig.1g).  214 

 215 

For learning, we let the agent reproduce recorded natural learning walks of a Myrmecia ant 216 

(Fig. 1c, Extended data Fig.2; data provided by Jochen Zeil), with the outputs of its path 217 

integrator (computed in the CX) to the left and right LALs (Fig.1c, yellow and orange) driving 218 

the dopaminergic feedbacks that control learning. Learning in the MB is achieved following 219 

what is observed in insects: by depressing the currently active KCs’ output synapses onto the 220 

MBONs, only in the MBs compartments where the associated dopaminergic feedback is 221 

concomitantly active 55,61. After completion of the learning walk, we transferred the agent 222 

deprived of PI (i.e. as a so called Zero-Vector agent) to a new location in the world and let the 223 

visual familiarity based on the left and right memories – as outputted by the MBONs – drive 224 

the two FB inputs to update the desired heading direction in the CX. The CX, in turn, outputs 225 

left and right turning commands to the LAL, which drives the agent (Fig.1,b, Extended data 226 

Fig.1). This produces a remarkably robust homing ability, as well as a tight search around the 227 

nest without the need to fine tune parameters (Fig. 1f, Extended data Fig. 2), providing further 228 

credibility to this circuit.  229 

 230 

 231 

When to learn? No need to bother. 232 

 233 

Interestingly, our model shows that the timing and positions at which the view is sampled along 234 

learning walks are not important. The model can afford to learn sporadically, at random position 235 

or continuously (it is operational whether it uses 90 views or 30,000 views for learning) (see 236 

Extended data Fig. 2), bypassing the need for additional mechanisms that controls ‘when to 237 

learn’ or ‘how to align the body to learn’. Memory load is not a problem either: even when 238 

learning continuously (i.e., here at 100fps), 20,000 KCs proved largely sufficient to store the 239 

information from the large amount of views (e.g., 13638 views) experienced along a learning 240 

walks sampled at high frame rate (100 fps). Saturation is prevented because additional memory 241 

space is used only when significantly novel views are perceived: already learnt views activate 242 

KCs that have already switched their synaptic output, and thus yield no further change. 243 

Acquiring visual memories in this way results in a steep learning curve at first, but then 244 
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spontaneously plateaus as the explored regions around the nest become familiar (Fig. 1e). In 245 

addition, our model vastly underestimates the ants’ (and hymenopteran navigators in general) 246 

memory capacity (>100,000 KCs 62,63 and >100 MBONs 64), ignores pruning principles that 247 

can increase effective memory capacity, bypasses any visual pre-processing that can compress 248 

information, and reduces the complexity of synaptic connections to simple binary connections 249 

between neurons. Hence, we are confident that learning views around the nest in such a way 250 

should occupy only a fraction of the real ants’ memory capacity. 251 

 252 

General discussion 253 

We have shown how existing neural connections between the CX (computing path integration), 254 

the LAL (a pre-motor area) and the MB (seat of the visual memories), could enable an insect 255 

to orchestrate spatial learning. An agent equipped with this circuit can quickly learn the visual 256 

surrounding and subsequently home from novel locations using very low-resolution views 257 

(10°/pixel, Fig. 1h) of its natural environment (Fig. 1). Several differences contrast this circuit 258 

from previous accounts. 259 

 260 

First, views are encoded egocentrically (i.e. recognition is view-point dependant), which is in 261 

adequation with most of the literature 24,65–69 and contrast with recent models who assumed that 262 

visual memories can be rotationally invariant (recognition is independent of the gaze 263 

orientation) 7,70. The latter requires computational steps, such as Fourier transforms, which 264 

potential implementation in insect circuits remains unknown. Instead, assuming an egocentric 265 

encoding enables to remain faithful to the known insect neural circuits and corroborates the 266 

behavioural evidence that ants’ visual scene recognition requires the insect to align its gaze as 267 

during training 66,71–73 as well as the regular need of insects to scan multiple directions 268 

