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Abstract 4 

Neural dynamics can reflect intrinsic dynamics or dynamic inputs, such as sensory inputs or inputs 5 

from other regions. To avoid misinterpreting temporally-structured inputs as intrinsic dynamics, dynamical 6 

models of neural activity should account for measured inputs. However, incorporating measured inputs 7 

remains elusive in joint dynamical modeling of neural-behavioral data, which is important for studying 8 

neural computations of a specific behavior. We first show how training dynamical models of neural activity 9 

while considering behavior but not input, or input but not behavior may lead to misinterpretations. We 10 

then develop a novel analytical learning method that simultaneously accounts for neural activity, behavior, 11 

and measured inputs. The method provides the new capability to prioritize the learning of intrinsic 12 

behaviorally relevant neural dynamics and dissociate them from both other intrinsic dynamics and 13 

measured input dynamics. In data from a simulated brain with fixed intrinsic dynamics that performs 14 

different tasks, the method correctly finds the same intrinsic dynamics regardless of task while other 15 

methods can be influenced by the change in task. In neural datasets from three subjects performing two 16 

different motor tasks with task instruction sensory inputs, the method reveals low-dimensional intrinsic 17 

neural dynamics that are missed by other methods and are more predictive of behavior and/or neural 18 

activity. The method also uniquely finds that the intrinsic behaviorally relevant neural dynamics are largely 19 

similar across the three subjects and two tasks whereas the overall neural dynamics are not. These input-20 

driven dynamical models of neural-behavioral data can uncover intrinsic dynamics that may otherwise be 21 

missed.  22 
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Introduction 23 

Neural population activity exhibits rich temporal structures1–26. Investigating these temporal structures, 24 

i.e., dynamics, can reveal the neural computations that underlie behavior5,6,12,15,16,19,20. Much progress has 25 

been made in developing models that can describe the dynamics of neural population activity using a 26 

low-dimensional latent state2–4,7,8,10–14,16. However, a major challenge in such investigations is that neural 27 

dynamics can arise due to two distinct sources that reflect distinct computations12,15,27. The first source 28 

consists of the intrinsic dynamics within a given brain region. Intrinsic dynamics arise due to the recurrent 29 

connections within a region’s neuronal population as it responds in a temporally structured manner to any 30 

excitations from within or outside that region6,12,15,18,27,28. The second source consists of input dynamics. 31 

These input dynamics are temporal structures that already exist in inputs that reach the recorded brain 32 

region, including sensory inputs or inputs from other brain regions1,9,12,15,27,29–31. While measuring all inputs 33 

is infeasible experimentally, measurements of sensory inputs such as task instructions or partial 34 

measurements of neural inputs into a brain region are often possible. As such, correctly interpreting how 35 

neural computations in a given brain region give rise to a specific behavior can greatly benefit from 36 

simultaneously achieving two objectives, which remain elusive. 37 

 First, given the above two sources, neural dynamics that are intrinsic to a given brain region need to 38 

be dissociated from those that are simply due to temporally structured measured inputs to that region. 39 

Second, within intrinsic neural dynamics, those that are relevant to the specific behavior of interest need 40 

to be dissociated from other intrinsic neural dynamics. This latter dissociation is important because neural 41 

dynamics of a specific behavior often constitute a minority of the total variance in the recorded neural 42 

activity5,6,19,32–39. Consistent with this observation, recent work has shown that learning dynamical models 43 

of neural-behavioral data together and in a way that dissociates and prioritizes their shared dynamics can 44 

unmask behaviorally relevant neural dynamics that may otherwise not be found19,20. We refer to this 45 

prioritized learning approach for neural-behavioral data as preferential dynamical modeling because it 46 

preferentially models the behaviorally relevant neural dynamics with priority instead of non-preferentially 47 

modeling prevalent dynamics in neural data as is typically done. But prior methods for preferential 48 

dynamical modeling cannot account for the effect of measured inputs to a given brain region19. Thus, the 49 
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dissociation of intrinsic and input-driven neural population dynamics that underlie specific behaviors has 50 

remained challenging.  51 

Here, we first show how misinterpretation and incorrect identification of intrinsic behaviorally relevant 52 

dynamics could result from modeling neural activity while considering behavior but not input, or while 53 

considering input but not behavior. Indeed, modeling neural activity without considering the measured 54 

input could result in a model that mistakes the temporal structure in the input as part of the intrinsic 55 

dynamics within the recorded brain region9,27 and consequently confound scientific conclusions. For non-56 

preferential modeling of neural activity on its own, while not commonly done, various methods can be 57 

adapted to fit models with measured inputs40, thus accounting for measured input and neural activity but 58 

not behavior. However, as we show, even these non-preferential methods with input can miss those 59 

intrinsic neural dynamics that are behaviorally relevant. Further, methods for preferential modeling that 60 

consider the neural-behavioral data together cannot consider measured inputs. These results motivate 61 

the critical need for developing novel methods that can simultaneously consider neural activity, behavior, 62 

and measured inputs when learning a dynamical model (see Discussion). It is also important to recognize 63 

that disentanglement of intrinsic and input dynamics is fundamentally limited by the extent to which 64 

measured inputs are available, which depends on the experimental capability for input measurement. 65 

Perfect disentanglement requires measuring all inputs, which is typically not feasible with current 66 

experimental technology. As such, our aim here is to mathematically formulate a learning problem that 67 

involves neural activity, behavior, and measured inputs simultaneously, and to dissociate the intrinsic 68 

behaviorally relevant neural dynamics from the dynamics of any measured inputs and from other intrinsic 69 

neural dynamics. As we will show in our results, even this partial dissociation using the measured inputs 70 

(e.g., task instructions) can already lead to more accurate models and inferences, and to useful new 71 

insights compared with prior methods that account for either measured input or behavior during learning 72 

but not both. 73 

With the above motivation, we then provide a new preferential modeling approach, termed Input 74 

Preferential Subspace Identification (IPSID) that can consider both measured inputs and behaviors in the 75 

training set while learning dynamical models of neural population activity. By doing so, IPSID provides 76 
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the new capability to learn the intrinsic behaviorally relevant neural dynamics with priority and dissociate 77 

them both from other intrinsic neural dynamics and from the dynamics of measured inputs. We also 78 

develop a version of IPSID that achieves this capability when some input dynamics influence the behavior 79 

through pathways that are neither recorded nor downstream of the recorded neural activity. Compared 80 

with prior preferential modeling methods (i.e., PSID)19,41, which cannot incorporate input and thus do not 81 

dissociate intrinsic and input dynamics, IPSID requires distinct mathematical operations including 82 

completely new steps (Note S1). We show that two new capabilities provided by IPSID are critical for 83 

accurate dissociation of intrinsic behaviorally relevant neural dynamics: prioritized learning of these 84 

dynamics in the presence of input, and ensuring all learned dynamics are directly present in the neural 85 

recordings even when inputs affect behavior.  86 

We validate IPSID and its new capabilities in extensive numerical simulations of diverse dynamical 87 

systems and in two independent motor cortical datasets from three non-human primates (NHP) recorded 88 

during two different tasks with task instruction sensory inputs. First, we simulate a brain with fixed intrinsic 89 

dynamics that performs different behavioral tasks. IPSID correctly learns the same intrinsic behaviorally 90 

relevant neural dynamics regardless of which specific task is used to collect the simulated training neural 91 

data. In contrast, other methods learn intrinsic dynamics that are inaccurate and influenced by the specific 92 

task. Second, we apply IPSID to motor cortical population activity recorded from three NHPs in two 93 

independent datasets with two different 2-dimensional (2D) cursor-control tasks. IPSID finds intrinsic 94 

behaviorally relevant dynamics that not only predict motor behavior better than non-preferential methods 95 

even with input, but also predict neural activity better than preferential methods which cannot consider 96 

task instruction inputs. Further, IPSID reveals that intrinsic behaviorally relevant neural dynamics are 97 

largely similar across the three animals despite differences in the two cursor-control tasks and animals, 98 

while other methods miss these similar dynamics. By dissociating intrinsic behaviorally relevant dynamics 99 

from both other intrinsic dynamics and measured input dynamics, IPSID can help explore unanswered 100 

questions regarding how intrinsic and input-driven neural computations give rise to behavior across 101 

subjects and tasks. 102 
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Methods 103 

Modeling intrinsic neural dynamics underlying behavior in the presence of inputs 104 

To see the effect of input on misinterpretation of intrinsic neural dynamics, consider a task where a 105 

subject is instructed to follow an on-screen target with their hand while motor cortical activity that 106 

represents the hand movements is recorded (Fig. 1a). Here, movements of the target would result in 107 

corresponding movements in the hand that follows the target, and thus would also introduce 108 

corresponding dynamics in the neural activity that represents hand movements. Consequently, any 109 

arbitrary movement of the target will be, to some extent, reflected in the recorded neural activity. An 110 

example is shown in a numerical simulation in Fig. 1a,b. As another example, if the target moves up and 111 

down with a 1s period, one would expect the neural activity to also include similar periodic patterns with 112 

a 1s period. If the period of target movements changes to 2s, so would the period of the patterns in neural 113 

activity that represent the hand movements. Any neural modeling that is not informed by target 114 

movements, which serve as task instruction sensory inputs, cannot distinguish between such input 115 

dynamics and intrinsic dynamics that originate in the recorded brain region. Thus, such modeling may 116 

incorrectly conclude that there exist intrinsic dynamics originating in the recorded brain area that are 117 

periodic with a 1s period. This means that sensory inputs or inputs from other brain regions, if 118 

unaccounted for, may confound dynamical models of neural activity by being misinterpreted as intrinsic 119 

dynamics. The reflection of input dynamics in neural dynamics can also be seen in terms of the frequency 120 

domain spectrum of these signals (Fig. 1b). In this view, the correct dissociation of intrinsic dynamics 121 

from input dynamics requires the correct learning of the transfer function from inputs to neural signals, in 122 

a way that doesn’t incorrectly attribute the input dynamics that appear in neural activity to having 123 

originated from the transfer function (Fig. 1b). 124 

When performing non-preferential dynamic modeling of neural activity on its own, though not common, 125 

various methods such as subspace identification40 can be leveraged to fit models with measured input. 126 

However, as we will show, these methods can lead to inaccurate identification of intrinsic behaviorally 127 

relevant neural dynamics as behavior is not considered during learning. Further, current methods cannot 128 

account for measured inputs in preferential modeling of neural-behavioral data together, which we now 129 
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enable by developing IPSID. To formulate the goal of IPSID, we represent the dynamical state of the 130 

recorded brain regions as a high-dimensional vector, of which each dimension may or may not contribute 131 

to generating the specific behavior of interest, i.e., be behaviorally relevant (Fig. 1a). Thus, in 132 

investigations concerned with behavior in the presence of a measured input, there are two major 133 

confounding factors in learning intrinsic behaviorally relevant neural dynamics: (1) the dynamics of the 134 

measured input that may be incorrectly considered part of intrinsic behaviorally relevant neural dynamics, 135 

and (2) other intrinsic neural dynamics that may mask or confound the behaviorally relevant ones.  136 

IPSID addresses both confounding factors by accounting for neural activity, behavior, and measured 137 

input simultaneously during learning via new algebraic operations. Doing so, IPSID models and 138 

dissociates the intrinsic behaviorally relevant neural dynamics from measured input dynamics and from 139 

other intrinsic neural dynamics. Unlike IPSID, prior methods address only one or the other confound but 140 

not both. First, non-preferential neural dynamic modeling (NDM) with input (SI Methods), which we term 141 

INDM, accounts for neural activity and measured input but not behavior during learning. As such, INDM 142 

may miss or confound the intrinsic neural dynamics that are behaviorally relevant. Second, a method 143 

termed PSID19,41 addresses the second confound by accounting for neural activity and behavior during 144 

learning but not input. As such, PSID cannot dissociate intrinsic and input dynamics. We thus use this 145 

naming convention for ease of exposition but the algebraic operations in IPSID are different from those 146 

in both PSID and INDM, and further IPSID requires additional new mathematical steps compared with 147 

these prior methods (Notes S1, S2).  148 

In IPSID, we use the following linear state-space model to jointly describe the dynamics of neural 149 

activity (𝑦𝑦𝑘𝑘) and behavior (𝑧𝑧𝑘𝑘) in the presence of measured input (𝑢𝑢𝑘𝑘)  150 

 �
𝑥𝑥𝑘𝑘+1 =  𝐴𝐴  𝑥𝑥𝑘𝑘 + 𝐵𝐵𝑢𝑢𝑘𝑘 + 𝑤𝑤𝑘𝑘    
   𝑦𝑦𝑘𝑘 = 𝐶𝐶𝑦𝑦 𝑥𝑥𝑘𝑘 + 𝐷𝐷𝑦𝑦𝑢𝑢𝑘𝑘 + 𝑣𝑣𝑘𝑘
   𝑧𝑧𝑘𝑘 = 𝐶𝐶𝑧𝑧 𝑥𝑥𝑘𝑘 + 𝐷𝐷𝑧𝑧𝑢𝑢𝑘𝑘 + 𝜖𝜖𝑘𝑘

,   𝑥𝑥𝑘𝑘 = �
𝑥𝑥𝑘𝑘

(1)

𝑥𝑥𝑘𝑘
(2)� (1) 

where 𝑥𝑥𝑘𝑘 ∈ ℝ𝑛𝑛𝑥𝑥 is the latent neural state composed of two parts: (1) 𝑥𝑥𝑘𝑘
(1) ∈ ℝ𝑛𝑛1 , which is the behaviorally 151 

relevant latent states in the recorded neural activity; (2) 𝑥𝑥𝑘𝑘
(2) ∈ ℝ𝑛𝑛𝑥𝑥−𝑛𝑛1 , which is the other latent states in 152 

the recorded neural activity. In this model, 𝑦𝑦𝑘𝑘 ∈  ℝ𝑛𝑛𝑦𝑦 , 𝑧𝑧𝑘𝑘 ∈  ℝ𝑛𝑛𝑧𝑧  and 𝑢𝑢𝑘𝑘 ∈  ℝ𝑛𝑛𝑢𝑢  represent the recorded 153 
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neural activity, the measured behavior, and the measured input, respectively. Here 𝑥𝑥𝑘𝑘
(1)  being 154 

behaviorally relevant means that only those dimensions of 𝑥𝑥𝑘𝑘  corresponding to 𝑥𝑥𝑘𝑘
(1)  contribute to 155 

generating behavior (𝑧𝑧𝑘𝑘) in the third row of equation (1). Finally, 𝑤𝑤𝑘𝑘 and 𝑣𝑣𝑘𝑘 are zero mean white Gaussian 156 

noises (SI Methods) and 𝜖𝜖𝑘𝑘 is a general Gaussian random process representing any behavior dynamics 157 

not encoded in the recorded neural activity (i.e., not driven by 𝑥𝑥𝑘𝑘).  158 

Prior works have not addressed the problem of fitting this model in a way that dissociates and prioritizes 159 

the learning of behaviorally relevant latent states. To enable such preferential/prioritized learning, we 160 

developed IPSID, which uses new linear algebraic operations to directly extract the subspace of intrinsic 161 

behaviorally relevant latent states from neural, behavioral and input training data, and then learns the 162 

model parameters. IPSID provides a new two-stage learning procedure that incorporates input as follows. 163 

In the first stage of IPSID, we develop algebraic operations that extract the behaviorally relevant latent 164 

states with priority via an oblique (non-orthogonal) projection of future behavior onto past neural activity 165 

and past inputs along the subspace spanned by future inputs (Fig. S1, SI Methods). Then, in an optional 166 

second stage, we devise algebraic operations that extract any other latent neural states by another 167 

oblique projection from any residual/unexplained future neural activity onto past neural activity and past 168 

inputs along future inputs (Fig. S1). Model parameters are then learned via least squares based on the 169 

extracted latent states and their relation in equation (1). This two-stage learning enables the new 170 

capability for prioritized learning of the intrinsic behaviorally relevant neural dynamics over other intrinsic 171 

neural dynamics in the presence of inputs because the former dynamics are learned first, i.e., in the first 172 

stage. The two-stage learning allows us to learn a minimally complex model of the intrinsic behaviorally 173 

relevant neural dynamics in the first stage (i.e., a model with low-dimensional states), instead of having 174 

to learn a more complex model that simultaneously includes all intrinsic neural dynamics. This leads to 175 

learning more accurate models of intrinsic behaviorally relevant dynamics for a given dataset as shown 176 

in extensive simulations and in real neural data analyses below. After the model is learned, in the test 177 

set, extraction of intrinsic behaviorally relevant neural dynamics is done without looking at behavior and 178 

via a Kalman filter associated with the learned model (SI Methods). Details of IPSID are provided in SI 179 

Methods and Notes S1-S2.  180 
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We found that among the learning methods, the only method that correctly learns the intrinsic 181 

behaviorally relevant neural dynamics in the presence of inputs is the new IPSID (Fig. 1d) as 182 

demonstrated below. Further, by implementing a numerical optimization approach that maximizes the 183 

data likelihood with block-structured constraints on model parameters (SI Methods), we demonstrate the 184 

critical importance of two new capabilities provided by IPSID for dissociating the intrinsic behaviorally 185 

relevant neural dynamics: i) prioritized learning of these dynamics enabled via the new two-stage learning 186 

algorithm in the presence of input as described above, and ii) ensuring all learned latent states are directly 187 

present in neural recordings even when inputs affect behavior. To assess the methods, we look at the 188 

eigenvalues of the latent state transition matrix 𝐴𝐴, which quantify the dynamics (SI Methods, Fig. 1c,d). 189 

We also compute the accuracy in decoding behavior from neural activity as well as in neural self-190 

prediction – defined as predicting neural activity one-step-ahead from its own past (SI Methods). 191 
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Fig. 1 | Intrinsic behaviorally relevant neural dynamics may be confounded by other intrinsic neural dynamics as well as by 
measured input dynamics, a challenge that the new IPSID method resolves. 
(a) Data generated from a simulated brain following equation (1) with a 1D input and a 4D latent state out of which only 2 
dimensions (green) drive behavior. The input is taken as the sensory input such as target position moving up and down on a 
screen as depicted, but input can also consist of measured activity from other upstream brain regions. Neural dynamics that 
arise from the recurrent dynamics of neuronal networks within the brain region constitute the intrinsic neural dynamics. 
Oscillating temporal pattens of the input (left) constitute the input dynamics and clearly also appear in the neural activity 
(right) in a way that is mixed with the intrinsic neural dynamics. (b) Appearance of input dynamics in neural dynamics can 
also be clearly seen in the frequency domain representation of (a), showing: the power spectral density (PSD), or spectrum, 
of input time series 𝑆𝑆𝑢𝑢(𝑓𝑓) (top-left); PSD of unmeasured excitations 𝑆𝑆𝑤𝑤(𝑓𝑓) modeled as white Gaussian noise (bottom-left); 
transfer function from inputs to the neural activity (middle); and PSD of neural activity (right). Neural activity exhibits two 
dominant frequency components. In this simulation, the lower-frequency component is the reflection of input dynamics while 
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the higher-frequency component represents intrinsic neural dynamics (as it is also present in the transfer function). Horizontal 
axes show the normalized frequency with 1 being the maximum possible frequency, i.e., 𝜋𝜋. (c) The eigenvalues of the latent 
state transition matrix 𝐴𝐴 in the simulated brain model in equation (1). (d) Learned eigenvalues using (I)PSID or (I)NDM. Red 
lines indicate the error in the learned eigenvalues. The normalized error value—average line length normalized by the average 
true eigenvalue magnitude—is noted below each plot. Only IPSID correctly learns the intrinsic behaviorally relevant neural 
dynamics as quantified by the eigenvalues (SI Methods). Unlike IPSID, NDM or PSID may not learn the correct intrinsic 
dynamics but instead learn dynamics (eigenvalues) that are deflected towards the input dynamics (eigenvalues) in this 
example. 

