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ABSTRACT 22 

Goal-directed tasks involve acquiring an internal model, known as a predictive map, of relevant 23 

stimuli and associated outcomes to guide behavior. Here, we identified neural signatures of a 24 

predictive map of task behavior in perirhinal cortex (Prh). Mice learned to perform a tactile 25 

working memory task by classifying sequential whisker stimuli over multiple training stages. 26 

Chemogenetic inactivation demonstrated that Prh is involved in task learning. Chronic two-27 

photon calcium imaging and population analysis revealed that Prh encodes stimulus features as 28 

sensory prediction errors. Prh forms stable stimulus-outcome associations that expand in a 29 

retrospective manner and generalize as animals learn new contingencies. Stimulus-outcome 30 

associations are linked to prospective network activity encoding possible expected outcomes. 31 

This link is mediated by cholinergic signaling to guide task performance, demonstrated by 32 

acetylcholine imaging and perturbation. We propose that Prh combines error-driven and map-33 

like properties to acquire a predictive map of learned task behavior.  34 

 35 

  36 
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INTRODUCTION 37 

The brain generates internal models of the environment that describe the relationship between 38 

stimuli, events, and outcomes. Models are learned through experience and can be stored as 39 

memories. These memories can be recalled to serve as predictions of upcoming stimuli or 40 

outcomes to guide ongoing task behavior. As sensory information is evaluated against internal 41 

models, they can generate at least two types of neural signals. Activity can report when sensory 42 

information does not match the prediction, referred to as a ‘sensory prediction error’. Activity 43 

can also report when sensory information is predictive of an outcome such as reward, referred to 44 

as a ‘stimulus-outcome association’. In sensory neocortex, sensory prediction errors are a 45 

hallmark of predictive coding, a proposed framework in which predictions of sensory 46 

information are generated and evaluated against actual sensory input1-3. Stimulus-outcome 47 

associations are the basis for cognitive maps in the hippocampus4-6, a representation that reduces 48 

similar spatial and non-spatial associations to a lower-dimensional ‘abstract’ format7. This 49 

format is proposed to facilitate generalization of novel stimulus-outcome associations8,9. 50 

 The extent to which predictive coding and cognitive maps are aspects of distinct or 51 

common neurobiological processes is unclear. Recently, it has been proposed that the two 52 

theories could be considered part of a broader framework, referred to as a ‘predictive map’10,11. 53 

During goal-directed sensory-guided behavior, sensory prediction errors and stimulus-outcome 54 

associations would both be readouts of a single predictive map of the task. This predictive map 55 

would be acquired and updated by a combination of error learning to minimize sensory 56 

prediction errors and associative learning to strengthen stimulus-outcome associations. The map 57 

would be used to predict upcoming task events and infer relationships of novel experiences. 58 

Different maps could be flexibly recalled depending on behavioral conditions.  59 

 To look for neural evidence of a predictive map, we focused on perirhinal cortex (Prh), a 60 

zone of convergence between sensory neocortex and the hippocampus12-14. Prh has multiple roles 61 

in sensory processing including unitizing features, assigning relational meaning, signaling 62 

novelty, and temporal ordering of stimulus items15-17. These sensory- and memory-related 63 

functions suggest that Prh generates a model of relevant sensory information associated with task 64 

behavior. This suggests that functions associated with predictive coding and cognitive maps are 65 

combined and expressed in this area. Prh also receives dense cholinergic inputs18-20. 66 

Acetylcholine is involved in reward expectation and enhancing sensory processing related to 67 

predictive coding21,22 as well as memory encoding and retrieval related to cognitive maps23-25. 68 

Cholinergic signaling could serve as a mechanism that would flexibly establish network states 69 

enabling predictive maps to be recalled and utilized in Prh. Here, we investigated whether neural 70 

substrates in Prh support the acquisition, representation, and implementation of a predictive map 71 

of learned sensory-guided behavior. 72 

 73 

RESULTS 74 

Perirhinal cortex is necessary for sensory learning tasks 75 

To investigate how predictive maps are acquired and updated, mice were trained to perform a 76 

goal-directed task that required them to classify sequentially presented whisker stimuli26,27 (Fig. 77 

1a). A motorized rotor was used to deflect multiple whiskers in either an anterior (A) or posterior 78 

(P) direction during an initial ‘sample’ and a later ‘test’ period. Mice were trained to report 79 

whether the presented sample and test stimuli were non-matching or matching. In addition to the 80 

direction of rotation, deflections were delivered at different speeds (‘fast’ or ‘slow’). Speed can 81 

be considered both a second stimulus dimension and a variation in the strength of the rotation 82 
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direction. This means that animals need to consider relevant (direction) and irrelevant (speed) 83 

stimulus features in order to abstract a complex sensory relationship (non-match or match). 84 

Temporally dissociating the stimulus features into two trial periods enabled us to investigate how 85 

predictive maps are evaluated when features are necessary but not yet sufficient to predict 86 

outcome (sample) and when the combined features are abstracted to sufficiently predict the 87 

outcome (test).  88 

 Overall training was divided into multiple training stages. Each stage was designed to 89 

assay aspects of stimulus-feature and stimulus-reward learning (Table 1-2). The initial training 90 

stages consisted of one non-match stimulus condition (AP) and two match stimulus conditions 91 

(AA, PP). Training under these conditions was subdivided into 2 stages according to initial naive 92 

performance (T1) and learned performance (T2, d’>0.45 for two consecutive sessions). 93 

Completion of T2 required the animal to unitize the sample and test stimuli and pair it with 94 

reward. In the following stage (T3), the remaining held-out non-match condition (PA) was 95 

introduced, which required the animal to learn a new stimulus-reward contingency and 96 

generalize non-match and match across all possible combinations. Following successful learning 97 

of T3, delays between the sample and test stimuli were gradually extended up to 2 seconds (T4) 98 

to increase the temporal separation between sample and test stimuli. During the final stage (T5), 99 

the rotor was fully retracted during the delay period to require animals to retain a working 100 

memory of the sample stimulus. This also prevented the animal from relying on potential 101 

positional cues that existed during T4 when the rotor remained in whisker contact throughout the 102 

delay period. 103 

 We first tested whether Prh was required to learn this classification task using chronic 104 

chemogenetic inactivation28. We utilized a custom-built automated home cage training system 105 

that allows for an unbiased assay of task acquisition (Supplementary Text S1, Extended Data 106 

