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Abstract. Neural activity tends to reside on manifolds whose dimension is much lower than

the dimension of the whole neural state space. Experiments using brain-computer interfaces

with microelectrode arrays implanted in the motor cortex of nonhuman primates tested the

hypothesis that external perturbations should produce different adaptation strategies depend-

ing on how “aligned” the perturbation is with respect to a pre-existing intrinsic manifold. On

the one hand, perturbations within the manifold (WM) evoked fast reassociations of existing

patterns for rapid adaptation. On the other hand, perturbations outside the manifold (OM)

triggered the slow emergence of new neural patterns underlying a much slower—and, without

adequate training protocols, inconsistent or virtually impossible—adaptation. This suggests

that the time scale and the overall difficulty of the brain to adapt depend fundamentally on

the structure of neural activity. Here, we used a simplified static Gaussian model to show that

gradient-descent learning could explain the differences between adaptation to WM and OM

perturbations. For small learning rates, we found that the adaptation speeds were different

but the model eventually adapted to both perturbations. Moreover, sufficiently large learning

rates could entirely prohibit adaptation to OM perturbations while preserving adaptation to

WM perturbations, in agreement with experiments. Adopting an incremental training proto-

col, as has been done in experiments, permitted a swift recovery of a full adaptation in the

cases where OM perturbations were previously impossible to relearn. Finally, we also found

that gradient descent was compatible with the reassociation mechanism on short adaptation

time scales. Since gradient descent has many biologically plausible variants, our findings thus

establish gradient-based learning as a plausible mechanism for adaptation under network-level

constraints, with a central role for the learning rate.

1. Introduction

The firing rates of an ensemble of N neurons naturally live in a N -dimensional neural space, with

one dimension per neuron. The set of neural responses produced during the execution of a well-

defined task define an intrinsic manifold embedded in this neural space [1, 2]. The manifold’s

dimensionality depends on task complexity, with simpler tasks leading to lower-dimensional

manifolds [3, 4]. A low-dimensional manifold signifies the existence of a comparatively small
1
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set of dominant patterns of co-variability among neurons. In general, one could argue that

structured neural activity is a reflexion of the structure in the World [5]. This idea manifests

itself in the existence of a continuous attractor encoding eye position [6], of object manifolds

in deep convolutional networks modeling object recognition [7], of low-dimensional cognitive

maps in hippocampal networks [8] and of manifolds for the control of movements [1]. In turn,

structured activity is thought to bear on the efficient encoding of sensory information [9], the

few-shot learning of concepts [10] and generalization in timing tasks [11]. However, probing the

multifaceted implications of neural manifolds can be difficult without proper control over the

behavioral degrees of freedom. Brain-computer interfaces (BCIs) provide such control by having

a direct, causal link between network activity and the behavioral output [12, 13]. Perturbing this

link forces the brain to correct “misalignments” between neural representations and behaviors,

providing information about the relationship between manifold structure and adaptation.

In a seminal work, Sadtler and co-workers [14] reasoned that the difficulty with which new be-

haviors can be learned might depend on the underlying co-variability structure of neural activity.

Learning new behaviors that require activity patterns outside the pre-existing intrinsic manifold

would be more difficult than learning behaviors that can repurpose the existing co-variability

structure. They tested this hypothesis with a BCI that decoded neural activity from this intrin-

sic manifold to control a computer cursor and solve a center-out reaching task. It was possible

to perturb the mapping and force the control space to lie either within the manifold (within-

manifold perturbation [WMP]) or outside the manifold (outside-manifold perturbation [OMP]).

They found that the subject could adapt rapidly, within a day, to WMPs but that adaptation to

OMPs was not possible during the same time frame. Subsequent work [15] has shown that OMPs

need days of training using an incremental protocol (wherein the “size” of the perturbation is

slowly increased with time) to adapt. Without the incremental protocol, adaptation to OMPs

is inconsistent or virtually impossible, where virtually impossible means almost no improvement

on the time scale of a multi-day experiment. It has been argued that adaptation to WMPs relies

on a fast reassociation of patterns from the intrinsic manifold [16] whereas incremental adap-

tation to OMPs slowly generates new neural patterns [15], hence the difference of time scales

between the two types of perturbation. Therefore, the mechanisms responsible for adaptation to

WMPs would not change the co-variability structure significantly, as opposed to the mechanisms

responsible for adaptation to OMPs.

A few recent theoretical works have attempted to uncover the specific network adaptation mech-

anisms underlying the within/outside manifold adaptation dichotomy [17, 18, 19]. Wärnberg

and Kumar [17] described how the intrinsic manifold can be implemented in functional spiking

neural networks and suggested that adaptation to OMPs require larger synaptic changes than

adaptation to WMPs, and thus more learning, a claim that was challenged by Ref. [18]. Feul-

ner and Clopath [18] suggested that the disparity between the adaptation to WMPs and OMPs
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can be explained by a corruption of the feedback error signal driving the learning process un-

derlying adaptation. Although that work reproduced several aspects of the neural constraints

on learning in BCI experiments, the learning rule used in their main text is not biologically

plausible, adaptation to OMPs remain impossible even when using incremental mappings and

reassociation is not truly a feature of their model. Finally, a recent preprint by Humphreys and

co-workers [19], whose thesis is closest to ours, suggested that gradient-descent-based learning—

which possesses biologically-plausible counterparts [20, 21, 22, 23] and relies on uncorrupted

feedback error—could explain both the slower relearning following OMPs and the reassociation

mechanism underlying adaptation to WMPs. However, they ignored the inconsistent and often

impossible adaptation to OMPs without incremental training, even over long learning time scales,

and used a non-recurrent neural networks for their model which is at odds with motocortical

circuit features.

In our case, we used a simplified noisy recurrent network model with gradient-descent learning to

study the adaptation to WMPs and OMPs. As in other studies, we observed different adaptation

time scales for the two types of perturbation, by comparing the loss curves as a function of the

weight updates post-perturbation. Using our simple model, we found that the loss gradient differs

significantly in magnitude and dynamics when comparing the two types of adaptation. Other

signatures of differential adaptation related to alignments in the neural space (among neural and

BCI-decoder-related variables) were also obtained. As in [19], with sufficient training and an

adequate value for the learning rate hyperparameter, ultimately the network was able to adapt

fully to both perturbations. However, we found that increasing the learning rate could either

completely prevent adaptation to OMPs or make the adaptation process noisy and unstable,

while adaptation to WMPs was unaffected for the most part and simply rescaled over training

duration. This is consistent with the difficulty to adapt to OMPs in experiments not using

incremental training [15]. For the random seeds showing near-impossible relearning following

an OMP, incremental training facilitated adaptation quite significantly. For WMPs, we further

found that gradient-descent learning can underlie the reassociation mechanism when the input is

high-dimensional and when input plasticity dominates adaptation. Overall, our results suggest

that gradient-based learning can explain adaptation under network-level constraints, with the

learning rate directly affecting the propensity to adapt to perturbations away from the intrinsic

manifold.