 192 

Results 193 

IPSID correctly learns all model parameters in the presence of inputs 194 

We first validated the accurate learning of intrinsic behaviorally relevant neural dynamics using IPSID 195 

in a simulated model with 4-dimensional latent states out of which only two dimensions were involved in 196 

generating the simulated behavior (Fig. 1a). The eigenvalues of the state transition matrix 𝐴𝐴 affect the 197 

transfer function from the input to the states and neural activity (Fig. 1b), characterize the state response 198 

to excitations, and describe the dynamics (Fig. 1c, SI Methods). We thus use these eigenvalues to 199 

quantify the intrinsic neural dynamics (SI Methods) . We found that the new IPSID was the only method 200 

that correctly learned the eigenvalues associated with the intrinsic behaviorally relevant neural dynamics 201 

(Fig. 1d). In contrast, NDM or PSID that do not consider inputs learned models that were confounded by 202 

input dynamics and INDM that does not consider behavior was confounded by other intrinsic neural 203 

dynamics beyond the behaviorally relevant ones.  204 

To more generally validate IPSID, we applied it to data generated from 100 random models in the form 205 

of equation (1) with random parameters and dimensions (SI Methods). To provide input to these models, 206 

we independently simulated another 100 models without input (equation (3) from SI Methods) with 207 

random parameters and passed their output as the input to the original models—these inputs are thus 208 

generated by an independent dynamical system and can be thought of as activity of other brain regions 209 

or as structured sensory inputs. We found that IPSID correctly learned all model parameters in the 210 

presence of inputs (Fig. S2). Moreover, the rate of convergence of parameters as a function of training 211 

samples was similar to INDM (Fig. S2b); this suggests that despite its additional capability in dissociating 212 
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those intrinsic neural dynamics that are behaviorally relevant, IPSID does not require more training data 213 

than INDM even when modeling all latent states.  214 

IPSID correctly prioritizes the learning of intrinsic behaviorally relevant neural dynamics 215 

in the presence of inputs 216 

In another numerical simulation, we found that IPSID correctly prioritizes the learning of intrinsic 217 

behaviorally relevant neural dynamics in the presence of inputs, which is an important new capability for 218 

learning these dynamics accurately (Fig. 2, also see Fig. 4 later). Thus, IPSID addresses the challenge 219 

of preferential dynamical modeling of neural-behavioral data with inputs (Fig. 2). We simulated 100 220 

random models formulated by equation (1) with a 6D latent state, out of which only 2 dimensions were 221 

behaviorally relevant (SI Methods). To get the input to these models, we independently simulated 100 222 

random models without input (equation (3) from SI Methods) with 2D latent states and passed their 223 

output as the input to the original models. We then learned models using (I)PSID and (I)NDM with varying 224 

latent state dimensions (𝑛𝑛𝑥𝑥). In each case, we computed the error in learning the intrinsic behaviorally 225 

relevant eigenvalues, which quantifies how accurately intrinsic behaviorally relevant dynamics are 226 

learned (Fig. 2b, Fig. S3).  227 

We found that only IPSID could learn all the intrinsic behaviorally relevant neural dynamics using the 228 

minimal latent state dimension of 2, which is the true simulated dimension of these dynamics (Fig. 2b, 229 

Fig. S4). IPSID was able to achieve this by considering both inputs and behavior in its preferential 230 

modeling of neural dynamics during learning. This meant that IPSID could simultaneously dissociate the 231 

intrinsic behaviorally relevant neural dynamics form other intrinsic neural dynamics and from input 232 

dynamics. In contrast, NDM and PSID do not consider the input and thus were unable to dissociate the 233 

intrinsic versus input dynamics, leading to a high eigenvalue error (Fig. 2b). Further, even though INDM 234 

considers inputs, it does not consider behavior during learning and thus it required much larger latent 235 

state dimensions to learn the intrinsic behaviorally relevant eigenvalues (Fig. 2b). Also, even INDM with 236 

a higher state dimension (i.e., 6) had larger eigenvalue error when using the same number of training 237 

samples as IPSID (Fig. 2c); this is because models with higher dimensional states are more complex 238 
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and thus more difficult to learn. Indeed, IPSID required orders of magnitude fewer training samples to 239 

learn the intrinsic behaviorally relevant neural dynamics in the presence of inputs (Fig. 2c).   240 

We next found that NDM and PSID models, which do not consider input, could not accurately learn the 241 

intrinsic behaviorally relevant dynamics even by increasing their state dimension. Specifically, we first 242 

learned an NDM/PSID model with a high latent state dimension that learns a mixture of all intrinsic neural 243 

dynamics and input dynamics. We then reduced this model, as we did with INDM above, by only keeping 244 

the two dimensions that were best in decoding behavior and looking at their associated eigenvalues (SI 245 

Methods). Even with this approach, the reduced models were still much less accurate than low-246 

dimensional models learned with IPSID (see Fig. 2b at high dimensions).  247 
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Fig. 2 | IPSID correctly prioritizes the learning of intrinsic behaviorally relevant neural dynamics thus achieving preferential 
neural-behavioral modeling even in the presence of input. 
(a) For one simulated model (equation (1)), the identified intrinsic behaviorally relevant eigenvalues are shown for (I)PSID 
and (I)NDM using a 2D latent state. Eigenvalues of the state transition matrix 𝐴𝐴 in the true model are shown as colored circles. 
Crosses show the identified behaviorally relevant eigenvalues when modeling the neural activity. (b) Normalized error of 
learning the intrinsic behaviorally relevant eigenvalues given 106 training samples is shown when using (I)PSID and (I)NDM, 
averaged over 100 random models each with total latent state dimension of 𝑛𝑛𝑥𝑥 = 6 and behaviorally relevant state dimension 
of 𝑛𝑛1 = 2. For all models, an independent random model with state dimension of 2 generated the input (SI Methods). Solid 
lines show the average across models and shaded areas show the s.e.m. (n = 100 random models). For all methods, we vary 
the state dimension 𝑛𝑛𝑥𝑥 from 1 to 8; for 𝑛𝑛𝑥𝑥 > 2, we find the 2 state dimensions that best predict behavior and evaluate their 
2 associated eigenvalues (SI Methods). We find that to learn the intrinsic behaviorally relevant eigenvalues, IPSID only needs 
a minimal state dimension 𝑛𝑛𝑥𝑥 = 2 (true 𝑛𝑛1) whereas INDM needs a high state dimension 𝑛𝑛𝑥𝑥 = 6 (true total model dimension 
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𝑛𝑛𝑥𝑥). This also leads to INDM’s higher error with the same training sample size in (c). Also, even using high-dimensional states, 
NDM and PSID cannot dissociate which of the eigenvalues are intrinsic and thus do not learn the correct reduced models 
(because they do not consider input). (c) Normalized error of learning the intrinsic behaviorally relevant eigenvalues vs. 
training samples for 100 random models. For INDM, we try i) directly learning a model with a 2D latent state and ii) first 
learning a model with a high enough dimension to achieve almost zero error in (b) and then reducing the model to keep the 
top 2 dimensions with the best behavior decoding (indicated by dimension → 2) (SI Methods). INDM requires orders of 
magnitude more training samples than IPSID to learn the intrinsic behaviorally relevant eigenvalues with similar accuracy. 
 

 248 

IPSID can dissociate the effects of input on behavior that are reflected in the recorded 249 

neural activity from those that are not  250 

In equation (1), all the effects of input on behavior happen through latent states that are reflected in 251 

the recorded neural activity. In this scenario, all the downstream regions of the input are either covered 252 

in the recordings or reflected in them (e.g., are downstream of the recorded regions). In addition to this 253 

scenario, we now show that IPSID can also apply to a new scenario where inputs may also influence 254 

behavior through pathways/regions that are neither recorded nor reflected in the recorded activity (Fig. 255 

3a). We formulate this new scenario with the following model 256 
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where compared with equation (1), an additional segment 𝑥𝑥𝑘𝑘
(3) is added to the latent state 𝑥𝑥𝑘𝑘 to represent 257 

the effects of input on behavior 𝑧𝑧𝑘𝑘  that are not reflected in the recorded neural activity 𝑦𝑦𝑘𝑘 . In this 258 

formulation, IPSID dissociates the latent state into three segments: (1) 𝑥𝑥𝑘𝑘
(1) ∈ ℝ𝑛𝑛1 , which is the 259 

behaviorally relevant latent state that is reflected in neural activity 𝑦𝑦𝑘𝑘, (2) 𝑥𝑥𝑘𝑘
(2) ∈ ℝ𝑛𝑛2, which is the latent 260 

state that describes any other neural dynamics, and (3) 𝑥𝑥𝑘𝑘
(3) ∈ ℝ𝑛𝑛𝑥𝑥−𝑛𝑛1−𝑛𝑛2 , which is the behaviorally 261 

relevant latent state not reflected in the recorded neural activity 𝑦𝑦𝑘𝑘. These three types of latent states are 262 

shown in an example in Fig. 3a. Note that in this case, only 𝑥𝑥𝑘𝑘
(1) and 𝑥𝑥𝑘𝑘

(2) constitute the intrinsic latent 263 
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states because only these latent states drive the recorded neural activity. To add support for dissociation 264 

of these three types of latent states to IPSID, we developed two additional optional steps for IPSID (Fig. 265 

S5, Note S2).  266 

In the first additional step, before the initial oblique projection of behavior onto neural activity and input, 267 

we project behavior onto the subspace of latent states in neural activity (i.e., neural states) irrespective 268 

of the relevance of these states to behavior; these neural states are obtained using only the second stage 269 

of IPSID (SI Methods, Note S2, Figs. S5, S6a). We then apply IPSID as before (Note S1), but now use 270 

the results of this additional projection as the behavior signal. This additional projection ensures that 271 

behavior dynamics that are not encoded in the recorded neural activity are not included in the first set of 272 

states 𝑥𝑥𝑘𝑘
(1).   273 

In the second additional step, we optionally extract 𝑥𝑥𝑘𝑘
(3), which represents any behavior dynamics that 274 

are driven by the input but are not encoded in the recorded neural activity. This means that 𝑥𝑥𝑘𝑘
(3) reflects 275 

processing in the downstream regions of input that are not recorded/reflected as part of neural activity. 276 

In this step, after performing the first additional step above and subsequently both stages of IPSID to 277 

extract 𝑥𝑥𝑘𝑘
(1) and 𝑥𝑥𝑘𝑘

(2), we compute the residual behavior that is still not predictable using 𝑥𝑥𝑘𝑘
(1) and 𝑥𝑥𝑘𝑘

(2). 278 

Then, using the second stage of IPSID, we build a model that predicts these residual behavior dynamics 279 

purely using the input (SI Methods, Note S2, Fig. S5) – this gives 𝑥𝑥𝑘𝑘
(3), which summarizes the direct 280 

effect of input on behavior dynamics that are not reflected on the recorded neural activity. Together, these 281 

two additional steps enable IPSID to learn a model as in equation (2). If extraction of 𝑥𝑥𝑘𝑘
(3) is not of interest, 282 

the second step can be optionally skipped, and solely the first step can be added to IPSID to ensure that 283 

𝑥𝑥𝑘𝑘
(1) and 𝑥𝑥𝑘𝑘

(2) are encoded in the recorded neural activity. 284 

We simulated models in the form of equation (2) and confirmed that with the above additional steps, 285 

IPSID correctly dissociates intrinsic behaviorally relevant neural dynamics (i.e., 𝑥𝑥𝑘𝑘
(1)) from other dynamics 286 

– i.e., from other intrinsic neural dynamics, input dynamics, and behavior dynamics not encoded in the 287 

recorded neural activity (Fig. 3c). Moreover, across 100 random models, IPSID correctly learned all 288 
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model parameters in equation (2) (Fig. S7). Finally, by learning 𝑥𝑥𝑘𝑘
(3) , which captures the behavior 289 

dynamics that are predictable from input but are not reflected in the recorded neural activity, IPSID also 290 

achieved ideal prediction of behavior from input and neural activity (Fig. S8). 291 

These results demonstrate that IPSID is applicable to scenarios where the recorded neural activity 292 

does not cover all the downstream regions of the measured input. In this scenario, IPSID can also 293 

dissociate the influences of input on behavior that are reflected in the recorded neural activity from those 294 

that are not. Without this capability, some of the learned dynamics may not be present in the recorded 295 

region (Fig. 3c, top row comparisons). Thus, this is another new capability by IPSID that is important for 296 

accurately dissociating intrinsic behaviorally relevant dynamics in neural recordings.  297 
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Fig. 3 | IPSID also applies to scenarios when the recorded regions do not cover all downstream regions of the input. 
(a) A simulated brain (as in equation (2)) with a 6D latent state out of which only 4 dimensions drive the recorded neural 
activity and the other 2 dimensions just drive the behavior. (b) The eigenvalues of the state transition matrix 𝐴𝐴 in the 
simulated model. The 4 eigenvalues associated with the 4 state dimensions that drive the recorded neural activity are shown 
as green and orange circles, depending on whether they drive behavior (green) or not (orange). Eigenvalues associated with 
the two additional state dimensions that only drive the behavior but not recorded neural activity are shown as black circles. 
(c) Eigenvalues of the models learned using IPSID, block-structured numerical optimization, IPSID (without additional steps), 
PSID and (I)NDM. A simplified schematic of key operations for each method is in Fig. S6. The block-structured numerical 
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optimization learns the model parameters via gradient descent (SI Methods). Notation is as in Fig. 1. IPSID can also address 
this scenario using its additional steps. Only IPSID correctly learns the intrinsic behaviorally relevant neural dynamics even in 
this scenario, and its new capability via the additional steps is needed to avoid the black eigenvalues/dynamics (behaviorally 
relevant dynamics not reflected in the recordings; see the top row comparisons).  

 298 

Prioritized learning of intrinsic behaviorally relevant neural dynamics enabled with 299 

IPSID is critical for their accurate dissociation 300 

A new capability provided by IPSID that is critical for disentangling intrinsic behaviorally relevant 301 

dynamics is to prioritize their learning over other intrinsic neural dynamics in the presence of input. This 302 

prioritized learning is enabled with IPSID’s new two-stage learning procedure that incorporates input. As 303 

shown earlier in Fig. 2, without prioritized learning, more latent states would be needed to ensure that 304 

intrinsic behaviorally relevant neural dynamics are included in the model, which will result in much higher 305 

error in learning these dynamics for a given training dataset (Fig. 2c). To further show the importance of 306 

the new prioritized learning capability, we implemented a block-structured numerical optimization 307 

approach that fits a model with the same block structure as the IPSID model in equation (6) from SI 308 

Methods. This optimization fits all model parameters to simultaneously maximize the neural-behavioral 309 

data log-likelihood (SI Methods). Note that the two-stage learning procedure in IPSID enforces a distinct 310 

learning objective, which is future behavior prediction in stage 1 and future residual neural prediction in 311 

stage 2. Thus, the IPSID objective is different from the numerical optimization objective, which is to 312 

simultaneously optimize the likelihood of neural and behavioral data. We applied the numerical 313 

optimization approach to the same simulated data as in Fig. 2c. We found that this block-structured 314 

numerical optimization approach is significantly less accurate than IPSID for a given number of training 315 

samples. Indeed, this approach requires orders of magnitude more training samples compared to IPSID 316 

to achieve the same accuracy (Fig. 4 blue). This analysis shows that simply imposing a set of block-317 

structured model parameters as in equation (6) is not sufficient for accurate disentanglement; rather the 318 

new capability for prioritized learning enabled by the two-staged learning approach in IPSID is important 319 

for achieving accurate disentanglement.  320 

We also compared the computation times of the block-structured numerical optimization approach vs. 321 

IPSID. Model fitting using IPSID, which is based on a fixed set of linear algebraic operations, was 322 
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significantly faster than model fitting using the numerical optimization approach (Fig. S9). Finally, this 323 

numerical optimization approach does not dissociate the effects of input on behavior that are reflected in 324 

the recorded neural activity from those that are not. Therefore, this approach may learn behavior 325 

dynamics not encoded in the recorded neural activity (Fig. 3c). This highlights the importance of the 326 

additional steps incorporated in IPSID as another new capability that is important for dissociating the 327 

intrinsic behaviorally relevant dynamics that are present in the recorded neural activity, as also explained 328 

in the previous section (Fig. 3c, Fig. S5, Note S2). Future work may be able to use similar ideas as the 329 

prioritized learning or these additional steps to develop numerical optimization approaches for the 330 

disentanglement problem formulated here (Discussion).  331 

 
Fig. 4 | IPSID outperforms numerical optimization with block-structured model parameters in terms of accuracy for model 
learning, showing the importance of prioritized learning and dissociation.  
Notation is as in Fig. 2c, but also shows the error of learning the intrinsic behaviorally relevant eigenvalues for an additional 
learning approach based on numerical optimization with block-structured model parameters (SI Methods). Similar to INDM 
(which is replicated from Fig. 2c here), this optimization approach is significantly less accurate for a given training data (i.e., 
number of samples). Also, it requires orders of magnitude more training samples than IPSID to learn the intrinsic behaviorally 
relevant eigenvalues as accurately.  
 

Realistic motor task simulations show how sensory inputs to the brain can confound 332 

models of neural activity  333 

As explained earlier (Fig. 1a), sensory inputs such as task instructions are effectively inputs to the 334 

brain that can have different dynamics from task to task, even if the intrinsic neural dynamics remain 335 

unchanged. Thus, unless accounted for during modeling, task-specific sensory inputs could confound the 336 

learned intrinsic neural dynamics. Developing a method that can learn the correct intrinsic neural 337 
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dynamics regardless of the task would allow experimenters to study any given behavioral task of interest 338 

or compare intrinsic dynamics across different tasks without worrying about confounding the results and 339 

without limiting the task design. We hypothesized that even when the intrinsic neural dynamics remain 340 

unchanged, methods that do not consider the task sensory inputs may learn different and incorrect 341 

intrinsic dynamics depending on the exact task, whereas IPSID can learn the same intrinsic dynamics 342 

regardless of the task. Here we confirm this hypothesis by simulating a brain performing various realistic 343 

cursor control motor tasks during which simulated neural data for model training is observed (Fig. 5; SI 344 

Methods).  345 

Specifically, we modeled the brain as an optimal feedback controller42–44 (OFC), which controls a part 346 

of its state that represents the 2D cursor kinematics such that the cursor moves to targets presented via 347 

task instructions (SI Methods; Fig. 5a). The eigenvalues of the state transition matrix for the true 348 

simulated brain model are shown in Fig.5b. For generality, as part of the simulated brain, we included 349 

two latent states (similar to 𝑥𝑥𝑘𝑘
(3) in equation (2)) that are driven by input and affect the movement (i.e. 350 

behavior), but are not reflected in the neural dynamics (SI Methods). As the first task, we simulated 8 351 

equally spaced targets around a circle and instructed the simulated brain to move the cursor to the targets 352 

in order (Fig. 5c, left). As the second task, we simulated a standard center-out-and-back task where in 353 

each trial the cursor needs to move from the center to a randomly-specified target among 8 targets and 354 

then return back to the center (Fig. 5c, middle). Lastly, we simulated a 10 by 10 grid of targets where in 355 

each trial a random target within a limited distance of the most recent target needs to be visited (Fig. 5c, 356 

right) similar to the tasks in our NHP datasets (SI Methods). For each task, we used (I)PSID and (I)NDM 357 

to learn models of neural dynamics (Fig. 5d). 358 

We found that regardless of the task, IPSID correctly learned the intrinsic behaviorally relevant neural 359 

dynamics. This is evident from comparing the IPSID eigenvalues and flow fields for every task with their 360 

ground-truth (first row of Fig. 5d vs. Fig. 5b). INDM, which considers input but not behavior during 361 

training, learned an approximation of some intrinsic behaviorally relevant neural dynamics with error, and 362 

also mistakenly included some intrinsic neural dynamics that were not relevant to behavior (Fig. 5d, 363 

second row). PSID, which considers behavior and neural activity but not input during training, learned 364 
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biased intrinsic neural dynamics that were influenced by task instruction inputs (Fig. 5d, third row). Finally, 365 

NDM, which only considers neural activity during training, not only learned neural dynamics that were not 366 

related to behavior, but also learned inaccurate intrinsic behaviorally relevant neural dynamics that were 367 

influenced by task instruction inputs (Fig. 5d, fourth row). For example, in the first task, the biased 368 

dynamics learned by NDM and PSID were very close to the dominant frequency of the task instructions, 369 

which was around 0.2Hz (Fig. 5d, left column). These results demonstrate that by considering both 370 

behavior and sensory inputs such as task instructions during model training, IPSID can learn models of 371 

neural dynamics that are not confounded by the specific behavioral task during which neural data is 372 

collected. The ability to avoid these confounds is critical for comparing intrinsic neural dynamics across 373 

tasks in neuroscience investigations, as we also show in our real NHP neural data analyses below (Fig. 374 

8). 375 

We next found that models of neural dynamics learned by IPSID can generalize to other behavioral 376 

tasks that are not observed during training unlike methods that do not consider inputs. This is because 377 

by considering task instruction inputs, IPSID avoids learning models of neural dynamics that are 378 

confounded by the dynamics of instructions in a specific task. Indeed, models trained by IPSID on data 379 

from one task had minimal drop in behavior decoding performance when tested on data from a different 380 

task. In contrast, models learned by all other methods had significantly larger drops in behavior decoding 381 

performance in the other task (Fig. S10; P < 0.001; one-sided signed-rank; n = 10 simulations).  382 
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Fig. 5 | By considering task instruction inputs, IPSID learns the correct intrinsic behaviorally relevant neural dynamics 
regardless of the behavioral task unlike other methods. 
(a) The brain model consists of an optimal feedback controller (OFC) combined with a linear state space model (LSSM). Four 
of the 8 latent state dimensions of the LSSM encode the 2D position and velocity of the cursor (SI Methods). OFC controls 
these 4 state dimensions such that cursor position reaches the target shown on the screen while cursor velocity goes to zero 
(i.e., cursor stops at target). (b) Eigenvalues of the state transition matrix in the full brain model (i.e., OFC together with the 
LSSM) and the flow field associated with the behaviorally relevant neural eigenvalues. Flow fields show the direction in which 
the state would change starting from various initial values. In this brain model, there are two sets of behaviorally relevant 
complex conjugate eigenvalues that are in the same place and thus overlapping. Each set is associated with one movement 
direction, horizontal and vertical, respectively. The fact that there are two overlapping sets of eigenvalues is indicated by 
writing a 2 next to these eigenvalues. In addition to the 4 states representing position and velocity in the 2D space, there are 
2 states that only drive the neural activity, whose associated eigenvalues are depicted as orange circles. There are also 2 
states that only drive the behavior, whose associated eigenvalues are depicted as black circles. (c) Tasks performed by the 
simulated brain. (d) Identified eigenvalues for each task using each method with a state dimension of 4. The flow field for one 
of the two sets of eigenvalues identified by each method (the one with the lighter green/red color) is also shown as an 
example. Only IPSID correctly learns the intrinsic behaviorally relevant neural eigenvalues regardless of the behavioral task 
used during training.  
 