21,42,49,74,75. 269 

 270 

Second, our circuit is built on the evidence that memorised views are categorised as oriented 271 

left vs. right rather than towards or away from the goal 34,35. This was key, as this left/right 272 

information can be directly provided by the LAL during learning, due to the mechanism of path 273 

integration in the CX. 274 

 275 

Third, it was previously assumed that path integration serves as a scaffold for visual learning 276 

through behaviour: the insect would use PI to physically align its body in a direction of interest 277 

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 10, 2023. ; https://doi.org/10.1101/2023.03.09.531867doi: bioRxiv preprint 

https://doi.org/10.1101/2023.03.09.531867
http://creativecommons.org/licenses/by-nc/4.0/


(towards or away from the nest, or along a route) and then memorise the view perceived at this 278 

precise moment 19,20,43.  Here, PI still serves as a scaffold for visual learning, but does so 279 

‘internally’ without the need to express through behaviour. As a consequence, views can be 280 

learnt continuously while the insect freely explores the world using other mechanisms. With 281 

this in mind, ants learning walks 21 and early meandering trajectories 50,76,77 appear optimised 282 

to sample views quickly in as many locations and orientations around the nest as possible (Fig1 283 

c,d; Extended data Fig. 3). Also, since all views becomes useful whatever their orientation, it 284 

explains how views acquired during outbound trips can be equally categorised effectively to 285 

serve subsequent homing 46,73,78, as well as the ants’ ability to recognise views whatever their 286 

body orientation when on highly familiar regions 35. 287 

 288 

Fourth, navigation robustness arises here from multiple reasons. As shown before, visual 289 

recognition in the MBs is intrinsically noisy, partly because of the way memories are 290 

compressed in the KCs, and partly because of the proximal clutter (blade of grasses, etc…) that 291 

an insect may encounter when walking on the floor or flying through bushes 4,5. Part of this 292 

noise is alleviated by having the noisy MBs familiarity signal being send to the CX (as 293 

in7,25,33,35, which acts as a directional buffer due to its much more stable heading encoding based 294 

on multiple sources of compass 30. The current circuit provides an additional level of robustness, 295 

through redundancy, as each view is simultaneously compared to four memory banks in parallel 296 

(Fig.1b, ‘MBONs’). Although the input from each eye is sent to both left and right hemispheric 297 

MBs 63, the random pattern of connectivity in the KCs input 79–81 makes each MBs different. 298 

As a result, this architecture literally provides four independent assessments of whether the 299 

insect's current heading is too much on the left vs. the right of its goal direction. Additional 300 

assessments, for instance based on recent vs. longer-term memories, may likely recruit more 301 

MBs compartments and make the recognition process more redundant. 302 

 303 

Finally, the dopaminergic internal feedback from the LAL – necessary to categorise learning 304 

into different MB lobes compartments – also predicts a strong link between locomotion and 305 

activity in the MB, with rapid shifts of dopaminergic activity across the MB lobes as the insects 306 

is moving in the world. This corroborates recent observations in drosophila that dopamine 307 

release in the brain strongly correlates with the animals’ movements 58,82, and indeed, shifts 308 

dynamically across the MBs lobes 57,83. Overall, this supports the view that the MBs provide an 309 

active coding that operates in a tight closed-loop with the ongoing behaviour. 310 
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Which actual neurons convey the desired PI information from the LAL to the MBs to categorise 311 

visual learning in ants, wasps or bees remains to be identified, but given the existence of such 312 

direct (or indirect) connections in various insects that are not central place foragers 54, we can 313 

easily envision how the ability to perform path integration may have enabled the evolution of 314 

the ability to home using learnt views. 315 

 316 

 317 

MATERIALS AND METHODS 318 

 319 

Neural model 320 

We used a simple agent-based model in a closed loop in a 3D virtual environment. All 321 

simulations were performed in Python 3.x. 6. The neural model connectivity is described in 322 

Extended data Fig. 1, and code is available on request.  323 

Parameters description 324 

Motor noise: at each time step, a directional ‘noise angle’ is drawn randomly from a Gaussian 325 

distribution of ± SD = motor noise, and added to the agent’s current direction.  326 

Memory decay: proportion of Fan-shaped Body Neurons (FBN, see extended Fig.1 for details) 327 

activity lost at each time step: For each FBN: Activity(t+1) = Activity(t) x (1 - memory decay). 328 