2. Results

We designed our model (Fig. 1A, top) to capture salient aspects of typical center-out reaching

tasks with BCIs. In these, neural activity is recorded and fed to a decoder in order to drive a

cursor on a 2D screen, from a center point to K equidistant targets on a circle. The experimental

subject must learn to produce the correct dynamics given the decoder to accomplish the task and

receive rewards. Here, we simply trained our network to produce K uniformly distributed unit

vectors representing the targets and denoted dk, with k = 0, . . . ,K − 1. To show the adaptation
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Figure 1. Impact of the perturbations on the model’s output before adaptation.
A Schematic of the model (top) and the output matrices at different stages of an
experiment (bottom). See text for details. B Samples drawn from the model’s
output, u = (ux, uy), after fitting the decoder. Large circles with black edges
represent the targets. C Distribution of candidate perturbations’ losses. Vertical
grey line indicates the median of the combined distributions. D Sampled outputs
of the model before adaptation to the selected outside-manifold perturbation.
E Same as C for the selected within-manifold perturbation.

phenomena in the most straightforward way, we studied a simple class of network models, which

can be construed as the limit of a noisy recurrent neural network close to its fixed point (see

Methods) [24]. The recurrent activity v, a vector of size N , was given by

v = (I −W )−1(Ux+ ξ), (1)

where U andW are the input and recurrent weight matrices, I is the identity matrix, ξ is a private

Gaussian noise applied to all recurrent units and x is an input vector encoding information about

the targets, to be described below. As in Ref. [18], the output of the network was determined by

a linear readout of the network activity, i.e. u = V v; we might refer to u = (ux, uy) as a reach

or cursor “trajectory” in the Cartesian plane. The only learnable network parameters, U and

W , were learned via gradient descent on the loss function

L ∝
K−1∑
k=0

E
[
∥u− dk∥2|k

]
(2)

which is the sum of the expected mean squared errors between the network’s output and each

target dk. The output matrix V adopted one of four possible matrix values (Fig. 1A, bottom).

The initial matrix V = V0 was a random Gaussian matrix meant to represent the readout during

the experimental calibration blocks [14], prior to determining the intuitive mapping. The intuitive
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mapping, denoted VBCI, was designed by projecting the network activity with V = V0 onto its

first M (typically 6–10) principal eigenvectors and then by fitting a linear readout connecting

these projections to the output. Finally, the WMP and OMP were applied to VBCI, as described

in more detail in the Methods, and gradient descent again adapted the learnable parameters.

We stress that V was never learned through gradient descent but rather changed externally. In

the following sections, V shall refer to the output matrix for either type of perturbations (Eqs.

20-21).

2.1. Impact of the perturbations on reach trajectories and losses. To facilitate compar-

ison with Ref. [18], we first studied the behavior of our model in a simple setting. The input

x was a noiseless 1–of–K encoding—all elements were 0, except for a unique 1 at position k,

also called a one-hot encoding—with K = 6 targets, the private noise applied to each recurrent

unit was low and only the recurrent weight matrix was plastic (see Methods). Figure 1B shows

the training outcome with the intuitive mapping VBCI. The resulting outputs u were sampled

from two-dimensional Gaussians mostly centered on the targets with low variance. Of course,

higher private noise generates Gaussians with larger spatial variances (not shown). Candidate

WMPs and OMPs were then tested by evaluating their effect on the immediate loss (Fig. 1C).

As exemplified by the selected OMP (Fig. 1D), the OMPs produced outputs close to the cen-

ter, resulting in a loss distribution with a small mean and a small variance. WM losses were

much more spread out, indicating that this type of perturbation rearranged the outputs more

significantly, as shown for the selected WMP in Fig. 1E. Among all the candidate perturbations,

the selected WMP and OMP were those whose effect on the immediate loss was closest to the

median of the combined empirical distributions (Fig. 1C, grey line). This was done to make sure

that adaptation to the WMP and OMP started from a similar loss. Also, given that the median

lies among the easiest WMPs, we actually picked a WMP for which the perturbed outputs were

not too far from the targets, as in the experiments [16].

2.2. Adaptation rate and components of the objective function. Adaptation to both

perturbations resulted in end-of-training performances comparable to that obtained with the

initial decoder (Fig. 2A). Importantly, this happened at different rates for the WMPs and OMPs,

similarly to Ref. [19] which used gradient-descent algorithms. By contrast, in Ref. [18]—which

used a modified recursive least-squares algorithm inspired by FORCE learning [25] and innate

learning [26]—there were no difference between the two types of perturbations without corruption

of the feedback error signals, either at the end of retraining or during retraining (see Supp. Fig. 1

and Appendix A).

To gain further insight into the different adaptation rates for WM and OM adaptations, we

resolved the total loss into components with clear meanings. We focused on the following de-

composition of the loss (see Methods, Eq. 15)

L =
1

2
+

1

2
tr
{
V (V[v] + v̄v̄T)V T

}
− 1

K

K−1∑
k=0

dT
kV E[v|k], (3)
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Figure 2. Adaptation to within- and outside-manifold perturbations. A Total
loss during adaptation. B Correlation (top) and projection (bottom) compo-
nents of the loss. Note that 1/2 should be added to these components to yield
the total loss (Eq. 15). In all panels, we displayed mean ± 2× SEM, for n = 20
random seeds.

which resolves the total loss into a contribution due to the total output correlation, denoted Lcorr

(second term), and a negative contribution penalizing any misalignment of the mean output with

the target (third term). Right after the perturbation these two components roughly compensated

each other for the WMP (Fig. 2B); the only loss remaining comes from the constant first term in

Eq. 3. For the OMP, both components started near zero (Fig. 2B), which is expected given the

initial effect of the perturbation on the reaches (Fig. 1D). Past the first few hundred updates the

correlation component (Fig. 2B, top) increased to reach 1/2 when completely adapted for both

types of perturbation, which can be shown to correspond to half the average squared norm of the

learned trajectories (see derivation in Appendix C.1). The projection component converged to

-1, the size of (minus) the average projection of the trajectories on the targets (Fig. 2B, bottom).

The correlation component of the loss can be written as Lcorr ≈ LV[v] = 1
2

∑N
n=1 λn∥V en∥2,

where λn and en are the eigenvalues and eigenvectors of the covariance matrix V[v] and we

neglected the contribution from the global mean activity v̄ (see Appendix C.1 and Supp. Fig. 2).

This representation suggests that, to increase the correlation loss, the total covariance can align

its eigenvectors to the row space of V and/or adjust its eigenvalues. We thus expect that further

insight into the difference in adaptation under WMPs and OMPs would come from analyzing

the alignment between V[v] and V , which has the advantage of not referring to the targets. This

and other signatures of adaptation will be discussed in the next section.

2.3. Signatures of adaptation to within- and outside-manifold perturbations. Be-

fore adaptation, neural activity mostly resided in the intuitive manifold defined by the leading

eigenvectors—put into the rows of a matrix C—of the total covariance matrix. The BCI map-

ping based on the intrinsic manifold—the intuitive mapping—relies on this matrix C and a linear
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Figure 3. Signatures of adaptation to within- and outside-manifold perturba-
tions. A Manifold overlap. B Ratio of projected variance for OM perturbations.
C Smallest principal angle between the subspaces spanned by dV[v] and V T.
D Frobenius norm of the gradient of the total loss. In all panels, shaded areas
represent ±2× SEM, for n = 20 random seeds.

decoder D that transforms the projected activity, Cv, into cursor trajectories u = DCv (see

Methods). While relearning the center-out task following the perturbation, the fraction of the

total variance within the intuitive manifold (Eq. 26) might change relative to what it was before

the perturbation, denoting a learning-induced rearrangement of activity in neural space. The

ratio of the fraction of variance explained by the intuitive manifold before and after learning

has been called the normalized variance explained [16] or the manifold overlap [18] (Eq. 27).