Fig. 1). Advancement to successive training stages was contingent on pre-defined performance 107 

metrics that were applied uniformly to each animal. Reporting of non-match vs. match 108 

conditions was carried out by two-alternative forced choice licking of water ports and reinforced 109 

by delivery of water reward. We stereotaxically localized whisker-related regions of Prh by first 110 

using anatomical tracing to identify sites that exhibit reciprocal connectivity between secondary 111 

somatosensory cortex (S2) (Extended Data Fig. 2). Experimental hM4Di+ animals (n = 9) 112 

received bilateral injections of AAV/9-hSyn-dio-hM4Di-mCherry and rAAV-hSyn-Cre into the 113 

targeted area (Fig. 1b). Control hM4Di- animals (n = 13) either received no injection or bilateral 114 

sham injections of AAV/9-hSyn-dio-mCherry and rAAV-hSyn-Cre. All animals were placed in 115 

the home cage training system for up to six weeks (~80 training sessions) with Compound 21 116 

provided in the drinking water to silence neurons in Prh29. Histology was performed at the end of 117 

behavior experiments to verify viral targeting of Prh. For some animals, the density of hM4Di-118 

mCherry expression (74.9±3.0% of neurons, n=4 animals) along with mRNA Fos expression 119 

were quantified to verify Prh silencing (Extended Data Fig. 3). Individual hM4Di+ or hM4Di- 120 

animals showed a range of learning rates throughout the training period (Extended Data Fig. 4). 121 

However, the majority of hM4Di+ animals failed to demonstrate consistent learned behavior to 122 

advance past T2 (Fig. 1c). hM4Di+ animals spent more trials in T1-T2 than hM4Di- animals 123 

(Fig. 1d, 14,976±1,473 trials hM4Di+ animals vs. 11,058±1,512 trials hM4Di- animals; P<0.05, 124 

Student’s t-test). This demonstrates that Prh is involved in abstract sensory learning. 125 

Sensory and motor variables across head-fixed task learning  126 

To study how population activity evolves in Prh with task learning, we performed chronic multi-127 

depth two-photon calcium imaging in a separate cohort of head-fixed animals throughout the 128 
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entirety of training. Virus expressing the genetically encoded calcium indicator, RCaMP1.07 129 

(AAV/PHP.eB-EF1α-RCaMP1.07), was delivered into Prh. To non-invasively image Prh using 130 

an upright two-photon microscope, a 2mm coated microprism was laterally implanted to provide 131 

optical access along the cortical surface using a long working-distance objective (Fig. 2a). 132 

Compared to task training in the home cage training systems, task conditions were modified for 133 

head-fixed behavior (Supplementary Text S2). To help delineate activity between rewarded and 134 

non-rewarded stimulus conditions, we employed a go/no-go reward contingency in which only 135 

non-match stimulus conditions were rewarded. Compared to home-cage training, similar 136 

performance criteria were applied to advance animals through each stage of training. However, 137 

some training parameters were manually tuned to each individual animal to maximize training 138 

success (Table 3, Supplementary Text S3-S4). Under these conditions, 7 out of 9 animals were 139 

successfully trained to T5 within ~60 training sessions (Fig. 2b). Analysis was performed on 140 

animals successfully trained through T5. 141 

 We first asked whether animals changed their behavioral strategies with learning by 142 

measuring changes in sensory or motor variables. In addition to two-photon calcium imaging, 143 

high-speed videography was performed to measure whisker kinematics and whisking behavior 144 

(Fig. 2c, Extended Data Fig. 5). Unlike in other whisker-based sensory tasks30,31, animals did 145 

not actively whisk during task performance. Whisking amplitude did not significantly change 146 

across training stages (Fig. 2d). We additionally examined licking behavior across training. In 147 

early training stages, animals showed sporadic licking across different trial epochs such as the 148 

sample and test period, but this became more restricted to the report period as animals advanced 149 

in the task (Fig. 2g, pre, P<1x10-29, F4,1159 = 38.8; sample, P<1x10-78, F4,1159 = 109.0; test, 150 

P<1x10-43, F4,1159 = 57.2; report, P<1x10-5, F4,1159 = 8.3, one-way ANOVA with post-hoc 151 

multiple comparison test). 152 

 We next compared whisker kinematics during different direction and speed conditions. 153 

Overall, whisker angle changes trended more in the anterior direction (Fig. 2e, sample, P<1x10-5, 154 

F4,593 = 8.01, one-way ANOVA with post-hoc multiple comparison test; test, P<1x10-4, F4,592 = 155 

7.10, one-way ANOVA with post-hoc multiple comparison test). Despite this, posterior stimuli 156 

consistently produced more negative angle deflections than anterior stimuli. Posterior stimuli 157 

also consistently produced more negative curvature changes than anterior stimuli (Fig. 2f). 158 

Compared to fast conditions, slow conditions produced weaker negative angle deflections and 159 

curvature changes in the anterior direction. No difference was observed for either angle or 160 

curvature changes between slow and fast stimuli in the posterior direction. 161 

 162 

Perirhinal cortex learns sensory prediction errors. 163 

Given the specific changes in sensory and motor variables across learning, we sought to 164 

determine what aspects of sensory information are encoded in Prh. We focused on neural activity 165 

related to stimulus direction or speed and its relationship to task performance. Animals were 166 

primarily trained on directions with fast speeds (95% across T1-T4, 75% for T5) with slow speed 167 

trials provided as less frequent stimuli (5% across T1-T4, 25% for T5). Since whisker kinematic 168 

analysis shows that slower speeds produce less deflections in the anterior direction, weaker 169 

information about stimulus direction could affect task performance on slow speed trials. Indeed, 170 

while animals were able to learn the task at fast and slow speeds, they performed worse on slow 171 

compared to fast speed conditions as they approached later training stages (T4, P<0.05; T5, 172 

P<0.05, paired Student’s t-test, Fig. 3a).  173 
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 We analyzed how Prh encodes direction and speed across training. For every training 174 

session, neuronal populations (n = 2335 neurons, 7 animals) in layer 2/3 (L2/3) of Prh were 175 

simultaneously imaged across 2 imaging depths using a multi-area two-photon microscope (Fig. 176 

2c, Extended Data Fig. 6)32. In single cells, we observed examples of preferred responses to 177 

stimulus direction during early training sessions that disappeared in later sessions. We also 178 

observed selectivity to stimulus speed emerging over training sessions. To characterize these 179 

changes at a population level, population decoding was performed on trial conditions related to 180 

direction or speed (Fig. 3b). Early during learning, direction could be decoded above chance but 181 

gradually decreased to chance levels by T5 (Fig. 3c, P<1x10-8, F4,266 = 12.65, one-way ANOVA 182 

with post-hoc multiple comparison test). In contrast, decoders trained to speed increased 183 

performance with learning (Fig. 3d, P<0.02, F4,262 = 3.19, one-way ANOVA with post-hoc 184 

multiple comparison test). Overall, this indicates that task training results in weakening 185 

representations of task relevant stimuli (direction) and strengthening of task irrelevant stimuli 186 

(speed) in Prh.  187 

 The above results are in opposition to previous results observed in primary 188 

somatosensory cortex (S1) during task learning which is typified by strengthening of task 189 

relevant features31,33. They are also inconsistent with the changes in whisker kinematics observed 190 

across training stages in the high-speed videography. We assessed whether activity related to 191 

direction or speed differed depending on the animals’ choice. Decoders were trained on direction 192 

or speed separately for correct (‘hit’ or ‘correct rejection’) or error (‘miss’ or ‘false alarm’) trials. 193 