 383 

Modeling task instructions as inputs reveals distinct intrinsic behaviorally relevant 384 

neural dynamics in non-human primate neural population activity  385 

We next used IPSID to study intrinsic behaviorally relevant neural dynamics in two independent motor 386 

cortical datasets recorded from three monkeys (monkeys I and L from the first datasets and monkey T 387 

from the second dataset) during two distinct behavioral motor tasks with planar cursor movements (Fig. 388 

6a, Fig. 7a). In the first dataset, which was made publicly available by the Sabes lab45, primary motor 389 
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cortical (M1) population activity was recorded while two monkeys controlled a 2D cursor to reach random 390 

targets on a grid (Fig. 6a, SI Methods). The 3D position of the monkeys’ fingertip was tracked and the 391 

horizontal elements were passed on to control the cursor (SI Methods). In the second dataset, which 392 

was made publicly available by the Miller lab46,47, population activity from dorsal premotor cortex (PMd) 393 

was recorded while the monkey performed sequential reaches to random target positions on a plane (Fig. 394 

7a, SI Methods). The cursor was controlled via a manipulandum that only allowed horizontal movements. 395 

For all subjects, we modeled the population spiking activity (SI Methods). We took the 2D position and 396 

velocity of the cursor as the behavior signal, and the timeseries of target positions as the input task 397 

instructions (Figs. 6a, 7a). We modeled the smoothed spike counts3,13,39,48 in all datasets as neural 398 

signals (SI Methods). 399 

First, we found that IPSID revealed distinct intrinsic behaviorally relevant neural dynamics that were 400 

not found by other methods. Similar to our earlier simulation results (Fig. 5), this could be seen from the 401 

learned eigenvalues by IPSID that were different from those found by other methods (Figs. 6b, 7b, S11b). 402 

Second, eigenvalues found by PSID were far from those found by IPSID, whereas eigenvalues found by 403 

NDM were close to those found by INDM (Figs. 6b, 7b, S11b). Note that IPSID/PSID focus on explaining 404 

the behaviorally relevant neural dynamics whereas INDM/NDM focus on explaining the overall neural 405 

dynamics regardless of relevance to behavior. Thus, the aforementioned result suggests that task 406 

instructions, which are taken as inputs in IPSID/INDM models, are highly informative of behaviorally 407 

relevant neural dynamics (seen from their effect on PSID vs IPSID), but are not very informative of the 408 

overall neural dynamics (seen from NDM and INDM results being similar). This is consistent with the vast 409 

body of work suggesting that neural dynamics relevant to any specific behavior may constitute a minority 410 

of the overall neural variance5,6,19,32–39. 411 

In these analyses we used the additional steps in IPSID that were designed for scenarios in which 412 

some input dynamics may affect behavior through unrecorded regions/pathways (Fig. S5). However, we 413 

found that even without these additional steps, the average learned eigenvalues remained almost 414 

unchanged in one subject (Fig. S12b) and remained relatively similar in the other two subjects (Fig. 415 

S12a,c). This result could suggest, particularly in the former (Fig. S12b), that behaviorally relevant neural 416 
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dynamics that were downstream of visual task instruction inputs were largely reflected in, or downstream 417 

of, the motor cortical recordings here. Overall, eigenvalues that were learned by IPSID were unique and 418 

were not learned by any of the other three methods. Having established their distinction, the next question 419 

was whether these distinct eigenvalues found by IPSID better describe the data, which we explored next. 420 

IPSID finds more accurate intrinsic behaviorally relevant neural dynamics in non-human 421 

primate neural population activity 422 

We hypothesized that as in the simulation results (Fig. 5), the eigenvalues learned by IPSID are more 423 

accurate descriptions of the true intrinsic behaviorally relevant neural dynamics. We performed multiple 424 

evaluations to test this hypothesis. As a measure of closeness of two sets of dynamics, we computed the 425 

Kullback–Leibler (KL) divergence between the distribution of their associated eigenvalues (SI Methods).  426 

First, we explored whether IPSID can mitigate the problem of learning eigenvalues that reflect input 427 

dynamics. We characterized the input dynamics by modeling the time series of task instructions as a 428 

linear state-space model (equation (3), SI Methods). From this model, we found that in all three subjects 429 

and in the two tasks, the eigenvalues representing the dynamics of input task instructions were close to 430 

those learned using NDM and PSID but not to those learned using IPSID (Figs. 6b, 7b, S11b). Indeed, 431 

in all subjects, the KL-divergence between the input dynamics and learned dynamics was much larger 432 

for IPSID compared with PSID which cannot consider inputs during learning (Figs. 6c, 7c, S11c). This 433 

result shows the success of IPSID’s novel algebraic operations in mitigating the influence of task 434 

instruction inputs on intrinsic dynamics unlike NDM and PSID.  435 

Second, we demonstrated the success of preferential neural-behavioral modeling in the presence of 436 

input enabled by IPSID by comparing with INDM and NDM. In all three subjects, IPSID learned the 437 

intrinsic behaviorally relevant neural dynamics significantly more accurately than both INDM and NDM 438 

(Figs. 6d, 7d, S11d). This was evident from comparing the cross-validated behavior decoding from neural 439 

activity for these methods (Figs. 6d, 7d, S11d).  440 

Third, we demonstrated the success of IPSID’s new algebraic operations in accounting for inputs in 441 

preferential neural-behavioral modeling by comparing it to PSID, which is preferential yet does not 442 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted March 14, 2023. ; https://doi.org/10.1101/2023.03.14.532554doi: bioRxiv preprint 

https://doi.org/10.1101/2023.03.14.532554


Vahidi, Sani, Shanechi, 25/83 
 

consider inputs. We found that by considering inputs, IPSID learns models that were significantly more 443 

predictive of neural dynamics compared to PSID in all three subjects, as evident by comparing the cross-444 

validated neural self-prediction accuracy across the two methods (Figs. 6e, 7e, S11e). These results 445 

held even if the feedthrough term 𝐷𝐷𝑦𝑦𝑢𝑢𝑘𝑘 in equation (2) – which reflects the effect of input on neural activity 446 

directly and not through the latent states 𝑥𝑥𝑘𝑘 – was discarded when predicting neural activity using IPSID 447 

(Figs. 6e, 7e, S11e). This analysis demonstrates that the better prediction in IPSID is due to its latent 448 

states being more predictive of neural dynamics rather than due to a static feedthrough effect of input on 449 

neural dynamics. Overall, these consistent results from three NHPs in two independent neural datasets 450 

with two different tasks suggest that IPSID can successfully dissociate intrinsic behaviorally relevant 451 

neural dynamics from other intrinsic neural dynamics and from measured input dynamics. Moreover, 452 

these results demonstrate that not considering task instruction sensory inputs when modeling neural 453 

activity can result in less accurate models of neural dynamics and confound conclusions about intrinsic 454 

dynamics, a problem that IPSID addresses (see also next section).   455 
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Fig. 6 | IPSID uncovers distinct and more accurate intrinsic behaviorally relevant neural dynamics in motor cortical 
population activity by considering task instructions as inputs to the brain. 
(a) We modeled the population spiking activity in a monkey (monkey I) performing a 2D cursor control task (SI Methods). 
See Fig. S11 for results from a second monkey in this task and Fig. 7 for results in a second dataset recorded from a different 
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monkey in a different task. Spike counts are smoothed using a Gaussian kernel with s.d. of 50 ms (SI Methods). The 2D 
position and velocity of the cursor were taken as the behavior signal of interest and the target position time series was taken 
as the input to the brain. (b) Distribution of the eigenvalues of the state transition matrix for models learned using (I)PSID 
and (I)NDM across datasets. Input eigenvalue was found by applying NDM to the time-series of task instructions. Models 
were learned with a latent state dimension of 𝑛𝑛𝑥𝑥 = 4, which is sufficient for capturing most behavior dynamics (Fig. S13). 
We estimated the probability of an eigenvalue occurring at each location on the complex plane by adding Gaussian kernels 
centered at locations of all identified eigenvalues (n = 70 cross-validation folds across 2 channel subsets and 7 recording 
sessions, SI Methods). Red dots indicate the location that has the maximum estimated eigenvalue occurrence probability, 
with the associated frequency and decay rate (SI Methods) noted next to each plot. Similarly, when the occurrence 
probability map has more than one local maximum (i.e., for NDM or INDM), pink dots indicate the location of the second 
local maximum. (c) Quantified by KL-divergence, the eigenvalues learned by PSID were much closer to input eigenvalues 
than the eigenvalues learned by IPSID, showing the success of the new algebraic operations in accounting for inputs in 
neural-behavioral modeling. We computed the KL-divergence between the probability mass function of input eigenvalues 
(panel b, right) and the probability mass function of eigenvalues learned by IPSID/PSID (panel b, top/bottom left). (d-e) 
Cross-validated behavior decoding (panel d) and neural self-prediction (panel e) when modeling data with dimension 𝑛𝑛𝑥𝑥 =
4  and corresponding to models in (b). Triple asterisks indicate P < 0.0005 for a one-sided signed-rank test.  

 456 
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Fig. 7 | In a second dataset recorded from a different monkey and during a different task, IPSID again uncovers distinct and 
more accurate intrinsic behaviorally relevant neural dynamics in spiking activity by considering task instructions as inputs 
to the brain.  
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Similar to Fig. 6 for the second subject (monkey T, n = 15 cross-validation folds across 3 recording sessions, SI Methods) during 
a different second task with sequential reaches to random targets (SI Methods). 

IPSID uniquely revealed consistent intrinsic behaviorally relevant dynamics across 457 

three different subjects and two different tasks 458 

While the specific task instructions are different in the two behavioral tasks in the independent datasets 459 

here – reaches to random targets on a grid vs. sequential reaches to random targets –, the two datasets 460 

also have similarities in terms of neural recordings and tasks. Specifically, both independent datasets 461 

have recordings from the motor cortical areas, and both involve cursor control tasks with targets on a 2D 462 

plane. We thus hypothesized that given these similarities, there may be similarities in the intrinsic 463 

behaviorally relevant neural dynamics across the two tasks and three subjects. To test this hypothesis, 464 

we compared the distribution of eigenvalues learned using IPSID across all pairs of the three subjects 465 

(Fig. 8) and quantified their average difference with three metrics: (1) symmetric KL divergence between 466 

eigenvalue distributions (SI Methods, Fig. 8d), (2) correlation coefficient (CC) between the probability 467 

mass functions of the eigenvalue distributions (Fig. 8e) (3) distance between the modes of the eigenvalue 468 

distributions, i.e., most probable locations (Fig. 8f). We also repeated these analyses for INDM.  469 

We found that IPSID identified intrinsic behaviorally relevant dynamics that were strikingly similar 470 

across the two tasks and three subjects (Fig. 8). This result was clear from IPSID’s learned eigenvalues 471 

both qualitatively (Fig. 8a-c) and quantitatively based on the three abovementioned metrics (Fig. 8d-f). 472 

This similarity was despite the fact that the task instruction sensory inputs were distinct between the two 473 

tasks and that these recordings were from three different animals across two independent datasets. Also, 474 

even without its additional steps (Fig. S5, Note S2), IPSID still found largely similar eigenvalues across 475 

tasks and monkeys showing the robustness of this result, but the additional steps helped it reveal this 476 

similarity slightly more strongly (Fig. S12d-f).  477 

We next studied the dynamics found by INDM. INDM aims to learn the overall intrinsic neural dynamics 478 

while IPSID aims to prioritize the learning of intrinsic behaviorally relevant neural dynamics. Interestingly, 479 

unlike IPSID, the dynamics found by INDM were much more distinct across the three monkeys (Fig. 8), 480 

as is clear both visually (Fig. 8a-c) and quantitatively (Fig. 8d-f). Moreover, as shown in the previous 481 

section, the more similar dynamics found by IPSID were also a more accurate description of intrinsic 482 
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behaviorally relevant neural dynamics in each monkey (Figs. 6d, 7d, S11d). Together, these results 483 

suggest that while the overall intrinsic neural dynamics (as found by INDM) were different across these 484 

two planar motor tasks and three animals, the intrinsic behaviorally relevant neural dynamics were similar 485 

as revealed by IPSID. We propose that the similarity of the intrinsic behaviorally relevant neural dynamics 486 

may suggest that similar neural computations in the motor cortex underlie the planar cursor control tasks 487 

despite the differences between task instructions (i.e., inputs) and between animals. 488 

IPSID was the only method that revealed the above finding about similar dynamics because it not only 489 

accounts for inputs (task instructions), but also prioritizes the learning of intrinsic behaviorally relevant 490 

dynamics over other neural dynamics in the presence of input – which is something INDM cannot do. 491 

Interestingly, this result is also consistent with our simulation study in Fig. 5 in which IPSID was the only 492 

method that correctly found the fixed intrinsic behaviorally relevant dynamics regardless of task while 493 

other methods were confused by the task instructions and/or overall intrinsic dynamics. Thus, IPSID can 494 

help researchers explore and compare the intrinsic neural dynamics across different behavioral tasks 495 

without worrying about the specific structure of their task instruction inputs and how these inputs may 496 

confound their conclusions – e.g., mitigate the confound that similarity or lack thereof in dynamics may 497 

simply be due to input comparisons across tasks.  498 

Together, these results highlight that the new algebraic operations in IPSID can lead to both more 499 

accurate models and new useful scientific insight. These results also demonstrate that even though a 500 

comprehensive measurement of all inputs to a given brain region is typically experimentally infeasible, 501 

even incorporating partial input measurements (task instruction sensory inputs in this case) can already 502 

yield new insights into neural computations across different tasks and subjects. 503 
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Fig. 8 | IPSID reveals largely similar intrinsic behaviorally relevant neural dynamics across three monkeys and two tasks 
from two independent datasets while INDM identifies different overall intrinsic neural dynamics.  
(a) Same as Fig. 6b, showing the eigenvalues learned for IPSID and INDM. (b-c) Similar to (a) for the second and third monkeys, 
respectively (taken from Fig. 7 and Fig. S11). (d) Average pairwise symmetric KL-divergence between the eigenvalue 
probability mass functions of the three monkeys is computed for the IPSID/INDM results. (e) Average pairwise Pearson 
correlation coefficient (CC) of the probability mass functions of the three monkeys used to calculate the symmetric KL-
divergence in (d). (f) Average pairwise distance between the mode (i.e., most probable eigenvalue location) of the probability 
mass functions of the three monkeys used to calculate the symmetric KL-divergence in (d). Lower KL-divergence/mode 
distance implies more similarity across monkeys, with a minimum possible value of 0. Higher CC implies more similarity across 
monkeys, with a maximum possible value of 1. Based on all three metrics, IPSID finds largely similar eigenvalues across tasks 
and animals whereas INDM finds eigenvalues that are different across tasks and animals.  
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Discussion 504 

We developed IPSID, a novel method that provides the new capability to perform preferential 505 

dynamical modeling of neural-behavioral data in the presence of measured inputs. In the IPSID 506 

formulation, a dynamical model of neural activity is learned by accounting for measured input, neural, 507 

and behavioral data simultaneously, and the learning of intrinsic behaviorally relevant neural dynamics is 508 

prioritized over other intrinsic dynamics. By doing so, IPSID can dissociate intrinsic behaviorally relevant 509 

dynamics not only from other intrinsic dynamics, but also from the dynamics of measured inputs such as 510 

task instructions or recorded activity of upstream regions. We demonstrated that without IPSID, dynamics 511 

in measured inputs to a given brain region or other intrinsic neural dynamics may be incorrectly identified 512 

as intrinsic behaviorally relevant neural dynamics within that brain region and thus confound conclusions. 513 

Indeed, in the neural data from monkeys, we showed that task instructions can act as such confounding 514 

inputs. IPSID can analytically account for such measured inputs to reveal distinct and more accurate 515 

intrinsic behaviorally relevant neural dynamics compared with existing approaches even when they 516 

considered input (as in INDM). By doing so, IPSID also provided useful scientific insights about intrinsic 517 

neural dynamics of behavior across different tasks and animals, which were not found by other methods.   518 

IPSID could allow future studies to more easily design and compare across tasks without worrying 519 

about the temporal structure of task instruction inputs and how their reflection in neural activity may be 520 

misinterpreted as intrinsic neural dynamics. We showed this potential with experiments where a simulated 521 

brain with fixed intrinsic dynamics performed different cursor control tasks. We showed that sensory 522 

inputs in the form of task instructions could lead to learning intrinsic dynamics that incorrectly appeared 523 

task-dependent and different across tasks. IPSID addressed this issue and was the only approach that 524 

correctly found the intrinsic behaviorally relevant neural dynamics regardless of the task. Consistently, in 525 

the real motor cortical datasets and by modeling the task instructions as sensory inputs, IPSID not only 526 

learned the intrinsic behaviorally relevant neural dynamics more accurately, but also was the only method 527 

that revealed their similarity across tasks and animals.  528 

Unexpectedly, despite differences in animals and in motor tasks and their instructions across the motor 529 

cortical datasets, we found similar intrinsic behaviorally relevant dynamics in all three animals across 530 
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both tasks/datasets using IPSID. In contrast, INDM found that the dominant overall intrinsic dynamics 531 

were different across tasks and animals. This result may suggest that motor cortical regions across 532 

different animals could have different intrinsic dynamics overall, but the part of their intrinsic dynamics 533 

that is engaged in arm movements to control 2D planar cursors may have similarity. These similar 534 

dynamics may suggest that similar intrinsic neural computations in the motor cortex underlie the 535 

performance of these two different planar cursor-reaching tasks. Prior work has found similarities in static 536 

projections of neural activity49,50 across subjects50 or tasks49, but these prior works have not modeled 537 

temporal dynamics (e.g., eigenvalues) and have not disentangled the effect of task instruction input 538 

dynamics on the observed similarity. Thus, IPSID provides a new useful tool to explore whether such 539 

observed similarities reflect input dynamics or are intrinsic.  540 

When the activity of some upstream brain regions that have inputs to the recorded region27,31,51–53 is 541 

not measured, the learned intrinsic dynamics could also partly originate from these other regions. In the 542 

motor cortical datasets here for example, neural dynamics in upstream regions such as visual cortex—543 

which is involved in processing the sensory input and passing it to other regions along the visual-motor 544 

pathway—may also be reflected in the learned intrinsic motor cortical dynamics. Taking the sensory 545 

instructions as input can, to some extent, account for the dynamics of inputs from these upstream visual 546 

areas. Similarly, a sensory input that is not measured or accounted for, for example the sunrise-sunset 547 

cycles during chronic recordings, may confound the modeled neural dynamics of a specific behavioral or 548 

mental state such as mood (e.g., in the form of circadian rhythms)54,55. Thus, recording activity from more 549 

upstream regions and measuring more sensory inputs can allow IPSID to analytically consider more 550 

comprehensive inputs during modeling to better discover intrinsic behaviorally relevant dynamics. As it is 551 

mostly experimentally infeasible to identify and record all inputs to a given brain region, a complete 552 

disentanglement of intrinsic dynamics from all input dynamics to a region becomes impractical. This 553 

experimental limitation is thus a fundamental limit on methodological efforts aimed at disentanglement. 554 