We found that the manifold overlap decreases from its starting value of 1 during adaptation

for both types of perturbation, reaching significantly lower values for OMPs compare to WMPs

(Fig. 3A). Feulner & Clopath obtained manifold overlaps in the range ∼ 5 − 20% for OMPs

and ∼ 40 − 75% for WMPs [18]. In experiments, the WM manifold overlap was found to be at

least 90% in 33/48 of experiments (see supplementary figure 3 in Ref. [16]). To our knowledge,

manifold overlaps have not been computed for OMPs in experiments yet. But we do know from

Ref. [15], which focused on OMPs, that adaptation to OMPs combines WM strategies and OM

strategies, the first of which preserving the covariance structure and the second modifying it.

In accordance with this view, our results suggest that, under gradient-based learning, a good

portion of the adaptation strategy to OMPs relies on the pre-existing activity structure, but less

so than WMPs.

We further characterized adaptation to OMPs by computing the ratio of variance projected onto

the perturbed manifold CPOM relative to C (Eq. 28). While this ratio did increase during early
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adaptation, its value stayed small throughout adaptation (Fig. 3B). Again, this suggests that

adaptation to the OMP is not mediated by a strong realignment of the variance along the subspace

spanned by CPOM. This was further confirmed by calculating the smallest principal angle [27]

between the subspace spanned by the columns of V T
OM and the column space of the change

in covariance throughout adaptation. During adaptation to OMPs, the differential covariance

subspace was ∼ 70◦ − 80◦ from the V T
OM subspace (Fig. 3C). For the WMP, these covariance

updates were much more aligned with V T
WM, with angles ∼ 20◦ − 30◦.

We have shown that the network model adapts more rapidly on average to WMPs compared to

OMPs. Since changes to the loss depend on the gradient, we expect the latter to be smaller for

OM adaptation. Figure 3D shows that the Frobenius norm of the gradient of the total loss with

respect to W , ∥∇WL∥F ≜
√
tr {∇WL∇WLT}, is smaller during adaptation to the OMP in the

first few hundred weight updates. These smaller gradients are conducive to a slower decrease of

the loss. The norm of the gradient is also a lot noisier for OM adaptation, an observation that

will be addressed in more detail in the next section.

2.4. Sensitivity to the learning rate. Given sufficient training time the network did adapt to

both types of perturbation (Fig 2A). In experiments, adaptation to OMPs is actually inconsistent

and oftentimes virtually impossible without a progressive, incremental training regimen [15].

While investigating the effect of the learning rate hyperparameter ηW on adaptation, we found

that relearning following an OMP seemed to be more sensitive to an increase of the learning

rate compared to relearning following a WMP (Fig. 4). This sensitivity manifested itself in two

different ways: in some cases (8/20 seeds), learning seemed impossible (or at least improbable)

on the training interval we used (Fig. 4A). In other cases (10/20 seeds), the loss curve became

noisy or oscillatory during learning (Fig. 4B). Two seeds showed little effect (Fig. 4C). While not

uncommon in general during gradient-based learning [28], we noted that these instabilities and

impossibilities appeared preferentially during adaptation to OMPs. Conversely, WM adaptation

was mostly unaffected (13/20 seeds) by the learning rate increase in the tested range, with the loss

curves being merely rescaled along the x-axis (Fig. 4A-C). In other cases (7/20), small oscillations

appeared during learning. The learning rate had no effect on the distribution of weight changes

across the WM adaptation period, but it had a large impact on the weight changes due to the

OM adaptation when learning was impossible (Fig. 4D and Supp. Fig. 4). The loss landscape for

OM adaptation might be more irregular compared to WM’s in general, and large learning rates

might produce transient increases of the loss (as in Fig. 4A, right) yielding large weight changes.

These results suggest that improper tuning of the learning rate could explain the difficulty to

adapt to challenging perturbations.

2.5. Incremental training. To mitigate the negative effect of high learning rates on adap-

tation to OMPs, specifically in the cases where adaptation becomes impossible (Fig. 5A), we

implemented an incremental training protocol similar to that in Ref. [15]. During relearning,

the perturbed readout mapping was “rotated” with respect to the intuitive mapping in steps,

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 12, 2023. ; https://doi.org/10.1101/2023.03.11.532146doi: bioRxiv preprint 

https://doi.org/10.1101/2023.03.11.532146
http://creativecommons.org/licenses/by-nc-nd/4.0/


NEURAL MANIFOLDS AND ADAPTATION 9

Figure 4. Sensitivity to the learning rate. A Loss during adaptation for two
learning rates for an example seed showing impossible OM adaptation (right).
Note the different scales for the x-axis for the two panels. B Same as A, but
for a seed exemplifying noisy/oscillatory learning at high learning rate. C Same
as A and B, but showing all 20 seeds. D Distribution of weight changes across
adaptation for the seed of panel A. init → WM signifies the change between W
before the perturbation and W after adaptation to the WMP, and similarly for
init → OM. The data used for plotting these histograms where the 1002 weight
changes for each condition.

making the perturbed mapping progressively farther from the intuitive mapping and closer to the

selected OMP. Although incremental training could produce noisy learning curves (Fig. 5B), its

usage systematically helped adaptation significantly (Fig. 5C). In experiments, the incremental
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Figure 5. Incremental training. A Loss for a single seed with impossible OM
adaptation (same as in Fig. 4A, right). Inset shows network outputs at the end
of relearning. B Same as A, but with incremental training. C Final loss for
all seeds, with and without incremental training. Grey line corresponds to the
example in A and B.

training protocol did not always lead to successful adaptation [15], but that could be due to the

specific selection of the OMP, to varying engagement from the animal and other factors that

might affect the learning rate.

2.6. High-dimensional input encoding and adaptation strategies to within-manifold

perturbations. Thus far, the input has been a static 1–of–6 encoding and plasticity was re-

stricted to the recurrent weights. To understand the impact of the plasticity of the input matrix

U on adaptation, we next used a higher-dimensional input and made U learnable. Plasticity of

the afferent pathway(s) to the recurrent network has been hypothesized to underlie the reassoci-

ation mechanism evoked by WMPs [16] and rapid learning under motor perturbations [29]. The

input size was larger than the network size and its dimension (assessed using the participation

ratio) was ∼ 3 times the dimension of the recurrent activity to mimic the dorsal premotor cortex

and other afferent regions being of larger dimension than the primary motor cortex [29]. This

was achieved by using a low-rank decomposition of the input covariances Σ
(k)
x ; the rank was

set to I/10 (with I = 200 the input size) to embody the observation that sensory encoding has

lower dimensionality than the full neural space [9]. The target-conditioned mean inputs µk were

random unit vectors (see Methods).