This corresponds to the speed at which the memory of the vector representation in the FBN 329 

decays. A memory decay = 1 means that the vector representation in the FBN is used only for 330 

the current time step and entirely overridden by the next inputs. A memory decay = 0 means 331 

that the vector representation acts as a perfect accumulator across the whole paths (as for Path 332 

Integration), which is probably unrealistic.  333 

Motor gain: Sets the gain to convert the motor neuron signals (see extended Fig.1 for details) 334 

into an actual turn amplitude (turn amplitude = turning neuron signal × gain). Note that here, 335 

the motor gain is presented across orders of magnitude. One order of magnitude higher means 336 

that the agent will be one order of magnitude more sensitive to the turning signal. 337 

 338 

3D world and view rendering 339 

The virtual environment used in our model was generated by the software Habitat3D 84, an 340 

open-source tool which provides photorealistic meshes of natural scenes from point clouds 341 

acquired with help of a LiDAR scanner (IMAGER 5006i). This environment is mapped on the 342 

habitat of Myrmecia ants from Canberra, Australia 37. The mesh spans a diameter of around 65 343 

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 10, 2023. ; https://doi.org/10.1101/2023.03.09.531867doi: bioRxiv preprint 

https://doi.org/10.1101/2023.03.09.531867
http://creativecommons.org/licenses/by-nc/4.0/


metres and features large eucalyptus trees and the distant panorama cues (Fig. 1g). This dataset 344 

can be found on the Insect Vision webpage (https://insectvision.dlr.de/3d-reconstruction-345 

tools/habitat3d). For speed optimization purposes, we down-sampled the originally high-346 

resolution mesh with the open-source software Blender into a lower number of vertices; the 347 

rendering was then realized in OpenGL, with the Python libraries Plyfile and PyOpenGL. This 348 

3D model enabled us to render panoramic views from any location as a 360-degree picture. We 349 

chose input only the blue channel of the RGB scene, resulting in only one luminance value per 350 

pixel. Also, the skybox was a pure blue uniform colour. That way, as with UV in natural scenes 351 

85,86, blue provides a strong contrast between the sky and the terrestrial scene. This approximates 352 

the type of visual information used by navigating ants 87,88. Views were cropped vertically so 353 

that the bottom, floor-facing part was discarded. Finally, views were downsampled at 10°/pixel 354 

(see Fig. 1h), and we extracted the edges by subtracting for each pixel the summed value of its 355 

8 neighbours, mimicking lateral inhibition across ommatidia. As a result, the visual information 356 

that the model receives is a small rectangular matrix of single-channel, floating point values 357 

representing the above-horizon panorama (see Fig. 1h). 358 

 359 

Learning walks trajectories analysis 360 

We analysed learning walks trajectories of Myrmecia croslandi ants recorded at 100fps 361 

(courtesy of Jochen Zeil, from a data set used in 22) and Melophorus bagoti ants recorded at 362 

300fps (from a data set used in 15). Trajectories were analysed using Matlab (R2016b 363 

Matworks). Code and data are available on request.  364 

 365 
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Figure 1. 614 

 615 

Figure 1. A Mushroom Bodies and Central Complex circuit produces robust visual 616 

navigation. a,b. Schematic of the model’s functional circuitry. The agent’s current panoramic 617 

view results from its position in the reconstructed world (g), down-sampled at 10 °/pixel (h). 618 
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Projection Neurons (PNs) sample the whole visual field and form random connections with 619 

Kenyon Cells (KCs), resulting in a pattern of KC activity highly specific to the current view. 620 

Numbers on the left indicate numbers of neurons. See Extended data 1 for details. a. During 621 

learning, the central complex is updating a path integration (PI) home vector by integrating 622 

current speed and compass heading information as in 32. The output of the CX in the left (or 623 

right) hemisphere’s LAL, which correlate with the time when the nest is on the left- (or right-) 624 

hand side – and thus can be used to drive left (or right) turns to home by PI – are used instead 625 

to drive dopaminergic neurons (DAN) projecting to the MBs to categorise visual learning. 626 