Thus, one still needs to interpret the results cautiously by noting that only dynamics of measured inputs 555 

are being disentangled from intrinsic dynamics. Nevertheless, our results show that even this partial 556 

disentanglement can lead to more accurate models and to new useful insights compared to alternative 557 
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models which either do not consider measured inputs, or consider measured input but not behavior during 558 

learning. 559 

Here, we address the challenge of preferential modeling of neural-behavioral data with measured 560 

inputs, which has been unresolved. For non-preferential modeling of neural data on its own and when 561 

inputs are not measured, prior studies have looked at the distinct problem of separating the recorded 562 

neural dynamics into intrinsic dynamics and a dynamic input that is inferred12,56,57. This decomposition is 563 

typically done by making certain a-priori assumptions about the input such that inputs can be inferred, for 564 

example that input is constrained to be considerably less dynamic than intrinsic neural dynamics, or that 565 

input is sparse or spatiotemporally independent12,56. In addition to preferential neural-behavioral modeling 566 

with measured inputs, which is addressed here, future work can extend preferential modeling to also 567 

incorporate similar input inference approaches, which could be complementary to IPSID. For example, 568 

such input inference approaches can help further interpret the intrinsic behaviorally relevant dynamics 569 

extracted by IPSID and hypothesize which parts of them could be due to unmeasured inputs. The results 570 

from such input inference efforts can depend on the a-priori assumptions made regarding the input, since 571 

mathematically both extremes are plausible when inputs are not measured: all neural dynamics could be 572 

due to input from another area or they could all be intrinsic. For this reason, validating the inferred inputs 573 

from these inference approaches against actually measured inputs is an important step12,53,56,57. Such 574 

validation is also important because the underlying dynamics and inputs can have potential nonlinearities, 575 

thus making the inference of unmeasured inputs challenging or infeasible due to the potential 576 

unidentifiability in nonlinear systems58. 577 

One main contribution here is to formulate and highlight the problem of how intrinsic neural dynamics 578 

underlying a specific behavior can be confounded by both input dynamics and other intrinsic neural 579 

dynamics. We formulated this disentanglement problem that simultaneously involves measured input, 580 

neural, and behavioral data during learning, and derived IPSID as a new analytical solution based on 581 

subspace identification. By comparing with INDM and a block-structured numerical optimization approach 582 

(Figs. 3-4), we showed that two new capabilities in IPSID are critical for disentanglement: prioritized 583 

learning of intrinsic behaviorally relevant dynamics via the new two-stage learning operations with inputs, 584 
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and dissociating those behavior dynamics that are due to input but not reflected in the neural recordings 585 

from those that are via the additional analytical steps (Fig. S1, Fig. S5). Prior works have proposed 586 

enforcing block-structure on linear dynamic models and developed Expectation-Maximization algorithms 587 

for fitting them59,60. But these studies have distinct goals and thus do not address the input 588 

disentanglement problem, or the behaviorally relevant dissociation problem addressed here. As such, 589 

they also do not enable the above two new capabilities enabled by IPSID that are critical for solving these 590 

problems. Future work can utilize the ideas developed here for enabling the IPSID capabilities in order to 591 

develop alternative numerical optimization solutions to the formulated disentanglement problem.  592 

In addition to sensory inputs or activity in other brain regions, the input could also be any external 593 

electrical or optogenetic brain stimulation, for example in a brain-machine interface (BMI). Developing 594 

novel closed-loop stimulation treatments for mental disorders such as depression61,62 hinges on building 595 

dynamic models of neural activity that satisfy two criteria: (i) describe how mental states are encoded in 596 

neural activity61,62; (ii) describe the effect of electrical stimulation on the neural activity28,62,63. The 597 

approach developed here enables learning of models that satisfy both criteria. First, by prioritizing 598 

behaviorally relevant dynamics, models accurately learn the neural dynamics relevant to behavioral 599 

measurements of mental states (e.g. mood reports in depression61). Further, this prioritization enables 600 

the learned models to have lower-dimensional latent states, which is important in developing robust 601 

controllers64. Second, the models can explicitly learn the effect of external electrical stimulation 602 

parameters on neural activity28,63. 603 

Here we used continuous valued variables with Gaussian distributions to model neural activity, as has 604 

been done extensively in prior works modeling local field potentials (LFP)14,19,30,44,61,65,66 and spike 605 

counts7,19,67,68. However, recent works suggest that modeling spike counts as Poisson distributed 606 

variables8,12,69–72 can improve BMI performance70,71. Thus, an interesting direction is to extend the method 607 

to support Poisson distributed neural observations, or support simultaneous Gaussian and Poisson 608 

neural observations for multiscale modeling of neural modalities such as LFP and spikes together16,44,65,73–609 

75. Supporting general nonlinearities in the intrinsic dynamics and their relation to behavior is another 610 

interesting future direction20,41. Finally, developing adaptive extensions that update the dynamical latent 611 
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state model to adapt to non-stationarities in neural signals or to stimulation-induced plasticity43,76–79 will 612 

be important for BMIs and for studying learning and plasticity and their effect on intrinsic behaviorally 613 

relevant dynamics. 614 

In conclusion, we provide a new analytical method for preferential dynamical modeling of neural-615 

behavioral data that can account for measured inputs—whether sensory input, neural input from other 616 

regions, or external stimulation. We show the importance of doing so for correct interpretation of neural 617 

computations and dynamics that underlie behavior, for accurate modeling of intrinsic neural dynamics, 618 

and for gaining useful insights about neural computations of behavior across different tasks and subjects. 619 

These results and the new preferential modeling approach have important implications for future 620 

neuroscientific and neuroengineering studies. 621 
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Supplementary Information Methods (SI Methods) 833 

Non-preferential neural dynamic modeling with and without input 834 

Neural population activity exhibits rich temporal structures1–22,26,23,25,24. Neural dynamical modeling 835 

aims to describe all such temporal structures in neural activity2–5,7,8,10–14,16,21,23,24,26,61,65 without prioritizing 836 

the learning of dynamics related to any particular behavior, which is why we also refer to it as non-837 

preferential modeling. In this section we provide a brief overview of linear neural dynamical modeling with 838 

and without consideration of inputs, referred to respectively as INDM and NDM2,7,8,14,16,19,61,65. In NDM, 839 

neural population activity is modeled in terms of a latent state as  840 

 �
𝑥𝑥𝑘𝑘+1 =  𝐴𝐴  𝑥𝑥𝑘𝑘 +𝑤𝑤𝑘𝑘    
   𝑦𝑦𝑘𝑘 = 𝐶𝐶𝑦𝑦 𝑥𝑥𝑘𝑘 + 𝑣𝑣𝑘𝑘    (3) 

where as before, 𝑦𝑦𝑘𝑘 ∈  ℝ𝑛𝑛𝑦𝑦 and 𝑥𝑥𝑘𝑘 ∈ ℝ𝑛𝑛𝑥𝑥 represent the neural activity and the latent state of the neural 841 

population, respectively. 𝑣𝑣𝑘𝑘 ∈  ℝ𝑛𝑛𝑦𝑦  represents noises in neural activity and 𝑤𝑤𝑘𝑘 ∈  ℝ𝑛𝑛𝑥𝑥  represents 842 

excitations that drive the latent state, with their covariances defined as in equation (5) below. Given that 843 

in the NDM formulation inputs are not explicitly modeled, the excitations of the latent state represented 844 

by 𝑤𝑤𝑘𝑘 will capture a mixture of both the measured inputs and all other excitations that originate within the 845 

recorded brain region or from other brain regions. However, since 𝑤𝑤𝑘𝑘 is modeled as noise and not a 846 

dynamical system itself, the NDM model has to capture any temporal structure in inputs via the dynamics 847 

of the latent state 𝑥𝑥𝑘𝑘, which is quantified through the state transition matrix 𝐴𝐴. Thus, when inputs are 848 

temporally structured, the state dynamics—which are subsequently reflected in the neural activity 𝑦𝑦𝑘𝑘—849 

may incorrectly also incorporate the structured dynamics that exist in inputs, such as sensory inputs in 850 

the form of movement targets visually presented on a screen1,9,12,27,30 (we also show this in our results). 851 

As overviewed next, when inputs are measured, although not commonly done, INDM methods can be 852 

used to incorporate them in non-preferential modeling.   853 

In INDM, measured inputs are incorporated into equation (3) as 854 

 �
𝑥𝑥𝑘𝑘+1 =  𝐴𝐴  𝑥𝑥𝑘𝑘 + 𝐵𝐵  𝑢𝑢𝑘𝑘 + 𝑤𝑤𝑘𝑘  
   𝑦𝑦𝑘𝑘 = 𝐶𝐶𝑦𝑦 𝑥𝑥𝑘𝑘 + 𝐷𝐷𝑦𝑦𝑢𝑢𝑘𝑘 + 𝑣𝑣𝑘𝑘

 (4) 
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where 𝑢𝑢𝑘𝑘 ∈  ℝ𝑛𝑛𝑢𝑢 is the measured input to the neural population, e.g. inputs from other brain regions or 855 

sensory inputs. Unlike equation (3), in equation (4), the term 𝑢𝑢𝑘𝑘 explicitly represents measured inputs to 856 

the recorded brain region and thus the state dynamics reflected in 𝐴𝐴 no longer need to describe the 857 

dynamics of 𝑢𝑢𝑘𝑘; rather, state dynamics solely need to describe the intrinsic dynamics of the brain region 858 

in response to measured (𝑢𝑢𝑘𝑘) and unmeasured excitations (𝑤𝑤𝑘𝑘). Thus, this approach can dissociate the 859 

input dynamics form the intrinsic dynamics. While not commonly used in neuroscience, INDM has great 860 

utility in system identification40,80. However, INDM does not allow for preferential modeling of shared 861 

dynamics between two signals, such as neural activity and behavior. Here we address the unresolved 862 

challenge of modeling the effect of input within preferential modeling of two signals together (e.g., neural 863 

population activity and behavior). 864 

Enabling the modeling of input effects in preferential dynamical modeling  865 

Model formulation 866 

We develop a new method termed IPSID to enable dissociating the effect of input in preferential 867 

dynamical modeling of neural-behavioral data, which has not been possible to date. Unlike non-868 

preferential dynamical modeling—e.g., NDM/INDM and other approaches2–4,7,8,10–14,16—, which models 869 

the dynamics of a single signal such as neural population activity, preferential modeling dissociates the 870 

shared dynamics between two signals, such as neural population activity and behavior, and prioritizes 871 

the learning of these shared dynamics19.  872 

So far, input effects cannot be considered in preferential dynamical modeling, even when input is fully 873 

measured. Here we develop a preferential dynamical method that can achieve this goal and dissociate 874 

input dynamics and intrinsic dynamics. Specifically, the method simultaneously achieves two goals: It 875 

dissociates the intrinsic dynamics that originate in the recorded region from input dynamics that are simply 876 

reflected in the recorded regions but do not originate there (e.g., input from upstream regions or sensory 877 

feedback). Second, it dissociates and prioritizes the learning of intrinsic neural dynamics that are relevant 878 

to the behavior of interest from other intrinsic neural dynamics.  879 
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This new method jointly models neural activity 𝑦𝑦𝑘𝑘 ∈ ℝ𝑛𝑛𝑦𝑦, behavior 𝑧𝑧𝑘𝑘 ∈ ℝ𝑛𝑛𝑧𝑧, and the effect of input 𝑢𝑢𝑘𝑘 ∈880 

ℝ𝑛𝑛𝑢𝑢 on them with the general linear state-space formulation in equation (1). In equation (1), 𝑤𝑤𝑘𝑘 ∈ ℝ𝑛𝑛𝑥𝑥 881 

and 𝑣𝑣𝑘𝑘 ∈ ℝ𝑛𝑛𝑦𝑦   are taken to be zero-mean white noises that are independent of 𝑥𝑥𝑘𝑘, i.e. 𝑬𝑬{𝑥𝑥𝑘𝑘𝑤𝑤𝑘𝑘𝑇𝑇} = 0 and 882 

𝑬𝑬{𝑥𝑥𝑘𝑘𝑣𝑣𝑘𝑘𝑇𝑇} = 0 with the following cross-correlations:  883 

 𝑬𝑬 ��
𝑤𝑤𝑘𝑘
𝑣𝑣𝑘𝑘 � �

𝑤𝑤𝑘𝑘
𝑣𝑣𝑘𝑘 �

𝑇𝑇
� ≜ � 𝑄𝑄 𝑆𝑆

𝑆𝑆𝑇𝑇 𝑅𝑅
�. (5) 

The latent state 𝑥𝑥𝑘𝑘 describes all intrinsic neural dynamics including those related to the given behavior 884 

and those unrelated to it. It can be shown19,80 that equation (1) can always be written in an equivalent 885 

basis as  886 

 

⎩
⎪⎪
⎪
⎨

⎪⎪
⎪
⎧�
𝑥𝑥𝑘𝑘+1

(1)

𝑥𝑥𝑘𝑘+1
(2) � = �𝐴𝐴11 0

𝐴𝐴21 𝐴𝐴22
� �
𝑥𝑥𝑘𝑘

(1)

𝑥𝑥𝑘𝑘
(2)�+ �𝐵𝐵1𝐵𝐵2

� 𝑢𝑢𝑘𝑘 + �
𝑤𝑤𝑘𝑘

(1)

𝑤𝑤𝑘𝑘
(2)�

𝑦𝑦𝑘𝑘 = [𝐶𝐶𝑦𝑦1 𝐶𝐶𝑦𝑦2] �
𝑥𝑥𝑘𝑘

(1)

𝑥𝑥𝑘𝑘
(2)�+ 𝐷𝐷𝑦𝑦𝑢𝑢𝑘𝑘    + 𝑣𝑣𝑘𝑘

𝑧𝑧𝑘𝑘 = [𝐶𝐶𝑧𝑧1   0  ]  �
𝑥𝑥𝑘𝑘

(1)

𝑥𝑥𝑘𝑘
(2)�+ 𝐷𝐷𝑧𝑧𝑢𝑢𝑘𝑘    + 𝜖𝜖𝑘𝑘

,  𝑥𝑥𝑘𝑘 = �
𝑥𝑥𝑘𝑘

(1)

𝑥𝑥𝑘𝑘
(2)� (6) 

where 𝑥𝑥𝑘𝑘
(1) ∈ ℝ𝑛𝑛1  and 𝑥𝑥𝑘𝑘

(2) ∈ ℝ𝑛𝑛𝑥𝑥−𝑛𝑛1  denote the behaviorally relevant and the other dimensions of 𝑥𝑥𝑘𝑘 , 887 

respectively. In IPSID, we directly learn the model in the basis shown in equation (6) in a way that 888 

prioritizes behaviorally relevant states. 𝑛𝑛1  is the smallest latent state dimension that is sufficient for 889 

explaining all the dynamics of behavior 𝑧𝑧𝑘𝑘  that are encoded in neural activity 𝑦𝑦𝑘𝑘 . The parameter set 890 

�𝐴𝐴,𝐵𝐵,𝐶𝐶𝑦𝑦,𝐶𝐶𝑧𝑧,𝐷𝐷𝑦𝑦,𝐷𝐷𝑧𝑧,𝑄𝑄,𝑅𝑅, 𝑆𝑆� fully specifies the model in equation (1) and equivalently in equation (6), except 891 

for dynamics of 𝜖𝜖𝑘𝑘 , which represent behavior dynamics that are not encoded in neural activity. As 892 

explained in Note S2, when desired (e.g., see Fig. S8a), dynamics of 𝜖𝜖𝑘𝑘 can be modeled separately by 893 

modeling the residual behavior after equation (1) is used to predict behavior19 (Fig. S5c).  894 

Learning model parameters using IPSID 895 

In the learning problem, given neural, behavior, and input time-series – denoted by {𝑦𝑦𝑘𝑘: 0 ≤ 𝑘𝑘 < 𝑁𝑁}, 896 

{𝑧𝑧𝑘𝑘: 0 ≤ 𝑘𝑘 < 𝑁𝑁}, and {𝑢𝑢𝑘𝑘: 0 ≤ 𝑘𝑘 < 𝑁𝑁}, respectively –, and given the desired dimension of the latent state 897 

𝑛𝑛𝑥𝑥 , and the desired number of behaviorally relevant latent states 𝑛𝑛1 , the aim is to learn all model 898 

parameters in equation (6) while prioritizing learning of behaviorally relevant states. To do this, during 899 
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training, we first extract the intrinsic latent states directly using the neural activity, behavior and input 900 

training data; we then identify the model parameters using the extracted intrinsic latent states. The details 901 

are provided in Note S1. Here, we briefly explain the algorithm and the intuition behind it.  902 

IPSID extracts the latent states from training data in two stages (Fig. S1). In stage 1, the subspace 903 

spanned by the behaviorally relevant latent states (𝑥𝑥𝑘𝑘
(1)) is extracted with priority by projecting future 904 

behavior (𝑍𝑍𝑓𝑓 ) onto past neural activity (𝑌𝑌𝑝𝑝 ). However, when there exist measured inputs, the input 905 

dynamics also affect future behavior. Thus, an orthogonal projection of future behavior onto past neural 906 

activity (as is used in our prior work on PSID19,41) would give a mixture of the subspaces spanned by the 907 

intrinsic behaviorally relevant latent states and the input. This means that the learned states will not just 908 

reflect the intrinsic behaviorally relevant neural dynamics as these intrinsic dynamics cannot be 909 

dissociated from input dynamics. To extract the subspace associated with intrinsic behaviorally relevant 910 

latent states, we have to devise distinct algebraic operations in IPSID.  911 

We thus devise these algebraic operations to perform an oblique (i.e., non-orthogonal) projection of 912 

future behavior onto past neural activity and past input along the subspace spanned by the future input 913 

(Fig. S1, Fig. S6c). Note that the use of oblique projections in IPSID instead of orthogonal projections is 914 

not as simple as replacing one operation with another; rather, this key change has broad consequences 915 

throughout the rest of the model learning operations that are appropriately accounted for in IPSID. For 916 

example, the learning of input parameter 𝐵𝐵 (see equation (1)) has no equivalence in prior works that do 917 

not consider input (e.g., PSID) and requires distinct operations. The oblique projection ensures that the 918 

result of the projection is orthogonal to the subspace spanned by the future input, thus excluding behavior 919 

dynamics that can be directly attributed to future input dynamics rather than intrinsic neural dynamics 920 

(Note S1).  921 

In an optional stage 2, we devise additional algebraic operations to extract the subspace spanned by 922 

any remaining latent states (𝑥𝑥𝑘𝑘
(2)) via an oblique projection from the residual future neural activity—the 923 

part unexplained by the extracted behaviorally relevant states (𝑥𝑥𝑘𝑘
(1))—onto past neural activity and past 924 

input, again along the subspace spanned by the future input (Fig. S1). Finally, given the fully extracted 925 
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subspace of the latent states (either only from stage 1 or by concatenating the results from both stages), 926 

we learn all model parameters based on equation (1) via least squares as detailed in Note S1. 927 