We compared the WM adaptation strategies of this high-dimensional-input network with those

used by the network of the preceding sections (Fig. 6). To do so, we followed Ref. [16] and

computed the amount of variability projected onto the row space of the decoder D, before

and after the WMP. The WMP amounts to permuting the columns of D (see Methods) and we

reiterate that the decoder remained fixed once the perturbation had been applied. We considered

two cases for the high-dimensional input: one with plasticity only in the input weights U and

another with plasticity in both the recurrent and input weights. In both high-dimensional-

input cases, the model displayed differences in adaptation to WMPs and OMPs, similar to

the previous low-dimensional-input network setup (cf. Supp. Fig. 3). However, the effect was

most pronounced and easier to achieve when only U was plastic. This observation supports
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Figure 6. Adaptation strategies to within-manifold perturbations. The change
in decoder-projected co-variability is plotted for the low-dimensional input (A)
and high-dimensional inputs with plasticity in the input matrix only (B) or in
both the input and recurrent weight matrices (C). The top panels represent
the projection of the principal covariance onto the row space of the original
(pre-perturbation) decoder, whereas the bottom panels represent the projection
onto the perturbed mapping. To allow comparison across setups, the x-axis
represents the percentage decrease with respect to the loss right after the WM
perturbation, corresponding to different stages of adaptation. Bars in the violin
plots are medians over 20 seeds.

the thesis that fast adaptation to WMPs depends on the plasticity of the afferent pathways to

primary motor cortex, with gradient-following plasticity playing the lead role here as well. The

adaptation strategies soon after the perturbation were different between the low-dimensional- and

high-dimensional-input setups, especially concerning the projections onto the original decoder

(Fig. 6, top). For the high-dimensional input, the change in projected co-variability onto the

original decoder stayed close to zero both with and without a plastic W , whereas there was an

increase in both the median and the spread of this projection for the low-dimensional input. For

the perturbed mapping, only the variance of the projections were obviously different between

the setups (Fig. 6A-C, bottom). According to figure 5c in Ref. [16], adaptation via reassociation

stipulates that the changes in decoder-projected co-variability would be close to zero for both

the original and the perturbed mappings, consistent with a repurposing of the preexisting neural

repertoire. In our case, this was mostly observed early after the perturbation, more convincingly

so for the high-dimensional input (for example, in Fig. 6B, the median for 75% decrease of the

loss was 24.5%). As adaptation progresses, the high-dimensional setup follows an adaptation
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NEURAL MANIFOLDS AND ADAPTATION 12

strategy that becomes more compatible with realignment. For the low-dimensional setup, the

adaptation strategy becomes a combination of realignment and rescaling, albeit noisily.

3. Discussion

In this paper, we explored theoretically the hypothesis that a learning algorithm based on gradient

descent could explain the experimentally observed relative difficulty to adapt to perturbations

which force a control space outside the intrinsic neural manifold. We have shown that gradient

descent produces learning curves with different rates of decrease for within- and outside-manifold

perturbations (Fig. 2) and studied signatures of this difference, with a focus on the structure of the

covariance and its relationship with the control mapping (Fig. 3). We found that increasing the

learning rate parameter had a detrimental effect specifically on adaptation to outside-manifold

perturbations, rendering the learning process noisy or even impossible (Fig. 4). Incremental

training could help alleviate this effect (Fig. 5). Finally, we also studied the role played by the

plasticity and dimensionality of the input on the adaptation to within-manifold perturbations,

finding support for a gradient-based reassociation mechanism early in training (Fig. 6).

Gradient-based learning offers a parsimonious explanation of in- and out-manifold relearning.

It means that the pre-existing neural covariance structure opposes a certain rigidity to new

behavioral requirements, even with exact information about the outcome of the task and its

associated error. In contrast, in other works not relying on gradient descent, the slower [17]

or impossible [18] adaptation to OMPs is due to larger weight changes [17] or to corrupted

error information [18]. With gradient descent, weight changes were small for WM adaptation

irrespective of the learning rate (Fig. 4D); for OM adaptation, weight changes get significantly

larger (i.e. distributionally more spread out) when adaptation is impossible at a high learning

rate. We have to differentiate these large weight changes from those in the work of Wärnberg and

Kumar [17]. In the latter, the authors quantified the required cumulative changes to undo the

perturbation, but afterwards learning can proceed in a stable fashion. In our case, large weight

changes were directly caused by the difficulty of relearning the task following an OMP.

In the literature, the real benefits of incremental training for OM adaptation are not completely

clear. In Ref. [15], it is stated that “Multiday exposure to an OMP with no incremental training

led to inconsistent learning.” In that paper, the amount of learning was quantified as the reward

rate (the number of successful trials per unit time) during adaptation relative to the reward rate

with the intuitive mapping. The amount of learning across days with incremental training was

larger than without incremental training, with p = 0.052 (close to the typical significance level),

but the number of adaptation days without incremental training was smaller than the number

of adaptation days with incremental training (cf. their supplementary figure S1G). Would the

amount of learning still be marginally larger for adaptation under an incremental training pro-

tocol when the number of adaptation days are identical (or not too different)? Also, incremental

training was not systematically beneficial, sometimes leading to a decrease in performance or

to very small improvements. This could be due to multiple factors not directly connected to
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this protocol, like the inherent difficulty of the chosen OMP. In our case, incremental training

was helpful for all seeds (Fig. 5), irrespective of whether adaptation was possible without it.

But this was true only when the last increment was broken down into two smaller increments

(see Methods, Ref. [15] and Supp. Fig. 5). Our model suggests that increasing the number of

increments could help with learning difficult BCI mappings.

Learning by reassociation in the context of in-manifold perturbations [16] is probably related to

learning by reaiming in the context of visuomotor rotations [30]. Visuomotor rotations (VRs), as

external perturbations probing motor learning mechanisms, are used both in BCI experiments

and in experiments involving the native arm [29]. In the latter case, rapid learning of VRs

involved afferent pathways connected to the premotor and primary motor networks [29]. Func-

tional changes to these pathways are unlikely to affect the covariance structure of motor networks,

which is reminiscent of the reassociation mechanism. However, small correlated weight changes

in local motor circuits have also been implicated in the fast relearning of VRs in theoretical

models, since these small correlated changes also have little effect on motocortical co-variability

[31]. Our simplified model supports the view that upstream plasticity mediated by gradient-

based learning underlies a reassociation mechanism. It also corroborates the observation [31]

that local plasticity—in W—tends to affect covariance more significantly when task difficulty

increases (assuming that WMPs, by scrambling the targets, are more difficulty to relearn than

uniform rotations, as in VRs) and when learning is allowed to occur on longer time periods [16].

Although high-dimensional inputs seemed necessary for reassociation (Fig. 6), we did not explore

the necessity of output-null dimensions [32]; we shall leave such study for future work.

We used a simple model to show the adaptation phenomena in the most straightforward way,

but using such a simplistic model comes with a number of limitations. Trivial ones are the

absence of dynamics, linearity and the Gaussian noise. More important is the fact that our

learning rule uses weight transport, which is not biologically plausible [33] (although algorithms

exist to circumvent this problem [34, 35, 36]), and includes nonlocal interactions, which again

can be partially alleviated in recurrent networks [22, 21]. Alternatively, one can utilize gradient-

following algorithms which approximate gradient descent without computing the gradient, as in

the REINFORCE algorithm [20]. The latter approach has been used in [19] and compared with

the error backpropagation algorithm, yielding similar results. Other limitations are related to the

comparison of adaptation metrics between models and experiments. It is difficult to compare the

time scale of learning through gradient descent, which is measured in abstract weight updates,

to that observed in experiments, which is measured in trials. What corresponds to a day of

training, for gradient descent? In Refs. [14, 16], which focused on a single day, adaptation was

studied across ∼ 400− 900 trials (depending on the monkey and experiment). During that time,

performance improved for WMPs but it did not recover its pre-perturbation level, especially in

terms of the target acquisition time (a full second of difference). How one should relate both this

performance metric and the success rate to the loss in the context of gradient descent? These
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limitations related to performance metrics are not a prerogative of our model as most models and

learning algorithms face similar issues. Future neurotheoretical works should try to adopt the trial

and reward structure of center-out BCI tasks to facilitate model-experiment comparisons. Finally,

although the learning rate played an important role in adaptation (especially the lack thereof),

this parameter possesses no clear-cut biological basis. Neuromodulatory centers innervating

cortical circuits are routinely ascribed the role of modulating and controlling different aspects

of cortical learning [37]. However, figuring out whether an improperly tuned learning rate can

embody some of these neuromodulatory effects will require further research.

