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Abstract 

Long read sequencing data, particularly those derived from the Oxford Nanopore (ONT) 

sequencing platform, tend to exhibit a high error rate. Here, we present NextDenovo, a highly 

efficient error correction and assembly tool for noisy long reads, which achieves a high level 

of accuracy in genome assembly. NextDenovo can rapidly correct reads; these corrected reads 

contain fewer errors than other comparable tools and are characterized by fewer chimeric 

alignments. We applied NextDenovo to the assembly of high quality reference genomes of 35 

diverse humans from across the world using ONT Nanopore long read sequencing data. Based 

on these de novo genome assemblies, we were able to identify the landscape of segmental 

duplications and gene copy number variation in the modern human population. The use of the 

NextDenovo program should pave the way for population-scale long-read assembly, thereby 

facilitating the construction of human pan-genomes, using Nanopore long read sequencing data.   
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Introduction 

An accurate and complete genome is a prerequisite for research into the evolution of species. 

Third-generation long-read sequencing platforms, such as PacBio single-molecule real-time 

(SMRT) 1 and Oxford Nanopore (ONT) 2, promise to overcome the challenges that are inherent 

to short-read sequencing and have the potential to resolve most complex and repetitive genomic 

regions. To this end, they have become the mainstream method of sequencing for genome 

assembly. The high-fidelity (HiFi) reads recently produced by PacBio display superior 

performance to de novo assembly3-5. However, they usually have an average length of ~15 

kilobases (kb), and hence are unable to span long tandem or multi-copy highly homologous 

repeats, which occur widely throughout large genomes, but very specifically in some regions 

such as centromeres 3, 6. ONT sequencing can generate >100-kb “ultra-long” reads, which can 

be used to fill the final gaps of an assembly, most of which are located in these regions 7, 8. This 

approach was first used successfully in the assembly of a human centromere (chromosome Y, 
9) and an entire chromosome (chromosome X, 10), and then combined with HiFi data to 

assemble a complete human genome 8. Despite these successes, a single linear reference 

genome is insufficient to represent the entire genome sequence of a species, and there is an 

urgent need to construct pan-genomes for population genome research 11-13. ONT sequencing is 

characterized by lower cost, higher throughput and a faster turnaround time than PacBio HiFi 

sequencing and, since it requires less genomic DNA, it can be used anywhere for sampling and 

sequencing by portable devices. It is therefore eminently suitable for pan-genome projects, 

especially those with limited budgets or urgent deadlines. 

 

For genome assembly from noisy long ONT reads, two commonly used strategies have been 

employed, viz. “correction then assembly” (CTA) and “assembly then correction” (ATC); the 

former (such as Necat 14 and Canu 15) are usually slower than the latter (such as Wtdbg2 16 and 

Flye 17), because read-level error correction requires rather more computational resources than 

contig-level polishing. However, in terms of the assembly of segmental duplications/repeats, 

and especially for large plant genome assemblies, the CTA-based strategy usually has enhanced 

ability to distinguish different gene copies and produce more accurate and continuous 

assemblies. 

 

Here, we present NextDenovo, a highly efficient error correction and CTA-based assembly tool 

for noisy long reads. We first provide an overview of the NextDenovo pipeline, and then 

compare it to other error correction and assembly tools using 4 non-human genomes and 35 

human genomes. We show that NextDenovo represents an optimal choice for error-correction 

and genome assembly when working with noisy long reads, especially for large repeat-rich 

genomes. 

 

Results 

 

Overview of the NextDenovo pipeline 

As with other CTA assemblers, NextDenovo first detects the overlapping reads (Fig. 1a), then 

filters out the alignments caused by repeats and finally splits the chimeric seeds based on the 

overlapping depth (Fig. 1b). NextDenovo employs the kmer score chain (KSC) algorithm 
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which was used by our previously published polisher tool, NextPolish 18, to perform the initial 

rough correction (Fig. 1c). Because a large number of noisy or incorrect overlap alignments 

exist in regions with high error rates, these regions tend to be located within repeat regions. 

These regions are usually characterized by lower accuracy after the initial correction, but they 

are nevertheless important for distinguishing different repeat copies during the subsequent 

graph cleaning procedure. So NextDenovo used a heuristic algorithm to detect these low score 

regions (LSRs) during the traceback procedure within the KSC algorithm. For the LSRs, a more 

accurate algorithm, derived by combining the partial order alignment (POA) 19 and KSC, was 

used. In detail, each subsequence spanning an LSR was collected, and a kmer set at the flanking 

sequences of this LSR was generated. Then each subsequence was assigned a matched kmer 

score based on this kmer set. Subsequences with a lower kmer score (usually caused by 

heterozygosity or repeats) were filtered out. The longest six subsequences ranked by kmer score 

were used to produce a pseudo-LSR seed by a greedy POA consensus algorithm. All pseudo-

LSR seeds from the same seed were linked as the reference, and all subsequences from this 

seed were mapped to this reference and the KSC algorithm applied again to produce a corrected 

pseudo seed. This procedure was called multiple times in order to improve the accuracy of the 

LSRs. Finally, each LSR was extracted from the corrected pseudo seed and inserted into the 

corresponding position of the primary corrected seed as the final corrected seeds (Fig. 1d). 