For direction, we found that decoder accuracy during the sample period decreased to chance over 194 

learning on correct trials, but this information remained above chance on error trials (Fig. 3e). In 195 

contrast, analysis of previously acquired S1 population data in expert animals performing the 196 

task showed that direction was stronger on correct compared to error trials (Extended Data Fig. 197 

7). In Prh, decoder performance for speed increased similarly for correct and error trials (Fig. 198 

3f). To more closely examine how speed selectivity relates to choice selectivity in single 199 

neurons, we identified neurons with significant population decoder weights to speed (Fig. 3g). 200 

We then compared the firing rates of these neurons when sorted for speed conditions versus 201 

correct choice conditions. We found examples of neurons that were tuned to both speed and 202 

choice (Fig. 3h). We measured the choice-selective response distribution of speed-tuned neurons 203 

across learning. While the distribution of speed-tuned neurons showed balanced responses to 204 

choice during T1, choice selectivity became biased towards error trials once animals 205 

demonstrated learned performance (T2-T5) (Fig. 3i, sample: P<1x10-15, F4,7578=19.69, one-way 206 

ANOVA with post-hoc multiple comparison test; test: P<1x10-41, F4,7682 =50.69, one-way 207 

ANOVA with post-hoc multiple comparison test).  208 

 The results above indicate the Prh does not represent sensory information in the same 209 

manner as S1 does. Instead, it suggests that stimulus activity in Prh may reflect a sensory 210 

prediction error signal (ie. the difference between actual and expected sensory information), 211 

consistent with theories of predictive coding3. Information about direction decreases as Prh 212 

forms an internal model of direction as the task relevant feature, explaining away the delivered 213 

stimuli. Concurrently, information about speed increases to signal the prediction error between 214 

directions that are presented at the expected fast speeds versus the unexpected, weak slow 215 

speeds. The strength of these error signals occurs are correlated with errors in choice behavior.  216 

 217 

Stimulus-reward associations emerge and stabilize with learning 218 
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To understand how sensory and reward information are integrated to form stimulus-reward 219 

associations, we analyzed how representations of reward outcome evolved across learning. A 220 

cross-session decoder was trained using Hit vs. non-Hit trials from one session and tested on 221 

other sessions across learning (Fig. 4a). When assessing cross-session performance between 222 

neighboring sessions during the report period, representations of reward outcome were stably 223 

represented above chance on a session-to-session basis. No differences in session-to-session 224 

performance were found between training stages (Fig. 4b, P=0.19, F4,260 = 1.54, one-way 225 

ANOVA). Analysis of cross-session performance across longer time scales and across training 226 

stages showed that representations of reward outcome were less stable early in training (T1) but 227 

stabilized as animals learned the task (Fig. 4c). These results suggest that learning produces a 228 

stable, long-term representation of reward outcome.  229 

 Given that reward outcome stabilizes with learning, we asked whether such 230 

representations reflect a stimulus-reward association which would precede reward delivery. A 231 

cross-temporal decoder was trained on Hit. vs non-Hit trials during the report period and then 232 

tested on time points across the trial period. We identified a gradual retrograde expansion of 233 

decoder performance related to reward outcome over the course of learning that preceded reward 234 

and extended into the test stimulus period (Fig. 5d). Analysis of the onset of decodable reward 235 

outcome across training stages showed that this expansion emerged as animals demonstrated 236 

learned performance (T2) and continued to expand throughout the additional training stages (Fig. 237 

5e, P<0.002, F4,282=4.44, one-way ANOVA with post-hoc multiple comparison test). To test 238 

whether this temporal expansion is specific to rewarded trials, we conducted similar analysis of 239 

cross-temporal decoders trained to non-rewarded conditions that controlled for either licking 240 

behavior (false alarm) or correct choice (correct rejection). Neither decoder showed onset 241 

accuracy that extended into the test period. This demonstrates that neural representations on Hit 242 

trials correspond to a stimulus-reward association. The temporal profile of this expansion 243 

suggests that this association emerges in a retrograde manner from reward outcome.  244 

 245 

Stimulus-reward associations generalize in an abstract format 246 

We next asked whether stimulus-reward associations were specific to a given stimulus set or 247 

could generalize across stimulus conditions. To address this, we analyzed how representations 248 

changed from T2 to T3 when the novel PA stimulus-reward contingency was introduced. 249 

Behaviorally, mice were flexibly able to correctly respond on the first session in which PA was 250 

introduced (T30). Performance on PA further improved over ~4-5 sessions, reaching similar 251 

levels as AP (Fig. 5a). We observed examples of single cells that exhibited distinct temporal 252 

responses between AP and PA conditions at T30. These responses changed over sessions, 253 

resulting in similar responses between the two conditions (Fig. 5b). To characterize these 254 

changes at a population level, we trained two separate population decoders on activity during the 255 

report period on rewarded conditions using either only AP or PA (Fig. 5c). This allowed us to 256 

independently evaluate each representation across T3 sessions. Cross-temporal analysis showed 257 

that the temporal profile of AP and PA representations were distinct at T30 but became similar 258 

after 4 sessions (T34) (Fig. 5d). Whereas the onset accuracy extended into the test period for AP 259 

at T30, indicative of a stimulus-reward association, onset accuracy for PA initially was restricted 260 

to the report period but expanded into the test period over the course of 3-4 sessions (Fig. 5e, 261 

P<0.002, F9,54=3.64, two-way repeated measures ANOVA with post-hoc Student’s t-test). This 262 

demonstrates that acquisition of new stimulus-reward contingencies occurs through a common 263 

mechanism of retrograde expansion from reward outcome. 264 
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 Representations of AP-reward and PA-reward associations could exist in different or 265 

similar neural subspaces. The latter would imply that the geometry of stimulus-reward 266 

associations in Prh are represented in an abstract format7. To test this, we analyzed the cross-267 

condition performance for each of the two separate population decoders (ie. testing AP 268 

performance using a PA decoder and vice-versa). Cross-condition PA performance to the AP 269 

decoder during the test stimulus period was initially worse than the opposite cross-condition but 270 

gradually improved over the course of 9 sessions (Fig. 5f,g, P<0.05, F9,54=2.16, two-way 271 

repeated measures ANOVA with post-hoc Student’s t-test). This suggests acquisition of new 272 

stimulus-reward contingences occurs in two phases: an initial establishment of the stimulus-273 

reward association followed by a consolidation that aligns the new association into the same 274 

subspace of existing stimulus-reward associations. Overall, these findings demonstrate that Prh 275 

can generalize across novel stimulus-reward contingencies to form stimulus-reward associations 276 

that are representationally abstract. 277 

 278 

Neural signatures of expected outcome in Prh 279 

The observation that stimulus-outcome associations emerge in a retrograde manner to precede 280 

the report period suggests that stimulus information is integrated with ongoing activity that could 281 

signal an expected outcome (ie. reward delivery). Neural activity reflecting the expectation of 282 

reward or punishment has been observed during task engagement in other brain areas34. 283 