4. Conclusion

To conclude, we have shown that gradient-descent learning in a simple BCI model concurs with

experimental works suggesting that there could be an inherent difficulty in learning sensorimotor

mappings that lies outside the existing neural repertoire. Whether similar difficulties could also

underlie the so-called BCI illiteracy [38] remains to be explored. The work from Oby et al. [15]

suggested that incremental training—a form of curriculum learning [39]—might be a necessary

ingredient in a protocol aiming at facilitating the emergence of new neural patterns. In the

BCI literature, a number of closed-loop decoder adaptation methods, which consist in adapting

the decoder to the emerging neural representations, have been utilized to accelerate BCI skill

acquisition [40, 41]. If indeed gradient-descent-based learning is involved in motor learning,

then a straightforward extension of our work could also shed light on the mechanisms whereby

decoder adaptation facilitates BCI learning, and even helps design new methods to optimize BCI

control.

5. Methods

5.1. Network model. The starting point of our model was the following discrete-time recurrent

network dynamics
vt+1 = Wφ(vt) + Ux+ ξt

ut = V vt,
(4)

where vt ∈ RN is the recurrent activity and ut ∈ R2 is the readout at time t. Matrices W , U

and V are the recurrent, input and output matrices, respectively. The noise ξt was Gaussian

and uncorrelated across units and across time, with diagonal covariance matrix Σξ = σ2
ξI; it

modeled neuronal noise sources. The input x ∈ RI was modeled as a time-independent mixture

of Gaussians with means µk and covariance matrices Σ
(k)
x , mimicking afferent inputs encoding

task requirements:

p(x) =
K−1∑
k=0

πkp(x|k) =
K−1∑
k=0

πkN (x|µk,Σ
(k)
x ). (5)

The random vectors ξt and x were independent. The mixing coefficients obeyed
∑

k πk = 1,

here with πk = 1/K, for all k. To simulate this model, one would select a target k at random,
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draw a Gaussian sample from N (x|µk,Σ
(k)
x ) and then proceed with the numerical integration.

(Note that the input could also be made time-dependent by drawing a different sample from the

selected Gaussian component independently at each time step; time independence only serves to

simplify the treatment in the next paragraph.)

To circumvent the complex nonlinear dynamics of this model and streamline the modeling of

the BCI phenomena under study, we assumed that the activation function φ(·) was linear and

we focused on the (noisy) fixed-point dynamics produced by Eq. 4. The solution to the linear

dynamics with initial condition v0 is

vt = W tv0 + (I −W )−1(I −W t)Ux+
t−1∑
k=0

W t−1−kξk.

The last term has zero mean and covariance (I −W )−1(I −W t)Σξ(I −W t)T(I −WT)−1. If the

maximum absolute eigenvalue of W is less than 1, then W t → 0 as t→∞. We get that vt’s law

is asymptotically Gaussian and can be described by

v = (I −W )−1(Ux+ ξ), (6)

assuming of course that I −W is invertible. The private noise ξ is the static counterpart of ξt.

Since every variable is Gaussian, we have

p(v) =
∑
k

πkp(v|k) (7)

where p(v|k) is Gaussian with mean E[v|k] and covariance V[v|k] given by

E[v|k] = (I −W )−1Uµk (8)

V[v|k] = (I −W )−1
[
UΣ(k)

x UT +Σξ

]
(I −WT)−1. (9)

We assumed that the dimensions of the output matrix V were such that 2≪ N , which is typically

the case in BCI experiments using microelectrode arrays (∼ 10− 100 electrodes). The adaptable

parameters were W and U . Elements of the output matrix V were fixed to random values before

the network was trained for the first time (cf. section 5.3). After this initial training, the output

matrix was replaced by a (perturbable) BCI decoder to be described below. We stress that V was

not continuously adaptable like U and W : it represented a rigid mapping between the recurrent

activity v and the readout u that can be changed externally (say, by the experimenter).

5.2. Task. The objective was to produce unit vectors of the form

dk = [cos(2πk/K), sin(2πk/K)]T, k = 0, . . . ,K − 1.

The objective function L to minimize can be written

L =
1

2

∑
k

πkLk
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with the target-specific loss

Lk = E
[
∥u− dk∥2|k

]
.

We can rewrite the objective function as (cf. appendix C.2)

L =
1

2

∑
k

πktr
{
V V[v|k]V T

}
+

1

2

∑
k

πk∥V E[v|k]− dk∥2 (10)

to make explicit the intuition that the network’s goal was to reduce the average target-conditioned

output variance and the distance between the target-conditioned mean output and dk.

Another expression for the objective function makes use of the total covariance matrix V[v].
Using the law of total variance, we have

V[v] = E{V[v|k]}+ V{E[v|k]} =
∑
k

πkV[v|k] +
∑
k

πk(E[v|k]− v̄)(E[v|k]− v̄)T (11)

where the global mean activity v̄ is

v̄ ≜ E[v] = E[E[v|k]] = (I −W )−1U x̄ (12)

with the global mean input

x̄ ≜ E[x] =
∑
k

πkµk. (13)

Multiplying Eq. 11 to the left by V , to the right by V T and taking the trace yields (cf. appendix

C.3)

tr
{
V V[v]V T

}
= 2L− tr

{
V v̄v̄TV

}
− 1 + 2

∑
k

πkd
T
kV E[v|k] (14)

and therefore

L =
1

2
+

1

2
tr
{
V (V[v] + v̄v̄T)V T

}
−

∑
k

πkd
T
kV E[v|k]. (15)

This expression means that the network will try to minimize the total correlation matrix V[v] +
v̄v̄T (as “seen” from the output) and maximize the average overlap between the target and the

target-conditioned expected output.

5.3. Output matrix and BCI decoder. The output matrix V adopted one of four possible

matrix values. As mentioned above, V was a random matrix initially [18]. For clarity, this matrix

will be denoted as V0. For instance, in section 2.1, we define

[V0]ij ∼ N (0; 1) (16)

and then multiply it by 0.07/∥V0∥F , similarly to Ref. [18]. The symbol ∥·∥F denotes the Frobenius

norm. The network was then trained to solve the task with the learning algorithm described

in section 5.5 below. At the end of this initial training, neural activity had variance V[v]0 and

global mean v̄0, where the subscript 0 refers to using V0 as the output.
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Next, following Ref. [18], we designed a BCI decoder which consisted in a composition of two

linear transformations D and C so that the new output matrix was

VBCI = DC. (17)

The M ×N matrix C, where M is the dimension of the linear manifold, projected the network

activity onto the first M principal eigenvectors of V[v]0; the rows of C are the transpose of these

eigenvectors. The 2×M matrix D was a linear decoder obtained by solving

D = argminD′E
[
∥(D′C − V0)v∥2

]
(18)

with solution (cf. appendix C.4)

D = V0(V[v]0 + v̄0v̄
T
0 )C

T[C(V[v]0 + v̄0v̄
T
0 )C

T]−1. (19)

Optionally, we would then briefly retrain the model with V = VBCI to make sure the network

was able to use the decoder, as in the experiments [14].