 

The corrected seeds were subjected to two rounds of pairwise overlapping to identify dovetail 

alignments. The first round used an efficacious parameter set designed to rapidly detect 

candidate dovetail alignments, which usually contain incorrect alignments or imprecise 

alignment boundaries. So, for these candidate dovetail alignments, a strict parameter set was 

used to produce more accurate alignments. Next, a directed string graph was constructed and 

transitive edges were removed as with most existing assemblers. We used the “best overlap 

graph” (BOG) algorithm to remove edges for non-repeat nodes (repeat nodes were defined as 

nodes with indegree or outdegree larger than a thread). For repeat nodes, we found that the 

BOG algorithm usually removes the corrected edges and breaks the graph connectivity. To fix 

this problem, we only removed a repeat edge if its alignment identity, length and transitive score 

(see “Methods”) were less than their corresponding threads. Subsequently, tips were removed 

and bubbles were resolved. Finally, the graph usually contained some linear paths (no branches 

and repeated nodes) connecting some complex subgraphs that contained many repeat nodes. 

We used a greedy progressive graph cleaning strategy to simplify these complex subgraphs. 

That is, a series of increasingly stringent thresholds were used to filter edges while maintaining 

connectivity between incoming and outgoing nodes. Finally, all paths were broken at the node 

connecting with multi-paths, and contigs were outputted from these broken linear paths. To 

further reduce the possibility of misassemblies, we mapped all seeds to the contigs and broke a 

contig at the connection point between two nodes if it had a lower mapping depth region (LDR, 

Fig. 1e). 

 

Benchmarking the error correction module 

We benchmarked the error correction performance of NextDenovo against Canu (v2.0) and 

Necat (v0.0.1) using simulated data and actual biological data based on chr.1 of a human 

genome (CHM13, Table 1, Supplementary Table 1) 8. In terms of the correction speed, 
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NextDenovo was 7.44, 1.13 times faster on simulated data and 69.25, 1.63 times faster on actual 

biological data than Canu and Necat, respectively. The differences between simulated data and 

actual biological data arise because the actual biological data are ONT “ultra-long” reads, the 

reads to be corrected having an average length of 91.21 kb, 3.99 times longer than the simulated 

data. This implies that the correction speed advantage of NextDenovo will become increasingly 

obvious as the read length increases. For the corrected data size, NextDenovo can correct 2.21%, 

4.54% more data than Canu, but 1.65%, 1.00% less data than Necat, on simulated data and 

actual biological data, respectively. Importantly, the average error rate of corrected reads by 

NextDenovo is 1.82%, 1.31% lower than Canu, and 0.35%, 0.09% lower than Necat, on 

simulated data and actual biological data, respectively. The average accuracy of corrected reads 

by NextDenovo is higher than >99%, which is close to the accuracy of PacBio HiFi reads, 

whereas the corrected reads have a much longer length than HiFi reads. Moreover, the 

consistent error rate of corrected reads is important for subsequent graph cleaning procedures, 

because reads alignment identity can be used to distinguish ambiguous edges in the assembly 

graph, especially for edges from different repeat copies. We found that the ONT reads from the 

actual biological data usually contain LSRs, and benefit from the heuristic algorithm used by 

NextDenovo to correct the LSRs with multiple iterations, producing ~89.31% corrected reads 

that have 97% accuracy, whilst only 80.64% for Canu, 88.67% for Necat and 0.18% for the 

raw data. This is also the reason why some reads are not split or trimmed at the LSRs, resulting 

in the reads corrected by NextDenovo having a longer average length (90.98 kb) than those 

corrected by Canu (84.27 kb) and Necat (89.17 kb). The chimeric reads are usually detrimental 

to assembly graph construction, leading to misconnections and incorrect assembly results. 

NextDenovo can detect these chimeric reads and can split them at the LSRs; 89.10% of the 

corrected reads can be mapped to reference with 99% coverage, compared to 85.13% for Canu, 

whilst the comparable figure for Necat was slightly lower (88.30%) than with NextDenovo. 

This result is consistent with the corrected reads by NextDenovo having the fewest chimeric 

alignments. In summary, NextDenovo can correct reads at a faster speed; these corrected reads 

contain fewer errors and are characterized by a more uniform error rate and fewer chimeric 

alignments. 

Assembly evaluation on non-human genomes 

We first evaluated NextDenovo in the context of the assembly of four non-human genomes 

(Arabidopsis thaliana, Drosophila melanogaster, Oryza sativa and Zea mays) in relation to the 

most widely used assemblers, Necat (v0.0.1), Canu (v2.0), Flye (v2.8) and Wtdbg2 (v2.5) on 

ONT data (Supplementary Table 1), and then used QUAST (v5.2.0) 20 to evaluate all 

assemblies with regard to completeness (assembly size, gene completeness), accuracy (number 

of misassemblies and phred-scaled base error rate (QV)) and continuity (NG50/LG50 and 

NGA50/LGA50, Table 2, Supplementary Table 2). For the A. thaliana and D. melanogaster 

genomes, since the structure of these two genomes is relatively simple, most assemblers 

produced good assemblies. NextDenovo, Necat and Flye performed better than Canu and 

Wtdbg2 on the overall evaluation metric, whilst NextDenovo, Necat and Flye reported similar 

values for completeness and continuity. With regard to accuracy, compared with Necat and Flye, 

the NextDenovo assemblies contained fewer misassemblies and had a higher QV on the D. 