Therefore, we asked whether ongoing Prh activity throughout the trial period could contain an 284 

expectation signal of future outcomes. We looked for evidence of population activity 285 

corresponding to expected outcome. This was defined by the ability for a linear decoder to 286 

decode trial outcome when trained on activity at the beginning of the trial during the pre-287 

stimulus period. Additionally, we asked whether this population subspace was maintained across 288 

the trial epoch to link task events to a given outcome. This was defined as the ability for the same 289 

decoder to cross-temporally decode trial outcome when tested on activity during the report 290 

period.  291 

 Two separate population decoders were trained on either hit vs. non-hit trials (Expected 292 

Hit) or correct rejection (CR) vs. non-CR trials (Expected CR) during the pre-stimulus period 293 

(Fig. 6a). When trained and tested during the pre-stimulus period (Fig. 6b), trial outcome could 294 

be decoded above chance throughout training. The accuracy of this decoder was consistently 295 

weaker than decoders trained and tested during the report period (Fig. 6d). Cross-session 296 

decoders to Expected Hit were not able to perform above chance, suggesting that this activity is 297 

unstable across sessions unlike stimulus-reward associations (Fig. 5c). Expected Hit could also 298 

be decoded during the sample and test period (Extended Data Fig. 8). These same decoders did 299 

not encode information about stimulus direction or speed indicating that expected outcome 300 

activity occupied a different subspace from sensory prediction errors. 301 

 Analysis also demonstrates that this subspace is maintained throughout the trial period. 302 

Decoders trained on the pre-stimulus period were able to decode outcome activity below chance 303 

when tested during the report period (ie. below the 5th percentile of the shuffled distribution) 304 

(Fig. 6c). This was particularly strong during T2-T5 sessions when animals exhibited strong task 305 

performance (Expected Hit: P<1x10-5, F4,296=7.64; Expected CR: P<1x10-19, F4,285=29.18, one-306 

way ANOVA with post-hoc multiple comparisons test). To better understand how pre-stimulus 307 

activity predicts outcome activity below chance in single neurons, we identified neurons with 308 

significant population decoder weights. These neurons exhibit low levels of activity during the 309 

pre-stimulus period that differed slightly when sorted between Hit, Miss, FA, and CR trials. One 310 
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neuron that was most outcome responsive on Hit trials also showed slightly elevated pre-311 

stimulus activity that would later decrease on CR trials. Another neuron that was most outcome 312 

responsive on CR trials showed slightly elevated pre-stimulus activity on Hit trials (Fig. 6h). We 313 

examined the population trajectory along the subspace of the pre-stimulus decoder (Fig. 6i). For 314 

Expected Hit, the population activity was projected along the decision variable axis for each of 315 

the 4 choice conditions over the time course of the trial. We observed that activity on hit and 316 

non-hit trials was separated along the axis through the pre-stimulus and sample stimulus period. 317 

The trajectories converged during the test stimulus period and then flipped their sign during the 318 

report period. This suggests that the decoder trained on pre-stimulus activity captures neurons 319 

that are selective to specific choice outcomes with baseline firing properties tuned to the opposite 320 

outcome. The sign flip along this subspace explains the below chance performance during the 321 

report period. 322 

 To confirm that activity in the pre-stimulus period constitute a prospective and not a 323 

retrospective signal, we analyzed the performance of several cross-temporal decoders. Cross-324 

temporal decoder trained during the report period was not able to explain reward information 325 

during the pre-stimulus period (Fig. 6e). To test if pre-stimulus information reflects a trial history 326 

of recent outcomes as observed in other cortical areas35, cross-temporal decoders between the 327 

pre-stimulus and the report period of the previous trial were tested (Fig. 6f,g). These decoders 328 

did not perform above chance. Overall, this demonstrates that activity early in the trial 329 

constitutes a prospective signal whose subspaces emerges with training to link expectation to 330 

learned outcomes.  331 

 332 

Cholingeric signaling mediates expected outcome calcium signals 333 

To investigate how expected outcome signals are established in Prh and whether they link 334 

expectations with outcome in a behavior-dependent manner, we looked for signaling 335 

mechanisms that could mediate these neural dynamics. Acetylcholine (Ach) is a major 336 

neuromodulator that affects the state of cortical networks21 and has been associated with reward 337 

expectation36. We hypothesized that Ach signaling could establish expected outcome states in 338 

Prh. To visualize Ach activity during early stages of training (T1 and T2), we imaged Ach 339 

release in Prh using the fluorescent Ach indicator GRAB-Ach3.037 (Fig. 7a). Bulk Ach signals 340 

were measured across the field of view. Prominent high Ach release was measured during the 341 

pre-stimulus period across all trials (Fig. 7b,c, Extended Data Fig. 9). On hit trials, increases in 342 

Ach were also observed to be related to licking behavior prior to reward delivery but not during 343 

reward consumption. Similar dynamics were observed on false alarm trials when no reward was 344 

delivered. These dynamics suggest that Ach in Prh signals behavioral correlates of reward 345 

expectation. To quantify the relationship between Ach and the behavioral task, we modeled Ach 346 

signals using a generalized linear model (GLM) with task variables representing the pre-stimulus 347 

period, stimulus direction, pre-reward licking, post-reward licking, reward delivery, and the post-348 

trial period (Fig. 7d,e, Extended Data Fig. 10). The pre-stimulus task variable best explained 349 

Ach signals and increased from T1 to T2 (Fig. 8f, P<0.05, Student’s t-test). This increase in pre-350 

stimulus Ach coincided with the emergence of sustained expected outcome signals (Fig. 6c).  351 

 Ach modulates neuronal activity via either nicotinic (nAch) or muscarinic (mAch) 352 

receptors21. To determine if sustained expected outcome depends on a specific Ach receptor, 353 

two-photon calcium imaging was performed on animals trained up through T2. Using reversible 354 

pharmacological treatments, population activity was monitored while nAch or mAch receptors 355 

were inactivated using mecamylamine or scopolamine, respectively. Inactivation occurred in 356 
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alternating imaging sessions that were additionally interleaved with control recovery sessions 357 

(Fig. 8g). We found that systemic administration of scopolamine, but not mecamylamine, 358 

significantly impaired task performance (Fig. 8h, P<1x10-4, Student’s t-test). Population activity 359 

was also disrupted. Using a cross-temporal decoder trained on Hit vs. no-hit trials during the 360 

report period, we find that scopolamine treatment weakened stimulus-reward associations (Fig. 361 

8h,i). Compared to control conditions, the onset of decodable reward outcome was delayed with 362 

scopolamine (P<0.02, Student’s t-test). No difference was observed with mecamylamine. 363 

