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A defining characteristic of intelligent systems, whether nat-
ural or artificial, is the ability to generalize and infer behav-
iorally relevant latent causes from high-dimensional sensory in-
put, despite significant variations in the environment. To un-
derstand how brains achieve generalization, it is crucial to iden-
tify the features to which neurons respond selectively and in-
variantly. However, the high-dimensional nature of visual in-
puts, the non-linearity of information processing in the brain,
and limited experimental time make it challenging to systemat-
ically characterize neuronal tuning and invariances, especially
for natural stimuli. Here, we extended “inception loops” — a
paradigm that iterates between large-scale recordings, neural
predictive models, and in silico experiments followed by in vivo
verification — to systematically characterize single neuron in-
variances in the mouse primary visual cortex. Using the pre-
dictive model we synthesized Diverse Exciting Inputs (DEIs), a
set of inputs that differ substantially from each other while each
driving a target neuron strongly, and verified these DEIs’ effi-
cacy in vivo. We discovered a novel bipartite invariance: one
portion of the receptive field encoded phase-invariant texture-
like patterns, while the other portion encoded a fixed spatial pat-
tern. Our analysis revealed that the division between the fixed
and invariant portions of the receptive fields aligns with object
boundaries defined by spatial frequency differences present in
highly activating natural images. These findings suggest that bi-
partite invariance might play a role in segmentation by detecting
texture-defined object boundaries, independent of the phase of
the texture. We also replicated these bipartite DEIs in the func-
tional connectomics MICrONs data set, which opens the way
towards a circuit-level mechanistic understanding of this novel
type of invariance. Our study demonstrates the power of using
a data-driven deep learning approach to systematically charac-
terize neuronal invariances. By applying this method across the
visual hierarchy, cell types, and sensory modalities, we can de-
cipher how latent variables are robustly extracted from natural
scenes, leading to a deeper understanding of generalization.

Correspondence: astolias@bcm.edu

Introduction
The key challenge of visual perception is inferring behav-
iorally relevant latent features in the world despite drastic
variations in the environment. For example, to recognize
food in a cluttered environment, the brain must extract rel-

evant features from light patterns in a way that is robust and
generalizable to variations such as viewing distance, 3D pose,
scale, and illumination, while still consistently identifying
the food. Contrary to often being labeled as “nuisance”, these
variations in the input must also be represented by the brain
since they play a crucial role in other tasks such as navigating
the environment.
To understand how brains effectively disentangle high-
dimensional sensory inputs and robustly extract latent vari-
ables, it is essential to identify the features that neurons ex-
hibit selectivity and invariance toward. Invariance refers to
the property of neurons to maintain consistent responses de-
spite changes in the input.
However, characterizing neuronal tuning is difficult because
identifying invariances in the enormous search space of vi-
sual stimuli is challenging, experimental time is limited, and
information processing in the brain is non-linear. Because of
this, it is infeasible to present all images at all possible vari-
ations to systematically map invariances. As a result, most
previous studies have been limited to using parametric stim-
uli (e.g., gratings) or semantic categories (e.g., objects and
faces) (1–6) with strong assumptions about the types of in-
variances encoded. The classic example of this approach is
Hubel and Wiesel’s complex cells in the primary visual cor-
tex (V1) (7), which are tuned to oriented gratings of a pre-
ferred orientation but are invariant to spatial phases. In con-
trast, simple cells, are selective to spatial phase. However, we
know little about other types of invariances along the visual
hierarchy beyond these classes of parametric stimuli. This is
critical for understanding how the brain robustly disentangles
latent variables from a variable visual input (8).
To systematically study invariances, we combined in-vivo
large-scale calcium imaging of the primary visual cortex in
mice with deep convolutional neural networks (CNNs) to
learn accurate neural predictive models. Using the CNN
models as a “digital twin” of the visual cortex, we synthe-
sized a set of stimuli that highly activated neurons while be-
ing distinct from each other — “Diverse Exciting Inputs"
(DEIs). We subsequently presented these stimuli back to the
animal while recording the activity of the same neurons and
verified in vivo that these neurons responded invariantly to
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the stimulus set. Our experiments discovered a novel type
of invariance where one part of the receptive field (RF) was
highly activated by specific textures like checkerboards trans-
lated over a wide range of phases, creating a local phase in-
variance. In contrast, the other part of the RF was selective
for a fixed spatial pattern. We found that this bipartite struc-
ture of the RF often matched with object boundaries defined
by a frequency difference in highly activating natural stimuli.
Taken together, these findings suggest that bipartite invari-
ance may play a role in supporting object boundary detection
based on texture cues. In addition, we adapted our methodol-
ogy to compute invariances using natural movies, which we
then applied to the functional connectomics MICrONs data
set (9). Our analysis successfully replicated bipartite DEIs in
the MICrONS data set, providing a pathway toward under-
standing the circuit-level mechanisms underlying this novel
form of invariance.

Results
Diverse Exciting Inputs (DEIs) identify invariant stimulus
manifold In this study, we used inception loops (10, 11), a
closed-loop experimental paradigm, to investigate the invari-
ances of single neurons in mouse V1 (Fig. 1b). An inception
loop encompasses the following steps:

1. Neuronal recordings: Large-scale recordings with high-
entropy natural stimuli.

2. Fit digital twin: Train a deep CNN (10, 12, 13) to predict
the activity of neurons to arbitrary natural images. The
CNN uses a non-linear core composed of convolutional
layers shared among all recorded neurons, followed by a
neuron-specific linear readout (Fig. 1d).

3. In silico experiments: Use the CNN predictive model as a
functional “digital twin” of the brain to perform in silico
experiments to systematically study the computations of
the modeled neurons and derive experimentally testable
predictions.

4. In vivo verification: Verify the predictions of the digital
twin in the brain.

We presented 5,100 unique natural images to awake, head-
fixed mice while recording the activity of thousands of V1
layer 2/3 (L2/3) excitatory neurons using two-photon calcium
imaging (Fig. 1c). We used the recorded neuronal activity
to train CNNs to predict the responses of these neurons to
arbitrary images. The predictive model included a shifter
network to compensate for eye movements and a modula-
tor network for predicting an adaptive gain based on behav-
ioral variables like running velocity and pupil size (10, 12)
(Fig. 1d). When tested on a held-out set of novel natural
images, the model achieved a median normalized correlation
coefficient of 0.71 (14) (Fig. 1e), comparable to state-of-the-
art models of mouse V1 (13, 15, 16).
We adapted a previously introduced method (17) to map the
invariances of individual neurons in silico. The method ex-
tends optimal stimulus synthesis described recently (10, 11):

instead of finding the Most Exciting Input (MEI) for each
neuron, it generates a set of optimal images — Diverse Ex-
citing Inputs (DEIs). The DEIs are generated such that each
of them highly excites the target neuron while being max-
imally different from all other DEIs in the set. For every
model neuron, we initialized the DEI optimization with its
MEI perturbed with different seeds of white noise and then
re-optimized the image so that each of them drives the target
neuron strongly while at the same time achieving the great-
est pixel-wise Euclidean distance to the other DEIs of that
neuron (see Methods for optimization loss). Our DEI synthe-
sis method correctly characterized the invariances of simu-
lated Hubel & Wiesel simple and complex cells. Specifically,
all the DEIs of a simulated simple cell exhibited the same
orientation, spatial frequency and phase of a Gabor patch
(Fig. 2a simulated), as expected from linear-nonlinear (LN)
models (18–20). For a simulated complex cell, the DEIs ex-
hibited different phases, as expected from the phase invari-
ance of complex cells (Fig. 2a simulated).

The DEIs of the modeled mouse V1 neurons strongly re-
sembled their corresponding MEIs but with specific image
variations that defined different types of invariances (Fig. 2a
model mouse V1 neurons, more examples in Fig. S1). Some
neurons had DEIs that were almost identical, indicating that
the cells were not invariant, like the simulated simple cells.
Among the neurons that were strongly activated by stimuli
deviating from Gabor-shaped RFs (10, 13), some appeared to
be stimulated strongly by random crops from an underlying
texture pattern, demonstrating global phase invariance. We
refer to these neurons as texture cells, similar to those found
in the hidden layers of Artificial Neural Networks (ANNs)
trained on object recognition (17). Many neurons exhibited
a novel type of invariance: a bipartite RF invariance. For
these neurons, one portion of their RF responded to a fixed
spatial pattern while the rest was invariant to phase shifts of
the stimuli, similar to texture cells. We denote these neu-
rons as bipartite cells. We verified that this bipartite RF
structure is unlikely the result of signal contamination from
neighboring neurons since the MEI and DEIs optimized for
different imaging slices in depth from the same neurons are
highly consistent (Fig. S2). To quantify the prevalence of
this phenomenon, we computed a diversity index for each
neuron using its DEIs. This index was defined as the nor-
malized average pairwise Euclidean distance in pixel space
across the DEIs (see Methods). In particular, an index of 0
and 1 corresponds to classical simple and complex cells, re-
spectively, while bipartite cells will have an index in between.
We observed that the diversity indexes of mouse V1 neurons
spanned a continuous spectrum, with those of simulated sim-
ple and complex cells on the two extremes (Fig. 2b).

We validated the model’s predictions by confirming the re-
sponses of the synthesized DEIs in vivo. Note that the mean
luminance and root mean square (RMS) contrast of all the
DEIs and MEIs of all neurons were matched (see Methods).
When presented back to the animal, both MEIs and DEIs
were highly selective, consistently eliciting higher activity in
their target neurons than in most other neurons (Fig. 2c, S3).
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Fig. 1. Deep neural network well captures mouse V1 responses to natural scenes. a, Illustration of the optimization of Most Exciting Inputs (MEI) and Diverse Exciting
Inputs (DEIs).The vertical axes represent the activation of a model neuron with no obvious invariance (left) and another model neuron with phase invariance to its optimal
stimulus (right) as a function of two example image dimensions. The black curves depict optimization trajectories of the same MEI (left) starting from different initializations and
of the DEIs (right) as different perturbations starting from the MEI along the invariance ridge. b, Schematic of the inception loop paradigm. On day 1, we presented sequences
of natural images and recorded in vivo neuronal activity using two-photon calcium imaging. Overnight, we trained an ensemble of CNNs to reproduce the measured neuronal
responses and synthesized artificial stimuli for each target neuron in silico . On day 2, we showed these stimuli back to the same neurons in vivo to compare the measured
and the predicted responses. c, We presented 5,100 unique natural images to an awake mouse for 500 ms, interleaved with gray screen gaps of random length between
300 and 500 ms. A subset of 100 images was repeated 10 times each to estimate the reliability of neuronal responses. Neuronal activity was recorded at 8 Hz in V1 L2/3
using a wide-field two-photon microscope. Behavioral traces including pupil dilation and locomotion velocity were also recorded. d, Schematic of the CNN model architecture.
Our network consists of a 3-layer convolutional core followed by a single-point readout predicting neuronal responses, a shifter network accounting for eye movements, and
a behavior modulator predicting an adaptive gain for each neuron (10, 12). Traces on the right show average responses (gray) to test images of two example neurons and
corresponding model predictions (black). e, Normalized correlation coefficient (CCnorm, see Methods) (14) between measured and predicted responses to test images
for all 22,083 unique neurons across 10 mice selected for MEI and DEIs generation, a metric measuring the fraction of variation in neuronal responses to identical stimuli
accounted for by the model prediction(median = 0.71 as indicated by the dashed line). Neurons with CCmax smaller than 0.1 (0.31%) were excluded and CCnorm larger
than 1 (1.19%) were clipped to 1 in the histogram.