DANs’ activity triggers memory formation by synaptic depression of the currently active KCs 627 

outputs on the associated MBS output neurons (MBONs). b. After learning, familiar views 628 

differentially activate MBONs according to the KC-MBON synaptic strengths established 629 

during learning. MBONs’ signals are integrated in the SIP (Superior Intermediate 630 

Protocerebrum) as an opponent-like process (Le Möel and Wystrach, 2020) providing a 631 

measure of the likelihood of having the nest on the left or on the right, that is independent of 632 

the overall level of visual familiarity 35. These lateralized signals then project to the CX (as 633 

shown in figure 3), literally updating a ‘view-based vector’ representation. Motor control is 634 

effected by the usual CX circuitry based on the current compass heading (as for PI), resulting 635 

in the agent performing turns. (OL: Optic-Lobes, MB: Mushroom-Bodies, SIP: Superior-636 

Intermediate-Protocerebrum, PB: Protocerebral Bridge, FB: Fan-shaped-Body, LAL: Lateral 637 

Accessory Lobe). c. Example of two consecutive learning walks displayed by an individual 638 

Myrmecia crosslandi ant (data courtesy of Jochen Zeil) and used by the agent for learning 639 

views. In this example, the agent sampled the world at 100 fps (see inset for realistic 640 

representation of sampled views’ positions) approximating the ants visual flicker fusion 641 

frequency and thus assuming continuous learning (Extended data Fig. 2 shows other training 642 

conditions). d. Circular histogram of the number of views experienced along the learning walks 643 

(c) according to their orientation relative to the nest, showing that the ant exposed its gaze in 644 

all directions relative to the nest (750 indicate the scale at the circle rim). e. Cumulative 645 

proportion of KCs activated at least once along 13 consecutive learning walks (Extended data 646 

Fig. 2). The tendency to plateau explains how continuous learning can be supported without 647 

memory saturation. f. Paths realised by agents using views (b) in closed-loop with the 648 

environment to home from novel release locations around the nest, after learning (a) along two 649 

learning walks (c). The agents display efficient homing and nest search across a range of 650 

randomly chosen parameter values (g: motor gain; d: FBN decay; n: motor noise, see parameter 651 

description and Extended data Fig. 1 for detailed explanation). g. Visual reconstruction of the 652 
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Myrmecia ants’ natural environment 37 used in the current simulation (represented as a points 653 

cloud for clarity). h. Example of views drawn from the reconstructed world, down-sampled at 654 

10 °/pixel to ensure that ant resolution is not overestimated. 655 

  656 
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Extended data figure 1 657 

 658 
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Extended data figure 1. Details of the MB-CX model’s circuitry. Circuitry used for learning 659 

views (top), and using views to drive the trained agent (bottom). Left panels show the scheme 660 

as presented in figure 5, and right panels show the corresponding detailed circuitry. 661 

a. The agent’s current view (360° panoramic, with 90° above and 40° below horizon) is 662 

extracted from the reconstructed world at 10°/pixel, so 36 × 13 pixels = 468 cells. Activity of 663 

the cells correspond to the pixel light intensity (from 0 to 255) and could be seen as representing 664 

the cells’ firing rate. The view is processed through lateral inhibition between neighbouring 665 

cells: cell activity = cell activity – (∑ (all neighbouring cells activity) / number of neighbouring 666 

cells). This well-known early visual pre-processing makes cells respond to contrasted edges in 667 

the view, which is necessary for the downstream Kenyon Cells (KCs) to encode view 668 

specificity. 669 

b. Each view cell projects (via Projection Neuron, PN) to both hemispheres’ Mushroom Bodies 670 

(MB), where it makes pseudo-random connections with KCs: we set each KC to connect to 4 671 

randomly chosen PNs, roughly matching what is observed in insects. We chose 20,000 KCs per 672 

hemisphere, which underestimates the number of KCs in ants (> 100,000). At each time step, 673 

the 0.1% KCs with the strongest input (i.e., the sum of the 4 PNs activities connecting to the 674 