Then, one of two perturbations was applied. The within-manifold (WM) perturbation [14, 18]

yielded

VWM = DPWMC (20)

where PWM is aM×M permutation matrix. The outside-manifold (OM) perturbation used

VOM = DCPOM (21)

where POM is a N ×N permutation matrix. Permutation matrices contain only one entry equal

to 1 in each row and column. Therefore, the WMP shuffles the rows of C and the perturbation

thus scrambles how the projections are fed to D. The OMP shuffles the columns of C, thus

altering how neural activity contributes to each pattern.

5.4. Manifold’s dimension and permutation selection. The assigned dimensionality of the

intrinsic manifold, M , should be large enough to include the main neural modes [14], but small

enough so that the WMP does not become as difficult as the OMP to relearn. The rule of thumb

was that the chosen M should represent roughly 99% of the total variance. For the parameters

used here, setting M = 6 allowed to represent most of the variance and kept the search for the

WMPs computationally fast (see below). For different random seeds (different initializations of

the network model), the number of principal components to reach 99% might differ (5±0 for the

low-dimensional setup of Figs. 1-5 and 6.2 ± 0.3 for the high-dimensional setup of Fig. 6 [mean

± SEM for n = 20 seeds]), but M itself had the same value across seeds nevertheless.

There were M ! possible WMPs and N ! OMPs. Permutations were evaluated by computing their

initial impact on the loss (with the pre-adaptation parameter values). Following [18, 14], for each

type of perturbation we randomly generated a large number (min(M !, 104) for WMPs and 104 for

OMPs) of candidate permutations, and then selected among these the permutation generating
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the loss closest to the median of the combined distributions, to make sure that adaptation to the

WMP and OMP started from a similar loss.

5.5. Learning. For each training episode (with V = V0 and then with either V = VWM or

V = VOM), we needed to solve

W ∗, U∗ = argminW,UL.

Gradient descent means that an adaptable parameter X is learned according to

∆X = −ηX∇XL, (22)

where ηX is the corresponding learning rate. The gradients of L with respect to W and U are

derived in Appendix B. They are

∇WL = (I −WT)−1V T
∑
k

πk

[
V V[v|k] + (V E[v|k]− dk)E[v|k]T

]
(23)

∇UL = (I −WT)−1V T
∑
k

πk

[
V (I −W )−1UΣ(k)

x + (V E[v|k]− dk)µ
T
k

]
(24)

These gradients all share the same basic structure: each sum over k combines a first term that

relates to the output noise structure of the associated parameter and a second term that involves

the expected output error conditioned on the input component, V E[v|k] − dk. The sums are

then pre-multiplied by (I −WT)−1V T to recast their results into the neural space.

It is also possible to obtain an alternative expression for ∇WL connected with Eq. 15, namely

(cf. appendix B)

∇WL = (I −WT)−1V T

[
V
(
V[v] + vvT

)
−
∑
k

πkdkE[v|k]T
]
, (25)

which emphasizes the impact of the total covariance matrix V[v] on the gradient.

5.6. Parameters.

5.6.1. Figures 1-5. The network had N = 100 recurrent units. The recurrent weights were

initialized with Wij ∼ N (0, 1/N). The input weights U were fixed to Uij ∼ U(−1, 1). There

were six targets. The input was a noiseless 1–of–6 encoding, i.e. µ0 = [1, 0, 0, 0, 0, 0]T, µ1 =

[0, 1, 0, 0, 0, 0]T, . . ., and Σ
(k)
x = 0, for k = 0, . . . , 5. The private noise variance was low, fixed to

10−3. For the initial output matrix V = V0, we first drew Vij ∼ N (0, 1) and then reassigned

V ← 0.07∥V ∥FV [18]. Initial training of the network (with V = V0) was with learning rate

ηW = 10−3. In Figs. 1-3, subsequent training with the perturbed readout matrices VWM and VOM

was done with ηW = 6.7× 10−5 to diminish the likelihood of very noisy OM adaptations.

5.6.2. Figure 6. For the high-dimensional input setup, we had N = 100 and the number of

input units was I = 200. The initial input weight matrix, recurrent weight matrix, and output

weight matrix were drawn from N (0, 1/I), N (0, 1/N) and N (0, 1/N), respectively. The target-

conditioned mean inputs µk were Gaussian random vectors, normalized to have unit norm. The
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target-conditioned input covariance matrices were set to Σ
(k)
x = σ2

xQQT, where Q was an I×I/10
matrix with elements drawn from a standard normal distribution, and σ2

x = 2.5 × 10−5 set the

relative intensity of the input compared to the private noise. Note that Σ
(k)
x had rank I/10

to take account of the fact that sensory encoding has lower dimensionality than the full neural

space [9]. Private noise intensity was set to 5 × 10−4. The latter and the input noise intensity

were chosen so that the number of principal vectors to represent 99% of the total variance for

the initial network trained with V = V0 was close to that of the low-dimensional input network

(cf. subsection 5.4).

5.7. Normalized explained variance and manifold overlap. The matrix C effectively

projects the activity v onto the M principal orthogonal eigenvectors of the initial (i.e., before

the perturbation) covariance matrix, denoted V[v]0. Before adaptation, the fraction of explained

variance by these projections is

f0 =
E[∥C(v − v̄0)∥2]
E[∥v − v̄0∥2]

=
tr
{
CV[v]0CT

}
tr {V[v]0}

.

During adaptation, the covariance might change and with it the fraction of variance explained

by C, denoted f :

f =
tr
{
CV[v]CT

}
tr {V[v]}

. (26)

Intuitively, if the activity aligns more with C relative to the total variance through the adaptation

process, f increases. The fraction of explained variance will tend to decrease if misalignments

become proportionally more prevalent. Therefore, the normalized variance explained [16] given

by

NVE =
f

f0
(27)

represents the relative proportion of the total variance that can be explained by the projection

during adaptation. Feulner and Clopath [18] refer to this quantity as the manifold overlap

because this ratio represents the relative fraction of variance that lives in the row space of C. A

manifold overlap of 100% thus means that the same proportion of variance (as compared to the

pre-perturbation activity) lives in that space at that point during adaptation.