Moreover, the closed-loop experiments also confirmed that
our CNN model accurately predicted the responses to all
synthesized MEIs and DEIs (Fig. 2d, e). Importantly, DEIs
strongly activated their target neurons in vivo, achieving 75%

of their corresponding MEI activation (Fig. 2f), close to the
model prediction of 85%. One potential concern is that the
difference across DEIs may be due to features that are indis-
tinguishable to the mouse visual system. Therefore, we tested
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Fig. 2. Non-parametric DEIs evoked strong and selective responses in target neurons while containing perceivable differences. a, Examples of MEI and non-
parametric DEIs for simulated simple and complex cells and model mouse V1 neurons. Zero crossing contours from individual DEIs are overlaid for easier comparison of the
spatial pattern across the images. While DEIs strongly resemble the MEI, they exhibit complex features different from the MEI and also among themselves. We observed 2
types of novel invariances: global phase invariance (texture) and local phase invariance (bipartite). b, Diversity indexes for 60 simulated complex cells (red), 60 simulated
simple cells (blue), and 6464 model V1 neurons (gray), 617 among which we tested in closed-loop experiments (unfilled). The expected diversity index of a noiseless simple
cell (blue dashed line) and a noiseless complex cell (red dashed line) are shown for reference. Example neurons from a were indicated on the x axis with the corresponding
colors. c, Both MEI and DEIs activated neurons with high specificity. The confusion matrices show the responses of each neuron to MEI (left) and DEIs (right) of 61 neurons
in mouse 3. MEI response was averaged across 20 repeats of the same image while DEIs response was averaged across 20 different images with single repeat each. The
responses of each neuron were normalized, and each row was scaled so the maximum response across all images equals 1. Responses of neurons to their own MEI and
DEIs (along the diagonal) were larger than those to other MEIs and DEIs respectively (one-sided permutation test, P < 10≠9 for both cases). d, Predicted versus observed
responses of one example neuron (from mouse 2) to its own MEI and DEIs and 79 other neurons’ MEI and DEIs. e, Pearson correlation coefficients between predicted and
observed responses to all the presented MEI and DEIs for all 500 neurons pooled across 8 mice (median = 0.74 for MEI and 0.75 for DEIs). f, Each point corresponds to the
normalized response of a single neuron to its MEI and DEIs. The linear relationship between DEIs and MEI responses was estimated by averaging over 1000 repeats of robust
linear regression using the RANSAC algorithm (21). DEIs stimulated in vivo closely to the level predicted in silico with respect to MEI (75% versus 85%) (two-sided Wilcoxon
signed-rank test, W = 51360, P = 4.92 ◊ 10≠4), with only 12.8% of all neurons showing different responses between DEIs and 85% of MEI (P < 0.05, two-tailed Welch’s
t-test with 34.4 average d.f.). g, Differences between the most different pair of DEIs in pixel space are distinguishable by the mouse V1 population. Logistic regression
classifiers were used to decode DEI identity of individual trials from V1 population responses. Decoding accuracies across neurons (median=0.9) were higher than chance
level (0.5 as indicated by the dashed line) (one sample t-test, t = 70.1,P < 10≠9). Data were pooled over 320 neurons from 4 mice.

if the mouse visual system can detect the changes across DEIs
by presenting pairs of the most dissimilar DEIs in pixel space
to V1 neurons. Using a logistic regression classifier, we de-
coded the DEI class using the V1 population responses on a
trial-by-trial basis and found a median classification accuracy
of 0.9, significantly higher than the chance level (Fig. 2g).
This result confirmed that the mouse visual system is able to
accurately detect the differences between DEIs.

Next, we wanted to test whether DEIs follow specific in-
variant trajectories from the MEI that preserve high activity
whereas random directions are sharply tuned. Similar to the
DEI generation, we perturbed the MEI with different addi-
tive Gaussian white noise to generate a set of 20 control im-
ages with maximal diversity (Fig. 3a synthesized controls).
In contrast to the DEI generation, in this case, the loss func-
tion did not require the images to be highly activating, yet en-
forced all the synthesized control images to be closer to the
MEI than DEIs as measured by Euclidean distance in pixel
space (see Methods). When shown back to the animal during
inception loop experiments, these control images elicited sig-
nificantly lower responses to their target neurons compared
to the DEIs (Fig. 3b). In a separate set of experiments, we

examined the neuronal activation patterns elicited by natu-
ral images in the vicinity of the MEIs (Fig. 3a natural im-
age controls). For each neuron, we searched through more
than 41 million natural patches to identify 20 images that
were strictly closer to the MEI than all the DEIs as measured
by Euclidean distance in pixel space. Again, these natural
image patches elicited significantly weaker activations than
DEIs (Fig. 3c). These findings suggested that DEIs reflect in-
variances along specific directions away from the MEIs in the
image manifold, and that proximity to the MEIs alone does
not guarantee strong neuronal activation.

We next demonstrated that the DEIs generalize across differ-
ent diversity metrics, stimulus data sets, and predictive model
architectures. First, we examined if DEIs could be robustly
produced based on diversity evaluated in a different repre-
sentational space. Thus far, we used the Euclidean distance
in pixel space as a measure of diversity to generate DEIs. As
an alternative, we now used a loss function that measured di-
versity in the predicted population neuronal response space
(see Methods). The DEIs resulting from this new optimiza-
tion were similar to those generated with the pixel-space di-
versity and were similarly effective at activating target neu-
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respectively). Data were pooled over 318 neurons from 5 mice. d, Examples of non-parametric DEIs synthesized with diversity evaluated as Euclidean distance in pixel
space (top), or as Pearson correlation in in silico population responses (middle), or using a predictive model of different architecture and trained on different stimulus domain
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rons in vivo (Fig. 3d, S4). Second, we wanted to determine
if DEIs are robust across predictive models with distinct ar-
chitecture trained on different stimulus domains. To do this,
we developed a method to synthesize DEIs from the dynamic
digital twin trained on natural movies in the MICrONS func-
tional connectomics data set (9, 22). Specifically, we pre-
sented to the same neuronal population a static set of natural
images as well as the identical set of natural movies used in
the MICrONs data set. We then trained two different static
image models: one directly on in vivo static responses, and
another on in silico predicted responses to the identical static
images from a recurrent neural network trained on movie
stimuli (22). We found that the MEIs and DEIs generated
from these two models were perceptually similar (Fig. 3d)
and both strongly activated their corresponding neurons as
evaluated on another independent model (Fig. S5b, c). The
ability to reproduce these invariances in the MICrONS data
set provides an avenue for exploring the synaptic-level mech-
anisms underlying bipartite invariances.

Bipartite parametrization of DEIs Up until this point, we
only discussed the types of invariances we observed for the
texture and bipartite invariant cells in qualitative terms. Here
we provide a more interpretable and quantitative model to
account for the invariances we observed. We first used a tex-
ture synthesis model that could characterize the invariances
of neurons similar to classical complex cells which maintain
high activation when presented with phase-shifted versions
of their preferred texture. To do this, we followed a previous
method (17) to synthesize a full-field texture for each neuron
by maximizing the in silico average activation of uniformly
sampled crops from the texture (Fig. 4a, b middle rows). We
then sampled random crops from the optimized texture which

we denote as full-texture DEIs (DEIsfull). However, for many
neurons this method failed to produce DEIs that resembled
the original non-parametric DEIs (Fig. 4b middle vs. top
rows, 4c middle vs. top rows). Indeed, when shown back
to the animal, the responses of many neurons (52.9%) were
significantly lower when presented with DEIsfull compared to
the non-parametric DEIs (Fig. 4d). We hypothesized that the
difference in responses was due to the fact that texture phase
invariance alone could not account for the bipartite cells that
have heterogeneous subfields in the RF (Fig. 2a) and are thus
not well characterized by a homogeneous full-field texture
model.

Thus, we introduced a new model to explain bipartite DEIs.
We parameterized DEIs as the summation of two non-
overlapping subfields within the RF: (1) a phase invariant
subfield, which is cropped from a synthesized full-field tex-
ture and (2) a fixed subfield, which is masked from the
original MEI and shared across all DEIs (Fig. 4a,b bottom
rows). The invariant subfield was determined by finding the
region of the RF with high pixel-wise variance across the
non-parametric DEIs (see Methods). We then optimized a
full-field texture, using a similar approach as the DEIsfull
method, but with a key difference: we used crops masked
with the invariant subfield instead of the whole RF. Finally,
we combined randomly sampled crops from the optimized
texture and the fixed subfield to achieve partial-texture DEIs
(DEIspartial) (for more details see Methods). This model has
the flexibility to represent a spectrum of phase invariance
properties ranging from simple cells (or other non-invariant
neurons) to complex cells (or other texture phase invariant
neurons), as well as the bipartite cells we observed. Under
this model, for simple cells, the fixed subfield occupies the
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Fig. 4. Partial-texture DEIs activated target neurons similarly as non-parametric DEIs. a-b, Schematic of non-parametric (DEIs), full-texture (DEIsfull), and partial-texture
(DEIs partial) DEIs synthesis for an example texture cell (left) and an example bipartite cell (right). DEIsfull were synthesized by optimizing an underlying texture canvas from
which uniformly sampled cropped by the MEI mask maximally activate the target neuron. In contrast, DEIspartial are composed of two non-overlapping subfields: a fixed one
masked directly from the MEI, and a phase invariant one synthesized similarly to DEIsfull except that the mask used for texture optimization is only part of MEI mask. c,
MEI, DEIs, DEIsfull , and DEIspartial of 4 example neurons, with each type of DEIs indicated by the corresponding color in a. DEIspartial visually resembles non-parametric DEIs
for most neurons while DEIsfull captures non-parametric DEIs only for texture-like neurons. d-e, Normalized responses to DEIsfull (d) and DEIspartial (e) responses versus
non-parametric DEIs. Each point corresponds to the normalized activity of a single neuron, averaged over 20 different images with single repeat. d, DEIsfull failed to stimulate
their target neurons compared to non-parametric DEIs (one-sided Wilcoxon signed-rank test, W = 4389, P < 10≠9) with 52.9% of all neurons showing lower responses
to DEIsfull (P < 0.05, one-tailed Welch’s t-test with 29.4 average d.f.). e, DEIspartial activated their target neurons similarly to non-parametric DEIs (two-sided Wilcoxon
signed-rank test, W = 32429, P = 7.01 ◊ 10≠4) with only 8.7% of all neurons showing different responses (P < 0.05, two-tailed Welch’s t-test with 33.5 average d.f.).
Data were pooled over 8 mice, displaying a total of 401 neurons.