KC, which can be seen as the KC’s dendritic excitatory postsynaptic potential) activity would 675 

be set to 1 (reflecting one action potential), the other KCs would be set to 0. This represents the 676 

effect of the inhibitory activity of APL-like-neurons (black neuron) across all KCs, ensuring 677 

that only a few KCs (the ones with strongest input activity) can fire an action potential at a time, 678 

as observed 81,89,90. 679 

c. We modelled (in each hemisphere) two compartments of the MBS lobes (surrounded by black 680 

ovals): both compartments are composed of 1 dopaminergic neuron (DAN) associated to 1 681 

MBS output neuron (MBONs), mediating opposite valences as observed across insects 91,92. 682 

These antagonistic DANs engage in a winner-take-all competition (symbolised by the black 683 

reciprocal inhibition) so that only one kind is active at a time in each hemisphere, as observed 684 

in insects 57. Initially, all KCs connect to both MBONs with a synaptic weight of 1. At each 685 

time step, synaptic depression happens for the active DAN’s compartment mimicking 686 

coincidence detection 55: the KC-to-MBON weights of each currently active KCs is set to 0, 687 

and will stay so permanently (we did not wish to model forgetting). Due to the activity of the 688 

CX (see (e)), the DANs activity correlates with moments when the nest is left (orange DAN) 689 

or right (yellow DAN) relative to the current body orientation. 690 

d. Current compass direction is modelled in the protocerebral bridge (PB) as a bump of activity 691 

across 8 neurons forming a ring-attractor, as observed in insects 52. Each neuron responds 692 
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maximally for a preferred compass direction, 45° apart from the neighbouring neurons (neuron 693 

1 and 8 are neighbours). Change in the agent’s current compass orientation results in a shift of 694 

the bump of activity across the 8 neurons (we did not model how this is achieved from sensory 695 

compass cues (see 30,93–95 for studies dedicated to this matter). 696 

e.  During learning, two representations of the Path Integration (PI) home vector are updated in 697 

the Fan-shaped Body Neurons (FBN) by integrating current speed and compass heading 698 

information (as in 29,70). Speed input activates all 8 FBN neurons equally, but simultaneous 699 

inhibition from the PB (see d) results in a negative imprinting of the current bump of activity 700 

(inhibition is effected between each paired neuron: 1 inhibits 1; 2 inhibits 2; etc…). FBN 701 

activity is sustained (given a slow decay), and thus acts as a PI home vector accumulator 702 

(Stone). Neurons, called CPU1 in some insects, compare each version of the home vector 703 

neurally shifted by 1 neuron (as if rotating the ring attractor representation by 45° clockwise or 704 

counter-clockwise depending on the hemisphere) with the current compass heading, resulting 705 

in an overall activity in the CPU1 (sum of the 8 CPU1) indicating whether the nest is rather on 706 

the left- (higher activity in the left hemisphere) or right-hand side (higher activity in the right 707 

hemisphere). This left/right differential activity – instead of driving the agent home – is 708 

integrated in a DAN connecting the LAL to the MBs (described in Fig. 4D of 54) and thus used 709 

to categorise visual learning (see c). 710 

f. The current view results in a specific pattern of KC activity (a), which activates MBONs 711 

differentially according to the weight of the KC-MBONs connections set during learning (c). 712 

For instance, views similar to the one experienced when the nest was on the left (orange DAN 713 

in (c), trigger KCs with KC-MBON weight set to 0 in this compartment, and thus will activate 714 

mostly the MBON of the other compartment. This differential activity between MBONs is 715 

integrated in the SIP (Superior Intermediate Protocerebrum) in each hemisphere, resulting in 716 

an opponent-like process providing a measure of the likelihood of having the nest on the left or 717 

right that is independent of the overall level of visual familiarity (similarly to 6,23). 718 

g. These lateralized signals from the SIP excite a dedicated set of FBN, literally updating a 719 

‘view-based vector’ representation. The sustainability of such a ‘view-based vector’ depends 720 

on the FBN activity’s decaying rate, which can be varied in our model and has little incidence 721 

on the agent success (Extended Data Fig. 2, parameter decay). Motor control is effected using 722 

the same circuitry than for PI 29,32: the CPU1 neurons control descending motor neurons (MN), 723 

which difference in activity across hemispheres triggers a left or right turn of various amplitude, 724 

given a ‘motor gain’ that can be varied to make the agent more or less reactive (see parameter 725 

description). 726 
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Numbers on the left indicate neuron numbers. Letters on the right indicate brain areas (OL: 727 