5.8. Ratio of projected variances. Outside-manifold perturbations yield a new C matrix,

COM = CPOM. Like the original C, the rows of COM are orthonormal, because POMP
T
OM = I ⇒

COMC
T
OM = I. Thus, as above, we can measure the intensity of the projected covariance within

this subspace as tr
{
COMV[v]CT

OM

}
. At each stage of the adaptation process, we can compute

the ratio of projected variances

R =
tr
{
COMV[v]CT

OM

}
tr {CV[v]CT}

(28)

to quantify how adaptation to the OMP redistributes the covariance between the old (C) and

new (COM) projections.
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5.9. Realignment, rescaling and reassociation. Golub and co-workers [16] delineated three

strategies whereby the motor cortex could adapt to WMPs. The initial decoder matrix D maps

the projection of the activity Cv onto “cursor positions”. The WMP amounts to either leaving

D unchanged and permuting the rows of C, or permuting the columns of D and leaving C

unchanged. From the latter perspective, the WMP alters the two-dimensional row space ⊂ RM

of the decoder mapping. To define this row space, we can compute the (reduced) singular value

decomposition (SVD) of the D matrix, D = XDSDY T
D , where Y T

D has two orthonormal rows

spanning the row space of D. The amount of co-variability projected along this row space can

be computed as [16]

A(D) = tr
{
Y T
DCV[v]CTYD

}
.

This quantity may vary throughout learning for both the original and perturbed mappings, which

we denote by A(D) and A(DPWM). Realignment means that the magnitude of the projections

along the original row space decreases while those along the perturbed mapping increases, sug-

gesting the activity changes to aligns itself to the new mapping. Rescaling consists in an increase

of A(D) during adaptation while A(DPWM) mostly does not change, suggesting that the network

“stretches” its activity along the original mapping to compensate for the perturbation. Golub

and co-workers showed that it is a third strategy, reassociation, that best explained the experi-

mental data. The name suggests that the network relies on a fixed repertoire of neural patterns,

which are repurposed following the perturbation. This reassociation means that both A(D) and

A(DPWM) barely change during learning. Following Ref. [16], we computed the relative change

in decoder-projected co-variability (in %) as

δrel.A(D) = 100
A(D)−A0(D)

A0(D)
(29)

where D is either D for the covariance projected onto the original decoder or DPWM for the co-

variance projected onto the perturbed decoder. The change is measured relative to the projected

covariance right before the perturbation was applied, denoted A0(D). For realignment, rescaling

and reassociation, the pairs (δrel.A(D), δrel.A(DPWM)) should be (small negative, large positive),

(large positive, ≈ 0) and (≈ 0, ≈ 0), respectively.

5.10. Incremental training. Following Ref. [15], incremental training for OMPs was performed

by changing the output mapping via

V = (1− a)VBCI + aVOM

with a = 0.2, 0.4, 0.6, 0.8, 0.9, 1 in turn.
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Appendix A. Theoretical comparison of recursive least-squares and gradient

descent

To distinguish our work from Ref. [18], it is instructive to first compare the recursive least-squares

(RLS) algorithm and gradient descent in a simple case: linear regression. Let the predictor be

ŷ(x,w) = wTx, with x ∈ RD the regressor and w a weight vector to be learned. The desired

output is y and we evaluate the performance of the predictor using the mean-squared error1

L =
1

2

N∑
i=1

[yi − ŷ(xi,w)]2,

where N is here the number of data points. The normal equation giving the optimal weight

vector is well-known to be [42]

ŵN = (XTX)−1XTy,

where X is a N ×D matrix whose rows are xT
i and y (sans serif) is a column vector containing

the N observed outputs. This method requires the batch processing of all data. Recursive

least-squares [43] is an online version of the normal equation. One first defines

PN ≜ (XTX)−1,

the inverse of the sample correlation matrix. It is possible to write PN as a function of PN−1

as

PN = PN−1 −
PN−1xNxT

NPN−1

1 + xT
NPN−1xN

.

Then, replacing these in the equation for ŵN and replacing the dummy index N by i to stress

the online character of the algorithm, one obtains after some algebra

ŵi = ŵi−1 + Pixiei, (30)

where ei = yi − ŵT
i−1xi is the prediction error.

For the stochastic gradient descent algorithm, the update is simply given by

ŵi = ŵi−1 − η ∇wLi|wi−1
,

where η is the learning rate parameter and ∇wLi|wi−1
= −eixi. The stochastic gradient descent

algorithm is thus

ŵi = ŵi−1 + η xiei. (31)

The obvious difference between Eqs. 30 and 31 is the presence of the matrix Pi, which estimates

the inverse correlation matrix of the data at step i. Its initial value P0—before seeing any

data—is typically a multiple of the identity matrix I. The inverse correlation matrix weights

the contribution of xi according to the distribution of data points at that stage. For instance, if

1Sometimes a forgetting factor λ ∈ (0, 1] is included in the loss, so that LN = 1
2

∑N
i=1 λ

N−i[yi − ŷ(xi,w)]2, to
forget older data progressively. Here, we set λ = 1 for brevity and simplicity.
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the data is strongly correlated in a given direction in the D-dimensional regressor space, and xi

is aligned with that direction, then the impact of that data point in changing the weight vector

will be small. The RLS algorithm thus includes a lot more information about the data structure

than stochastic gradient descent.

Feulner and Clopath [18] used a modified version of this algorithm—other related modifications

appeared in the context of FORCE learning [25] and innate learning [26]—in their paper, modulo

some implementational details. The recurrent weight matrix W of their network was changed

according to

Wij(t) = Wij(t− 1) + ei(t)
∑
k

P i
jk(t)rk(t)

where P i(t) is the inverse correlation matrix of the input rates applied to neuron i, rk(t) is

the firing rate of neuron k at time t and ei is the prediction error for the activity of neuron

i. The latter was obtained from the performance error of the network, eP , by projecting this

error to the network via a feedback matrix W fb, so that e = W fbeP . In the ideal-feedback

case, the feedback matrix was the exact pseudo-inverse of the output weight matrix of the

network. (Note that the error feedback did not affect neural activity directly.) In that case, no

differences were seen between in- and out-manifold learning at the end of adaptation [18] and

even during adaptation (see Supp. Fig. 1). From the discussion above, this is likely due to the

fact that outside-manifold perturbations eventually produce activity in less expected directions in

neural space which translates into larger effective learning rates. Within-manifold perturbations

would not tend to produce these. Therefore, adaptation to an OMP catches up rapidly with

adaptation to a WMP. It is when W fb is corrupted in some way (e.g., making it a noisy version

for the ideal-feedback matrix) that the network adapts differently to WMPs and OMPs. It is

really the corrupted feedback that does the heavy lifting because they have found that a local

learning rule with such feedback also led to different end-of-retraining performances [18] (their

supplementary figure S18). Note that they also contributed an example showing that this local

learning rule producedWM and OM adaptations at slightly different time scales with uncorrupted

feedback (their supplementary figure S6), a result we reproduced a bit more conclusively with

our model.

Appendix B. Calculation of the gradients

In this section, we compute the gradient of the objective function with respect to parameters U

and W . To do this in the most straightforward way, we will use the following result of matrix

calculus. Let f(M) be a scalar function of the matrix M . Its total differential is

df = f(M + dM)− f(M) = tr
{
(∇Mf)TdM

}
.

Therefore, to get the gradients, we only have to compute the differential, put it in the above

form and identify the matrix multiplying the matrix differential as the (transpose of) the gradi-

ent.

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 12, 2023. ; https://doi.org/10.1101/2023.03.11.532146doi: bioRxiv preprint 

https://doi.org/10.1101/2023.03.11.532146
http://creativecommons.org/licenses/by-nc-nd/4.0/


NEURAL MANIFOLDS AND ADAPTATION 26

The differential of the loss is

dL =
1

2

∑
k

πktr
{
V dV[v|k]V T

}
+

∑
k

πktr
{
V dE[v|k](V E[v|k]− dk)

T
}
.