entire RF, while for complex cells, the phase invariant sub-
field is the predominant component. Remarkably, DEIspartial
not only captured the visual complexity of non-parametric
DEIs (Fig. 4a, b, c bottom vs. top rows) but when shown
back to the animal, highly activated neurons comparable to
the non-parametric DEIs (Fig. 4e), with only a small pro-
portion of neurons (8.7%) showing significantly different re-
sponses. Critically, the diversity of DEIspartial was compara-
ble to that of the non-parametric DEIs (Fig. S6 b).

We next tested the necessity and specificity of the two sub-

fields in DEIspartial (Fig. S7 a). Both subfields were necessary
— the removal of either the phase invariant or the fixed sub-
field resulted in lower activation (Fig. S7 b, c). When we
swapped the phase invariant subfields with texture crops op-
timized for other random neurons or swapped the fixed sub-
fields with random natural patches, these control stimuli also
failed to strongly activate the neurons (Fig. S7 d, e). This
demonstrates the specificity of the combination of the fixed
and phase invariant subfields.

All of the closed-loop verification results shown up until now
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came from neurons with high invariance levels (see Meth-
ods). We also verified that all results presented in this sec-
tion generalized to randomly selected neuronal populations
(Fig. S8). Together, these findings suggest that most mouse
V1 neurons, regardless of their level of invariance, were bet-
ter explained by a model that parameterizes heterogeneous
properties by partitioning the RF into two non-overlapping
subfields, one of which contains phase invariance.

Invariant and fixed subfields detect boundaries in natural im-
ages with spatial frequency differences It has been shown
that the complex spatial features exhibited by MEIs are fre-
quently present in natural scenes (10). Here, we wondered
what visual tasks in the real world would benefit from this
particular RF property of subfield division with phase in-
variance. Intuitively, these neurons may be involved in seg-
mentation, such as detecting boundaries based on luminance
changes (“first-order” cues) or texture variations (“second-
order” cues) (23–25). Since our partial-texture model parti-
tions the DEIs into two subfields, often with distinct patterns,
we hypothesized that these neurons may be preferentially ac-
tivated by object boundaries defined by texture discontinu-
ities.
To test this hypothesis, we selected a natural image data
set with manual segmentation labels, namely Caltech-UCSD
Birds-200-2011 (CUB) (26), that enables us to locate the
corresponding boundary between the object (a bird) and the
background in each image. We screened more than one mil-
lion crops with standardized RMS contrast from the CUB
data set to identify highly activating crops for each V1 neu-
ron in silico (Fig. 5a). We found that across the population,
highly activating crops were significantly more likely to con-
tain object boundaries than a random set of crops (Fig. 5b).
To assess how well the segmentation masks defined by the
object boundary in these highly activating natural images
were aligned with the RF subfields extracted from DEIspartial,
we computed a matching score (Fig. 5a). For each image,
the matching score would equal to 1 or -1 if the object per-
fectly matched with the phase invariant or the fixed subfield,
respectively. Across the population, the phase invariant sub-
field was significantly aligned with the object rather than the
background of the image (Fig. 5c, for more examples see
Fig. S9a). In contrast, random image crops were not signifi-
cantly aligned to the bipartite masks of the DEIs showing that
the effect we observed was not due to biases in the images.
Next, we asked what low-level visual statistics could con-
tribute to such matching results. We noticed that the DEIs
appeared to exhibit differences in the spatial frequency pref-
erence between the fixed and phase invariant subfields. To
investigate this, we replaced the DEI content within the two
subfields with synthesized textures of different spatial fre-
quency content. The textures were generated using Perlin
noise (27)—a pseudo-random procedural texture synthesis
method with naturalistic properties (Fig. S10a). Our find-
ings revealed that a significantly larger proportion of neu-
rons (41.08%) were most activated when the phase invariant
subfield contained higher frequency content than the fixed
part while very few neurons (8.67%) preferred the oppo-

site (Fig. S10b). Therefore, we hypothesized that object
boundaries defined by differences in spatial frequency would
strongly activate V1 neurons. To explicitly address this, we
replaced the original contents in the CUB data set with grat-
ing stimuli of varying spatial frequencies while still keeping
the naturalistic boundaries (CUB-grating images) and pre-
sented them to our modeled neurons (Fig. 5d). Our results
confirmed that neurons preferred images with object bound-
aries defined by the different spatial frequencies of the grat-
ings (71.08%) significantly more than boundaries defined by
grating orientation alone (28.58%) and homogeneous grat-
ings with no boundaries (0.34%) (Fig. 5e). Just like in
the natural image patches that strongly activated neurons
(Fig. 5c), segmentation masks based on object boundaries
in highly activating CUB-grating images also aligned sig-
nificantly with the bipartite mask extracted from DEIspartial
(Fig. 5f). Notably, the phase invariant and fixed portions
aligned with high and low spatial frequency, respectively,
rather than with the object or background of the CUB-grating
images (Fig. 5f). Overall, we found that mouse V1 neu-
rons preferred object boundaries constructed by frequency
changes, with phase invariances biased toward the higher fre-
quency subfields.

Discussion
Invariant object recognition, the ability to discriminate ob-
jects from each other despite tremendous variation in their
appearances, is a hallmark of visual perception. From the
perspective of the object manifold disentanglement theory,
visual input is gradually transformed and re-represented by
visual neurons along the ventral visual pathway and ulti-
mately achieves linear decoding of object identity from the
population representation at the top of the hierarchy (8).
Experimental and theoretical evidence suggested that single
neurons in higher visual areas extract and integrate informa-
tion from simple feature detectors in lower areas to represent
more complex features and also build up response invariance
to feature transformations (28–31). Discovering neuronal in-
variances is critical to understand how the brain generalizes
to novel stimuli, and helps define the latent variables that
animals use to guide actions. However, single-cell invari-
ance properties have not been characterized systematically
despite a few classical examples discovered using parametric
or semantically meaningful stimuli that are largely human-
biased (6, 7, 32). A few recent studies have developed non-
parametric image synthesis approaches to find preferred stim-
uli of visual neurons (10, 11, 33). Yet most efforts along this
direction characterized purely neuronal selectivity instead of
invariance, and also mostly focused on feature visualization
without further interpreting the functional roles of neurons.
In this study, we extended the previous work of combin-
ing large-scale neuronal recording and deep neural networks
to study neuronal selectivity (10) to the invariance prob-
lem. Particularly, we modified a diverse feature visualiza-
tion approach previously developed in ANNs (17) to syn-
thesize DEIs for individual neurons in mouse V1 layer 2/3
and verified these model-predicted near-optimal diverse im-
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Fig. 5. Invariant and fixed subfields detect object boundaries defined by spatial frequency differences a, We standardized and passed 1 million crops from the
Caltech-UCSD Birds-200-2011 (CUB) data set through our predictive model to find the 100 most highly activating (red) and 100 random (blue) crops with their corresponding
manual segmentation labels for each neuron. Then for each crop, we computed a matching score based on the segmentation label and the target neuron’s bipartite mask
identified by DEIspartial. A score of 1 indicates perfect matching between the phase invariant subfield and bird content (white to white) within the RF while a score of -1
indicates the opposite. b, Highly activating natural crops were more likely to contain object boundaries compared to randomly crops (one-sided Wilcoxon signed-rank test,
W = 472123, P < 10≠9, for more details see Methods). c, Highly activating CUB crops yielded median matching scores that were positive (one-tailed one sample t-test,
t = 21.4, P < 10≠9) and higher than those for random natural crops (one-sided Wilcoxon signed-rank test, W = 597254, P < 10≠9) with 59.25% of all neurons showing
greater matching to highly activating crops than to random crops (P < 0.05, one-tailed Welch’s t-test with 186.4 average d.f.). d, We constructed a parametric data set
termed "CUB-grating" using four different image types: (1) homogeneous stimuli containing single gratings (2 millions), (2) heterogeneous stimuli with boundaries borrowed
from the CUB data set, but the bird and the background were replaced with either identical frequency (2 millions), (3) higher frequencies within inside the bird (1 million), or
(4) higher frequencies outside of the bird (1 million). All images in the data set were synthesized with independent uniformly sampled orientations and phases, with identical
mean and contrast. Additionally, we used a Gaussian filter to blur the boundaries between birds and backgrounds to avoid edge artifacts. e, In the CUB-grating data set,
neurons preferred heterogeneous crops with frequency differences (71.08%) more than crops with identical frequency (28.58%) or crops with homogeneous signals (0.34%)
(one-way chi-squared test, ‰2 = 913.2, P < 10≠9; one-sided test using bootstrapping, P < 10≠9 for both comparisons). Error bars were bootstrapped STD. f, Highly
activating CUB-grating crops with higher frequency inside the bird yielded positive median matching scores (one-tailed one sample t-test, t = 18.5, P < 10≠9) while those
with lower frequency inside the bird yield negative median matching scores (one-tailed one sample t-test, t = ≠8.7, P < 10≠9). Remarkably, the matching scores between
highly activating CUB-grating crops with higher frequency inside the bird and highly activating CUB crops were not significantly different (two-sided Wilcoxon signed-rank test,
W = 347557, P = 0.82). Responses were normalized by the corresponding MEI activation. Data were pooled over 6 mice, displaying a total of 1200 neurons.