 We next examined how nACh or mACh receptor inactivation affected expected outcome 364 

activity and how those activity patterns related to task performance. Pharmacological blockade 365 

did not affect Expected Hit (Fig. 7j). However, while the strength of the decoder correlated with 366 

behavioral performance under control and mecamylamine conditions, no significant relationship 367 

was observed under scopolamine conditions (R=0.08, P=0.83, Pearson’s correlation). 368 

Scopolamine weakened decoder performance for Expected CR (P<0.02, Student’s t-test) and its 369 

correlation with behavioral performance (Fig. 7k, R=0.23, P=0.54, Pearson’s correlation).  370 

 To determine whether the sustained property of expected outcome activity was also 371 

disrupted, we examined cross-temporal performance for Hit and CR decoders. Mecamylamine 372 

weakened the below chance Hit and CR cross-temporal performance (Hit: P<0.05, CR: P<0.002, 373 

Student’s t-test). Scopolamine only weakened CR cross-temporal performance (P<0.01, 374 

Student’s t-test). While cross-temporal decoder performance for Hit trials did not correlate 375 

behavioral performance across any conditions (Fig. 7l), CR trial performance was negatively 376 

correlated with task performance under control and mecamylamine conditions (Fig. 7m). This 377 

was disrupted under scopolamine conditions (R=0.16, P=0.65, Pearson’s correlation). Overall, 378 

this demonstrates that both nAch and mAch receptor-mediated signaling are involved in 379 

establishing sustained expected outcome activity in Prh. This expected outcome activity is 380 

necessary for correct task performance. 381 

 382 

DISCUSSION 383 

In summary, we demonstrate how Prh is involved in learning an internal model of sensory-384 

guided task behavior that we refer to as a predictive map. Through chronic chemogenetic 385 

inactivation of Prh during automated home-cage training, we show that Prh is involved in 386 

sensory-guided task learning. While home-cage training with animals under freely moving 387 

conditions enable high-throughput, unbiased assays of complex task learning, a limitation of this 388 

approach in the context of this study is that the behavioral conditions are not identical to the 389 

head-fixed conditions used for characterizing Prh calcium and Ach responses. While 390 

experimental differences exist between freely moving and head-fixed tasks, the role of Prh has 391 

been demonstrated under other task conditions15,17, reinforcing the idea that Prh supports sensory 392 

learning across multiple behaviors. Our analysis of sensorimotor variables during head-fixed 393 

conditions along with Prh activity as described below indicates that Prh neurons do not encode 394 

sensory and motor information in a direct, bottom-up manner as observed in primary 395 

somatosensory cortex27,31,33. Instead, we proposed that sensory information is transformed in Prh 396 

into a predictive map that is reflected in three forms of activity: 1) sensory prediction errors; 2) 397 

stimulus-outcome associations, and; 3) expected outcome signals (Extended Data Fig. 11).   398 

 Sensory prediction errors reflect the learning of task relevant stimulus features. We show 399 

that information about stimulus direction - a task relevant feature - decreases with learning but is 400 

still present in error trials. Stimulus speed information – corresponding to the strength in 401 

stimulus direction - increases with learning and is accompanied by higher firing rates on error 402 
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trials. These changes with learning are consistent with theories of predictive coding in which 403 

neurons signal the difference between expected and actual sensory information1. We speculate 404 

that Prh evaluates an internal model of task-relevant stimuli via the hippocampus against 405 

ongoing stimuli information from sensory neocortex resulting in signals that reflect sensory 406 

prediction errors. These results are consistent with previous studies attributing Prh’s role in novel 407 

object recognition memory19,20, wherein familiarity is learned from repeated exposure to objects 408 

such that novel objects signal the prediction error between experienced and familiar stimuli. In 409 

our experimental design, animals experienced slow directions at lower frequencies than fast 410 

directions. This does not allow us to disambiguate whether the sensory prediction error signals 411 

we observe are driven by familiarity due stimulus probability or task-dependent feature learning. 412 

Future studies can help to resolve these mechanisms. 413 

 Sensory prediction errors in Prh may serve two purposes. First, they may act as a 414 

teaching signal that promotes updating of task-related variables through error-driven learning 415 

that functions to minimize differences between actual and expected sensory information10. This 416 

would produce a more accurate internal model of task relevant sensory features. Second, 417 

considering feedback connections from Prh back to sensory neocortex, prediction errors may aid 418 

in sensory inference by boosting bottom-up sensory information in lower areas under 419 

circumstances of discrepant sensory signals to help guide behavior38. This may help to support 420 

feature invariant encoding of task relevant stimuli (ie. encoding direction invariant to speed).  421 

 While stimulus features that are necessary but not sufficient to predict outcome are 422 

encoded as sensory prediction errors, combined features that are sufficient to predict to reward 423 

are encoded as stimulus-reward associations. Through task learning, stimulus-reward 424 

associations stabilize and expand in a retrograde manner from the time of reward back to the test 425 

period. These signals show similarity to goal-approach neurons in the medial entorhinal cortex 426 

and hippocampus during spatial navigation behavior, which increase their activity as animals 427 

approach learned locations of reward39. This representation generalizes to novel stimulus-reward 428 

contingencies. New associations distinctly emerge through a similar mechanism of retrograde 429 

expansion. The novel contingency then geometrically aligns with existing associations into an 430 

abstract format7. This demonstrates that predictive maps can flexibly adapt to newly encountered 431 

stimulus-reward contingencies. 432 

 Finally, we observe sustained network activity that links prospective signals of expected 433 

outcome with the experienced outcome. These signals along with stimulus-reward associations 434 

depend on cholinergic signaling. More specifically, blockade of mAch receptors disrupts this 435 

sustained link in Prh as well as task performance. We speculate that expected outcome signals 436 

facilitate learning and recall of sensory-related task models19,20,40. Ach is released at the 437 

beginning of each trial to establish a task-specific expected outcome state space. High 438 

cholinergic tone has been associated with an encoding-like “external” mode of processing in the 439 

hippocampus and neocortex while low Ach is associated with a retrieval-like “internal” mode of 440 

processing23. We propose Ach-associated, expected outcome activity may enable sensory 441 

information to be evaluated against internal models underlying prediction coding and error-442 

driven learning, consistent with an external mode of processing. Once sensory evidence is 443 

sufficient to predict reward, the network switches to retrieval-like “internal” mode in which 444 

stimulus-reward associations are retrieved from long-term memories ascribed to cognitive maps. 445 

Thus, a predictive map of task behavior could emerge from these switches in networks states that 446 

engages other brain areas and allows error-driven and associative plasticity to guide model 447 

learning in local circuits. 448 
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   462 

METHODS 463 

Mice. Experiments in this study were approved by the Institutional Animal Care and Use 464 

Committee at Boston University and conform to NIH guidelines. Behavior experiments were 465 

performed using male and female C57BL/6J mice (The Jackson Laboratory). All animals were 6-466 

8 weeks of age at time of surgery. Mice used for behavior were housed individually in reverse 467 