melanogaster genomes, but the NextDenovo assembly contained 2 more misassemblies and 

showed a slightly smaller QV than the Flye assembly on the A. thaliana genome. The O. sativa 
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and Z. mays genomes contained more repeats and are more complex. Benefiting from the high-

accuracy data after error correction, NextDenovo can more reliably distinguish different repeats, 

ensuring that the NextDenovo assemblies exhibit greater continuity than other assembler results, 

especially for the Z. mays genome. NextDenovo can deliver an assembly with about 2, 61, 15, 

758 times the NGA50 values of Necat, Canu, Flye and Wtdbg2, respectively. Moreover, the 

NextDenovo assemblies also contained the smallest number of misassemblies and had a higher 

QV than the other tools. With regard to completeness, the assemblies produced by NextDenovo, 

Necat, Canu and Flye exhibit similar values in terms of assembly size and gene completeness. 

Indeed, for the A. thaliana and the O. sativa genomes, NextDenovo provided near-

chromosome-level assemblies because the LGA90 values of these two assemblies were only 

10 and 20, implying that most of the chromosomes in these two genomes contain only 1-2 long 

contigs. 

 

In terms of running time, for the small (D. melanogaster and A. thaliana) or medium sized 

genomes (O. sativa), NextDenovo is faster than Canu and Flye. For the repeat-rich Z. mays 

genome, NextDenovo was 23 times faster than Canu, and slightly faster than Necat, but slower 

than Flye owing to the limitations of the CTA algorithm. Wtdbg2 was the fastest for all genomes. 

It should be noted that time consumption may vary when different parameters are used. In 

addition, NextDenovo can distribute almost all subtasks to run on different computer nodes in 

parallel, and a subtask typically only required 32~64 GB peak memory, so for most genomes 

NextDenovo can complete genome assembly in a day, when running on dozens of computer 

nodes. 

 

Assembly of 35 human genomes by NextDenovo and comparative analysis of segmental 

duplications between humans 

We envisage that the NextDenovo program will potentiate population-scale long-read 

assemblies, which will in turn facilitate the construction of human pan-genomes using 

Nanopore long read sequencing at low cost. Here, we collected blood samples from 35 

humans with diverse ethnicities, including 13 from Africa, six from East Asia, four from 

Southeast Asia, six from South Asia, two from the Middle East, two from Europe, one from 

Oceania, and one from America (Fig. 2a, Supplementary Table 3). Principal component 

analysis (PCA) based on single nucleotide polymorphisms (SNPs) with integration of the 

1000 Genomes Project dataset indicated that the 35 genomes together covered much of the 

genetic diversity present in modern humans (Supplementary Fig. 1). For each 

individual, >150 Gb long reads (mean length 21 kb) were sequenced using the Oxford 

Nanopore long-read sequencing platform. Each individual contained approximately 12,615 

(~0.49× in coverage) ultra-long reads (>100 kb), which enabled contiguous assembly of 

complex regions in the human genome 8, 10, 21, 22. In addition, for each individual, ~150 Gb of 

short reads (100 bp) were sequenced for error polishing and correction.  

 

We firstly evaluated the performance of NextDenovo as compared with Flye in relation to 

human genome assembly (Fig. 2b, Supplementary Table 4). On average, NextDenovo and 

Flye produced similar assembly sizes (2.83 Gb) with about 90.84% genome coverage, but the 

assemblies produced by NextDenovo covered more single-copy genes (97.99% vs. 97.82%) 
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and retained more multi-copy genes (39.60% vs. 33.93%) than the Flye assemblies 

(Supplementary Table 4). Moreover, as with the results of the maize and rice genome 

assemblies, the NextDenovo assemblies contained longer (1.03-1.61-fold larger NGA50) and 

fewer contigs (68.18%-96.97% of LGA50) than the Flye assemblies for all 35 genomes. More 

importantly, the NextDenovo assemblies contained 388 misassemblies on average, ~70% of 

that of the Flye assemblies, whilst the NextDenovo assemblies also had a slightly larger average 

QV than the Flye assemblies (28.17 vs. 28.06).  

 

Segmental duplications (SDs) are complex segments of DNA with near-identical sequences 

that are difficult to assemble by short reads; they nevertheless constitute important sources of 

structural diversity in the human genome and are associated with many human diseases 23, 24. 

The use of long-read genome assembly techniques has facilitated the detection of SDs 24, 25. 

Here, by using the “Brisk Inference of Segmental duplication Evolutionary structure” 

(BISER) 26, we identified an average of 133.6 Mbp of non-redundant SD sequences per 

individual  (Supplementary Table 5), corresponding to ~4.7% of the human genome. Our 

results showed a notable correlation between total SD size and genome size (R2 = 0.9641, p < 

2.2e-16, Supplementary Fig. 2). We further identified African-specific SD hotspots, based on 

the difference of SD frequency between African and non-African assemblies (see Methods 

section). Our results showed that the highly differentiated hotspots were enriched in the 

pericentromeric regions (Fig.3), which concurs with the predicted hotspots of genomic 

instability noted in T2T-CHM13 24.  