ages in vivo. Given that the changes across DEIs were de-
codable at the V1 population level and that DEIs preserved
target neuron activation better than other diverse image sets
that were strictly more similar to the MEI in pixel space, our
DEIs successfully captured non-trivial and highly specific in-
variant tuning directions. Note that revealing such specific
activation-preserving image perturbations is nearly impossi-
ble without the inception loop paradigm because of the ex-
tremely high-dimensional stimulus search space and the high
sparsity of mouse visual neurons’ responses (10, 34). Impor-
tantly, we demonstrated that our DEI methodology yielded
similar results across variations in diversity metric, stimu-
lus domain, and model bias, so this paradigm should be
adaptable to characterize neuronal invariances systematically
across different cortical regions of interest, sensory modali-
ties, and even animal species.
While the current study focused on invariances around the
optimal stimulus, one could easily generalize our method to
study the entire tuning landscape by varying the desired neu-

ronal response. Ultimately, our work is a first attempt to char-
acterize single-neuron invariances in biological systems in a
systematic and unbiased fashion, paving the way for more
holistic approaches that combine invariance and selectivity
to understand the neuronal tuning landscape in the future.
Mouse V1 DEIs revealed a novel type of bipartite phase in-
variance that could be parsimoniously parameterized by a
partial-texture generative model: one part prefers a fixed spa-
tial pattern while the other prefers a random windowed crop
from an underlying texture. These parametric DEIspartial are
not only strikingly indistinguishable from the non-parametric
version but also excited their target neurons similarly when
shown back to the mice. In contrast, when homogeneous
phase change throughout the entire RF was assumed, the op-
timized DEIsfull failed to stimulate target neurons in vivo.
Overall, the essence of such partial-texture parameterization
is the introduction of heterogeneity in both selectivity and in-
variance between two subfields of the RF. This is a property
that fundamentally deviates from the homogeneous represen-
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tation assumed in traditional simple and complex cells.
While we have focused primarily on phase invariance, we do
not attempt to claim it is the only type of invariance existing
in mouse V1. As an initial effort to parameterize novel em-
pirical invariances, it is also worth acknowledging that our
partial-texture model proposes a simple hypothesis of a bi-
nary division of the presence and absence of phase invariance
in the RF without considering more complicated scenarios
of multi-region invariances or nonlinear cross-subfield inter-
actions. Nonetheless, we believe the novel bipartite phase
invariance can be of great use as a computational principle
for future designs of biologically-plausible or brain-inspired
computer vision systems (35). On the other hand, it can also
serve as an empirical test for theoretically-driven (36–38) or
data-driven models (39) that aim to explain and predict neural
responses in the visual system.
The observed heterogeneity between the two RF subfields
corresponded not only in phase invariance but also in pre-
ferred spatial frequency. This property is remarkably similar
to that observed in “high-low frequency detectors”, a term
introduced previously to describe single units in ANNs that
look for low-frequency patterns on one side of their RF and
high-frequency ones on the other side (40). As these ANN
units were speculated to encode natural boundaries defined
by frequency variation, we indeed found supporting evidence
that V1 layer 2/3 neurons preferred natural image patches
containing object boundaries. This bipartite phase invariance
with frequency bias might be common in both biological and
artificial vision systems for boundary detection. Importantly,
our results are consistent with previous findings showing that
mice are behaviorally capable of utilizing texture-based cues
to solve segmentation (25, 41). While these studies particu-
larly focused on object boundaries constructed mostly by ori-
entation or phase difference (41), our evidence suggests spa-
tial frequency bias as yet another type of second-order (tex-
ture variation-based) visual cue (23) important for detecting
object boundaries.
To investigate the neuronal wiring that allows the forma-
tion of bipartite invariance, one can take advantage of recent
advances in functional connectomics, combining large-scale
neuronal recordings with detailed anatomical information at
the scale of single synapses. Here, we demonstrated that the
DEIs of mouse V1 neurons were reproduced (Fig. S5e) in a
recently published MICrONS functional connectomics data
set spanning V1 and multiple higher areas of mouse visual
cortex (9). This data set includes responses of >75k neurons
to natural movies and the reconstructed sub-cellular connec-
tivity of the same cells from electron microscopy data. The
MICrONs data set provides unprecedentedly ample resources
to link morphology and connectivity among neurons to ex-
amine the circuit-level mechanisms that give rise to bipartite
phase invariance.

Methods
Neurophysiological experiments The following proce-
dures were approved by the Institutional Animal Care and
Use Committee of Baylor College of Medicine. Ten mice

(Mus musculus: 6 male, 4 female) aged from 6 to 17 weeks,
expressing GCaMP6s in excitatory neurons via Slc17a7-Cre
and Ai162 transgenic lines (stock nos. 023527 and 031562,
respectively; The Jackson Laboratory) were selected for ex-
periments. The mice were anesthetized and a 4 mm cran-
iotomy was made over the visual cortex of the right hemi-
sphere as described previously (34, 42). For functional imag-
ing, mice were head-mounted above a cylindrical treadmill
and calcium imaging was performed using a Chameleon Ti-
Sapphire laser (Coherent) tuned to 920 nm and a large field-
of-view mesoscope equipped with a custom objective (0.6
numerical aperture, 21 mm focal length) (43). Laser power
at the cortical surface was kept below 58 mW and maximum
laser output of 61 mW was used at 245 µm from the surface.
We also recorded the rostro-caudal treadmill movement as
well as the pupil dilation and movement. The treadmill move-
ment was measured via a rotary optical encoder with a res-
olution of 8,000 pulses per revolution and was recorded at
approximately 100 Hz in order to extract locomotion veloc-
ity. The images of the left eye were reflected through a hot
mirror and captured with a GigE CMOS camera (Genie Nano
C1920M; Teledyne Dalsa) at 20 fps with a resolution of 246-
384 pixels ◊ 299-488 pixels.
A DeepLabCut model (44) was trained on 17 manually la-
beled samples from 11 animals to label each frame of the
compressed eye video with 8 eyelid points and 8 pupil points
at cardinal and intercardinal positions. Pupil points with like-
lihood >0.9 (all 8 in 93% ± 8% of frames) were fit with the
smallest enclosing circle, and the radius and center of this
circle was extracted. Frames with <3 pupil points with likeli-
hood >0.9 (0.7% ± 3% frames per scan), or producing a cir-
cle fit with outlier >5.5 standard deviations from the mean in
any of the three parameters (center x, center y, radius, <1.3%
frames per scan) were discarded (total <3% frames per scan).
We delineated visual areas by manually annotating the retino-
topic map generated by pixel-wise response to a drifting
bar stimulus across a 4,000 ◊ 3,600µm

2 region of inter-
est (0.2pxµm

≠1) at 200 µm depth from the cortical surface.
The imaging site in V1 was chosen to minimize blood vessel
occlusion and maximize stability. Imaging was performed
using a remote objective to sequentially collect ten 630 ◊
630µm

2 fields per frame at 0.4 pxµm
≠1 xy resolution at ap-

proximately 8 Hz for all scans. We allowed only 5µm spacing
across depths to achieve dense imaging coverage of a 630 ◊
630 ◊ 45µm

3
xyz volume. The most superficial plane posi-

tioned in L2/3 was around 200µm from the surface of the cor-
tex. Thanks to our dense sampling, cells in the imaged vol-
ume were heavily over-sampled, often appearing in at least 2
or more imaging planes. This allowed matching across days
with 2.5 ± 2.6µm vertical distance between masks (see de-
tails below). We performed raster and motion correction on
the imaging data and then deployed CNMF algorithm (45)
implemented by the CaImAn pipeline (46) to segment and
deconvolve the raw fluorescence traces . Additionally, cells
were selected by a classifier (46) trained to detect somata
based on the segmented cell masks to result in 6,014–7,987
soma masks per scan. The full two-photon imaging process-
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ing pipeline is available at (https://github.com/cajal/pipeline).
We did not employ any statistical methods to predetermine
sample sizes but our sample sizes are similar to those reported
in previous publications. Data collection and analysis were
not performed blind to the conditions of the experiments but
no animal or collected data point was excluded for any anal-
ysis performed.

Visual stimuli presentation Visual stimuli were presented
15 cm away from the left eye with a 25" LCD monitor (31.8 x
56.5 cm, ASUS PB258Q) at a resolution 1080 ◊ 1920 pixels
and refresh rate of 60 Hz. We positioned the monitor so that it
was centered on and perpendicular to the surface of the eye at
the closest point, corresponding to a visual angle of 2.2¶/cm
on the monitor. In order to estimate the monitor luminance,
we taped a photodiote at the top left corner of the monitor
and recorded its voltage during stimulus presentation, which
is approximated linearly correlated with the monitor lumi-
nance. The conversion between photodiode voltage and lu-
minance was estimated from luminance measurements from
a luminance meter (LS-100 Konica Minolta) for 16 equidis-
tant pixel values ranging from 0 to 255 while simultaneously
recording photodiode voltage. Since the relationship between
photodiode voltage and luminance is usually stable, we only
perform such measurement every a few months. In the begin-
ning of every experimental session, we computed the gamma
between pixel intensity and photodiode voltage by measur-
ing photodiode voltage at 52 equidistant pixel values ranging
from 0 to 255; then we further interpolated the correspond-
ing luminance at each pixel intensity. For closed loop exper-
iments, the pixel-luminance interpolation computed on day 1
was used throughout the loop. All stimuli used in the cur-
rent study were presented at gamma value ranging from 1.60
to 1.74 and monitor luminance ranging from 0.07 ± 0.16 to
9.58±0.65.

Monitor positioning across days In order to optimize the
monitor position for centered visual cortex stimulation, we
mapped the aggregate receptive field of the scan field region
of interest (ROI) using a dot stimulus with a bright back-
ground (maximum pixel intensity) and a single dark dot (min-
imum pixel intensity). We tiled the center of the screen in a
10◊10 grid with single dots in random locations, with 10
repetitions of 200 ms presentaion at each location. The RF
was then estimated by averaging the calcium trace of an ap-
proximately 150◊150µm

2 window in the ROI from 0.5–1.5
s after stimulus onset across all repetitions of the stimulus for
each location. The resulted two-dimensional map was fitted
with an elliptic two-dimensional Gaussian to find a center. To
keep a consistent monitor placement across all imaging ses-
sions, we positioned the monitor such that the aggregate RF
of ROI in the first session was placed at the center of the mon-
itor and then fixed the monitor position across the subsequent
sessions within a closed loop experiment. An L-bracket on a
six dimensional arm was fitted to the corner of the monitor at
its location in the first session and locked in position such that
the monitor could be returned to the same position between
scans and across imaging sessions.