12-hour light cycle conditions. All handling and behavior occurred under simulated night time 468 

conditions. 469 

 470 

Animal preparation. Prh was targeted stereotaxically (2.7 mm posterior to bregma, 4.2 mm 471 

lateral, and 3.8mm ventral). For inactivation experiments, bilateral injections were targeted via 472 

the parietal bone. For each side, animals received either retroAAV-hSyn-Cre (4.5x1012 vg/mL) 473 

and AAV9-hSyn-dio-hM4Di-mCherry (6.0x1012 vg/mL) (1:1, 600nL) or retroAAV-hSyn-Cre 474 

and AAV9-hSyn-dio-mCherry (6.0x1012 vg/mL) (1:1, 600nL). For tracking in the home cage 475 

training, a radio frequency identification (RFID) glass capsule (SEN-09416, Sparkfun) was 476 

implanted subcutaneously in the animal’s back. For in vivo imaging experiments, a unilateral 477 

injection was targeted via the temporal bone at 250 µm and 500 µm below the pial surface of 478 

either AAV.PHP.eB-EF1α-RCaMP1.07 (600nL, 6x1012 vg/mL), AAV9-hSyn-GRAB-Ach3.0 479 

(600 nL, 2.5x1012 vg/mL), or AAV2-retro-CAG-GFP (600nL, 1x1012 vg/mL). For optical access, 480 

an assembly consisting was of a 2 mm aluminum-coated microprism (MPCH-2.0, Tower 481 

Optical) adhered to coverglass along the hypotenuse and the side facing Prh was implanted over 482 

the pial surface. A metal headpost was implanted on the parietal bone of the skull to allow for 483 

head fixation. For unilateral retrograde tracing between Prh and S2, CTB-Alexa647 (Molecular 484 

Probes, Invitrogen; 300 nL, 1% wt/vol) was delivered into Prh, targeted via the temporal bone 485 

and CTB-Alexa488 (300 nL, 1% wt/vol) was delivered into S2 (0.7 mm posterior to bregma, 4.2 486 

mm lateral, 250 and 500 µm below the pial surface). 487 

 488 

Home cage task training. Two weeks after injections, animals were trained to a whisker-based 489 

context-dependent sensory task adapted for training in an automated live-in environment 490 

(Supplementary Text S1). The animals were singly housed in individual cages. Three cages 491 

were attached to a shared training system wherein individual access was restricted via servo-492 

operated doors (SG92R, Tower Pro) controlled by a microcontroller (Uno Rev3, Arduino). The 493 

training system consists of a narrow corridor that restricts body and head movement at the front 494 
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of the corridor where sensory stimulus is delivered. Equipment for whisker stimulus, lick 495 

detection, sound delivery, air puff delivery, and water delivery were similar to as described27. 496 

Water ports were attached to a capacitive lick sensor (AT42QT1010; SparkFun) that dispenses 5 497 

to 6 uL of water through a miniature solenoid valve (0127; Buekert). For the rotation stimulus, 498 

commercial grade sandpaper (3M; roughness: P100) was mounted along the outside edge of a 6 499 

cm diameter rotor, attached to a stepper motor (Zaber) to deflect the whiskers which was 500 

mounted onto a linear stage (Zaber) to place the rotor within whisker reach. Two lick ports were 501 

mounted onto a linear actuator (L12-P, Actuonix) that controlled access to water during the task. 502 

An LED beam breaker (2167, Adafruit) at the head of the training system such that animals self-503 

initiated behavioral trials by breaking the beam with their body. 504 

 Each animal was provided access to the training system via the servo door through 505 

scheduled two-hour morning and two-hour afternoon session blocks. Animals were initially 506 

acclimated by learning to retrieve water from the lick ports. Once acclimated, animals proceeded 507 

to task training. During task training, the rotor providing whisker stimulus was retracted during 508 

the inter-trial interval and placed in reach during stimulus periods. The lick spouts were only 509 

presented during the report period and retracted at all other times. A two-forced alternative 510 

choice task design was used in which correct choice required licking to the right port for non-511 

match stimuli and to the left port for match stimuli. Only fast rotations (1.75 cm/s) of stimulus 512 

direction were used.  513 

 Training was divided into 5 stages (T1-T5) (Table 1, Supplementary Text S3). For T1 514 

and T2, one non-match stimuli (AP) and two match stimuli (AA, PP) were included. T1 was 515 

defined as initial naïve performance. T2 was defined as learned performance beginning from the 516 

point in which animals displayed d’ > 0.45 for two consecutive sessions. For T3, the second non-517 

match stimuli (PA) was introduced. For T4, delays between the sample and test stimuli were 518 

gradually lengthened up to 2 seconds. The rotor was also gradually retracted up to 1.5cm out of 519 

whisker reach. T5 was defined as consistent expert performance with 2s delay and 1.5cm rotor 520 

retraction. Advancement from T2-T5 was automated based on behavioral performance of two 521 

consecutive sessions of >80% correct (d’ ~1.68). The delay period and rotor withdrawal distance 522 

during T4 was automatically increased based on behavioral performance of >80% correct (d’ 523 

~1.68) across 15-trial sliding window.  524 

 In addition to water reward, correct behavioral choice was reinforced using three 525 

automatically adjusted task settings (Table 3, Supplementary Text S4). Punishment in the form 526 

of a combination of time outs (2-10s) and air puffs to the face were introduced to discourage 527 

incorrect decisions. Time outs ranged from 2-10s. Air puffs (100ms) ranged from 1-5 trains and 528 

were introduced for >7s time out. Punishment systematically increased during poor performance 529 

corresponding to <70% correct (d’ ~1.05) over a 50 trial sliding window. Punishment was 530 

automatically decreased if the proportion of misses in this window exceeded 50%. To correct for 531 

report biases in which animal repetitively licked one port irrespective of stimulus condition, the 532 

probability of match vs. non-match stimulus conditions was increased in favor of the stimulus 533 

condition associated with the neglected spout. To correct for primacy and recency stimulus bias 534 

resulting in disproportionally greater error trials for one of the two match conditions or one of the 535 

two non-match conditions, probability of one of the two match or non-match conditions was 536 

adjusted in favor of the condition with the greater proportion of errors.   537 

 For chemogenetic inactivation, Compound 21 (HB6124, HelloBio) was provided in the 538 

drinking water (9.5µg/mL H2O, 1mg/kg body weight). Animals only received water by 539 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 18, 2023. ; https://doi.org/10.1101/2023.03.17.532214doi: bioRxiv preprint 

https://doi.org/10.1101/2023.03.17.532214
http://creativecommons.org/licenses/by-nc-nd/4.0/


performing the task. Their weight was monitored daily to ensure body weight did not drop below 540 

80% of initial weight. Animals were trained continuously for six weeks. 541 

 542 

Head-fixed task training. Two weeks after microprism implantation and injections, animals 543 

were handled and acclimated to head fixation. Training to a head-fixed whisker-based context-544 

dependent sensory task was performed similar to as described27 (Supplementary Text S2). 545 