Special cases of IPSID  928 

IPSID addresses two challenges simultaneously by allowing for input incorporation in preferential 929 

dynamical modeling of neural-behavioral data together. First, it dissociates intrinsic and measured input 930 

dynamics. Second, it dissociates intrinsic behaviorally relevant dynamics from other intrinsic neural 931 

dynamics and prioritizes the learning of the former. Special cases of IPSID cover prior methods developed 932 

by us or others, which only address one of the challenges that IPSID addresses. Briefly, when not 933 

modeling input (equivalently when assuming 𝐵𝐵,𝐷𝐷𝑦𝑦,𝐷𝐷𝑧𝑧 are zero in equation (1)), IPSID reduces to PSID 934 

in our prior work19. In this case, input dynamics may be learned as part of the intrinsic dynamics in the 935 

model and thus the first challenge of dissociating the dynamics of measured input and intrinsic dynamics 936 

will not be addressed. Alternatively, when behavior is not considered during modeling, i.e., when  𝑛𝑛1 = 0 937 

such that all latent states are extracted using the second stage of IPSID, IPSID reduces to prior neural 938 

dynamical modeling with input (i.e., INDM)40,80, which is formulated by equation (4). In this case, intrinsic 939 

behaviorally relevant dynamics are not dissociated or prioritized compared with other intrinsic neural 940 

dynamics, and thus the second challenge will not be addressed. Finally, if inputs are not considered and 941 

only the second stage is used, IPSID reduces to prior neural dynamical modeling (NDM) formulated by 942 

equation (3), which does not address either of the two challenges addressed by IPSID. 943 

Learning using numerical optimization with block-structured parameters 944 

To compare with IPSID and show the benefits of its two-stage learning method in prioritized learning 945 

of intrinsic behaviorally relevant dynamics, we also implement an alternative approach for fitting the same 946 

model using standard numerical optimization. In this approach we use numerical optimization81 to learn 947 

all model parameters by maximizing the neural-behavioral data log-likelihood while imposing the same 948 

block-structure as is defined in equation (6). To do so, we use the recurrent neural network class† in 949 

TensorFlow82 v2.5 to implement a linear recurrent neural network with the computation graph 950 

 
† tf.keras.layers.RNN 
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corresponding to equation (6). This approach uses gradient descent via error backpropagation to fit the 951 

parameters of the recurrent neural network. Parameters are learned while maximizing the log likelihood 952 

of full output data, i.e., both neural activity and behavior [𝑦𝑦𝑘𝑘 , 𝑧𝑧𝑘𝑘]. We use minibatch size of 32 and run the 953 

numerical optimization on the same CPUs as was done for IPSID to enable a fair comparison in terms of 954 

the training time (Fig. S9). While the sequential nature of recurrent neural networks limits parallelization 955 

options during training83, it is possible that other implementations (e.g., using a framework other than 956 

TensorFlow82) or computational tricks84 may have different results and may lead to faster learning. Note 957 

that while this numerical optimization enforces the same block-structure, it cannot prioritize the learning 958 

of intrinsic behaviorally relevant dynamics and does not dissociate behavior dynamics not reflected in the 959 

neural recordings. As we show in results, both these new capabilities are critical for disentanglement.  960 

Additional steps to add IPSID support for scenarios where neural recordings do not 961 

cover/reflect all downstream regions of the input  962 

We also add additional optional steps to IPSID to support scenarios where some downstream regions 963 

of input that affect behavior are not covered by the recorded neural activity. In these scenarios, which we 964 

formulate as in equation (2), input may affect behavior through paths that are not reflected in the recorded 965 

neural activity. We thus add a new type of latent state in equation (2), denoted by 𝑥𝑥𝑘𝑘
(3), to describe such 966 

paths as latent states that are affected by input and can affect behavior but do not contribute to generation 967 

of neural activity, i.e., columns corresponding to these states are zero in 𝐶𝐶𝑦𝑦 and the noises driving them 968 

(i.e., 𝑤𝑤𝑘𝑘
(3)) are uncorrelated with the noises that drive the other latent states (𝑤𝑤𝑘𝑘

(1) and 𝑤𝑤𝑘𝑘
(2)). To dissociate 969 

these states from other states in IPSID, we perform two additional steps (Note S2, Fig. S5).  970 

First, before performing the two-stage IPSID learning process described earlier (Note S1), we use the 971 

IPSID second stage alone to build a model for all intrinsic neural dynamics in terms of a high-dimensional 972 

latent state, denoted by 𝑥𝑥𝑘𝑘
(𝑦𝑦) in Note S2 and Fig. S5. We next project the behavior onto the extracted 973 

latent state 𝑥𝑥𝑘𝑘
(𝑦𝑦) (with the result denoted by 𝑍𝑍𝑓𝑓′  in Note S2 and Fig. S5); doing this projection removes any 974 

elements of behavior that are not encoded in neural activity (Fig. S5a). We then proceed with IPSID 975 

stages 1 and 2 as before but with the projected behavior signal (i.e., 𝑍𝑍𝑓𝑓′ ) used in the modeling rather than 976 
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the original behavior signal (Fig. S5b, Fig. S6a); using this projected behavior signal ensures that 977 

behavior dynamics that are not encoded in the neural recordings are not included in the first set of states 978 

𝑥𝑥𝑘𝑘
(1).  979 

Second, if learning of behavior dynamics that are predictable from input but are not reflected in neural 980 

activity is of interest, we perform an additional step to learn a model for an additional latent state 𝑥𝑥𝑘𝑘
(3) to 981 

describe such dynamics. To do this, we first subtract from behavior its prediction from the past neural 982 

activity and past input using the already learned model that consists of 𝑥𝑥𝑘𝑘
(1) and 𝑥𝑥𝑘𝑘

(2). This gives us a 983 

residual behavior signal. We then apply the IPSID second stage alone to this residual behavior to model 984 

its dynamics and the effect of input on it in terms of a latent state 𝑥𝑥𝑘𝑘
(3), with a formulation akin to equation 985 

(4) but with 𝑧𝑧𝑘𝑘 as output of the second line. This gives 𝑥𝑥𝑘𝑘
(3) because 𝑥𝑥𝑘𝑘

(3) summarizes the direct effect of 986 

input on behavior dynamics that are not reflected in the recorded neural activity. We then put the model 987 

learned for 𝑥𝑥𝑘𝑘
(1) and 𝑥𝑥𝑘𝑘

(2) together with the model learned for 𝑥𝑥𝑘𝑘
(3) to get a full model in the form of equation 988 

(2). Note that the model for 𝑥𝑥𝑘𝑘
(3) has no neural observation. Thus, in the final overall model, the columns 989 

of 𝐶𝐶𝑦𝑦 corresponding to 𝑥𝑥𝑘𝑘
(3) will be zero. Consequently, neural activity 𝑦𝑦𝑘𝑘 makes no contribution to the 990 

estimation of 𝑥𝑥𝑘𝑘
(3) (see equation (7) below) in the overall model, resulting in the estimated 𝑥𝑥𝑘𝑘

(3) being 991 

forward predicted purely using input 𝑢𝑢𝑘𝑘. This concludes the learning of the full model as formulated in 992 

equation (2). The details are provided in Note S2.  993 

Extracting latent states and predicting neural activity and behavior using the learned model 994 

Given the model in equation (1), the prediction of behavior and neural activity given past neural activity 995 

and inputs are obtained using the well-known recursive Kalman filter40,80. Thus, once the model is learned, 996 

in test data, we extract the latent states by applying the Kalman filter associated with the identified model 997 

parameters to the neural activity and input as 998 

 𝑥𝑥�𝑘𝑘+1|𝑘𝑘 = 𝐴𝐴𝑥𝑥�𝑘𝑘|𝑘𝑘−1 + 𝐵𝐵𝑢𝑢𝑘𝑘 + 𝐾𝐾�𝑦𝑦𝑘𝑘 − 𝐶𝐶𝑦𝑦𝑥𝑥�𝑘𝑘|𝑘𝑘−1 − 𝐷𝐷𝑦𝑦𝑢𝑢𝑘𝑘�. (7) 

Here 𝑥𝑥�𝑘𝑘|𝑘𝑘−1 denotes the latent state estimated at time step 𝑘𝑘 using neural activity and input up to time 999 

step 𝑘𝑘 − 1 (𝑦𝑦𝑛𝑛 and 𝑢𝑢𝑛𝑛 for 0 ≤ 𝑛𝑛 < 𝑘𝑘), with 𝑥𝑥�0|−1 = 0 taken as the initial state. 𝐾𝐾 denotes the steady state 1000 
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Kalman gain40,80, which can be computed as 𝐾𝐾 = (𝐴𝐴𝐴𝐴𝐶𝐶𝑇𝑇 + 𝑆𝑆)(𝐶𝐶𝐴𝐴𝐶𝐶𝑇𝑇 + 𝑅𝑅)−1 where 𝐴𝐴 is the solution to the 1001 

following steady-state Riccati equation: 𝐴𝐴 = 𝐴𝐴𝐴𝐴𝐴𝐴𝑇𝑇 + 𝑄𝑄 − (𝐴𝐴𝐴𝐴𝐶𝐶𝑇𝑇 + 𝑆𝑆)(𝐶𝐶𝐴𝐴𝐶𝐶𝑇𝑇 + 𝑅𝑅)−1(𝐴𝐴𝐴𝐴𝐶𝐶𝑇𝑇 + 𝑆𝑆)𝑇𝑇 . Note 1002 

that behavior is not looked at when extracting the latent states using the Kalman filter (it is only looked at 1003 

during model training in the training set). Given the estimated latent states 𝑥𝑥�𝑘𝑘|𝑘𝑘−1, we next compute the 1004 

self-prediction of neural activity 𝑦𝑦�𝑘𝑘|𝑘𝑘−1 and the decoding of behavior �̂�𝑧𝑘𝑘|𝑘𝑘−1, both given the past neural 1005 

activity (𝑦𝑦𝑛𝑛 for 0 ≤ 𝑛𝑛 < 𝑘𝑘) and the past and current inputs (𝑢𝑢𝑛𝑛 for 0 ≤ 𝑛𝑛 ≤ 𝑘𝑘) as 1006 

 �
𝑦𝑦�𝑘𝑘|𝑘𝑘−1 =  𝐶𝐶𝑦𝑦𝑥𝑥�𝑘𝑘|𝑘𝑘−1 +  𝐷𝐷𝑦𝑦𝑢𝑢𝑘𝑘  
�̂�𝑧𝑘𝑘|𝑘𝑘−1 =  𝐶𝐶𝑧𝑧𝑥𝑥�𝑘𝑘|𝑘𝑘−1 +  𝐷𝐷𝑧𝑧𝑢𝑢𝑘𝑘 . (8) 

Performance measures: behavior decoding and neural self-prediction 1007 

To evaluate the leaned models and as a measure of how well the behaviorally relevant neural dynamics 1008 

are learned, we compute the accuracy of decoding behavior (equation (8)). We perform modeling within 1009 

a 5-fold cross-validation. As the performance measure, we compute the correlation coefficient (CC) 1010 

between the decoded and true behavior time-series in the test data, averaged across the data 1011 

dimensions, as the performance measure. Similarly, to evaluate how well the neural dynamics are 1012 

learned in general, irrespective of their relevance to behavior, we compute the accuracy (in terms of CC) 1013 

of predicting neural activity one-step-ahead using past neural activity and past and current inputs 1014 

(equation (8)), which we refer to as neural self-prediction. 1015 

General simulations with random models  1016 

To validate IPSID with numerical simulations, we generate random models and confirm that IPSID can 1017 

correctly learn these models when provided with training data. We generate the random models as 1018 

follows. First, we select the dimensions of 𝑦𝑦𝑘𝑘, 𝑧𝑧𝑘𝑘 and 𝑢𝑢𝑘𝑘 with uniform probability from ranges 5 ≤ 𝑛𝑛𝑦𝑦,𝑛𝑛𝑧𝑧 ≤1019 

10 and 1 ≤ 𝑛𝑛𝑢𝑢 ≤ 4. We select the full latent state dimension 𝑛𝑛𝑥𝑥 uniformly from 1 ≤ 𝑛𝑛𝑥𝑥 ≤ 10 and then we 1020 

select the dimension of the state that derives behavior, i.e., 𝑛𝑛1, uniformly from 1 ≤ 𝑛𝑛1 ≤ 𝑛𝑛𝑥𝑥. We generate 1021 

the state transition matrix 𝐴𝐴 based on its eigenvalues, which we randomly generate in complex conjugate 1022 

pairs drawn with uniform probability across the unit disk. We randomly select a subset of 𝑛𝑛1 complex-1023 

conjugate eigenvalues as the behaviorally relevant eigenvalues to be placed in the top-left 𝑛𝑛1 × 𝑛𝑛1 1024 
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submatrix of 𝐴𝐴 (i.e., 𝐴𝐴11 in equation (6)). We generate matrices 𝐵𝐵, 𝐶𝐶𝑦𝑦, and 𝐶𝐶𝑧𝑧 randomly with standard 1025 

normal distribution for each of their elements, and then we set the right block of 𝐶𝐶𝑧𝑧 (after the first 𝑛𝑛1 1026 

columns) to zero as in equation (6)). For our simulation analyses in Fig. 2a-b, Figs. S2-S4, both 𝐷𝐷𝑦𝑦 and 1027 

𝐷𝐷𝑧𝑧 are randomly generated non-zero matrices. In all other figures, we take 𝐷𝐷𝑧𝑧 = 0, and in Figs. 1,3,5,6, 1028 

we additionally take 𝐷𝐷𝑦𝑦 = 0. Finally, we generate a random positive-semi-definite square matrix with 𝑛𝑛𝑥𝑥 +1029 

𝑛𝑛𝑦𝑦 rows as the noise covariances 𝑄𝑄, 𝑅𝑅, and 𝑆𝑆 per equation (5). We then select two random numbers 1030 

between 0.1 to 10 (with uniform probability in log scale) and scale the state and observation noises with 1031 

these numbers to provide a wide range of relative state and observation noise values; we reflect that 1032 

scaling in covariances 𝑄𝑄, 𝑅𝑅, and 𝑆𝑆.  1033 

With a similar approach, we generate two other random models but this time without input: one as the 1034 

behavior noise model to generate the behavior dynamics not present in neural activity, i.e. 𝜖𝜖𝑘𝑘; and, one 1035 

as the input model to generate the input 𝑢𝑢𝑘𝑘. The output dimension in these models is selected consistent 1036 

with the behavior and input dimensions in the main model, respectively. We select the dimension of the 1037 

latent state in the behavior noise model uniformly in 1 ≤ 𝑛𝑛𝑥𝑥𝜖𝜖 ≤ 10 and that of the input model uniformly 1038 

from 1 ≤ 𝑛𝑛𝑥𝑥𝑢𝑢 ≤ 4. Finally, to cover a diverse range of signal to noise ratios (i.e., signal 𝐶𝐶𝑧𝑧𝑥𝑥𝑘𝑘 over noise 1039 

𝜖𝜖𝑘𝑘) for behavior, we select a random number between 1 and 100 (with uniform probability in log scale) 1040 

and scale rows of 𝐶𝐶𝑧𝑧 such that the ratio of the signal s.d. to noise s.d. for each behavior dimension 1041 

becomes the selected random number. Note that the eigenvalues of the state transition matrix 𝐴𝐴𝑢𝑢 in the 1042 

input model are representative of the input dynamics and may incorrectly be learned as intrinsic dynamics 1043 

by methods that do not consider input (NDM/PSID) (Fig. 2 and Fig. S3). To simulate scenarios in which 1044 

input affects behavior through pathways that are not reflected in the recorded neural activity (Fig. 3, Figs. 1045 

S7-S8), we add an input term 𝐵𝐵′𝑢𝑢𝑘𝑘  to the state equation of the model that generates 𝜖𝜖𝑘𝑘  with a 𝐵𝐵′ 1046 

parameter that is non-zero only in a subset of rows; this way, the input affects a random subset of 1047 

dimensions of the states that generate 𝜖𝜖𝑘𝑘, effectively changing their role to that of 𝑥𝑥𝑘𝑘
(3) in equation (2). 1048 

Given the model parameters, a time series realization with 𝑁𝑁 data points can be generated with the 1049 

following procedure. First, the input time series 𝑢𝑢𝑘𝑘 is generated by drawing 𝑁𝑁 Gaussian noise samples 1050 
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with the covariances given in the input model (similar to 𝑄𝑄, 𝑅𝑅, and 𝑆𝑆 in equation (5)) and iterating through 1051 

the state-space equation (similar to equation (3), but with 𝑦𝑦𝑘𝑘 renamed to 𝑢𝑢𝑘𝑘). This gives the 𝑁𝑁-sample 1052 

input time-series {𝑢𝑢𝑘𝑘: 0 ≤ 𝑘𝑘 < 𝑁𝑁}. Similarly, a realization from the behavior noise model is generated as 1053 

the 𝑁𝑁-sample time-series {𝜖𝜖𝑘𝑘: 0 ≤ 𝑘𝑘 < 𝑁𝑁}. Next, 𝑁𝑁 Gaussian noise samples are randomly generated for 1054 

noise covariances in the main model (𝑄𝑄, 𝑅𝑅, and 𝑆𝑆 in equation (5)). These noise samples along with 𝑢𝑢𝑘𝑘 1055 

and 𝜖𝜖𝑘𝑘 are used to iterate through equation (1) and produce the behavior and neural activity time series 1056 

{ 𝑦𝑦𝑘𝑘 , 𝑧𝑧𝑘𝑘: 0 ≤ 𝑘𝑘 < 𝑁𝑁}. In all cases, the initial state in the state-space model iterations is taken to be 𝑥𝑥−1 =1057 

0. Given the generated neural activity, behavior and input time series, we fit a model using (I)PSID and 1058 

(I)NDM algorithms with horizon parameter of 𝑖𝑖 = 5 (Note S1). 1059 

Performance measures for learning of model parameters and eigenvalues in numerical 1060 

simulations 1061 

The model in equation (1) can be written with infinitely many different but equivalent sets of parameters 1062 

that all give rise to the exact same statistics for neural and behavior observations 𝑦𝑦𝑘𝑘 and 𝑧𝑧𝑘𝑘. Thus, to 1063 

evaluate the parameter learning performance, we need to consider all equivalent sets of parameters for 1064 

the identified model. An equivalent model to a given model can be obtained by a change of the latent 1065 

state basis (also known as a similarity transform), which can be obtained by multiplying the latent state 1066 

with an invertible matrix. Thus, to compare the identified and true models, we first solve an optimization 1067 

problem to find the similarity transform that makes the basis of the identified model as similar as possible 1068 

to the true model, and then compute the difference between the identified and true model parameters. 1069 

Just to find this similarity transform, we generate a new realization with 𝑞𝑞 = 1000𝑛𝑛𝑥𝑥 samples from the 1070 

true model, and then extract latent state  𝑥𝑥�𝑘𝑘|𝑘𝑘−1
(𝑡𝑡𝑡𝑡𝑢𝑢𝑡𝑡)  and 𝑥𝑥�𝑘𝑘|𝑘𝑘−1

(𝑖𝑖𝑖𝑖)  using the steady-state Kalman filter 1071 

associated with the true and identified models (equation (7)), respectively. We then find the optimal 1072 

similarity transform that minimizes the mean squared error between the two sets of latent states as 1073 

  𝑇𝑇� = argmin
𝑇𝑇

�� �𝑇𝑇𝑥𝑥�𝑘𝑘|𝑘𝑘−1
(𝑖𝑖𝑖𝑖) − 𝑥𝑥�𝑘𝑘|𝑘𝑘−1

(𝑡𝑡𝑡𝑡𝑢𝑢𝑡𝑡)�
2

𝑞𝑞

𝑘𝑘=1

� = 𝑋𝑋�(𝑡𝑡𝑡𝑡𝑢𝑢𝑡𝑡)𝑋𝑋�(𝑖𝑖𝑖𝑖)† (9) 
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where 𝑋𝑋�(𝑖𝑖𝑖𝑖)  and 𝑋𝑋�(𝑡𝑡𝑡𝑡𝑢𝑢𝑡𝑡)  are 𝑛𝑛𝑥𝑥 × 𝑞𝑞  matrices whose 𝑘𝑘 th columns are constructed of 𝑥𝑥�𝑘𝑘|𝑘𝑘−1
(𝑖𝑖𝑖𝑖)  and 𝑥𝑥�𝑘𝑘|𝑘𝑘−1