Cell matching across days In order to return to the same
image site, the craniotomy window was leveled with regard
to the objective with six d.f., five of which were locked be-
tween days. A structural 3D stack encompassing the volume
was imaged at 0.8◊0.8◊1 px

3
µm

≠3
xyz resolution with

100 repeats. The stack contained two volumes each with
150 fields spanning from 50 µm above the most superficial
scanning field to 50 µm below the deepest scanning field;
each field was 500◊800µm

2, together tiling a 800◊800µm
2

field of view (300µm overlapped). This was used to register
the scan average image into a shared xyz frame of reference
between scans across days. To match cells across imaging
scans, each two-dimensional scanning plane was registered
to the three-dimensional stack through an affine transforma-
tion (with nine d.f.) to maximize the correlation between the
average recorded plane and the extracted plan from the stack.
Based on its estimated coordinates in the stack, each cell was
matched to its closest cell across scans. To further evaluate
the functional stability of neurons across scans, we included
in every visual stimulus an identical set of 100 natural im-
ages with each repeated 10 times (referred as oracle images).
For each pair of matched neurons from two different scans,
we compute the correlation between their average-trial re-
sponses to the 100 oracle images. In order to be included for
downstream analyses, the matched cell pair had to (1) have an
inter-cellular distance smaller than 10µm; (2) achieve a func-
tional correlation equal to or greater than the top 1 percentile
of correlation distribution between all unmatched cell pairs
(0.42); (3) survive manual curation of the matched pair’s
physical appearance in the processed two-photon imaging av-
erage frame. On average, 58 ± 13% of closed-loop neurons
survived all three criteria.

Presentation of natural stimuli To fit neurons’ responses,
5,100 natural images from ImageNet (ILSVRC2012) were
cropped to fit a 16:9 monitor aspect ratio and converted to
gray scale. To collect data for training a predictive model of
the brain, we showed 5,000 unique images as well as 100 ad-
ditional images repeated 10 times each. This set of 100 im-
ages were shown in every scan for evaluating cell response
reliability within and between scans. Each image was pre-
sented on the monitor for 500 ms followed by a blank screen
lasting between 300 and 500 ms, sampled uniformly.

Preprocessing of neural responses and behavioral data
Neuronal responses were deconvolved using constrained
nonnegative calcium deconvolution and then accumulated
between 50 and 550ms after stimulus onset of each trial using
a Hamming window. The corresponding pupil movement and
treadmill velocity for each trial were also extracted and inte-
grated using the same Hamming window. Each data set con-
sists of 4500 and 500 unique images for training and valida-
tion, respectively; an additional set of 100 images presented
with 10 repeats were used for model testing. The original
stimuli presented to the animals were isotropically downsam-
pled to 64×36 px for model training. Input images, neuronal
responses, and behavioral traces were normalized (z-scored
for input images and divided by standard deviation for the
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rest) across either the training set or all data during model
training.

Predictive model architecture and training We followed
the same network architecture and training procedure as de-
scribed previously (10, 12). The network is composed of four
components: a common nonlinear core for all neurons, a lin-
ear readout dedicated for each neuron, a modulator network
that scales the responses based on the animal’s pupil dila-
tion and running velocity, and a shifter network predicting
RF shifts from pupil position changes. The common core is
a 3-layer CNN with full skip connections. Each layer con-
tains a convolutional layer with no bias, followed by batch
normalization, and an exponential linear unit (ELU) nonlin-
earity. The readout models the neural response as an affine
function of the core outputs followed by ELU nonlinearity
and an offset of 1 to guarantee positiveness. Additionally, we
model the location of a neuron’s RF with a spatial transformer
layer reading from a single grid point that extracts the feature
vector from the same location at different scales of the down-
sampled feature outputs. The modulator computes a gain
factor for each neuron that simply scales the output of the
readout layer using a two-layer fully connected multiplayer
perceptron with rectified linear unit (RELU) nonlinearity and
a shifted exponential nonlinearity to ensure positive outputs.
Finally, because training mice to fixate their gaze is impracti-
cal, we estimated the trial-by-trial RF displacement shared
across all neurons using a shifter network composed of a
three-layer MLP with a tanh nonlinearity. For model training,
we followed the procedure detailed in (10). Four instances of
the same network with different initialization were trained
by minimizing the Poisson loss 1

m

qm
i=1

!
r̂

(i) ≠r
(i) log r̂

(i)"

where m denotes the number of neurons, r̂ the predicted neu-
ronal response and r the observed response. We used all seg-
mented neuronal masks for training, including the duplicate
ones due to dense imaging. Predictions from these four mod-
els are then averaged at inference.

Evaluation of neuronal reliability and model performance
To study how neurons encode visual stimuli using the pre-
dictive model, we restricted all analyses to neurons that ex-
hibit reasonable level of response reliability as well as model
predictive accuracy. We evaluated reliability using an oracle
score for each neuron by correlating its leave-one-out mean
response with that to the remaining trial across 100 images
with each repeated 10 times in the test set. The model per-
formance CCabs for each neuron was computed on the test
set as the correlation between the model predicted response x

and the recorded responses y averaged across 10 repetitions:

CCabs = Cov(x,y)
V ar(x)V ar(y)

.

We hard thresholded on both of the evaluation metrics to se-
lect neurons for synthetic stimuli generation and downstream
analyses (see further on).
We also measured the fraction of variation in neu-
ronal responses to identical stimuli accounted for by the
model prediction as the normalized correlation coefficient

(CCnorm) (14) estimated as

CCnorm = CCabs

CCmax
.

CCmax serves as the upper bound of the correlation coeffi-
cient and is computed as

CCmax =

Û
NV ar(y)≠V ar(y)

(N ≠1)V ar(y) ,

where y is the in vivo responses, and N is the number of
trials. We threshold neurons on CCmax to be larger than 0.1
(0.31% of neurons) to avoid unreliable estimate of CCnorm

. Then we clipped CCnorm values outside of 0 and 1 (1.19%
of neurons).

Neuron selection for synthetic stimuli generation We first
excluded neuronal masks within 10 µm from the edge of the
imaging volume, and then rank the remaining masks based
on descending model predictive accuracy. To avoid dupli-
cated neurons, we started from the lowest-ranked neuron and
iteratively added neurons such that they that are at least 25
µm apart and have functional correlation <0.4 with all neu-
rons selected. Such filtering left us with 2,081–2,676 unique
neurons for each of the ten mice. We then hard thresholded
on oracle score and model test correlation to include approx-
imately the top 22% of the population for mouse 1-2 for syn-
thesis stimuli generation; we relaxed the thresholding to in-
clude approximately 79% of the population for mouse 3-10
and randomly sampled one-thirds of all unique neurons for
synthetic stimuli generation.

Generation of Most Exciting Input (MEI) For each individ-
ual neuron, we adapted the activation maximization proce-
dure described earlier (10) to find the stimulus that optimally
drive each individual neuron. We started from a Gaussian
white noise and iteratively added the gradient of the target
neuron’s predicted response to the image. At every optimiza-
tion step, we smoothened the gradient using a Gaussian filter
with s.d = 1.0 to avoid high frequency artifact; after each gra-
dient ascent step, we standardized the resultant image such
that the mean and root mean square (RMS) contrast within
the receptive field (estimated as the MEI mask, see details
below) approximately match the corresponding values of the
training set.

Generation of MEI mask We computed a weighted mask
for each MEI to capture the region containing most of the
variance in the image so that the resulting masked MEI ac-
tivates the in silico neuron slightly less than the original un-
masked MEI.
We computed a pixel-wise z-score on the MEI and thresh-
olded at z-score above 1.5 to identify the highly contributing
pixels. Then we closed small holes/gaps using binary clos-
ing, searched for the largest connected region to create a bi-
nary mask M where M = 1 if the pixel is in the largest region
identified. Then, a convex hull was calculated using the iden-
tified pixels. Lastly, to avoid edge artifacts, we smoothed out
the mask using a Gaussian filter with ‡ = 1.5 to avoid poten-
tial edge effects.
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In silico image presentation In order to obtain the most
trustworthy prediction from the predictive model, we would
like to present all images in silico at statistics comparable to
the training set images. On average, the training set images
have approximately mean 0 and standard deviation 0.8 in the
z-score space inside the MEI masks. To match the training
set statistics, we synthesized MEIs with a range of full-field
constraints and found the best match at approximately full-
field mean 0 and RMS contrast 0.25. With this, we standard-
ized all images before presenting them in silico to the predic-
tive model following the same procedure: masking the image
with the corresponding MEI mask and then normalizing the
entire image to mean 0 and RMS contrast 0.25.

Generation of Diverse Exciting Inputs (DEIs) and diver-
sity evaluation We modified procedures described previ-
ously (17) to optimize DEIs. For each individual neuron, we
synthesized a set of images initiating from MEI that preserve
high activation while differ as much as possible from each
other. To optimize this set, we initiated from 20 instances
of the target neuron’s MEI with different additive Gaussian
white noises MEI +‡ = Ii where 1 Æ i Æ 20 and iteratively
minimize the loss:

L = 1
n

qn
i=1 max(c≠ ri

rMEI
,0)≠⁄mini,j d(Ii, Ij) (1)

where ri and rMEI are the model predicted response to DEIi

and MEI, c is the minimum activation relative to rMEI that
we target each DEIs for, d(Ii, Ij) is the distance between
DEIi and DEIj measured either in pixel Euclidean space or
population representation space (see further on). The first
term encourages all DEIs to achieve high activation, while
the second term maximizes the minimum pair-wise distance
among DEIs. Note that the minimum, instead of average dis-
tance, is used in the second term to avoid solutions that form
the set of DEIs into clusters by pushing apart the most simi-
lar pair of DEIs at every iteration. Additionally, we employed
two strategies to attenuate the prevalence of high-frequency
artifact during CNN image synthesis - (1) we blurred the gra-
dient for every image in the set at every step using a Gaus-
sian filter; (2) we decayed the gradient for all images as a
function of number of iterations. We performed the optimiza-
tion for every target neuron with a series of diversity regular-
ization hyper-parameter ⁄, densely sampled from 1x10≠4 to
5x10≠2. For each neuron, the set optimized using the largest
⁄ that preserved a minimal response greater than 85% of the
MEI response was selected as the DEIs and used for down-
stream analyses.