 

Long-read assembly holds out the promise for the comprehensive discovery of segmental 

duplications, especially the duplicated genes involved in SDs 24, 25. We reasoned that these 

high-quality assemblies should facilitate the detection of gene duplications (Fig. 3 and 

Supplementary Table 6). In particular, we identified gains of salivary amylase (AMY1) gene 

copies with open reading frames and multiple exons in ten individuals (including 8 Asians 

and 2 Africans). For example, two individuals from Vietnam and Thailand respectively 

acquired 4 and 3 additional AMY1 genes, which may have served to improve their ability to 

digest starchy foods such as rice. Indeed, the acquisition of additional copies of the AMY1 

gene is known to be a characteristic of populations with a high-starch diet 27, especially East 

and South East Asians. Additionally, four clusters of gene families, including preferentially 

expressed antigen of melanoma (PRAME), olfactory receptor (OR), G antigen (GAGE) and 

melanoma-associated antigen (MAGEA), exhibited dense clusters of SDs with paralogous 

genes (Fig. 3). Therefore, long-read sequencing makes it possible to accurately assemble 

those genomic regions that are characterized by highly similar paralogous clusters, including 

those containing expanded tandemly duplicated genes. 

 

 

Discussion 

NextDenovo is not only an accurate error-correction tool, but also an efficient de novo 

assembler, specifically developed for noisy long reads using the CTA strategy. In our evaluation, 

NextDenovo can correct reads at a faster speed and generate more accurate corrected reads than 

Canu and Necat. The corrected reads usually have a similar accuracy to the HiFi reads while 
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maintaining the contiguity of raw reads. For the assembly, NextDenovo is much faster than the 

widely used CTA assembler, Canu. It is at least as fast or even faster than Necat based on 

different input data. For the small and medium sized genomes, it achieved a faster speed than 

Flye, but NextDenovo was usually slower than other ATC-based tools for repeat-rich large 

genomes, because of the additional time-consuming error-correction step. However, on the 

other hand, with the high accuracy imparted by this error-correction step, NextDenovo can 

generate more continuous assemblies containing fewer misassemblies. This is particularly true 

when assembling ONT “ultra-long” reads, since NextDenovo can generate partial or near 

chromosome-level assemblies, and this applies not only to human genome assembly but also to 

the assembly of complex plant genomes. Indeed, NextDenovo has been successfully applied to 

large genome assemblies several times, such as with the ~10.5 Gb Cycas panzhihuaensis 

genome (contigs N50 = 12 Mb) 28, the ~10.76 Gb allohexaploid oat genome (contig N50 = 75.27 

Mb) 29, the ~40 Gb African lungfish genome (contig N50 = 1.60 Mb) 30 and the ~48Gb Antarctic 

krill genome (contig N50 = 178.99kb) 31. Using ONT “ultra-long” reads, NextDenovo can 

generate partial or near chromosome-level assemblies. Thus, for the ~4.59 Gb papaver genome 
32, NextDenovo produced an assembly with a contig N50 of 65.57 Mb, the longest length being 

178.776 Mb using ~19X ONT “ultra-long” reads and ~86X ONT regular reads. In similar vein, 

for the 3.69 Gb watermelon genome 33, NextDenovo produced an assembly in which the 11 

longest contigs representing 11 chromosomes using ~57X ONT “ultra-long” reads. Finally, for 

the ~10.76 Gb allohexaploid oat genome 29, NextDenovo produced an assembly with a contig 

N50 of 75.27 Mb, the longest length being 313.87Mb using ~100X ONT “ultra-long” reads.  

 

Currently, because of sequencing errors, NextDenovo cannot be used for haplotype-resolved de 

novo genome assembly without trio binning, although it can detect the LSRs caused by 

heterozygosity, which is the advantage of assembly with HiFi data. However, ONT is gradually 

updating new base calling models and chemistries that can improve raw data accuracy, which 

should eventually make it possible for NextDenovo to perform haplotype-resolved assembly. 
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Figure legends 

 

 
Fig. 1: NextDenovo pipeline. (A) Overlapping reads. (B) Alignments erroneously caused by repeats 

were filtered out and chimeric reads were split. (C) A confidence score was calculated for a given allele 

at each position with a fixed 3-mer, and the allele with the maximum score was selected as the correct 

base. The colored rectangles represent the different bases. (D) NextDenovo first identities all LSRs at the 

raw reads, extracts each subsequence spanning these LSRs and assigns a kmer score to each subsequence. 

Subsequently, NextDenovo filters out the subsequences with lower scores and produces a pseudo-LSR 

seed using a greedy POA consensus algorithm, all pseudo-LSR seeds from the same seed being linked 

as the reference, and all subsequences being mapped to this reference whilst the KSC algorithm is 

reapplied in order to produce a corrected pseudo seed. Then, the corrected LSRs are inserted into the 

corresponding positions in the raw reads to generate the final corrected reads. (E) NextDenovo calculates 

dovetail alignments by two rounds of overlapping, constructs an assembly graph, removes transitive 

edges, tips, bubbles and edges with low scores, and generates contigs. Finally, NextDenovo maps all 

seeds to contigs and breaks a contig if it possesses low quality regions. 
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Fig. 2: De novo assembly of 35 human genomes. (A) Geographical location of the 35 

individuals sequenced. (B) Comparison of 35 human assemblies between NextDenovo and 

Flye.  