(𝑡𝑡𝑡𝑡𝑢𝑢𝑡𝑡) 1074 

respectively. We apply the similarity transform80 associated with 𝑇𝑇� (i.e., the transform that changes the 1075 

states from 𝑥𝑥�𝑘𝑘|𝑘𝑘−1
(𝑖𝑖𝑖𝑖)  to 𝑇𝑇�𝑥𝑥�𝑘𝑘|𝑘𝑘−1

(𝑖𝑖𝑖𝑖) ) to the identified model parameters and then quantify the identification error 1076 

of each parameter as  1077 

 𝑒𝑒Ψ =
�Ψ(𝑖𝑖𝑖𝑖) −Ψ(𝑡𝑡𝑡𝑡𝑢𝑢𝑡𝑡)�𝐹𝐹

�Ψ(𝑡𝑡𝑡𝑡𝑢𝑢𝑡𝑡)�𝐹𝐹
 (10) 

where |. |𝐹𝐹 denotes the Frobenius norm of a matrix Ψ, which for any matrix Ψ = [𝜓𝜓𝑖𝑖𝑖𝑖]𝑛𝑛×𝑚𝑚 is defined as 1078 

 |Ψ|𝐹𝐹 = �∑ ∑ �𝜓𝜓𝑖𝑖𝑖𝑖�
2𝑚𝑚

𝑖𝑖=1
𝑛𝑛
𝑖𝑖=1 . (11)  

In addition to computing the identification error for all model parameters, we also compute the error in 1079 

how accurately the eigenvalues of the state transition matrix 𝐴𝐴 are learned. This metric is an additional 1080 

indication of how well the dynamics are learned since the eigenvalues of 𝐴𝐴 affect the transfer function 1081 

from the input to the states and to the neural activity (Fig. 1b), and determine the frequency and decay 1082 

rate with which the latent state responds to excitations from the state noise 𝑤𝑤𝑘𝑘 or from inputs 𝑢𝑢𝑘𝑘 (equation 1083 

(1))85. To measure how well the intrinsic behaviorally relevant dynamics are learned, we evaluate how 1084 

well the eigenvalues of the behaviorally relevant block of 𝐴𝐴 (i.e., 𝐴𝐴11  in equation (6)), referred to as 1085 

behaviorally relevant eigenvalues, are learned. These behaviorally relevant eigenvalues are obtained for 1086 

each method as follows. 1087 

IPSID/PSID learn the model in the form of equation (6). So for these IPSID/PSID models, we simply 1088 

compute the eigenvalues of 𝐴𝐴11 (which has dimension 𝑛𝑛1) and find their minimum normalized distance 1089 

from the true behaviorally relevant eigenvalues by placing the eigenvalues in a vector and computing the 1090 

error per equation (10), e.g., in Fig. 2. Note, in simulations, all methods know the dimension of the true 1091 

behaviorally relevant latent states denoted by 𝑛𝑛1 and the dimension of the latent state in the input model 1092 

(i.e., dimension of input dynamics) denoted by 𝑛𝑛𝑥𝑥𝑢𝑢  (see above). For PSID and because it does not 1093 

consider the input and thus cannot dissociate intrinsic and input dynamics, in its first stage we use a state 1094 

dimension equal to 𝑛𝑛1 + 𝑛𝑛𝑥𝑥𝑢𝑢, so that its first stage has enough state dimensions to capture both the input 1095 
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dynamics and the intrinsic behaviorally relevant neural dynamics. Then we take the top 𝑛𝑛1  state 1096 

dimensions that are best for decoding behavior as the behaviorally relevant states and evaluate the 1097 

distance of their associated eigenvalues to the true behaviorally relevant eigenvalues (we refer to this 1098 

procedure as model reduction, see also below for INDM/NDM).  1099 

INDM/NDM do not dissociate the behaviorally relevant latent states. Thus, for INDM/NDM, to find these 1100 

latent states and their associated eigenvalues in the learned models, we proceed as follows: we first 1101 

perform a similarity transform (using MATLAB’s bdschur command followed by the cdf2rdf command) to 1102 

find an equivalent model with block-diagonal 𝐴𝐴. We next use the Kalman estimated latent states in each 1103 

block to predict behavior. We then sort all blocks in descending order of their behavior decoding 1104 

performance. Finally, we take the top 𝑛𝑛1 eigenvalues associated with the blocks with the best decoding 1105 

performance as the behaviorally relevant eigenvalues in the identified model. We next compute the error 1106 

in these eigenvalues using equation (10) as was explained earlier for IPSID/PSID (Fig. 2). We refer to 1107 

this procedure as model reduction; for example, we can fit a high-dimensional INDM model and then 1108 

reduce its dimension by finding those dimensions/eigenvalues that are best in decoding behavior (e.g., 1109 

see Fig. 2c). 1110 

Motor task simulations 1111 

We devise a numerical simulation of a brain performing various cursor control tasks (Fig. 5). We use 1112 

this simulation to demonstrate the role of sensory task instructions as inputs to the brain that affect neural 1113 

dynamics and can confound the learned models of intrinsic neural dynamics. We modeled the brain with 1114 

two components (Fig. 5a): (i) A linear state-space model (LSSM) in the form of equation (12) with 𝑥𝑥𝑘𝑘
(1) 1115 

corresponding to the 2D position and velocity of the cursor (overall a 4D state; 𝑥𝑥𝑘𝑘
(1) = 1116 

[𝑝𝑝𝑘𝑘
(𝑥𝑥), 𝑣𝑣𝑘𝑘

(𝑥𝑥),𝑝𝑝𝑘𝑘
(𝑦𝑦), 𝑣𝑣𝑘𝑘

(𝑦𝑦)]𝑇𝑇) , 𝑥𝑥𝑘𝑘
(2) a 2D latent state corresponding to neural dynamics unrelated to behavior, 1117 

and 𝑥𝑥𝑘𝑘
(3) a 2D latent state corresponding to additional input driven dynamics in behavior that are absent 1118 

in neural activity. (ii) An optimal feedback controller (OFC) that tries to control the part of the latent state 1119 

in the LSSM that represents the cursor kinematics (i.e., 𝑥𝑥𝑘𝑘
(1)) such that the cursor moves to targets 1120 
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presented via the task instructions42–44,70. The latent brain state 𝑥𝑥𝑘𝑘, neural activity 𝑦𝑦𝑘𝑘 and behavior 𝑧𝑧𝑘𝑘 1121 

evolve as  1122 
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⎪
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⎪
⎪
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𝑥𝑥𝑘𝑘+1

(1)

𝑥𝑥𝑘𝑘+1
(2)

𝑥𝑥𝑘𝑘+1
(3)

� = �
𝐴𝐴11 0 0
𝐴𝐴21 𝐴𝐴22 0

0 0 𝐴𝐴33
� �
𝑥𝑥𝑘𝑘

(1)

𝑥𝑥𝑘𝑘
(2)

𝑥𝑥𝑘𝑘
(3)

�+ �
𝐵𝐵1
0
𝐵𝐵3
� 𝑢𝑢𝑘𝑘 + �

𝑤𝑤𝑘𝑘
(1)

𝑤𝑤𝑘𝑘
(2)

𝑤𝑤𝑘𝑘
(3)

�

𝑦𝑦𝑘𝑘 = [𝐶𝐶𝑦𝑦1 𝐶𝐶𝑦𝑦2 0] �
𝑥𝑥𝑘𝑘

(1)

𝑥𝑥𝑘𝑘
(2)

𝑥𝑥𝑘𝑘
(3)

� + 𝑣𝑣𝑘𝑘              

𝑧𝑧𝑘𝑘 = �
𝐶𝐶𝑧𝑧1 0 0
0 0 𝐶𝐶𝑧𝑧3

�  �
𝑥𝑥𝑘𝑘

(1)

𝑥𝑥𝑘𝑘
(2)

𝑥𝑥𝑘𝑘
(3)
�                       

 (12) 

with 1123 

 𝐴𝐴11 = �

1 ∆ 0 0
0 𝛼𝛼 0 0
0 0 1 ∆
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𝛽𝛽 0
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�,    𝐶𝐶𝑧𝑧1 = 𝐼𝐼4×4, 𝑥𝑥𝑘𝑘
(1) =

⎣
⎢
⎢
⎢
⎢
⎡𝑝𝑝𝑘𝑘

(𝑥𝑥)

𝑣𝑣𝑘𝑘
(𝑥𝑥)

𝑝𝑝𝑘𝑘
(𝑦𝑦)

𝑣𝑣𝑘𝑘
(𝑦𝑦)⎦
⎥
⎥
⎥
⎥
⎤

 (13)   

where ∆= 0.01 second is the duration of each time step, 𝛼𝛼 = 0.99 is the damping ratio for velocity, and 1124 

𝛽𝛽 = 0.01. The last two dimensions of behavior 𝑧𝑧𝑘𝑘 are only driven by states 𝑥𝑥𝑘𝑘
(3) that are not reflected in 1125 

the neural activity and are not engaged in the task, i.e. are not instructed to go to any target (similar to 1126 

the vertical kinematics of finger position in real neural dataset 1, see ref. 45, because while the kinematics 1127 

evolve in 3D, only 2 dimensions are used for control on a 2D plane). The OFC component of the brain 1128 

controls the 2D cursor kinematics, which are the first 4 dimensions of 𝑧𝑧𝑘𝑘 , by generating an internal 1129 

(unobservable) control command time series, which we will henceforth refer to as 𝑐𝑐𝑘𝑘 . The OFC 1130 

implements a linear quadratic regulator (LQR). Briefly, let’s denote by 𝑥𝑥(1)∗ a desired target state for the 1131 

behaviorally relevant state (i.e., target as dictated by task instructions). LQR determines the optimal 1132 

online command 𝑐𝑐𝑘𝑘 as a linear function of the difference between the current state and the desired target 1133 

state as 1134 
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 𝑐𝑐𝑘𝑘 = −𝐿𝐿 �𝑥𝑥𝑘𝑘
(1) − 𝑥𝑥(1)∗� (14) 

where 𝑥𝑥(1)∗ = [𝑝𝑝(𝑥𝑥)∗, 0,𝑝𝑝(𝑦𝑦)∗, 0]𝑇𝑇, with 𝑝𝑝(𝑥𝑥)∗ and 𝑝𝑝(𝑦𝑦)∗ specifying the current target position according to 1135 

task instructions, and the optimal feedback gain matrix 𝐿𝐿 is obtained by solving the discrete algebraic 1136 

Riccati equation86. Replacing the feedback equation (14) into equations (12) and (13) gives the full brain 1137 

model including both the LSSM and the OFC components. Note that the overall measurable external 1138 

input to the brain is the task instruction 𝑥𝑥(1)∗, which we henceforth refer to as 𝑢𝑢𝑘𝑘. Moreover, based on this 1139 

full brain model, the behaviorally relevant block of the state transition matrix for the full brain model can 1140 

be written as 𝐴𝐴11𝐹𝐹𝑢𝑢𝐹𝐹𝐹𝐹 = 𝐴𝐴11 − 𝐵𝐵1𝐿𝐿. Thus, we compute the eigenvalues of 𝐴𝐴11𝐹𝐹𝑢𝑢𝐹𝐹𝐹𝐹 as the ground truth for the 1141 

behaviorally relevant eigenvalues (Fig. 5b).  1142 

To generate a random realization of the simulated brain performing the task, we randomly choose a 1143 

target among the permissible targets in the task (Fig. 5c). Then we iterate through equations (12) and 1144 

(14), starting from the initial value 𝑥𝑥−1 = 0, until the brain state 𝑥𝑥𝑘𝑘
(1) reaches the desired target 𝑢𝑢𝑘𝑘 ≡ 𝑥𝑥(1)∗ 1145 

and stays within its boundary for 0.1 s (Fig. 5c). We then randomly choose a new target, update 1146 

𝑢𝑢𝑘𝑘  accordingly, and continue iterating through equations (12) and (14). Any time the desired target is 1147 

reached, a new target is chosen and the data generation process continues as before. We generate 𝑁𝑁 =1148 

2000000 data samples with this procedure to get {𝑦𝑦𝑘𝑘 , 𝑧𝑧𝑘𝑘: 0 ≤ 𝑘𝑘 < 𝑁𝑁} from equation (12). We also keep a 1149 

timeseries of the desired target position values to use as the overall input (𝑢𝑢𝑘𝑘 ≡ 𝑥𝑥(1)∗: 0 ≤ 𝑘𝑘 < 𝑁𝑁) to the 1150 

brain in IPSID and INDM models. Using cross-validation, we identify the model of the brain using IPSID, 1151 

INDM, PSID and NDM. 1152 

Modeling non-human primate neural population activity during non-stereotypical 1153 

movements 1154 

We study two publicly available neural datasets with distinct motor tasks recorded from three macaque 1155 

monkeys. As the first dataset, we use primary motor cortex (M1) neural data from the Sabes lab45. In this 1156 

experiment, the monkeys (monkey I and monkey L) performed continuous, self-paced reaches to targets 1157 

chosen randomly with uniform probability from an 8×8 or 8×17 grid, without any time gaps or pre-1158 

movement intervals (Fig. 6a). The cursor was controlled based on the 2D position of the monkey’s 1159 
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fingertip in the horizonal plane. The task interface was presented to the monkey in a virtual reality 1160 

environment. We analyze the first spike dimension available for each channel—resulting in 89 to 92 units 1161 

for monkey I and 91 to 96 units for monkey L—from the first 7 recording sessions for each subject. For 1162 

faster computation in our analyses, we randomly partitioned the units into two non-overlapping sets of 1163 

equal sizes and analyzed each set separately. We compute the fingertip’s 2D velocity by taking derivative 1164 

from the recorded 2D position. We take the measured 2D position as well as computed 2D velocity of the 1165 

fingertip (𝑝𝑝𝑘𝑘
(𝑥𝑥), 𝑣𝑣𝑘𝑘

(𝑥𝑥),𝑝𝑝𝑘𝑘
(𝑦𝑦),𝑣𝑣𝑘𝑘

(𝑦𝑦)) as the behavior signal 𝑧𝑧𝑘𝑘.  1166 

As the second dataset, we use the dorsal premotor cortex (PMd) data recorded and made publicly 1167 

available by the Miller lab46,47. In this experiment, the monkey (monkey T) performed sequential reaches 1168 

to random targets on a screen by controlling a cursor via a two-link planar manipulandum (Fig. 7a). In 1169 

this task, an on-screen visual cue (2 cm × 2 cm square) specified the target location for each reach and 1170 

the monkey was given a liquid reward after making a series of four successful reaches. The location of 1171 

each target was randomly chosen within 5-10 cm of the previous target. We analyzed single unit spiking 1172 

activity during all 3 behavioral sessions, with 49, 46, and 57 single units. We take the measured 2D 1173 

position and velocity of the arm (𝑝𝑝𝑘𝑘
(𝑥𝑥),𝑣𝑣𝑘𝑘

(𝑥𝑥),𝑝𝑝𝑘𝑘
(𝑦𝑦), 𝑣𝑣𝑘𝑘

(𝑦𝑦)) as the behavior signal 𝑧𝑧𝑘𝑘.  1174 

For all three subjects, we use spike counts counted within non-overlapping 50 ms time intervals and 1175 

smoothed by Gaussian kernel with a 50 ms s.d.3,13,39,48 as the neural activity 𝑦𝑦𝑘𝑘  (Figs. 6, 7, S11). 1176 

Smoothing is performed as is typical in the field3,13,39,48. Gaussian distributed variables are commonly 1177 

used to model both local field potentials (LFP)14,19,30,44,61,65,66 and spike counts7,19,67,68. We take the 2D 1178 

target location in the task as the input time series (𝑢𝑢𝑘𝑘) provided to the subject. We perform all analyses 1179 

within a 5-fold cross-validation and report the cross-validated CC of predicting behavior and neural activity 1180 

as the performance measures (i.e., decoding and neural self-prediction). 1181 

To choose a suitable latent state dimension for our modeling of the intrinsic behaviorally relevant neural 1182 

dynamics (Figs. 6, 7, S11), we estimate the latent state dimension that is sufficient for capturing most of 1183 

the behavioral dynamics. To do this, we model the behavior time series using INDM as  1184 
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with different latent state dimensions in the range 1 ≤ 𝑛𝑛𝑥𝑥 ≤ 50 (Fig. S13). We then find the smallest latent 1185 

state dimension for which the cross-validated one-step-ahead self-prediction of behavior reaches within 1186 

0.9 of its peak value. This dimension is found to be 𝑛𝑛𝑥𝑥 = 4 in all three subjects (Fig. S13). We use a 1187 

horizon parameter of 𝑖𝑖 = 40 (Note S1) for all (I)PSID and (I)NDM modeling in real neural datasets. 1188 

As a measure of the learned dynamics, we report the distribution of the learned eigenvalues in each 1189 

subject by aggregating eigenvalues of the learned models across recording sessions and cross-validation 1190 

folds, and adding up gaussian kernels (with s.d. of 0.05) centered around each learned eigenvalue. The 1191 

mean of all gaussian kernels, when normalized to sum up to one over the unit disk, gives a probability 1192 

mass function that estimates the probability of an eigenvalue being identified at each location on the 1193 

complex plane in that subject (Figs. 6b, 7b, S11b). We find the mode of the eigenvalue distributions, i.e., 1194 

locations on the complex plane that have peak eigenvalue identification probability, for a given method 1195 

and report their associated frequency and decay rate. The frequency and decay rate describe how a 1196 

complex conjugate pair of eigenvalues at a given location on the complex plane would respond to an 1197 

impulse excitation, i.e., they specify the ringing frequency of the response and how fast it would decay to 1198 

less than 1% of its initial value. For a point 𝜆𝜆 = |𝜆𝜆|𝑒𝑒𝑖𝑖𝑗𝑗, the associated frequency is computed as 𝑗𝑗𝐹𝐹𝑠𝑠
2𝜋𝜋

 where 1199 

𝐹𝐹𝑠𝑠 = 20 𝐻𝐻𝑧𝑧 is the data sampling rate, and the decay rate is computed as 𝑛𝑛
𝐹𝐹𝑠𝑠

 where 𝑛𝑛 is the smallest integer 1200 

for which |𝜆𝜆|𝑛𝑛 < 𝑒𝑒−1.  1201 

To quantify how close the identified eigenvalues are to the input eigenvalues (Figs. 6c, 7c, S11c), we 1202 

compute the pointwise KL-divergence between the probability mass function found using the identified 1203 

method 𝐴𝐴𝑚𝑚𝑡𝑡𝑡𝑡ℎ𝑜𝑜𝑖𝑖, and the probability mass function of input eigenvalues 𝐴𝐴𝑖𝑖𝑛𝑛𝑝𝑝𝑢𝑢𝑡𝑡 as 𝐷𝐷𝐾𝐾𝐾𝐾(𝐴𝐴𝑖𝑖𝑛𝑛𝑝𝑝𝑢𝑢𝑡𝑡 ∥  𝐴𝐴𝑚𝑚𝑡𝑡𝑡𝑡ℎ𝑜𝑜𝑖𝑖). 1204 

Similarly, to quantify the distance between the eigenvalue distributions found using a method for two 1205 

subjects i and j (𝐴𝐴𝑠𝑠𝑢𝑢𝑠𝑠𝑖𝑖𝑡𝑡𝑠𝑠𝑡𝑡𝑖𝑖  and 𝐴𝐴𝑠𝑠𝑢𝑢𝑠𝑠𝑖𝑖𝑡𝑡𝑠𝑠𝑡𝑡𝑗𝑗  ), we computed their correlation coefficient, symmetric KL-1206 

divergence, defined as: 1
2

[𝐷𝐷𝐾𝐾𝐾𝐾(𝐴𝐴𝑠𝑠𝑢𝑢𝑠𝑠𝑖𝑖𝑡𝑡𝑠𝑠𝑡𝑡𝑖𝑖  ∥  𝐴𝐴𝑠𝑠𝑢𝑢𝑠𝑠𝑖𝑖𝑡𝑡𝑠𝑠𝑡𝑡𝑗𝑗  ) + 𝐷𝐷𝐾𝐾𝐾𝐾(𝐴𝐴𝑠𝑠𝑢𝑢𝑠𝑠𝑖𝑖𝑡𝑡𝑠𝑠𝑡𝑡𝑖𝑖  ∥  𝐴𝐴𝑠𝑠𝑢𝑢𝑠𝑠𝑖𝑖𝑡𝑡𝑠𝑠𝑡𝑡𝑗𝑗  )], as well as the mode 1207 