Selection of natural control and generation of synthesized
control To show that our predictive model indeed did a
good job finding stimuli with both high activation and high
diversity, we demonstrated that DEIs preserve activation bet-
ter than control stimuli resulted from perturbation from the
MEI in random directions. These stimuli need to be at com-
parable distance away from the MEI as the DEIs; to be extra
conservative, we required each control stimulus to be strictly
closer the MEI than all of the DEIs. We designed two types
of such control stimuli through either natural image search or

direct image synthesis. For each target neuron, we first com-
puted the mininum distance from the DEIs to the MEI within
the MEI mask as dtarget and use it as the distance budget
for searching for or synthesizing control images. For natural
control, we augmented a pool of 124,647 ImageNet images
of 256x144 px to 41,881,392 image patches of 64×36 px and
searched for patches that have distance from the MEI within
the MEI mask smaller than dtarget. Since it would be point-
less to include controls too close to the MEI (i.e. no pertur-
bation), we additionally excluded images that have distance
to MEI smaller 80% of dtarget. For the synthesized controls,
we synthesized a diverse set of random perturbations from
MEI following our DEIs synthesis objective except that the
first term is changed to match a targeted distance from the
MEI rather than a desired in-silico activation as follows:

L = 1
n

qn
i=1 (c≠d(Ii,MEI))≠⁄mini,j d(Ii, Ij) (2)

For both types of controls, we created 20 different images for
each neuron and presented them in vivo with single repetition
each.

Diversity index To calculate neurons’ diversity indexes on
a meaningful spectrum with interpretable reference points,
we estimated theoretical references for diversity indexes of
idealized simple and complex cells. Particularly, we esti-
mated the lower/upper bounds (dlower and dupper) as the me-
dian average pairwise Euclidean distance of DEIs from a
population of noiseless simple/complex cells, respectively.
To get a precise estimation, we identified DEIs via perform-
ing an exhaustive search through the Gabor filter parameter
spaces. Since DEIs are standardized with a fixed mean and
standard deviation, idealized simple cells have the same aver-
age pairwise Euclidean distance regardless of the underlying
Gabor parameters. Similarly, idealized complex cells with
different Gabor parameters have identical but higher aver-
age pairwise Euclidean distance among themselves. Then for
each real neuron, a diversity index (D) is calculated for each
mouse V1 neuron i based on the average Euclidean pairwise
distance of its DEIs di as

D
(i) = d

(i) ≠dlower

dupper ≠dlower
(3)

Neuron selection for closed-loop verification For 9 out of
10 mice, we randomly selected neurons with relatively high
level of invariance (detailed below); for 1 mouse, we ran-
domly selected neurons from all candidates that survived our
oracle score and model performance criteria (see above). To
remove the confounding effect of RF size on neurons’ invari-
ance level, we fit a least squares regression from the MEI
mask size to the diversity index computed from DEIs (see
above) using 1000 random neurons compiled across 8 pilot
data sets. For each neuron, the residual between the actual
average DEIs pair-wise Euclidean distance and the predicted
distance from the MEI mask size was calculated as its di-
versity residual. This diversity residual served as an size-
independent evaluation of neuron’s invariance level. For each
of the 9 mice, we randomly selected 80 neurons from the top
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50 percentile among all neurons with positive diversity resid-
uals.

Presentation of synthetic stimuli For all MEIs, DEIs, DEIs
controls, and texture DEIs (see further on), we masked the
stimuli with the MEI mask and standardized all masked stim-
uli such that they have fixed value of mean and RMS contrast
in the luminance space within the MEI mask with very small
amount of variation due to clipping within the 8-bit range.
The fixed mean and contrast valued were chosen to be close
to the corresponding values of the training set while mini-
mizing the amount of clipping. All pixels outside of the MEI
mask are at 128, the same intensity as the blank screen in
between consecutive trials. For each neuron, its MEI was
presented for 20 repeats and each of its 20 DEIs or 20 DEIs
controls were presented once.

Decoding DEIs from population responses To confirm
whether there exists perceivable difference across DEIs, for
each target neuron, we selected the most different pair of
DEIs (based on the corresponding diversity measurement
space) from 20 synthesized DEIs. We presented each DEI
(DEI1 and DEI2) for 20 repeats per neuron for the whole
V1 population. We performed a 5-fold cross-validation lo-
gistic classification with L2 regularization on the population
responses to classify whether each single trial response origi-
nated from DEI1 or DEI2. The regularization strength was
optimized empirically from fitting logistic regression to de-
code DEIs across 1 pilot data set.

Simple and complex cell models The response of an ide-
alized simple cell was modeled as convolution with a 2D
Gabor filter followed by a rectified linear activation func-
tion (ReLU). An idealized complex cell was formulated by
the classical energy model, where the response was modeled
as the square root of the summation of squared outputs to a
quadrature pair of 2D Gabor filters. In order to obtain a noisy
predictive model for these idealized simulated neurons, we
followed the same protocol of data presentation and model
training for these idealized neurons as that for the real brain
neurons. Specifically, we collected the idealized responses to
5000 random ImageNet images and used each response as the
mean of a Poisson distribution from which a noisy response
was sampled. Then we used the noisy input-response data
set to train a predictive model with an identical architecture
to that of the real neurons. The same MEI and DEIs opti-
mization procedure described above was then performed on
the resultant simple and complex cell predictive models.

Generation of DEIs in population representational space
To test whether DEIs could generalize across diversity rep-
resentational spaces, we optimized DEIs using the same loss
function as in 5 but now measuring pair-wise DEI diversity
d(DEIi,DEIj) as the negative Pearson correlation between
model predicted population neuronal response vectors ri and
rj to DEIi and DEIj :

d(DEIi,DEIj) = ≠
q

(ri≠µi)(rj≠µj)q
(ri≠µi)2

q
(rj≠µj)2

(4)

where µi,µi are the mean population responses. We obtained
the population responses by shifting all neurons’ RF center
to that of the target neuron that the DEIs were optimized for.
Therefore, each population response vector served as a proxy
of the "perceptual representation" of the corresponding im-
age. We denote these DEIs as population-based DEIs.

Replication of DEIs in functional connectomics data set
Recently, a large-scale functional connectomics data set of
mouse visual cortex ("MICrONS data set"), including re-
sponses of >75k neurons to full-field natural movies and
the reconstructed sub-cellular connectivity of the same cells
from electron microscopy data (9). A dynamic recurrent
neural network (RNN) model cite eric) of this mouse vi-
sual cortex—digital twin—exhibits not only a high predic-
tive performance for natural movies, but also accurate out-of-
domain performance on other stimulus classes such as drift-
ing Gabor filters, directional pink noise, and random dot kine-
matograms. Here, we took advantage of the model’s abil-
ity to generalize to other visual stimulus domains and pre-
sented MEIs and DEIs to this digital twin model in order to
relate specific functional properties to the neurons’ connec-
tivity and anatomical properties. Specifically, we recorded
the visual activity of the same neuronal population to static
natural images as well as to the identical natural movies that
were used in the MICrONS data set. Neurons were matched
anatomically as described for the closed loop experiments.
Based on the responses to static natural images we trained
a static model as described above, and from the responses
to natural movies we trained a dynamic model using a RNN
architecture described in REF. We then presented the same
static natural image set that we showed to the mice also to
their dynamic model counterparts and trained a second static
model using these predicted in silico responses. This enabled
us to compare the MEIs and DEIs for the same neurons gener-
ated from two different static models: one trained directly on
responses from real neurons, and another trained on synthetic
responses to static images from dynamic models (D-MEI and
D-DEIs). To quantify similarity, we presented both versions
of MEIs and DEIs to an independent static model trained on
the same natural images and responses but initialized with
a different random seed, thereby avoiding model-specific bi-
ases.

Generation of full-texture and partial-texture DEIs A neu-
ron with perfect partial phase invariance should maintain high
activation to phase-shifted version of its preferred texture pat-
tern within the spatial region that tolerates phase changes.
Thus, we proposed a texture generative model to produce
texture-based DEIs composed of two complementary sub-
fields as follows:

DEIs = mI ·T +(1≠mI) ·MEI (5)

where the first term is the phase invariant subfield randomly
cropped from an optimized texture canvas T using a mask
mI . The second term is a fixed subfield masked directly
from the original MEI. This model could be simplified to a
full-texture model to describe global phase invariance if the

Ding, Tran et al. | Bipartite invariance in mouse primary visual cortex bioR‰iv | 13

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 16, 2023. ; https://doi.org/10.1101/2023.03.15.532836doi: bioRxiv preprint 

https://doi.org/10.1101/2023.03.15.532836
http://creativecommons.org/licenses/by-nc-nd/4.0/


entire receptive field (i.e. the MEI mask mMEI ) was used as
mI . We generated the texture T following (17) by maximiz-
ing the average activation of randomly sampled crops from T

using mI . We followed the same loss as in non-parametric
DEIs generation 1 to jointly maximize the activation and di-
versity of DEIs with the same regularizations (i.e. Gaussian
blurring on the gradient and learning rate decay) but in this
case, DEIs were parameterized as in 5. The parametric DEIs
were standardized to the same mean and RMS contrast as the
MEI after each gradient step.
To ensure that mI captures the region of the non-parametric
DEIs from which we observed the most diversity, we pre-
computed a series of mIs with increasing sizes by varying the
threshold on the pixel-wise variance across the DEIs. Specifi-
cally, starting from the pixels with the largest variance across
DEIs, we kept expanding the mI by requesting increasing
fraction of the total variance from 0.2 to 0.6 within the phase
invariant subfield. In general, the average predicted activa-
tion of the texture-based DEIs decreased as the size of mI

increased. While an ideal complex cell should exhibit an al-
most flat line, an ideal simple cell should exhibit rapid ac-
tivation decay. Most V1 neurons behaved as if in between
the classical cell types, demonstrating an initial slow de-
crease in activation before steeper decay when the proposed
phase invariant region expanded beyond the desirable target
(Fig. S6a).
For each set of texture-based DEIs resultant from a phase
invariant mask MI,j , we computed the harmonic mean be-
tween normalized activation and diversity index.

Hj = 2 rj ·dDEIs,j

rj +dDEIs,j
(6)

where rj is the average normalized activation, and dDEIs,j
is the average pair-wise Euclidean distance normalized by
the maximal value across all different sets of stimulus cor-
responding to the series of MIs . We denoted the set of
texture-based DEIs resultant with the maximum score as the
partial-texture DEIs.. On the other hand, the set of texture
DEIs resultant from the full-texture model were denoted as
full-texture DEIs.