Optic Lobes, MB: Mushroom Bodies, SIP: Superior Intermediate Protocerebrum, PB: 728 

Protocerebral Bridge, FB: Fan-shaped Body, LAL: Lateral Accessory Lobe). 729 
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Extended data figure 2 731 

 732 
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Extended data figure. 2. Homing is robust to various training regimes. Paths displayed by 733 

the agent when released around the nest with randomly chosen parameter values (g=: motor 734 

gain; d=: FBN decay; n=: motor noise, see the ‘parameter description’ section for detailed 735 

explanation) (right column) after learning views in different configurations (left column). 736 

Orange and yellow indicate how views are categorised as facing right or left from the goal, and 737 

thus being respectively learnt in the left or right MB lobes compartments (see Extended data 738 

figure 2 for details of the model implementation). Circular histograms show the number of left 739 

and right views experienced for learning. a. 90 views taken at random positions around the nest 740 

(up to 3m away from the nest) and facing in random directions, are enough for the agent to 741 

subsequently home and display a search at the nest. The failure of some agents suggests that 742 

the catchment area is nonetheless restricted here. b,c. Using a large amount of views sampled 743 

continuously (at 100fps) from multiple real ants learning walks enable the agent to home 744 

robustly, and demonstrates that memory load is not a problem. a,b,c. All agents were equipped 745 

with 20,000 Kenyon Cells per hemispheres, and embedded in the reconstructed natural world 746 

of Canberra (see figure 5), albeit the nest location within the world varied. Note that the scale 747 

of movements relative to the world, which can be chosen arbitrarily, is here higher than in figure 748 

5, indicating that the model is effective across various amounts of visual change in relation to 749 

movements. This also suggests that the amount of visual change experienced does not need to 750 

be precisely controlled by the agent when effecting a learning walk. 751 
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Extended data figure 3. 753 
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Extended data figure 3. Ants expose their gaze in all direction during learning walks. 755 

a. Examples of learning walks recorded in Myrmecia crosslandi (courtesy of Jochen Zeil, see 756 

also 22 and Melophorus bagoti (from a previous data set used in 15) around their nest (green 757 

circle). The absence of recording in the centre for M. bagoti results from an experimental funnel 758 

around the nest that the ants had to climb before reaching ground level. Dots indicate position 759 

of the head (for M. crosslandi) or body centroid (for M. bagoti) and vectors indicate gaze 760 

direction across the recorded frames. Blue vectors mark the instant of ‘fixations’ (when both 761 

angular velocity and forward speed are simultaneously < 1st decile of their respective 762 

distribution, for each individual). b. Circular histogram of the number of views experienced 763 

according to their orientation relative to the nest (scale indicated for the circles’ rim), during 764 

the whole learning walks or during fixations only (see a). Ants show no tendency to bias their 765 

gaze towards the nest direction. c. Instantaneous angular velocity of the head according to the 766 

direction faced relative to the nest, for the whole learning walks or only moments of low angular 767 

velocities. In abscises, 0° indicates facing towards the nest, 180° indicates facing in the anti-768 

nest direction, left and right bias are pooled together (by using absolute values). Linear (red) 769 

and quadratic fit (yellow) are shown. The flatness of the fits indicates that ants show no 770 

tendency to regulate their angular speed according to the direction faced relative to the nest. If 771 

anything, in M. bagoti ants, low angular speed tends to happen slightly more often when the 772 

nest lies on the sides rather than in front or behind. d. Relative probability distributions of 773 

angular velocities according to whether the nest stands rather in front (0° to 60°, red), in the 774 

back (120° to 180°, blue) or on the sides (between 60° and 120°, green line + area). Left and 775 

right sides are pulled together using absolute values, so that each of the three categories covers 776 

120° (a third) of the directional space. The similarity of the distributions indicates, here also, 777 

no strong tendency to regulate angular speed according to the direction faced relative to the 778 

nest; apart from a tendency in M. bagoti to display low angular velocities slightly more often 779 

when the nest is on the sides. 780 
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