Water ports and stimulus delivery hardware were same as the home-cage training system. 546 

Whiskers were trimmed to a single row for videography. Animals trained for two sessions per 547 

day. A go/no-go task design was used in which animals licked for water reward for non-match 548 

stimulus conditions and withheld licking for match stimulus conditions. T1-T3 training stages 549 

were similar as stages defined in home cage task training (Table 2). For T4, the delay between 550 

sample and test stimuli was gradually increased from 100ms to 2s with the rotor remaining 551 

within whisker reach through the delay period. For T5, the rotor was retracted 1.5cm during the 552 

delay period across delays of 2s, 3s, and 4s which were randomly presented with probabilities of 553 

50%, 25%, and 25% respectively. Fast (1.75 cm/s) and slow (0.87 cm/s) rotations of stimulus 554 

direction were used. For T1-T4, slow directions represented 5% of all trials. For T5, the fraction 555 

of slow trials was increased to 25% of all trials 556 

 Adjustments to task settings to reinforce correct behavioral choice were carried out semi-557 

automatically. Punishment in the form of a combination of time outs (2-10s) and air puffs 558 

(100ms) ranging from 1-5 trains to the face was manually adjusted to discourage false alarm 559 

licking on match trials. During T1, the probability of non-match stimulus conditions was 560 

manually reduced to 35-40% of all trials reduce false alarm trials or increased up to 60% to 561 

reduce miss trials. To correct for primacy and recency stimulus bias resulting in 562 

disproportionally greater error trials for one of the two match conditions or one of the two non-563 

match conditions, probability of one of the two match or non-match conditions was adjusted in 564 

favor of the condition with the greater proportion of errors. Animals only received water by 565 

performing the task. Their weight was monitored daily to ensure body weight did not drop below 566 

80% of initial weight. Animals were trained continuously and terminated once animals had 567 

performed at least 4-6 T5 sessions. 568 

 569 

Acetylcholine receptor inactivation. Microprism implanted animals expressing RCamp1.07 in 570 

Prh were imaged and trained up to expert T2 performance. Mecamylamine (1mg/kg b.w.) or 571 

scopolamine (1-5 mg/kg b.w.) was delivered systemically vis intraperitoneal (IP) injection ~1h 572 

prior to behavior imaging session. For control conditions, behavior imaging sessions was 573 

performed at least 16 hours after the previous pharmacological inactvation session to allow for 574 

recovery.  575 

 576 

Histology. Mice were anaesthetized (sodium pentobarbital; 100 mg per kg and 20 mg per kg 577 

body weight) and perfused transcardially with 4% paraformaldehyde in phosphate buffer, pH 578 

7.4. For anatomical tracing experiments, coronal sections (50-75 µm) were cut using a vibratome 579 

(VT1000; Leica). For chemogenetic inactivation experiments, coronal sections (150 µm) were 580 

cut, tissue cleared and embedded in hydrogel using PACT-CLARITY, and stained for Fos (B4-581 

Alexa647 hairpin amplifiers) using HCR-FISH as previously described26. Images were acquired 582 

using a epifluorescent microscope (Eclipse NiE, Nikon) or spinning disk confocal microscope 583 

(Ti2-E Yokogawa Spinning Disk, Nikon). 584 

 585 
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Two-photon imaging. Two-photon calcium imaging was performed with a custom-built 586 

resonant-scanning multi-area two-photon microscope with a 10x/0.5NA, 7.77mm WD air 587 

objective (TL10X-2P, Thorlabs) using custom-written Scope software32. A 31.25 MHz 1040 nm 588 

fiber laser (Spark Lasers) was used for RCaMP1.07 imaging. Simultaneous imaging at 32.6 Hz 589 

frame rate was performed of two imaging planes in L2/3 separated 50 µm in depth. For GRAB-590 

Ach3.0 or GFP imaging, a single area at 32.6 Hz frame rate was acquired using an 80MHz 591 

ti:sapphire laser (Mai Tai HP DeepSee, Spectra Physics) tuned to 950 nm. Average power of 592 

each beam at the sample was 50-90mW. Imaging was performed during head-fixed task behavior 593 

or during passive stimulation sessions in naïve animals using similar stimulus conditions as T5. 594 

 595 

In vivo image analysis. All image processing was performed in MATLAB, Python, and ImageJ 596 

as described27,41. For calcium imaging analysis, two-photon images were first motion corrected 597 

using a piece-wise rigid motion correction algorithm42. Independent noise related to photon shot 598 

noise was removed from the image times-series using DeepInterpolation43. To identify neurons 599 

chronically imaged across all behavior sessions, a global reference image was generated by tiling 600 

FOV images from each session to account for slight variations in positioning and to reveal a 601 

common FOV shared by all sessions. ROIs were manually identified by comparing structural 602 

images based on fluorescence intensity and a map of active neurons identified by constrained 603 

non-negative matrix factorization from image time series. ROI positions were adjusted for each 604 

session to account for tissue changes or rotations over longer time scales. Calcium signals were 605 

then extracted for each ROI for each session. A global neuropil correction was performed for 606 

each neuron and the resulting fluorescence traces were detrended on a per trial basis. For 607 

acetylcholine imaging analysis, the fluorescence intensity across the entire FOV was averaged to 608 

obtain a bulk signal of Ach dynamics. Ach signals were z-scored on a per trial basis.  609 

 610 

Calcium event estimation. Calcium signals were deconvolved using an Online Active Set 611 

method to Infer Spikes (OASIS), a generalization of the pool adjacent violators algorithm 612 

(PAVA) for isotonic regression44. First, calcium signals below baseline fluorescence (bottom 10th 613 

percentile of signal intensity) were thresholded. For each cell, a convolution kernel with 614 

exponential rise and decay time constants were determined using an autoregressive model. For 615 

measurement of photon shot noise, signal-to-noise (v) was calculated as for each cell: 616 

 617 

1) � �  
�������|����	��|


��
 618 

 619 

where the median absolute difference between two subsequent time points of the fluorescence 620 

trace, F, is divided by the square root of the frame rate, fr
45. The convolution kernel was applied 621 

to the calcium signals to obtain an initial deconvolved signal that was then normalized by the 622 

signal-to-noise resulting in a calcium event estimate (ŝ).  623 

 624 

Population decoding analysis. To decode population activity with respect to trial conditions, 625 

maximum margin support-vector machine (SVM) linear classifiers were used on the single-trial 626 

population response vectors of simultaneously recorded neurons within one imaging session7. 627 

For each neuron in the population, calcium events across a given time window was averaged for 628 

each trial and then z-scored across all trials in session time. For each classifier, activity from 10-629 

20% of trials was separated for testing while the remaining trials were used to train the classifier. 630 