Necessity and specificity of the two subfields in partial-tex-
ture DEIs To test whether both the phase invariant and the
fixed subfields are necessary for the high activation of the
partial texture DEIs, we presented the content within each
subfield alone and see if the neuronal activation decreased
compared to the MEI activation. To ensure pixels within each
subfield stay at their entirety, we computed a binary mask for
each subfield and smoothed the edge of the mask only out-
side of the binary mask. To test the specificity of the content
within each subfield, we swapped the subfield content to ran-
dom patterns and see if the activation is lower than that of
the original partial-texture DEIs. Particularly, we swapped
each neuron’s phase invariant content to samples cropped
from textures optimized for different random neurons and
each neuron’s fixed content to random natural image crops.
When presented to the animals, these content-swapped stim-

uli were standardized to match the mean and RMS contrast
in the luminance space as the original partial texture DEIs.

The CUB and CUB-grating data sets To study the rela-
tionship between invariance and natural stimuli, we created
a data set from the Caltech-UCSD Birds-200-2011 (CUB)
image data set (26). The original data set contains 11,788
natural images belonging to 200 bird categories. Each im-
age contains a single bird appearing in its natural habitat re-
sulting in ideal and ethnologically relevant stimuli for mice.
Each original image is then resized to 64◊64 pixels and then
sampled using a window of size 36◊36 pixels with a stride
of size 2. In addition, each image has a semantic segmen-
tation label identifying the region of the image containing
the bird by hand. This segmentation label is then thresh-
olded at 0.5 to get the final binarized segmentation. To test
if object boundaries defined by differences in spatial fre-
quency would strongly activate V1 neurons, we replaced tex-
tures in the CUB data set with grating stimuli (CUB-grating
images) with the frequency of 5.83¶/cycle to 15.55¶/cycle
(high-frequency range) and 15.55¶/cycle to 58.3¶/cycle (low-
frequency range). These frequency bounds were derived em-
pirically from fitting gratings to 1000 random neurons com-
piled across 8 pilot data sets.

Analyses on highly activating crops in the CUB and CUB–
grating data set To test whether the division of subfields
identified from neurons’ bipartite parameterization corre-
sponds to object boundary in natural images, we searched for
highly activating natural crops in silico for each target neu-
ron. We masked these crops with the MEI mask and stan-
dardized all masked stimuli such that they have the same
mean and RMS contrast within the MEI mask as the tar-
get neuron’s MEI. We screened through 1 million of these
standardized crops for each target neuron and identified 100
most highly activating natural crops as well as 100 random
ones. A natural crop was classified as containing both object
and background if it contained at least 20% of both object
and background within the RF of the target neuron. For the
CUB-grating images, we followed the same protocol but re-
ported on the most exciting crop for simplicity (Fig. 5e). Note
that our reported results were stable regardless of the specific
choice of the number of stimuli searched and the definition
of natural crops containing both object and background.
To measure the alignment of the image crop segmentation
label and neurons’ bipartite mask in both the CUB and the
CUB-grating data sets, we devised a matching score as fol-
lows. For each neuron, we first defined a bipartite mask
mbipartite from the bipartite parameterization of DEIs as
mMEIb

≠mIb
, where mMEIb

and mIb
denotes the binarized

version of the MEI mask mMEI and the phase invariant sub-
field mask mI , respectively, when we hard-thresholded on
the masks at 0.3. In mbipartite, a value of 1 and -1 denotes
pixels within the phase invariant subfield and within the fixed
subfield, respectively, and 0 elsewhere. On the other hand,
for each crop from the CUB and the CUB-grating data sets,
we first assigned pixels within the bird to 1 and pixels belong-
ing to the background to -1 and then masked it with mMEIb
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to achieve the segmentation mask mseg of the crop. For each
target neuron i and each of its highly activating crops j, a
matching score S

(i) is calculated as follow:

S
(i) =

m
(i)
bipartite ·m(i)

seg,j
q

m
(i)
MEIb

(7)

A highly activating crop would yield a matching score of 1 if
the phase invariant subfield perfectly matched with the bird
and the fixed subfield perfectly matched with the background
and a score of -1 if the reverse was true. For random crops,
however, a score of 0 is expected.

Perlin noise stimuli To quantify if the phase invariant and
fixed subfields extracted from DEIpartial systematically pre-
ferred different frequencies, we replaced the DEI content in
each subfield with synthesized textures of Perlin noise (27)
with different spatial frequency biases. Specifically, the tex-
ture images with size of 64◊64 pixels were generated by
combining 8 octaves of Perlin noises with lacunarity factor
of 2 and a persistence of either 1.0 (high frequency texture
images) or 0.1 (low frequency texture images).

In vivo response comparisons and statistical analysis
Recorded responses were normalized across all presented im-
ages per scan. The normalized responses of the matched
neurons were then averaged across either 20 repetitions of
a single image for MEI or single repetitions of 20 different
images for all other image types including non-parametric
DEIs (both pixel-based and population-based), synthesized
& natural image controls, partial- & full-texture DEIs, fixed
& phase invariant subfields alone, partial-texture DEIs with
swapped subfields. For single neurons, the statistical signifi-
cance of the difference in responses was assessed using either
one-tailed or two-tailed Welch’s t-tests. The overall differ-
ence in average responses pooled across all neurons was as-
sessed using either one-tailed or two-sided Wilcoxon signed-
rank tests.

Statistics All statistical tests performed with the corre-
sponding sample sizes, statistical values, and p-values are
reported in the figure caption. All permutation testings
and bootstrappings were performed with 10,000 permuta-
tions/resamplings. Normality was assumed for Welch’s t-test
and one-sample t-test, although this was not explicitly tested.
When p-values were less than 10≠9, they were reported as
P < 10≠9; otherwise the exact p-values were reported.

Data and code availability. All data and the analysis code
will be made publicly available in an online repository latest
upon journal publication. Please contact us if you would like
to get access before that time.
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Supplementary Information
Supplementary Fig. 1 — Example stimuli presented in closed-loop experiments
Supplementary Fig. 2 — MEI, DEIs, and bipartite mask of partial texture DEIs generated from signals at different depths of
the same neuron
Supplementary Fig. 3 — MEI and DEIs activated neurons with high specificity in all mice
Supplementary Fig. 4 — Population-based DEIs evoked strong and selective responses in target neurons while containing
perceivable differences
Supplementary Fig. 5 — Replication of DEIs in the MICrONS functional connectomics data set
Supplementary Fig. 6 — Selection and quantification of partial-texture DEIs
Supplementary Fig. 7 — Both subfields of the partial-texture DEIs are necessary and specific for evoking high in vivo responses
Supplementary Fig. 8 — DEI Closed-loop verification for randomly selected neurons
Supplementary Fig. 9 — DEI Bipartite masks align with object boundaries in highly activating natural crops
Supplementary Fig. 10 — Phase invariant subfields prefer higher frequency content than fixed subfields
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Fig. S1. Example stimuli presented in closed-loop experiments. MEI, non-parametric DEIs, natural & synthesized controls, and partial- & full-texture DEIs that were
presented back to the animals in closed-loop experiments for 9 example neurons.
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Fig. S2. MEI, DEIs, and bipartite mask of partial-texture DEIs generated from signals at different depths of the same neuron. Most neurons were scanned multiple
times due to the dense calcium imaging with field 5µm apart in depths. MEI, DEIs, and partial-texture DEIs were generated for neuronal slices at different depths.
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Fig. S3. MEI and DEIs activated neurons with high specificity in all mice. The confusion matrices show the responses of each neuron to the MEI (left) and DEIs (right)
of all target neurons in individual scans where we presented the stimuli back to the mouse on day 2 and beyond in closed-loop experiments. MEI responses were averaged
across 20 repeats of the same image while DEIs responses were averaged across 20 different images with single repeat. The responses of each neuron were normalized,
and each row was scaled so the maximum response across all images equals 1. Responses of neurons to their own MEI and DEIs (along the diagonal) were larger than to
other MEIs and DEIs, respectively (one-sided permutation test, P < 10≠9 for both cases across all mice).
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Fig. S4. Population-based DEIs evoked strong and selective responses in target neurons while containing perceivable differences. a, Examples of MEI and non-
parametric DEIs generated with pixel-based (odd rows) or in silico population-based (even rows) diversity for 4 example neurons. b, Population-based DEIs activated neurons
with high specificity. The confusion matrices show the responses of each neuron to MEI (left) and DEIs (right) of 44 neurons. MEI responses were averaged across 20
repeats of the same image while DEIs responses were averaged across 20 different images with single repeat. The responses of each neuron were normalized, and each
row was scaled so the maximum response across all images equals 1. Responses of neurons to their own MEI and population-based DEIs (along the diagonal) were larger
than to other MEIs and DEIs respectively (one-sided permutation test, P < 10≠9 for both cases). c, In vivo response to population-based DEIs versus MEI. Each point
corresponds to the normalized response of a single neuron. The linear relationship between DEIs and MEI responses was estimated by averaging over 1000 repeats of
robust linear regression using the RANSAC algorithm (21). DEIs stimulated in vivo closely to the level predicted in silico with respect to MEI (76% versus 85%) (two-sided
Wilcoxon signed-rank test, W = 8464, P = 7.69 ◊ 10≠3), with only 12.1% of all neurons showing different responses between DEIs and 85% of MEI (P < 0.05, two-tailed
Welch’s t-test with 32.6 average d.f.). Data were pooled over 207 neurons from 5 mice. d-e, Each point corresponds to the normalized activity of a single neuron in response
to its population-based DEIs versus its synthesized controls (d) or natural image (e) controls. Response to each stimulus type was averaged over 20 different images with
single repeat. DEIs activated their target neurons stronger than their corresponding synthesized and natural image controls (one-sided Wilcoxon signed-rank test, W = 3441,
P < 10≠9 and W = 3466, P < 10≠9 respectively) with 26.6% and 28.5% of all neurons showing greater responses to non-parametric DEIs (P < 0.05, one-tailed Welch’s
t-test with 31.0 and 30.6 average d.f., respectively). f, Differences between the most different pair of DEIs in pixel space are distinguishable by the mouse V1 population.
Logistic regression classifiers were used to decode DEI identity of individual trials from V1 population responses. Decoding accuracies across neurons (median=0.93) were
higher than chance level (0.5 as indicated by the dashed line) (one sample t-test, t = 138.5, P < 10≠9). Data were pooled over 235 neurons from 3 mice.
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Fig. S5. Replication of DEIs in the MICrONS functional connectomics data set. a, Illustration of how we applied our DEI methodology in the “MICrONS” functional
connectomics data set. We used neuronal responses to natural images to train a static model and optimize MEIs and DEIs (“static”, S). Then, we used the responses of the
same neurons to natural movie stimuli used in the MICrONS data set to first train a dynamic model and then predict responses to static images. Based on these predictions,
we trained a separate static model and optimized MEI and DEIs for the same neurons (“Dynamic”, D). b, Neuron responses to natural image crops were sparse and smaller
than those to MEI and DEIs synthesized from both static and dynamic static models. The gray curves show the fraction of natural image crops that elicit no less than certain
normalized activation (normalized by S-MEI activation) for 150 random model neurons; the black curve indicates the average. Arrows denote the average activation of each
stimulus type on the x axis. On average, only 1.0% of all 5000 natural crops produced in silico responses above D-DEIs. There existed only 0.1% of natural crops in between
D-MEI and S-MEI activation and only 1.0% in between D-DEIs and S-DEIs activation. For a representative cell (red), example images at different activation levels were
shown, along with its S-MEI, D-MEI, S-DEIs, and D-DEIs. Data were pooled over 3 mice for a total of 935 neurons. c, Cumulative distribution of neurons with an equal or
larger fraction of natural images crops eliciting activation in between D-MEI and S-MEI activation (gray) and in between D-DEIs and S-DEIs activation (black) (90% and 70%
of all neurons have only 1% of natural patches in between D-MEI and S-MEI activation and in between D-DEIs and S-DEIs activation, respectively (red dashed line)). d,
Diversity index of D-DEIs versus S-DEIs. Data was pooled over 3 mice for a total of 4268 neurons for MEI and 679 for DEI analysis. e, We used the above pipeline to optimize
MEIs and DEIs for neurons in the MICrONS data set itself. This allows future circuit-level dissections towards understanding the mechanism underlying the novel bipartite
invariances in mouse visual cortex.