NG50 is the length N such that 50% of the reference genome is covered in contigs with length ≥ N. LG50 

is the number of contigs with length ≥ NG50. NGA50 is NG50 of the aligned blocks that are obtained 

by breaking contigs at misassembly events and removing all unaligned bases. LGA50 is the number of 

aligned blocks with length ≥ NGA50. Misassemblies and QV were evaluated by QUAST, where QV is 

defined as −10 × log10(
# 𝑚𝑖𝑠𝑚𝑎𝑡𝑐ℎ𝑒𝑠 𝑝𝑒𝑟 100 𝑘𝑏𝑝 + # 𝑖𝑛𝑑𝑒𝑙𝑠 𝑝𝑒𝑟 100 𝑘𝑏𝑝

100 𝑘𝑏𝑝
) . Gene completeness and 

“multicopy genes retained” are reported by asmgene, “multicopy genes retained” corresponds to the 

percentage of multicopy genes in the reference genome that remain multicopy genes in the assembly. QV, 

Gene completeness and “multicopy genes retained” were evaluated using the polished assemblies. The 

metrics represented by the red points are larger than the metrics represented by the blue points. 
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Fig. 3: Distribution of duplicate genes and SD hotspots. (A) Gene symbols within duplications 

(gene names are marked by numbers and are shown in the subfigures). (B) Bar-plots of SD hotspots 

in African/non-African genomes. (C) Coverage plot of 35 human genome assemblies. (D) Colored 

map of peri/centromeric satellite DNA (αSat: alpha satellite DNA, βSat: beta satellite DNA, HSat: 

Human satellite DNA. See 34 for more detailed definitions).  

Ideogram plot was built from the T2T-CHM13 (v2) genome. Annotation of peri/centromeric 

and cytoband regions were downloaded from UCSC 

(https://hgdownload.soe.ucsc.edu/gbdb/hs1/). 
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Table 1: Statistics of ONT read error correction 

Source Software 

Corrected 

bases rate 

(%) 

Average 

length 

(bp)  

Max 

length 

(bp) 

Reads 

with 

chimeric 

alignments    

(%) 

Mapped 

with 

99% 

coverage 

(%) 

Mapped with 

97% 

identity 

(%) 

Average 

error 

rate 

(%) 

Wall 

clock 

time 

(hour) 

Simulation 

(chr1, 62X) 

Raw Reads - 22,884  279,538  0.03  73.28  0.00  12.37  - 

NextDenovo 83.47  23,515  188,302  0.03  99.58  99.96  0.20  2.43  

Necat 85.12  23,542  264,959  0.08  98.46  98.83  0.55  2.75  

Canu 81.26  23,369  279,129  0.41  98.03  96.58  2.02  18.08  

CHM13 

(chr1, 72X) 

Raw Reads - 91,209  499,238  17.07  81.19  0.18  8.57  - 

NextDenovo 97.13  90,981  505,469  10.70  89.10  89.31  0.90  1.83  

Necat 98.13  89,170  506,817  11.43  88.30  88.67  0.99  2.98  

Canu 92.59  84,270  502,469  13.44  85.13  80.64  2.21  126.72  

Only the primary alignments defined by minimap2 of each read were used for evaluation. Corrected base 

rate is the ratio of the size of the corrected reads to the size of the raw reads to be corrected. Reads with 

chimeric alignments are defined as reads that have supplementary alignments. Average error rate only 

uses the reads that are mapped with 80% coverage. All the software was tested on the same computer 

with 32 CPUs and 252 GB RAM of memory. 
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Table 2: Statistics of nonhuman assemblies 

Sample Software 
Assembly 

size (Mb) 

NG50 

(Mb)/LG50 

NGA50 

(Mb)/LGA50 

No. of 

misassemblies 
QV 

Gene 

completeness 

(%) 

Wall clock 

time 

(hour) 

A. thaliana 

(452X) 

NextDenovo 128.37  15.18/5 15.18/5 19  33.25  99.20  6.83  

Necat 124.55  15.01/5 14.98/5 44  31.93  99.20  6.82  

Canu 138.29  9.31/5 9.31/6 430  25.09  99.20  312.13  

Flye 121.16  14.63/5 14.63/5 17  35.65  99.20  12.00  

Wtdbg2 157.75  2.68/14 1.87/19 326  19.78  94.80  2.10  

D. 

melanogaster 

(62X) 

NextDenovo 134.34  18.11/4 15.68/4 196  30.99  98.70  1.07  

Necat 144.01  19.55/4 15.90/4 1,200  25.86  98.70  2.45  

Canu 154.94  8.58/6 5.68/7 1,738  23.53  98.80  45.55  

Flye 135.82  18.89/4 17.32/4 335  29.97  98.80  1.58  

Wtdbg2 137.49  6.32/7 5.33/9 919  26.07  97.20  0.57  

O. sativa 

(230X) 

NextDenovo 392.56  30.55/6 18.00/9 81  26.45  98.60  13.05  

Necat 394.40  25.44/7 17.86/9 183  25.83  98.70  10.85  

Canu 395.23  11.57/13 9.41/15 204  24.94  98.70  728.78  

Flye 403.45  11.10/14 7.84/18 115  24.76  98.70  25.02  

Wtdbg2 488.33  0.96/88 0.81/95 553  17.90  94.10  5.85  

Z. mays 

(51X) 