 �
𝑥𝑥𝑘𝑘+1𝑧𝑧 =  𝐴𝐴  𝑥𝑥𝑘𝑘𝑧𝑧 + 𝐵𝐵𝑢𝑢𝑘𝑘 + 𝑤𝑤𝑘𝑘𝑧𝑧

      𝑧𝑧𝑘𝑘 = 𝐶𝐶𝑦𝑦 𝑥𝑥𝑘𝑘𝑧𝑧 + 𝐷𝐷𝑦𝑦𝑢𝑢𝑘𝑘 + 𝑣𝑣𝑘𝑘𝑧𝑧
  (15) 
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distance defined as the Euclidean distance between the locations with peak eigenvalue occurrence 1208 

probabilities in 𝐴𝐴𝑠𝑠𝑢𝑢𝑠𝑠𝑖𝑖𝑡𝑡𝑠𝑠𝑡𝑡𝑖𝑖   and 𝐴𝐴𝑠𝑠𝑢𝑢𝑠𝑠𝑖𝑖𝑡𝑡𝑠𝑠𝑡𝑡𝑗𝑗. 1209 

Statistics 1210 

We use the Wilcoxon signed-rank tests for all paired statistical tests.  1211 

 1212 

Supplementary Notes 1213 

Note S1 | Preferential subspace identification in presence of inputs (IPSID) 1214 

Definitions 1215 

To simplify the description of IPSID, we define some notations. First, we define the notation 1216 

 𝑍𝑍/𝑌𝑌 ≜ 𝑍𝑍𝑌𝑌𝑇𝑇  (𝑌𝑌𝑌𝑌𝑇𝑇)†𝑌𝑌 (16) 

to denote the orthogonal projection40 of the wide matrix 𝑍𝑍 ∈ ℝ𝑚𝑚×𝑖𝑖 onto another wide matrix 𝑌𝑌 ∈ ℝ𝑛𝑛×𝑖𝑖 – where the 1217 

superscript † denotes the pseudoinverse operation. An orthogonal projection can also be thought of as the linear 1218 

minimum mean squared prediction of columns of 𝑍𝑍 using columns of 𝑌𝑌. This is because 𝑍𝑍𝑌𝑌𝑇𝑇  (𝑌𝑌𝑌𝑌𝑇𝑇)† is equal to 1219 

cross-covariance of columns of 𝑍𝑍 and 𝑌𝑌, multiplied by the inverse of the covariance of the columns of 𝑌𝑌. Second, 1220 

we define the shorthand notation40  1221 

 Π𝑈𝑈 ≜ 𝐼𝐼 − 𝑈𝑈𝑇𝑇 (𝑈𝑈𝑈𝑈𝑇𝑇)†𝑈𝑈 (17) 

where 𝐼𝐼 ∈ ℝ𝑖𝑖×𝑖𝑖 is the identity matrix. Π𝑈𝑈 is a matrix that when multiplied from the left by a matrix 𝑍𝑍, would remove 1222 

the orthogonal projection of 𝑍𝑍 onto 𝑈𝑈 from 𝑍𝑍. In other words, we have 𝑍𝑍Π𝑈𝑈 ≜ 𝑍𝑍 − 𝑍𝑍𝑈𝑈𝑇𝑇 (𝑈𝑈𝑈𝑈𝑇𝑇)†𝑈𝑈 = 𝑍𝑍 − 𝑍𝑍/𝑈𝑈 for any 1223 

matrix 𝑍𝑍 ∈ ℝ𝑚𝑚×𝑖𝑖. Third, we define the notation  1224 

 𝑍𝑍/𝑈𝑈𝑌𝑌 ≜ (𝑍𝑍Π𝑈𝑈)(𝑌𝑌Π𝑈𝑈)𝑇𝑇[(𝑌𝑌Π𝑈𝑈)(𝑌𝑌Π𝑈𝑈)𝑇𝑇]†𝑌𝑌Π𝑈𝑈 = (𝑍𝑍Π𝑈𝑈)/(𝑌𝑌Π𝑈𝑈)    (18) 

to denote the oblique (i.e. non-orthogonal) projection40 of matrix 𝑍𝑍 onto 𝑌𝑌 along matrix 𝑈𝑈 ∈ ℝ𝑝𝑝×𝑖𝑖. Intuitively, the 1225 

oblique projection in equation (18) means that we first find the part of 𝑍𝑍 that is not predictable from 𝑈𝑈 (i.e. 𝑍𝑍Π𝑈𝑈), and 1226 

then project that part onto the part of 𝑌𝑌 that is not predictable from 𝑈𝑈 (i.e. 𝑌𝑌Π𝑈𝑈). This gives us the part of 𝑍𝑍 that is 1227 

predictable by 𝑌𝑌 but not explained by 𝑈𝑈. 1228 

We also define the following matrices form the training neural time series {𝑦𝑦𝑘𝑘 ∈ ℝ𝑛𝑛𝑦𝑦: 0 ≤ 𝑘𝑘 <  𝑁𝑁} 1229 
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 (19) 

and analogously define the following from the training behavior time series {𝑧𝑧𝑘𝑘 ∈ ℝ𝑛𝑛𝑧𝑧: 0 ≤ 𝑘𝑘 <  𝑁𝑁} 1230 
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and the following from the input time series {𝑢𝑢𝑘𝑘 ∈ ℝ𝑛𝑛𝑢𝑢: 0 ≤ 𝑘𝑘 <  𝑁𝑁} 1231 
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where 𝑖𝑖 is a provided quantity termed the projection horizon, and 𝑗𝑗 is number of columns in the abovementioned 1232 

block matrices. Given the number of data samples 𝑁𝑁, we set 𝑗𝑗 = 𝑁𝑁 − 2𝑖𝑖 to use all data samples. 1233 

Outline of the IPSID algorithm 1234 

Here, we describe the IPSID algorithm. Given the neural, behavioral, and input training time series, i.e. 1235 

{𝑦𝑦𝑘𝑘 ∈ ℝ𝑛𝑛𝑦𝑦: 0 ≤ 𝑘𝑘 <  𝑁𝑁} , {𝑧𝑧𝑘𝑘 ∈ ℝ𝑛𝑛𝑧𝑧: 0 ≤ 𝑘𝑘 <  𝑁𝑁}  and {𝑢𝑢𝑘𝑘 ∈ ℝ𝑛𝑛𝑢𝑢: 0 ≤ 𝑘𝑘 <  𝑁𝑁} , respectively, and given the state 1236 

dimension 𝑛𝑛𝑥𝑥, parameter 𝑛𝑛1 ≤ 𝑛𝑛𝑥𝑥, and projection horizon 𝑖𝑖, IPSID learns the parameters of the model in equation 1237 

(1) while prioritizing the learning of intrinsic behaviorally relevant states. Doing so, IPSID can dissociate intrinsic 1238 

behaviorally relevant neural dynamics from input dynamics and from other intrinsic neural dynamics. 1239 
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Stage 1: Extract 𝒏𝒏𝟏𝟏 latent states directly from data via an oblique projection of future behavior onto past neural 1240 

activity and past input, along future inputs. 1241 

1. Form examples of future behavior 𝑍𝑍𝑓𝑓 (equation (20)) and the associated past neural activity 𝑌𝑌𝑝𝑝 (equation (19)). 1242 

Also form the corresponding samples of future and past input 𝑈𝑈𝑓𝑓 and 𝑈𝑈𝑝𝑝 (equation (21)). Project 𝑍𝑍𝑓𝑓 onto 𝑌𝑌𝑝𝑝 and 1243 

𝑈𝑈𝑝𝑝 along 𝑈𝑈𝑓𝑓 to get 1244 

 �̂�𝑍𝑓𝑓
(𝑂𝑂) = 𝑍𝑍𝑓𝑓/𝑈𝑈𝑓𝑓 �

𝑈𝑈𝑝𝑝
𝑌𝑌𝑝𝑝
� (22) 

where oblique projection is defined as in equation (18). 1245 

2. Compute the singular value decomposition (SVD) of �̂�𝑍𝑓𝑓
(𝑂𝑂), and keep the top 𝑛𝑛1 singular values: 1246 

 �̂�𝑍𝑓𝑓
(𝑂𝑂) = 𝑈𝑈𝑆𝑆𝑉𝑉𝑇𝑇 ≈ 𝑈𝑈1𝑆𝑆1𝑉𝑉1𝑇𝑇 (23) 

3. Compute the intrinsic behaviorally relevant latent state as 1247 

 𝑋𝑋�𝑖𝑖
(1) = �𝑈𝑈1𝑆𝑆1

1
2�

†

𝑍𝑍𝑓𝑓/ �
𝑈𝑈𝑝𝑝
𝑌𝑌𝑝𝑝
𝑈𝑈𝑓𝑓
� (24) 

Stage 2 (optional): extract 𝒏𝒏𝒙𝒙 − 𝒏𝒏𝟏𝟏 additional latent states via an oblique projection of residual future neural activity 1248 

onto past neural activity and past input, along future input. 1249 

1. Find the prediction of 𝑌𝑌𝑓𝑓 from 𝑋𝑋�𝑖𝑖
(1) and subtract this prediction from 𝑌𝑌𝑓𝑓 using an oblique projection to keep the 1250 

part that is predictable from 𝑈𝑈𝑓𝑓 and 𝑈𝑈𝑝𝑝. Name the result 𝑌𝑌𝑓𝑓′ (i.e., residual future neural activity): 1251 

 𝑌𝑌𝑓𝑓′ = 𝑌𝑌𝑓𝑓 − 𝑌𝑌𝑓𝑓/
�
𝑈𝑈𝑝𝑝
𝑈𝑈𝑓𝑓

�
𝑋𝑋�𝑖𝑖

(1)Π
�
𝑈𝑈𝑝𝑝
𝑈𝑈𝑓𝑓

�

−1      (25) 

Here Π
�
𝑈𝑈𝑝𝑝
𝑈𝑈𝑓𝑓

�
 is defined per equation (17). 1252 

2. Project the residual future neural activity (𝑌𝑌𝑓𝑓′) onto 𝑌𝑌𝑝𝑝 and 𝑈𝑈𝑝𝑝 along 𝑈𝑈𝑓𝑓 to get 1253 

 𝑌𝑌�𝑓𝑓′
(𝑂𝑂) = 𝑌𝑌𝑓𝑓′/𝑈𝑈𝑓𝑓 �

𝑈𝑈𝑝𝑝
𝑌𝑌𝑝𝑝
� (26) 

3. Compute the SVD of 𝑌𝑌�𝑓𝑓′
(𝑂𝑂), and keep the top 𝑛𝑛𝑥𝑥 − 𝑛𝑛1 singular values: 1254 

 𝑌𝑌�𝑓𝑓′
(𝑂𝑂) = 𝑈𝑈′𝑆𝑆′𝑉𝑉′𝑇𝑇 ≈ 𝑈𝑈2𝑆𝑆2𝑉𝑉2𝑇𝑇 (27) 

4. Compute the remaining latent states as 1255 
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 𝑋𝑋�𝑖𝑖
(2) = �𝑈𝑈2𝑆𝑆2

1
2�

†

𝑌𝑌𝑓𝑓/ �
𝑈𝑈𝑝𝑝
𝑌𝑌𝑝𝑝
𝑈𝑈𝑓𝑓
� (28) 

Final step: given the extracted latent states, identify model parameters. 1256 

1. If stage 2 is used, concatenate 𝑋𝑋�𝑖𝑖
(2) to 𝑋𝑋�𝑖𝑖

(1) to get the full latent state 𝑋𝑋�𝑖𝑖, otherwise take 𝑋𝑋�𝑖𝑖 = 𝑋𝑋�𝑖𝑖
(1). 1257 

2. Repeat all steps with a shift of one step in time to extract the states at the next time step (𝑋𝑋�𝑖𝑖+1). To shift the time 1258 

step, use 𝑍𝑍𝑓𝑓− (equation (20)), 𝑌𝑌𝑓𝑓− (equation (19)),  𝑌𝑌𝑝𝑝+ (equation (19)), 𝑈𝑈𝑓𝑓− (equation (21)), and 𝑈𝑈𝑝𝑝+ (equation (21)) 1259 

instead of 𝑍𝑍𝑓𝑓, 𝑌𝑌𝑓𝑓, 𝑌𝑌𝑝𝑝, 𝑈𝑈𝑓𝑓 and 𝑈𝑈𝑝𝑝, respectively. 1260 

3. Compute 𝐴𝐴11, 𝐴𝐴21, 𝐴𝐴22, 𝐶𝐶𝑦𝑦 and 𝐶𝐶𝑧𝑧 based on least squares solutions of equations (6) as  1261 

 𝐴𝐴11 = 𝑋𝑋�𝑖𝑖+1
(1) �𝑋𝑋

�
𝑖𝑖
(1)

𝑈𝑈𝑓𝑓
�
†

�
𝑓𝑓𝑖𝑖𝑡𝑡𝑠𝑠𝑡𝑡 𝑛𝑛1 𝑠𝑠𝑜𝑜𝐹𝐹𝑢𝑢𝑚𝑚𝑛𝑛𝑠𝑠

 (29) 

 [𝐴𝐴21 𝐴𝐴22] = 𝑋𝑋�𝑖𝑖+1
(2) �𝑋𝑋

�𝑖𝑖
𝑈𝑈𝑓𝑓
�
†

�
𝑓𝑓𝑖𝑖𝑡𝑡𝑠𝑠𝑡𝑡 𝑛𝑛𝑥𝑥 𝑠𝑠𝑜𝑜𝐹𝐹𝑢𝑢𝑚𝑚𝑛𝑛𝑠𝑠

 (30) 

 𝐶𝐶𝑦𝑦 = 𝑌𝑌𝑖𝑖 �
𝑋𝑋�𝑖𝑖
𝑈𝑈𝑓𝑓
�
†

�
𝑓𝑓𝑖𝑖𝑡𝑡𝑠𝑠𝑡𝑡 𝑛𝑛𝑥𝑥 𝑠𝑠𝑜𝑜𝐹𝐹𝑢𝑢𝑚𝑚𝑛𝑛𝑠𝑠

 (31) 

 𝐶𝐶𝑧𝑧 = 𝑍𝑍𝑖𝑖 �
𝑋𝑋�𝑖𝑖
𝑈𝑈𝑓𝑓
�
†

�
𝑓𝑓𝑖𝑖𝑡𝑡𝑠𝑠𝑡𝑡 𝑛𝑛𝑥𝑥 𝑠𝑠𝑜𝑜𝐹𝐹𝑢𝑢𝑚𝑚𝑛𝑛𝑠𝑠

 (32) 

where 𝑌𝑌𝑖𝑖 and 𝑍𝑍𝑖𝑖 are as defined in equations (19) and (20), respectively. 1262 

4. Compute an estimate of the noise time series 𝑤𝑤𝑘𝑘 and 𝑣𝑣𝑘𝑘 from equation (1) based on the residuals/errors of the 1263 

least squares solutions from the previous step as 1264 

 𝑊𝑊� (1) = 𝑋𝑋�𝑖𝑖+1
(1) − 𝑋𝑋�𝑖𝑖+1

(1) / �𝑋𝑋
�
𝑖𝑖
(1)

𝑈𝑈𝑓𝑓
� (33) 

 𝑊𝑊� (2) = 𝑋𝑋�𝑖𝑖+1
(2) − 𝑋𝑋�𝑖𝑖+1

(2) / �𝑋𝑋
�𝑖𝑖
𝑈𝑈𝑓𝑓
� (34) 

 𝑉𝑉� = 𝑌𝑌𝑖𝑖  − 𝑌𝑌𝑖𝑖/ �
𝑋𝑋�𝑖𝑖
𝑈𝑈𝑓𝑓
� (35) 

5. Compute the covariances and cross-covariance of 𝑤𝑤𝑘𝑘 and 𝑣𝑣𝑘𝑘 as 1265 
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 � 𝑄𝑄 𝑆𝑆
𝑆𝑆𝑇𝑇 𝑅𝑅

� =
1
𝑗𝑗
�
𝑊𝑊� (1)

𝑊𝑊� (2)

𝑉𝑉�
� �
𝑊𝑊� (1)

𝑊𝑊� (2)

𝑉𝑉�
�

𝑇𝑇

 (36) 

 1266 

6. Follow a procedure similar to ref. 40, pages 125-127, to find the least squares solution for the model parameters 1267 

𝐵𝐵 and 𝐷𝐷𝑦𝑦. 1268 

7. This concludes the learning of all model parameters in the first two rows of equation (1) and thus we can now 1269 

run a Kalman filter to recursively estimate the latent states (without looking at behavior) as 1270 

 𝑥𝑥�𝑘𝑘+1 = �𝐴𝐴 − 𝐾𝐾𝐶𝐶𝑦𝑦� 𝑥𝑥�𝑘𝑘 + �𝐵𝐵 − 𝐾𝐾𝐷𝐷𝑦𝑦�𝑢𝑢𝑘𝑘 + 𝐾𝐾𝑦𝑦𝑘𝑘 (37) 

where 𝐾𝐾 is the steady state Kalman gain (SI Methods equation (7)). 1271 

8. Finally, compute the parameter 𝐷𝐷𝑧𝑧, which captures the direct non-dynamic effect of input on behavior, via an 1272 

orthogonal projection as 1273 

 𝐷𝐷𝑧𝑧 = {𝑧𝑧𝑘𝑘 − 𝐶𝐶𝑧𝑧𝑥𝑥�𝑘𝑘}1:𝑁𝑁/{𝑢𝑢𝑘𝑘}1:𝑁𝑁 (38) 

where {𝛼𝛼𝑘𝑘}1:𝑁𝑁 denotes constructing an 𝑁𝑁-column matrix with column 𝑛𝑛 containing 𝛼𝛼𝑛𝑛. 1274 

The above concludes the learning of all model parameters using IPSID. For the special case of 𝑛𝑛1 = 0, only stage 1275 

2 will be performed and the algorithm will reduce to INDM40, which does not prioritize or dissociate the learning of 1276 

intrinsic behaviorally relevant neural dynamics.  1277 
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Note S2 | IPSID for scenarios where neural recordings do not capture all downstream 1278 

regions of input that influence behavior 1279 

Here, we describe how IPSID can also support scenarios where the recorded neural activity does not cover all 1280 

of the downstream regions of the input. In other words, as opposed to the main IPSID algorithm (Note S1), here we 1281 

allow existence of latent dynamics that are affected by input and contribute to the generation of behavior but are 1282 

not encoded in the recorded neural activity (i.e., 𝑥𝑥𝑘𝑘
(3) in equation (2)). We now outline the key steps that need to be 1283 

performed in addition to the steps described in Note S1 to enable this extension. Compared with Note S1, here in 1284 

addition to the state dimension 𝑛𝑛𝑥𝑥 and the parameter 𝑛𝑛1 specifying the dimension of the behaviorally relevant latent 1285 

states, an additional parameter 𝑛𝑛2 should also be specified by the user that determines the dimension of 𝑥𝑥𝑘𝑘
(2), i.e., 1286 

the intrinsic latent states extracted beyond those that are behaviorally relevant. In Note S1, 𝑛𝑛2 was automatically 1287 

inferred as 𝑛𝑛2 = 𝑛𝑛𝑥𝑥 − 𝑛𝑛1; but here the user can specify any 𝑛𝑛2 in the range 0 ≤ 𝑛𝑛2 ≤ 𝑛𝑛𝑥𝑥 − 𝑛𝑛1. This version of the 1288 

IPSID algorithm then learns the parameters of the model in equation (2), where a new set of states denoted by 𝑥𝑥𝑘𝑘
(3) 1289 

with 𝑛𝑛𝑥𝑥 − 𝑛𝑛1 − 𝑛𝑛2 dimensions describe the behavior dynamics that are predictable from input but are not reflected 1290 

in recorded neural activity.  1291 

Initial projection step: Find the part of future behavior that is encoded in neural activity. 1292 

1. Model the neural signal 𝑦𝑦𝑘𝑘 using only stage 2 of IPSID (i.e., INDM) to extract 𝑚𝑚 latent states 𝑋𝑋�𝑖𝑖
(𝑦𝑦) that describe 1293 

the neural activity, where 𝑚𝑚 is the total number of latent states that drive the neural activity (sum of dimensions 1294 

of 𝑥𝑥𝑘𝑘
(1) and 𝑥𝑥𝑘𝑘

(2) in the true model of equation (2)). The appropriate value of 𝑚𝑚 for a given data can be correctly 1295 

estimated by increasing 𝑛𝑛𝑥𝑥 in the model until neural self-prediction reaches a peak performance (Fig. S8b). For 1296 

analysis in real data (Figs. 6, 7, S11), we use 𝑚𝑚 = 150. 1297 

2. Form examples of future behavior 𝑍𝑍𝑓𝑓 (equation (20)) and find its oblique projection onto 𝑋𝑋�𝑖𝑖
(𝑦𝑦) along 𝑈𝑈𝑓𝑓 and 𝑈𝑈𝑝𝑝, 1298 

naming the result 𝑍𝑍𝑓𝑓′  1299 

 𝑍𝑍𝑓𝑓′ = 𝑍𝑍𝑓𝑓/
�
𝑈𝑈𝑝𝑝
𝑈𝑈𝑓𝑓

�
𝑋𝑋�𝑖𝑖

(𝑦𝑦)Π
�
𝑈𝑈𝑝𝑝
𝑈𝑈𝑓𝑓

�

−1  (39)  

where oblique projection is defined as in equation (18) and Π
�
𝑈𝑈𝑝𝑝
𝑈𝑈𝑓𝑓

�
 is defined as in equation (17). 1300 

The above steps extract the part of the future behavior that is encoded in the recorded neural activity, i.e., 𝑍𝑍𝑓𝑓′ . 1301 