22 | bioR‰iv Ding, Tran et al. | Bipartite invariance in mouse primary visual cortex

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 16, 2023. ; https://doi.org/10.1101/2023.03.15.532836doi: bioRxiv preprint 

https://doi.org/10.1101/2023.03.15.532836
http://creativecommons.org/licenses/by-nc-nd/4.0/


a

Normalized 
phase invariant subfield size

N
or

m
al

iz
ed

 re
sp

on
se

0 1
0

1

b

Diversity index of 
non-parametric DEIs

D
iv

er
si

ty
 in

de
x 

of
 

pa
rti

al
-te

xt
ur

e 
D

E
Is

MEI Full-texture DEIs

0 1

0

1

Fig. S6. Selection and quantification of partial-texture DEIs. a, Each curve shows how the normalized average in silico activation of texture-based DEIs decreases as
the normalized size of phase invariant subfield increases. Texture DEIs with no phase invariant subfield (i.e. fixed subfield only) are equivalent to the MEI. Texture DEIs
with phase invariant subfield spanning the entire RF is equivalent to full-texture DEIs. The set of partial-texture DEIs is selected for each neuron to jointly maximize both
the average response and diversity (see Method for more details). b, Diversity index of partial-texture DEIs versus non-parametric DEIs. Data were shown for a total of 401
neurons pooled over 8 mice that have been tested in closed-loop experiments.
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Fig. S7. Both subfields of the partial-texture DEIs are necessary and specific for evoking high in vivo responses. a, Examples of the MEI, fixed or phase invariant
subfield of the MEI only, partial-texture DEIs, and partial-texture images with either fixed or phase invariant subfield swapped to random content for two example neurons. The
fixed subfield was swapped to 20 different random natural patches whereas the phase invariant subfield was swapped to patches cropped from 20 different random non-self
neurons’ preferred textures for the phase invariant subfield. b-e, Each point corresponds to the normalized response of a single neuron averaged over 20 repeats (MEI)
or averaged over 20 single-trial different stimuli of the same type. b-c, Fixed or phase invariant subfield of the MEI only activated the target neurons weaker than the MEI
(one-sided Wilcoxon signed-rank test, W = 21650, P < 10≠9, and W = 17873, P < 10≠9, respectively) with 50.2% and 21.4% of all neurons showing weaker responses
than their MEIs (P < 0.05, one-tailed Welch’s t-test with 29.9 and 33.1 average d.f., respectively). d-e. Both fixed and phase invariant subfield swapped stimuli activated
the target neurons weaker than partial-texture DEIs (one-sided Wilcoxon signed-rank test, W = 31710, P < 10≠9, and W = 27850, P < 10≠9, respectively) with 40.9%
and 22.0% of all neurons showing weaker responses than their partial-texture DEIs (P < 0.05, one-tailed Welch’s t-test with 30.0 and 32.5 average d.f., respectively). Data
were pooled over 5 mice, displaying a total of 259 neurons.
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Fig. S8. DEI closed-loop verification for randomly selected neurons. a, Confusion matrices for MEI and non-parametric DEIs show the responses of each neuron to
the MEI (left) and DEIs (right) of all target neurons. The responses of each neuron were normalized, and each row was scaled so the maximum response across all images
equals 1. Responses of neurons to their own MEI and DEIs (along the diagonal) were larger than to other MEIs and DEIs respectively (one-sided permutation test, P < 10≠9

for both cases). b-h, Each point corresponds to the normalized response of a single neuron averaged over 20 repeats (MEI) or averaged over 20 single-trial different stimuli of
the same type. b, In vivo response to DEIs versus MEI. Each point corresponds to the normalized response of a single neuron. The linear relationship between DEIs and MEI
responses was estimated by averaging over 1000 repeats of robust linear regression using the RANSAC algorithm (21). DEIs stimulated neurons in vivo closely to the level
predicted in silico with respect to MEI (78% versus 85%) (two-sided Wilcoxon signed-rank test, W = 982, P = 0.698), with only 14% neurons showing different responses
between DEIs and 85% of MEI (P < 0.05, two-tailed Welch’s t-test with 33.0 average d.f.). c, DEIsfull failed to stimulate their target neurons compared to non-parametric DEIs
(one-sided Wilcoxon signed-rank test, W = 212, P = 1.53 ◊ 10≠8) with 48.4% of all neurons showing weaker responses than non-parametric DEIs (P < 0.05, one-tailed
Welch’s t-test with 30.5 average d.f.) d, DEIspartial activated their target neurons similarly to non-parametric DEIs (two-sided Wilcoxon signed-rank test, W = 851, P = 0.21)
with only 9.4% of neurons showing different responses from corresponding non-parametric DEIs (P < 0.05, two-tailed Welch’s t-test with 34.4 average d.f.). e-f, Fixed or
phase invariant subfield of the MEI only activated the target neurons weaker than the MEI (one-sided Wilcoxon signed-rank test, W = 1950, P < 10≠9, and W = 1586,
P = 1.3 ◊ 10≠4, respectively) with 48.4% and 22.8% of neurons showing weaker responses than their corresponding MEIs (P < 0.05, one-tailed Welch’s t-test with 31.0
and 33.4 average d.f., respectively). g-h. Both fixed and phase invariant subfield swapped stimuli activated the target neurons weaker than partial-texture DEIs (one-sided
Wilcoxon signed-rank test, W = 1942, P < 10≠9, and W = 1824, P = 7.9 ◊ 10≠8, respectively) with 48.4% and 20.3% neurons showing weaker responses than their
partial-texture DEIs (P < 0.05, one-tailed Welch’s t-test with 28.1 and 31.7 average d.f., respectively). Data were collected from 1 mouse, displaying a total of 64 neurons.
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Fig. S9. DEI bipartite masks align with object boundaries in highly activating natural crops. a, For each of the 4 example neurons, we show the MEI, the bipartite
mask (black denotes the fixed subfield and white denotes the phase invariant subfield) extracted from partial-texture DEIs, 5 of the 100 highly activating natural crops, the
corresponding original full-field natural images from which the crops were taken, and the corresponding segmentation labels of the natural crops. For each highly activating
crop, a matching score is computed based on its segmentation label and the neuron’s bipartite mask. The value on the bottom right of each natural image crop shows the
normalized model predicted activation of the image. Red dashed boxes on the full-field natural images indicate the natural image crops where the MEI masks were applied.
The value on the bottom right of each segmentation label image shows its matching score. b, Histogram of averaged in silico response of top 100 highly activating natural
crop sampled from CUB data set after normalized by their corresponding MEI (median is 0.695). c, When the bipartite mask was flipped with regard to the center of the RF,
the matching score for the highly activating natural crops decreased (one-sided Wilcoxon signed-rank test W = 204486, P < 10≠9) with 41.3% of all neurons showing
weaker matching scores than original bipartite mask (P < 0.05, one-tailed Welch’s t-test with 186.4 average d.f.). Example original bipartite mask and flipped bipartite mask
were shown for one neuron (top left and bottom right respectively). The result was pooled over 6 mice for a total of 1200 neurons.
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Fig. S10. Phase invariant subfields prefer higher frequency content than fixed subfields. a, Schematic illustrating the synthesis of Perlin noise stimuli (27) with different
frequency biases. The MEI, bipartite mask, and synthesized stimuli for one example neuron were shown for demonstration. Two populations of full-field textures containing
Perlin noise with different persistence coefficients (1.0 and 0.25) were synthesized (1 million each) to capture the diversity of natural textures at high and low frequencies (top
and bottom). For each target neuron, the MEI mask was applied onto either high-frequency or low-frequency textures to create homogeneous stimuli (1 million high f -high
f and 1 million low f -low f, respectively). In addition, the phase invariant subfield mask and the fixed subfield mask were applied onto different texture populations to create
heterogeneous stimuli (1 million high f -low f and 1 million low f -high f ). b, For each neuron, we screened through all 4 million synthesized stimuli to identify the most exciting
one. The percentage of neurons preferring each stimulus type is reported in the 4 quadrants of the stimulus space. Each quadrant also demonstrates one example stimulus
created for one example neuron, with the value on the bottom right of each image showing its normalized model predicted activation. Neurons preferred stimuli with higher
frequency in the phase invariant subfield more than stimuli with low or high frequency in both subfields, as well as stimuli with lower frequency in the phase invariant subfield
(one-way chi-squared test, ‰2 = 314, P < 10≠9 and one-sided test using bootstrapping, P < 10≠9 for all three comparisons). The percentages of neurons for each
quadrant with bootstrapped standard deviation were reported. Data was pooled over 6 mice for a total of 1200 neurons.
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