NextDenovo 2,118.82  44.44/17 37.90/21 700  20.74  98.20  75.90  

Necat 2,171.54  22.76/32 17.71/38 3,307  20.41  98.20  87.87  

Canu 2,240.87  0.65/950 0.62/995 6,284  19.14  98.10  1,741.77  

Flye 2,122.73  2.87/222 2.59/242 863  20.63  98.20  - 

Wtdbg2 4,068.86  0.07/11298 0.05/13848 22,258  14.07  97.00  - 

NG50 is the length N that 50% of the reference genome is covered in contigs with length ≥ N. LG50 is 

the number of contigs with length ≥ NG50. NGA50 is NG50 of aligned blocks that are obtained by 

breaking contigs at misassembly events and removing all unaligned bases. LGA50 is the number of 

aligned blocks with length ≥ NGA50. Misassemblies and QV are evaluated by QUAST, where QV is 

defined as −10 × log10(
# 𝑚𝑖𝑠𝑚𝑎𝑡𝑐ℎ𝑒𝑠 𝑝𝑒𝑟 100 𝑘𝑏𝑝 + # 𝑖𝑛𝑑𝑒𝑙𝑠 𝑝𝑒𝑟 100 𝑘𝑏𝑝

100 𝑘𝑏𝑝
) . Gene completeness is 

represented by the complete BUSCO values. QV and gene completeness were evaluated using the 

polished assemblies. The genomes of A. thaliana, D. melanogaster and O. sativa were assembled on the 

same computer with 60 CPUs and 504 GB RAM of memory. The Z. mays genome, assembled by 

NextDenovo, Necat and Canu, was run on a computer cluster with 7 nodes each with 32 CPUs and 256 

GB RAM memory, and assembled by Fly and Wtdbg2 run on a fat computer node. 

 

 

 

 

 

 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 12, 2023. ; https://doi.org/10.1101/2023.03.09.531669doi: bioRxiv preprint 

https://doi.org/10.1101/2023.03.09.531669
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

Online Methods 

Alignment and filtering. NextDenovo extracts the ~45X longest reads as seeds, and performs 

pairwise reads overlapping all input reads and seeds using minimap2 35. For each seed, 

NextDenovo partitions it into windows of 64bp and calculates the overlapping depth in 

windows. A window was defined as a repeat window if it had a depth larger than twice the 

average depth. A window was defined as a chimeric window if it had a depth less than 3. 

NextDenovo filters out an alignment if it is completely within the repeat windows and splits 

this seed if it has chimeric windows. 

 

LSR detection. NextDenovo first uses the kmer score chain (KSC) algorithm to perform the 

initial rough correction. The KSC algorithm is adapted from the Falconsense algorithm; it 

calculates a confidence score using the following formula: 
𝑠𝑐𝑜𝑟𝑒(𝑃, 𝑏) = 𝑚𝑎𝑥{𝑠𝑐𝑜𝑟𝑒(𝑃 − 1, 𝑏) + 𝑐𝑜𝑢𝑛𝑡3−𝑚𝑒𝑟} − 𝐶 

where C represents the valid depth at position P, 𝑏 ∈ {𝐴, 𝑇, 𝐺, 𝐶, −}, and then determines the 

correct path using a traceback procedure which starts at the last position P. Meanwhile, it 

records the low-quality positions where the chosen alleles account for ≤ 50% of the total. For 

each low-quality position, NextDenovo extends it on both sides until there are  16 consecutive 

non-low-quality positions. This extended region is defined as a low score region (LSR) if it 

contains  4 low-quality positions. 

 

LSR correction. For a LSR R from a seed S, all subsequence Bs that span this LSR from the 

overlapping reads of S are collected, and a kmer set (K = 8) at the 40 bp flanking sequences of 

R is produced. Then for each B, the overlapping kmers count between the kmer set from B and 

R is calculated as its matched kmer score. NextDenovo sorts all kmer scores of Bs from large 

to small and removes all Bs with a kmer score  C, where C is smaller than half of its previous 

kmer score. For the KSC algorithm, deletion errors in the reference sequence are more harmful 

than insertion errors because the overlapping reads in the regions with insertion errors are not 

aligned. NextDenovo uses a greedy POA consensus algorithm that adopts a greedy strategy to 

insert bases in the consensus step to generate a pseudo-LSR seed by using the largest six Bs 

ranked by kmer score. All pseudo-LSR seeds from S are linked to a long pseudo seed L, and all 

Bs from S are mapped to L, and the KSC algorithm is applied to produce a corrected pseudo 

seed P. This procedure is called twice in order to improve the accuracy of the LSRs. 

 

Graph construction and cleaning. NextDenovo uses two rounds of pairwise overlapping to 

identify dovetail alignments using a modified Minimap2 between corrected seeds. The first 

round uses a large batch size and a large repetitive minimizer filtering thread to rapidly detect 

candidate dovetail alignments. Then for each candidate dovetail alignment, Minimap2 is used 

again with a smaller repetitive minimizer filtering thread to produce more accurate alignments. 