We next perform IPSID stages 1 and 2 as in Note S1, with the only difference being the use of 𝑍𝑍𝑓𝑓′  instead of 𝑍𝑍𝑓𝑓.  1302 
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Stage 1: perform the IPSID stage 1 as outlined in Note S1 but use 𝑍𝑍𝑓𝑓′  (the part of future behavior that is encoded 1303 

in neural activity) instead of 𝑍𝑍𝑓𝑓, to extract 𝑛𝑛1 intrinsic behaviorally relevant neural states 𝑋𝑋�𝑖𝑖
(1). 1304 

Stage 2 (optional): perform the IPSID stage 2 as outlined in Note S1, to extract 𝒏𝒏𝟐𝟐 additional neural latent states 1305 

𝑋𝑋�𝑖𝑖
(2). 1306 

Parameter learning step for neural dynamics: given the extracted neural latent states, learn all model parameters 1307 

in equation (2) that are related to the neural dynamics. 1308 

1. Apply the final parameter learning step of Note S1 to learn all model parameters in equation (2) that are 1309 

associated with the recorded neural dynamics i.e., 𝐴𝐴11,𝐴𝐴21, 𝐴𝐴22,𝐵𝐵1,𝐵𝐵2, 𝐶𝐶𝑦𝑦
(1),𝐶𝐶𝑦𝑦

(2), 𝐷𝐷𝑦𝑦 and noise statistics.  1310 

2. Learn the 𝐶𝐶𝑧𝑧
(1) parameter from equation (2) as 1311 

 𝐶𝐶𝑧𝑧
(1) = 𝑍𝑍𝑖𝑖𝑋𝑋�𝑖𝑖

† (40) 

      where 𝑍𝑍𝑖𝑖 is as defined as in equation (20).  1312 

This concludes the learning of all intrinsic neural dynamics. We next proceed with an optional step that if desired 1313 

can learn additional behavior dynamics that are predictable from input but are not encoded in neural activity (i.e., 1314 

𝑥𝑥𝑘𝑘
(3) in equation (2)). 1315 

Learn input-driven behavior dynamics not encoded in recorded neural activity (Optional): extract 𝑛𝑛𝑥𝑥 − 𝑛𝑛1 −1316 

𝑛𝑛2 additional latent states that are not encoded in neural activity but describe behavior dynamics predictable from 1317 

input. 1318 

1. Run the Kalman filter for the learned neural model (equation (7)) to estimate neural latent states 𝑥𝑥�𝑘𝑘 and the 1319 

prediction of behavior using those latent states (equation (8)). Then subtract this prediction from the behavior 1320 

signal to get the residual behavior signal 𝑧𝑧𝑘𝑘′′ that is not predictable from the neural latent states. 1321 

2. Apply IPSID stage 2 (i.e. INDM) to 𝑧𝑧𝑘𝑘′′ instead of 𝑦𝑦𝑘𝑘 to extract 𝑛𝑛𝑥𝑥 − 𝑛𝑛1 − 𝑛𝑛2 latent states 𝑋𝑋�𝑖𝑖
(3) and learn their 1322 

associated model parameters 𝐴𝐴33, 𝐵𝐵3, and 𝐶𝐶𝑧𝑧
(3) from equation (2) to conclude this version of IPSID.  1323 
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Supplementary Figures 1324 

 

Fig. S1 | Visualization of the IPSID algorithm. 
(a) The extraction of future and past training data is shown. Here, 𝑈𝑈, 𝑌𝑌 and 𝑍𝑍 denote input, neural activity and behavior, 
respectively. Colored rectangles represent data matrices used to extract the latent state (see Note S1 for general definition). 
Future matrices 𝑈𝑈𝑓𝑓, 𝑌𝑌𝑓𝑓  and 𝑍𝑍𝑓𝑓 are constructed by shifting the columns of the past matrices one step ahead in time. (b) In the 
first stage of IPSID, the intrinsic behaviorally relevant states 𝑋𝑋�(1) are extracted from data with priority with the following 
procedure: Future behavior 𝑍𝑍𝑓𝑓 is projected onto the concatenation of past input 𝑈𝑈𝑝𝑝 and past neural activity 𝑌𝑌𝑝𝑝 along the 

subspace spanned by the future input 𝑈𝑈𝑓𝑓  to obtain �̂�𝑍𝑓𝑓
(𝑜𝑜), which is the prediction of residual future behavior where residual 

refers to the part not predictable by future inputs (Note S1). Performing SVD on �̂�𝑍𝑓𝑓
(𝑜𝑜) gives the intrinsic behaviorally relevant 

states 𝑋𝑋�(1). In the second stage of IPSID, which is optional, any remaining intrinsic latent states 𝑋𝑋�(2) are extracted from the 
data with the following procedure: The predictable part of future neural activity 𝑌𝑌𝑓𝑓  from 𝑋𝑋�(1) is removed to obtain the residual 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted March 14, 2023. ; https://doi.org/10.1101/2023.03.14.532554doi: bioRxiv preprint 

https://doi.org/10.1101/2023.03.14.532554


Vahidi, Sani, Shanechi, 69/83 
 

future neural activity 𝑌𝑌𝑓𝑓′, i.e., the part not predictable by 𝑋𝑋�(1) (operator Π is defined in Note S1). Further, oblique projection 
of 𝑌𝑌𝑓𝑓′ onto concatenation of the past input and past neural activity along the subspace spanned by the future input 𝑈𝑈𝑓𝑓  results 

in 𝑌𝑌�𝑓𝑓′
(𝑜𝑜)

, which is the prediction of residual future neural activity, where residual refers to the part not predictable by future 

inputs or by 𝑋𝑋�(1). Performing SVD on 𝑌𝑌�𝑓𝑓′
(𝑜𝑜)

 gives the remaining intrinsic latent states 𝑋𝑋�(2). Once the latent states 𝑋𝑋� are 

extracted—𝑋𝑋� = 𝑋𝑋�(1) if only using the first stage or 𝑋𝑋�  = [𝑋𝑋�(1)𝑇𝑇 ,𝑋𝑋�(2)𝑇𝑇]𝑇𝑇 if also using the optional second stage—, model 
parameters can be learned using linear regression (Note S1). 
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Fig. S2 | IPSID correctly learns all model parameters. 
(a) Normalized error in learning each model parameter using IPSID versus the number of training samples used for learning. 
Models are as in equation (1). Solid lines show the mean across the random models and the shaded areas show the s.e.m. (n 
= 100 random models). Parameters 𝐺𝐺𝑦𝑦 ≜ 𝐸𝐸{𝑦𝑦𝑘𝑘+1𝑥𝑥𝑘𝑘𝑇𝑇} and Σ𝑦𝑦 ≜ 𝐸𝐸{𝑦𝑦𝑘𝑘𝑦𝑦𝑘𝑘𝑇𝑇} fully represent the noise statistics, unlike 𝑄𝑄, 𝑅𝑅, and 
𝑆𝑆 from equation (5) in SI Methods, which are a redundant representation that is not uniquely identifiable and thus is not 
suitable for evaluating model identification methods19,40,80. (b) same as (a) for INDM. 
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Fig. S3 | Unlike other methods, IPSID correctly learns the intrinsic behaviorally relevant neural dynamics in the presence 
of input even when using lower-dimensional latent states (i.e., even when performing dimensionality reduction). 
For one simulated model as in equation (1), the identified intrinsic behaviorally relevant eigenvalues of the state transition 
matrix 𝐴𝐴 are shown for (I)PSID and (I)NDM for different latent state dimensions. These eigenvalues quantify the dynamics (SI 
Methods). True model eigenvalues are shown as colored circles, with colors indicating their relevance to input, neural activity, 
behavior, or both. Crosses show the identified behaviorally relevant eigenvalues when modeling the neural activity. When 
the state dimension 𝑛𝑛𝑥𝑥 is less than the true dimension of behaviorally relevant states (𝑛𝑛1 = 2), missing eigenvalues are taken 
as 0, representing an equivalent model for which 𝑛𝑛1 − 𝑛𝑛𝑥𝑥 latent state dimensions are always 0. Thus, all cases have 2 crosses 
indicating 2 identified eigenvalues (𝑛𝑛1 − 𝑛𝑛𝑥𝑥 of which are zero when 𝑛𝑛𝑥𝑥 < 𝑛𝑛1). Lines indicate the error of the identified 
eigenvalues. The normalized value of the error—average line length normalized by the average true eigenvalue magnitude—
is noted below each plot (SI Methods). Unlike IPSID, INDM may learn dynamics that are unrelated to behavior at lower state 
dimensions (i.e., when performing dimensionality reduction). NDM and PSID do not consider input and thus may learn 
dynamics that are confounded/influenced by input dynamics.   
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Fig. S4 | Quantified by behavior decoding accuracy, IPSID correctly prioritizes learning of intrinsic behaviorally relevant 
neural dynamics in the presence of input.  
Cross-validated behavior decoding correlation coefficient (CC) given the same random models as Fig. 2b. Ideal decoding CC 
using true model parameters is shown in black. IPSID/INDM consider input and thus are able to achieve peak decoding similar 
to the ideal decoding, with IPSID achieving the peak decoding using much lower-dimensional latent states than INDM. This 
shows the IPSID correctly prioritizes the learning of intrinsic behaviorally relevant neural dynamics unlike INDM. NDM/PSID 
do not consider input and thus do not reach ideal behavior decoding accuracy even with high-dimensional latent states. Note 
that for models that have input (i.e., those learned with IPSID and INDM), the input is observed for decoding and thus here 
we use behavior decoding accuracy simply as a measure of how well the behaviorally relevant neural dynamics are explained 
by the model and not as a measure of pure neural decoding of behavior. 
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Fig. S5 | Visualization of IPSID algorithm with support for scenarios where the recorded regions do not cover all 
downstream regions of the input.  
(a) To support the scenario where recorded regions do not cover all downstream regions of input, we add an additional step 
that precedes the IPSID two-stage approach presented in Fig. S1 and Note S1. Specifically, before extraction of intrinsic 
behaviorally relevant latent states in stage 1, the future behavior 𝑍𝑍𝑓𝑓 is projected onto a latent state representation, termed 
𝑋𝑋�(𝑦𝑦), of all neural activity (operator Π is defined in Note S1); we extract the 𝑋𝑋�(𝑦𝑦) using the second stage of IPSID (the purple 
box which is also called operator Ⓐ). The dimension of the latent representation 𝑋𝑋�(𝑦𝑦) should be chosen high enough such 
that neural dynamics are well-represented in 𝑋𝑋�(𝑦𝑦). In analyses of real data, we determine this dimension by forming a plot of 
neural self-prediction using 𝑋𝑋�(𝑦𝑦) vs the dimension of 𝑋𝑋�(𝑦𝑦), and finding a dimension that reaches a self-prediction close to the 
peak (Fig. S8b). We refer to the result of the projection of future behavior 𝑍𝑍𝑓𝑓 onto the latent representation 𝑋𝑋�(𝑦𝑦) as 𝑍𝑍𝑓𝑓′ , which 
is thus the part of future behavior dynamics that is reflected in the neural recordings. This step excludes any behavior 
dynamics that are not represented in the recorded neural activity from being learned in stage 1. (b) Next, IPSID stage 1 and 
2 follow as explained in Fig. S1 and Note S1, but this time the residual future behavior 𝑍𝑍′𝑓𝑓  (from panel a) is used in these 
stages instead of the original future behavior 𝑍𝑍𝑓𝑓 (see Note S2). This concludes the learning of intrinsic behaviorally relevant 
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neural dynamics (stage 1) and dissociating them from other intrinsic neural dynamics (stage 2). (c) Subsequently, we can 
optionally learn behavior dynamics that are predictable from input but are not reflected in the recorded neural activity. To 
do so, in a second optional step, we compute the residual behavior that is not yet predictable using the already-extracted 
latent states (i.e., using 𝑋𝑋�(1), 𝑋𝑋�(2)), and apply the second stage of IPSID (operator Ⓐ) on that residual behavior signal. This is 
done by replacing future and past neural signals with future and past residual behavior signals in this second stage. This step 
allows us to build a model that predicts these residual behavior dynamics purely using the input via forward prediction. This 
concludes the dissociation of behavior dynamics that are encoded in the neural activity from those that are predictable from 
input but are not encoded in the recorded neural activity.  
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Fig. S6 | Simplified schematic overview of the key operations for subspace and numerical optimization learning methods.  
A schematic overview of the key operations involved in (a) IPSID, (b) block-structured numerical optimization, (c) IPSID 
(without additional steps), (d) INDM, (e) PSID and (f) NDM. 𝑍𝑍𝑓𝑓 ,𝑌𝑌𝑓𝑓 ,𝑌𝑌𝑝𝑝, and 𝑈𝑈𝑓𝑓 ,𝑈𝑈𝑝𝑝 denote future behavior, future and past 
neural activity, and future and past input, respectively (Note S1, Fig. S1). A/B denotes an orthogonal projection of A onto B 
and 𝐴𝐴/𝐶𝐶𝐵𝐵 denotes an oblique projection of A onto B along C (Note S1). A block-structured numerical optimization method is 
additionally compared which learns the model parameters of equation (6) from SI Methods via gradient descent (SI 
Methods).  
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Fig. S7 | IPSID correctly learns model parameters even in scenarios where the recorded regions do not cover all 
downstream regions of the input.  
Notation is as in Fig. S2a, but for simulating models where some behavior dynamics that are influenced by inputs are not 
reflected in the recorded neural activity. Here 100 random models are simulated according to equation (2). Evaluated 

parameters are for the parts of the model that are relevant to the neural states in the recordings, i.e., 𝑥𝑥𝑘𝑘
(1) and 𝑥𝑥𝑘𝑘

(2). Learning 

𝑥𝑥𝑘𝑘
(3) entails stage 2 of the same method as was validated in Fig. S2a (Fig. S5c); this 𝑥𝑥𝑘𝑘

(3) learning is also validated in a different 
way in Fig. S8 next.   
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Fig. S8 | Quantified by behavior decoding accuracy, IPSID can achieve ideal prediction of behavior from input and neural 
activity even in scenarios where the recorded regions do not cover all downstream regions of the input. 
(a) Cross-validated behavior decoding correlation coefficient (CC) given 100 random models generated according to equation 

(2), where some latent states 𝑥𝑥𝑘𝑘
(3) reflect the influence of input on behavior but are not reflected in recorded neural activity 

𝑦𝑦𝑘𝑘 . Ideal behavior decoding CC using the true full model in equation (2), which also includes the 𝑥𝑥𝑘𝑘
(3) state components, is 

shown in black. IPSID can also optionally (magenta) learn and dissociate any dynamics in behavior that are predictable by 

input but are not encoded in recorded neural activity, i.e., 𝑥𝑥𝑘𝑘
(3). Thus, IPSID is able to achieve peak behavior decoding similar 

to the ideal model decoding (Fig. S5c, Note S2). (b) Neural self-prediction vs. state dimension for models learned using the 
second stage of IPSID alone. The latent state dimension that reaches peak self-prediction is equal to the true dimension of 
neural activity (i.e., 𝑛𝑛1 + 𝑛𝑛2). This procedure of finding the state dimension for peak neural self-prediction is thus used to 
determine the dimension of 𝑋𝑋�(𝑦𝑦) in the first optional step of IPSID (see Fig. S5). As shown here, this procedure correctly 
reveals the latent state dimension required for capturing the neural dynamics in 𝑋𝑋�(𝑦𝑦) because the dimension to reach the 
peak neural self-prediction in (b) is equal to the true neural state dimension. 
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Fig. S9 | IPSID learns the model parameters faster than numerical optimization in Fig. 4.  
Learning time for IPSID and block-structured numerical optimization is shown as function of training samples. For all training 
sample sizes, IPSID is significantly faster than the numerical optimization for learning because it involves a pre-specified set 
of linear algebraic operations rather than iterative learning via gradient descent. Using different deep learning libraries and 
adjusting other implementation details could improve the speed of these methods. Nevertheless, because IPSID uses an 
analytical and non-iterative method, it would likely be generally faster in terms of learning speed compared with iterative 
numerical optimization approaches, but the exact comparison will depend on various implementation factors and the results 
here are just for our implementation described in SI Methods.  
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Fig. S10 | Models learned by IPSID generalized across behavioral tasks.  
Models were trained using data collected during a rotation task. (a) Performance is shown both for test data collected 
during the same rotation task used in training (task 1 from Fig. 5) and for test data collected during a different random 
target in grid task (task 3 from Fig. 5). Performance is averaged across 10 simulations of each task. Bars show the mean 
and whiskers, which are very short, show the s.e.m. (b) Relative drop (%) in behavior decoding correlation coefficient when 
generalizing a model trained on data from a rotation task to data from a random target in grid task. Double asterisks 
indicate P < 0.005 and n.s. indicates P > 0.05 for a one-sided signed-rank test. IPSID is the only method that generalizes 
well across tasks. 
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Fig. S11 | In a third monkey, IPSID again uncovers distinct and more accurate intrinsic behaviorally relevant neural 
dynamics in spiking activity by considering task instructions as inputs to the brain. 
Similar to Fig. 6 for the third subject (monkey L, n = 70 cross-validation folds across 2 channel subsets and 7 recording sessions, 
SI Methods). The task is the same as in Fig. 6 for a different first monkey while the task is different from Fig. 7 for a different 
second monkey. 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted March 14, 2023. ; https://doi.org/10.1101/2023.03.14.532554doi: bioRxiv preprint 

https://doi.org/10.1101/2023.03.14.532554


Vahidi, Sani, Shanechi, 81/83 
 

 
Fig. S12 | Even without the additional steps that ensure the model only include paths from input to behavior that are 
encoded in the recorded neural activity, IPSID finds largely similar eigenvalues across three monkeys and two tasks from 
two independent datasets. 
(a) Same as Fig. 6b, showing the eigenvalues learned for both versions of IPSID, with and without the additional optional 
steps (Fig. S5 vs. Fig. S1, respectively). (b-c) Similar to (a) for the second and third subjects (Fig. 7, Fig. S11). Both versions of 
IPSID largely find similar eigenvalues. Nevertheless, to ensure only paths from input to behavior that are encoded in the 
recorded neural activity are included in the learned models, IPSID with the additional steps that ensures this property is used 
in Figs. 6-8 and Fig. S11. (d-f) The similarity of the eigenvalues across three monkeys from two independent datasets with 
two distinct tasks when learned by IPSID with vs. without its additional steps as quantified by the symmetric KL-divergence, 
correlation coefficient, and mode distance. Notation is as in Fig. 8d-f. As quantified by all three metrics, both versions of IPSID 
find largely consistent eigenvalues across the two monkeys/tasks, with the additional steps helping IPSID reveal the similarity 
slightly more clearly (compare with the much larger distance/divergence and much smaller CC for INDM in Fig. 8). 
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Fig. S13 | Latent state dimension of 4 is sufficient to capture most of the behavior dynamics. 
(a) Cross-validated behavior self-prediction versus latent state dimension for the first subject (monkey I) with reaches to 
random targets on a grid (Fig. 6a). Here INDM is applied to behavioral data and the learned model is used to predict the 
current behavior signal from its past. Using a latent state dimension of 4, behavior self-prediction CC reaches 91% of the ideal 
value (CC=1). (b) Similar to (a) for the second subject (monkey T) with sequential reaches to random targets (Fig. 7a). Using a 
latent state dimension of 4, behavior self-prediction CC reaches 94% of the ideal value (CC=1). (c) Similar to (a) for the third 
subject (monkey L) performing the same task as in (a). Using a latent state dimension of 4, behavior self-prediction CC reaches 
94% of the ideal value (CC=1). 
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