First, we have

dV[v|k] = d
[
(I −W )−1

[
UΣ(k)

x UT +Σξ

]
(I −WT)−1

]
= (I −W )−1dWV[v|k] + (I −W )−1[dUΣ(k)

x UT + UΣ(k)
x dUT](I −WT)−1

+ V[v|k]dWT(I −WT)−1

where we used d(I −W )−1 = (I −W )−1dW (I −W )−1. Second,

dE[v|k] = d[(I −W )−1Uµk]

= (I −W )−1dWE[v|k] + (I −W )−1dUµk.

By collating all the factors of dW and using the cyclic and transpose property of the trace (i.e.,

tr {ABC} = tr {CAB} = tr {BCA} and tr
{
AT

}
= tr {A}), we get

(∇WL)T =
∑
k

πkV[v|k]V TV (I −W )−1 +
∑
k

πkE[v|k](V E[v|k]− dk)
TV (I −W )−1,

as in the main text (upon transposition). The same process can be carried out for the gradient

with respect to U without difficulties.

Now we obtain the expression for the gradient of the covariance component of the loss, which is

denoted by

LV[v] ≜
1

2
tr
{
V V[v]V T

}
.

It is the second term in Eq. 15, excluding the part related to the global mean v̄. The differential

is given by dLV[v] =
1
2 tr

{
V dV[v]V T

}
and therefore we have to compute the differential of the

total covariance matrix dV[v]. From Eq. 11, we have

dV[v] =
∑
k

πk

[
dV[v|k] + (dE[v|k]− dv̄)(E[v|k]− v̄)T + (E[v|k]− v̄)(dE[v|k]− dv̄)T

]
.

The only quantity that has not been computed yet is dv̄. From Eq. 12,

dv̄ = (I −W )−1dW v̄ + (I −W )−1dU x̄.

To compute the gradient w.r.t. W , we pick all terms involving dW . Focusing on a single target

k, we have

dV[v|k] + (dE[v|k]− dv̄)(E[v|k]− v̄)T + (E[v|k]− v̄)(dE[v|k]− dv̄)T

= (I −W )−1dWV[v|k] +
(
(I −W )−1dWE[v|k]− (I −W )−1dW v̄

)
(E[v|k]− v̄)T + h.c.

= (I −W )−1dWV[v|k] + (I −W )−1dW (E[v|k]− v̄) (E[v|k]− v̄)T + h.c.

= (I −W )−1dW
[
V[v|k] + (E[v|k]− v̄) (E[v|k]− v̄)T

]
+ h.c.
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where h.c. means hermitian conjugate and in the present case means to take the transpose of the

previous term. Using Eq. 11 again and spelling out the hermitian conjugate term, we have

dV[v] = (I −W )−1dWV[v] + V[v]dWT(I −WT)−1,

and thus

dLV[v] =
1

2
tr
{
V dV[v]V T

}
= tr

{
V[v]V TV (I −W )−1dW

}
.

The gradient is the transpose of the term inside the trace multiplying dW :

∇WLV[v] = (I −WT)−1V TV V[v].

Appendix C. Other derivations

This section contains other simple derivations, for convenience.

C.1. Derivation pertaining to the loss components. We first describe why the correlation

component of the loss converges to 1/2. We note that, close to complete adaptation,

V v̄ ≈ 0, (32)

with v̄ the global average activity (Eq. 12) and V is either perturbed mappings, given the

symmetry of the task when the targets are equiprobable. Indeed, we have

V v̄ = E[E[V v|k]] = E[E[u|k]]

and E[u|k] ≈ dk once adaptation is close to completion. Then E[E[u|k]] ≈
∑

k πkdk = 0 for

πk = 1/K. Using the expression for the total variance (Eq. 11), the correlation component of

the loss becomes

1

2
tr
{
V (V[v] + v̄v̄T)V T

}
≈ 1

2
tr
{
V V[v]V T

}
=

1

2
tr

{
V

[∑
k

πkV[v|k] +
∑
k

πk(E[v|k]− v̄)(E[v|k]− v̄)T

]
V T

}

≈ 1

2
tr

{
V

[∑
k

πk(E[v|k]− v̄)(E[v|k]− v̄)T

]
V T

}

≈ 1

2

∑
k

πk∥V E[v|k]∥2

after adaptation, with V E[v|k] being then close to dk, the kth unit target vector. We also

neglected the contribution of the target-conditioned variance V[v|k], which is small for the pa-

rameters used in Figs. 1-2. The result follows from the unit norm of the targets.
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We also show that the projection component of the loss converges to −1 (cf. Eq. 15). Once the

network has completely adapted to the perturbation, −
∑

k πkd
T
kV E[v|k] ≈ −

∑
k πk∥dk∥2 =

−1.

C.2. Equation 10.

L =
1

2

∑
k

πkE
[
∥V v − dk∥2|k

]
=

1

2

∑
k

πkE
[
∥V v − V E[v|k] + V E[v|k]− dk∥2|k

]
=

1

2

∑
k

πkE
[
∥V v − V E[v|k]∥2 + ∥V E[v|k]− dk∥2 + 2(V v − V E[v|k])T(V E[v|k]− dk)|k

]
.

Equation 10 follows because the expectation of the last term is zero and because ∥z∥2 = tr
{
zzT

}
for any vector z.

C.3. Equation 14.

tr
{
V V[v]V T

}
=

∑
k

πktr
{
V V[v|k]V T

}
+
∑
k

πktr
{
V (E[v|k]− v̄)(E[v|k]− v̄)TV T

}
=

∑
k

πktr
{
V V[v|k]V T

}
+
∑
k

πk∥V E[v|k]− V v̄∥2

=
∑
k

πktr
{
V V[v|k]V T

}
+
∑
k

πk∥V E[v|k]− dk − (V v̄ − dk)∥2

=
∑
k

πktr
{
V V[v|k]V T

}
+
∑
k

πk∥V E[v|k]− dk∥2 +
∑
k

πk∥V v̄ − dk∥2

− 2
∑
k

πk(V E[v|k]− dk)
T(V v̄ − dk)

= 2L+
∑
k

πk∥V v̄ − dk∥2 − 2
∑
k

πk(V E[v|k]− dk)
T(V v̄ − dk)

= 2L+ tr
{
V v̄v̄TV

}
+ 1− 2

∑
k

πk(V E[v|k]− dk)
T(V v̄ − dk)

= 2L+ tr
{
V v̄v̄TV

}
+ 1− 2(tr

{
V v̄v̄TV

}
−
∑
k

πkE[v|k]TV Tdk + 1)

= 2L− tr
{
V v̄v̄TV

}
− 1 + 2

∑
k

πkd
T
kV E[v|k]

C.4. Equation 19. Define J(D′) ≜ E
[
∥(D′C − V0)v∥2

]
. We have

J(D′) = tr
{
(D′C − V0)(V[v] + v̄v̄T)(D′C − V0)

T]
}
.

The differential of the right-hand side is

dJ(D′) = 2tr
{
dD′C(V[v] + v̄v̄T)(D′C − V0)

T
}
,
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giving the gradient

∇D′J = 2(D′C − V0)(V[v] + v̄v̄T)CT.

This gradient is zero when

D = V0(V[v] + v̄v̄T)CT
[
C(V[v] + v̄v̄T)CT

]−1
.
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