Next, a directed string graph is constructed and transitive edges are removed. NextDenovo 

calculates the average indegree I and outdegree O of all nodes, and clusters nodes into two 

categories, repeat nodes and non-repeat nodes. The repeat nodes are defined as nodes with 
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indegree  1.5I or outdegree  1.5O, whereas other nodes are defined as non-repeat nodes. For 

the paths comprising only non-repeat nodes, the “best overlap graph” (BOG) algorithm is used 

to remove ambiguous edges. For repeat nodes, NextDenovo first calculates the maximum 

overlapping identity I and maximum overlapping length L and maximum transitive score S (for 

an edge E from a to c, if there is node b, and there is an edge from a to b and an edge from b to 

c, then the count of b is defined as the transitive score of E) of out-edges or in-edges, and then 

removes any edges with overlapping identity <= i ⅹ I and overlapping length l ⅹ L and transitive 

score 0.5 ⅹ S (here i and l are parameters). Subsequently, tips are removed and bubbles are 

resolved. Finally, for the complex subgraphs which usually contain many repeat nodes 

connected by only one in-node and one or more out-nodes, or one or more in-nodes and only 

one out-node, NextDenovo use a series of gradually increasing overlapping identity, 

overlapping length and transitive score thresholds to remove edges while maintaining 

connectivity between in-nodes and out-nodes. 

 

Evaluating error correction. To evaluate the performance of NextDenovo error correction, we 

simulated about 62X ONT data with N50 length of 20.77 kb from chromosome 1 of the 

GRCh38 genome using NanoSim (v2.6.0) 36 and randomly extracted about 72X ONT data with 

N50 length of 56.77 kb from the chromosome 1 of the CHM13 genome (Supplementary 

Table 1). We next ran NextDenovo, Canu and Necat with the same minimum read lengths to 

ensure consistency. Finally, we used minimap2 (-x map-ont) to map the corrected data to the 

reference and assessed their accuracy. 

 

Evaluating assemblies. We used QUAST for assembly evaluation. For the A. thaliana, D. 

melanogaster and Z. mays datasets, we used appropriate NCBI assemblies as the reference 

genome. For the O. sativa dataset, we used the assembly of HiFi data from the same individual 

by hifiasm (v0.16.1) 4 as the reference genome. For the human datasets, we used the T2T 

assembly of CHM13 as the reference genome. The assemblies were further polished with 

NextPolish using short and long reads and these were subsequently used to evaluate QV and 

gene completeness. Gene completeness was evaluated with BUSCO for the A. thaliana, D. 

melanogaster, O.sativa and Z. mays assemblies and paftools (v2.24) asmgene function 4 for the 

human assemblies. The commands and parameters used in this study are provided in the 

Supplementary Information file. 

 

Human samples for genome sequencing 

Sample collection, data release, and paper submission strictly followed all laws of the 

Ministry of Science and Technology of China (ID: 2021BAT3787). The samples and genome 

sequence data were not transferred or released outside of China. This study was approved by 

the Kunming Institute of Zoology Animal Care and Ethics Committee (SMKX-20180715-

154) in August 2018. Peripheral blood samples (~5 mL) were collected from people living in 

China after they provided signed informed consent. Samples were collected from August to 

October 2018 and were only used in this study.  

 

DNA extraction, library preparation and sequencing by Nanopore 

High-quality genomic DNA was extracted using the SDS (sodium dodecylbenzene sulfonate) 
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method followed by purification with a QIAGEN® Genomic kit (Cat#13343, QIAGEN) 

according to the standard procedures provided by the manufacturer. DNA degradation and 

contamination of the extracted DNA were monitored on 1% agarose gels. DNA purity was 

then detected using a NanoDrop™ One UV-Vis Spectrophotometer (Thermo Fisher Scientific, 

USA), with OD260/280 ranging from 1.8 to 2.0 and OD260/230 ranging from 2.0 to 2.2. 

Lastly, DNA concentration was measured using a Qubit® 3.0 Fluorometer (Invitrogen, USA). 

 

In total, 2 µg DNA per sample was used as input material for the ONT (Oxford Nanopore 

Technologies) library preparations. After the DNA quality was controlled, size-selection of 

long DNA fragments was performed using the BluePippin system (Sage Science, USA). The 

DNA fragments were then end repaired, and an A-ligation reaction was conducted using a 

NEBNext Ultra II End Repair/dA-tailing Kit (Cat# E7546). The adapter in a LSK109 kit was 

used for further ligation and the Qubit® 3.0 Fluorometer (Invitrogen, USA) was used to 

quantify the size of the library fragments. Sequencing was then performed on a Nanopore 

PromethION sequencer (Oxford Nanopore Technologies, UK) at Grandomics Biosciences Co. 

(Wuhan, China). The Nanopore sequencer output FAST5 files containing signal data and base 

calling were converted to FAST5 files in FASTQ format with Guppy. The raw reads in fastq 

format with mean_qscore_template < 7 were then filtered, resulting in pass reads. 

 

Library preparation and sequencing by MGISEQ2000  

Genomic DNA (1 μg) was randomly fragmented by Covaris. The fragmented DNA was 

selected by an Agencourt AMPure XP-Medium Kit to an average size of 200–400 bp. The 

selected fragments were subjected to end repair, 3’ adenylation, adaptor ligation, and 

polymerase chain reaction (PCR) amplification, with the products then being recovered using 

an AxyPrep Mag PCR Clean-up Kit. The double-stranded PCR products were heat denatured 

and circularized by the splint oligo sequence. Single-stranded circular DNA (ssCir DNA) was 

formatted as the final library, and quality controlled. The quality controlled libraries were 

sequenced on the MGISEQ2000 platform. 

 

Diversity of 35 human genomes. To determine the diversity of 35 human genomes, we mapped 

the short reads to the GRCh38 reference assembly using the BWA-MEM (v0.7.15) algorithm 
37. After sorting the reads by coordinates, and removing duplicate reads using SAMtools (v1.8) 
38, HaplotypeCaller and CombineGVCFs in the Genome Analysis Toolkit (GATK, v4.0.4.0) 39 

were used for calling and combining the GVCF files. We then applied the GenotypeGVCFs 

method in GATK to genotype SNPs based on genome positions from the 1 000 Genomes 

Project dataset 

(ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/data_collections/1000_genomes_project/release/201

90312_biallelic_SNV_and_INDEL/) 40. After SNP filtering with “QUAL < 50”, we merged 

SNPs with the 1000 Genomes Project dataset for principal component analysis.  

 

Gene, gene duplications and repeat annotations. Gene annotations of the 35 human genomes 

were performed by mapping GENCODE (v35) annotations 41 from GRCh38 using Liftoff 

(v1.6.3) 42 with the following settings: liftoff -flank 0.1 -sc 0.85 -copies. Duplicate genes were 

identified based on the following criteria: (1) extra copy number > 1, (2) number of exons > 1, 
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(3) CDS length > 200bp, and (4) containing complete open reading frames (ORF). Repeat 

annotations were conducted with RepeatMasker (v4.1.3) 43 and Tandem Repeats Finder (TRF) 
44. RepeatMasker was run with default settings and TRF was run with “trf 2 7 7 80 10 50 15 -l 

25 -h -ngs” parameters. 

 

Segmental duplication (SD) analysis. SDs were identified using BISER (v1.2.3) 26 based on 

the soft-masked human genomes. Low-quality SDs were filtered out using the following 

criteria: (1) <1 kbp in length; (2) >70% overlapping with satellite sequence or > 10% 

overlapping with simple repeats annotated with RepeatMasker; (3) <90% identical by gap-

compressed identity or <50% identical including indels. The pipeline was conducted using a 

R script (open access on https://github.com/shengwang/35HumanGenome-SDs) and a 

modified snakemake file download from 

https://github.com/mrvollger/assembly_workflows/workflows/sedef.smk. Next, we annotated 

35 human genomes with unique ancestral units (duplicons) identified by DupMasker 45. 

Regions that do not overlap with the duplicons were annotated as new SDs. Finally, we 

defined the African-specific SD hotspots based on the frequency difference of SDs between 

African and non-African assemblies. The specific calculation steps were as follows: (1) 

obtained the non-redundant SD regions for each human assembly, (2) calculated the 

frequency of SD coverage within African and non-African groups, (3) computed the 

difference between the frequency of African and non-African of SDs. Regions with a 

difference much greater than zero were defined as African-specific SD hotspots. We mapped 

the positional information of SDs from 35 human genome assemblies to the T2T-CHM13 

(v2.0, downloaded from 

https://ftp.ncbi.nlm.nih.gov/genomes/all/GCF/009/914/755/GCF_009914755.1_T2T-

CHM13v2.0/GCF_009914755.1_T2T-CHM13v2.0_genomic.fna.gz) genome using the 

“paftools liftover” tool for visualization. SDs hotspots calculation and visualization were 

carried out with R packages: tidyverse 46, rtracklayer 47, plyranges 48 and karyoploteR 49.  

 

Data availability 

The ONT dataset and reference genome for CHM13 were obtained from 

https://github.com/marbl/CHM13. The ONT, short reads dataset and reference genome for A. 

thaliana were downloaded from BIG Data Center (https://bigd.big.ac.cn/gsa), Beijing Institute 

of Genomics (BIG), Chinese Academy of Sciences, under accession no. PRJCA005809 

(Bioproject), CRR302667 (ONT), CRR302670 (short reads) and GWHBDNP00000001.1 

(reference genome). The datasets were obtained from the NCBI Sequence Read Archive: 

SRR6702603 and SRR6821890 as ONT dataset, SRR6702604 as short reads dataset for D. 

melanogaster, SRR10948639-SRR10948642 as ONT dataset, SRR10948643 as HiFi dataset, 

SRR10948638 as short reads dataset for O. sativa, SRR12482959-SRR12482969 as ONT 

dataset, SRR11870962 as short reads dataset for Z. mays. The reference genomes of D. 

melanogaster and Z. mays were downloaded from the NCBI GenBank under accession no. 

GCA_000001215.4 and GCA_014529475.1, respectively.   
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All Human data, including raw data and de novo assemblies, were deposited at the Genome 

Sequence Archive (https://ngdc.cncb.ac.cn/gsa-human/) at the National Genomics Data 

Center, China National Center (NGDC) for Bioinformation/Beijing Institute of Genomics, 

Chinese Academy of Sciences, under accession number PRJCA006287. Sample collection 

and data release are permitted by The Ministry of Science and Technology of the People’s 

Republic of China (permission no. 2021BAT3787). The raw sequencing data of Chinese 

individuals are available but with restricted access. For more detailed guidance on accessing 

the data, please refer to the GSA-Human Request Guide for Users 

(https://ngdc.cncb.ac.cn/gsa-human/document/GSA-

Human_Request_Guide_for_Users_us.pdf).  

 

Code availability 

NextDenovo code and benchmarking data are available on 

https://github.com/Nextomics/NextDenovo and 

https://nextdenovo.readthedocs.io/en/latest/TEST5.html. The codes and intermediate data of 

SD analysis are publicly available at https://github.com/shengwang/35HumanGenome-SDs. 
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