In the case of comparing stimulus direction or reward, in which >100 trials were recorded for 631 
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each condition (i.e., anterior vs. posterior for stimulus direction or hit vs. non-hit), the accuracy 632 

of the decoder performance was determined using 10-fold cross validation. For comparing 633 

stimulus speed or choice in which slow speed conditions or error conditions were very few or 634 

varied across task learning (Fig. 3), trials in the minority condition in the training set were 635 

randomly resampled to match trial numbers in the other condition before 10-fold cross 636 

validation. This process was repeated 100 times and the decoder accuracy was calculated from 637 

the average accuracy. The statistical significance of the decoding accuracy was assessed by 638 

shuffling the trial labels in the training set prior to classification. This process was repeated 1000 639 

times and decoder accuracies above the 95th or below the 5th percentile of the shuffled 640 

distribution was determined to be statistically significant. 641 

 For a cross-temporal classifier (Figs. 4-7), SVMs were trained as described above using 642 

average activity across the pre-stimulus period, sample period, test period, report period, or a 643 

sliding window of 1000 milliseconds. The cross-temporal accuracy was determined using 10-644 

fold cross-validation by testing on withheld trials from activity across different pre-stimulus 645 

period, sample period, test period, report period, or a sliding window of 300 milliseconds. 646 

Significant cross-temporal decoding was determined by shuffling the population vector weights 647 

and then testing performance on the resulting shuffled decoder. This process was repeated 1000 648 

times and cross-temporal accuracies above the 95th or below the 5th percentile of the shuffled 649 

distribution was determined to be statistically significant. The decodable onset of the reward 650 

outcome classifier was defined as the first significant timepoint across the test and report period.  651 

 For a cross-session classifier (Fig. 4), SVMs were trained using average activity across 652 

the pre-stimulus or report period consisting of 80-90% trials from one imaging session. The 653 

cross-session accuracy was determined using 10-fold cross-validation by testing on average 654 

activity in the same trial period window in a different session using all trials. The same neuronal 655 

population imaged across sessions was used for training and testing. Significant cross-session 656 

decoding was determined by shuffling the population vector weights and then testing 657 

performance on the resulting shuffled decoder. This process was repeated 1000 times and cross-658 

session temporal accuracies above the 95th percentile of the shuffled distribution were 659 

determined as statistically significant.  660 

 For cross-condition analysis of rewarded stimulus conditions (Fig. 5), non-match 661 

stimulus trials were separated by stimulus condition (anterior-posterior or posterior-anterior) into 662 

a training or testing set. Match stimulus trials were randomly separated into the training or 663 

testing set. SVMs were then trained using average activity from the report period along hit vs. 664 

non-hit trial conditions. The cross-temporal accuracy of the cross condition was determined 665 

using 10-fold cross-validation by using the average activity across a sliding window of 300 666 

milliseconds of the test set. The cross-temporal accuracy at 300ms from the end of the test period 667 

was used to assess the strength of the cross-condition of the test period. 668 

 669 

Choice selectivity. To determine the relationship between stimulus speed encoding and choice 670 

selectivity, an SVM was trained to speed trials. Neurons with significant population vector 671 

weights were determined by shuffling the trial labels in the training set prior to classification. 672 

This process was repeated 1000 times to obtain a shuffled distribution for each neuronal weight. 673 

Neuron weights above the 95th or below the 5th percentile of the shuffled distribution were 674 

determined to be statistically significant. For significant neurons, selectivity to correct (hit, 675 

correct rejection) or error (miss, false alarm) trials was determined by calculating the average 676 

event rate for each of the two trial conditions. The peak activity level during either the sample or 677 
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test period as measure of a neuron’s stimulus response (SR). Choice selectivity was expressed as 678 

(SRERROR - SRCORRECT)/(SRERROR + SRCORRECT) where SRERROR is the peak response on error trials 679 

and SRCORRECT is the peak response on correct trials. 680 

 681 

Acetylcholine signal analysis. To understand the effects of task-relevant variables on the 682 

acetylcholine (Ach) dynamics, we fit a Normal GLM to the normalized Grab-Ach3.0 683 

fluorescence acquired on each trial within a recording session. The model calculates an estimated 684 

signal, ���, using: 685 

 686 

1) ��� � ∑ ����
�	


�  687 

 688 

where xi(t) represents the time course for the ith explanatory variable, and wi represents the 689 

weight assigned to this variable relating its estimated effect on the signal46. All GLMs were fit 690 

using MATLAB’s lassoglm function with a normal distribution, identity link function, 6 penalty 691 

values (γ), and 4 fold cross-validation. 692 

 Task variables xi(t) were represented as boxcars corresponding to their occurrence during 693 

the time course of a trial. These boxcars had value “true/1” during appropriate time points and 694 

“false/0” otherwise. These include “pre-stimulus,” “stimulus direction anterior,” “stimulus 695 

direction posterior,” and “post-trial” variables. “Reward” was represented as a boxcar lasting 696 

300ms after the point of reward delivery. Licking events were resampled to match the image 697 

acquisition rate. This was then convolved with a 10-sample Gaussian kernel and separated into 698 

“pre-reward licking” (LickPRE) and “post-Reward licking” (LickPOST) variables based on 699 

rewarded trials. All licking on miss, false alarm, and correct rejection trials were considered 700 

LickPRE. For hit trials, licks before water reward were LickPRE while licks after water reward were 701 

LickPOST. 702 

 Related covariates were grouped together into ‘task factors.’ Each task variable was 703 

treated as its own “task factor” with the exception of “stimulus direction anterior” and “stimulus 704 

direction posterior” which were grouped into a task factor for “stimulus direction.” For each task 705 

factor, a partial model was constructed that excluded the covariates associated with this task 706 

factor. Any increase in deviance from the full model to the partial model therefore resulted from 707 

the exclusion of this task factor’s covariates. Akaike Information Criterion (AIC) was used to 708 

compare deviance between partial models in which different number of covariates were excluded 709 

such that:  710 

   711 

2) ��� � 2� 	 2 ln�� �  2� � �������� 712 

 713 

where k is the number of model parameters, deviance = -2ln(L), and L is the model likelihood. 714 

The difference in AIC (ΔAIC) between the full and partial model was calculated as: 715 

 716 

3) ���� � ��������� 	  ������� 717 

  718 

Statistical procedures. No statistical methods were used to predetermine sample size. For Prh 719 

inactivation experiments, investigators were blinded to hM4Di+ or hM4Di- groups during 720 

experiments and outcome assessment. For two-photon experiments, animals were not 721 

randomized and the investigators were not blinded to allocation during experiments and outcome 722 
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assessment. Statistical tests used are indicated in figure legends. Error bars on plots indicate 723 

standard error of the mean (s.e.m.) unless otherwise noted.  724 

 For Prh inactivation experiments, a bootstrap analysis was used to compare the fraction 725 

hM4Di+ versus hM4Di- animals able to successfully accomplish the T2 stage. For testing of 726 

sequence reliability or stimulus similarity across passive and training stages, a one-way ANOVA 727 

was performed followed by a multiple comparisons test. For testing of differences in linear 728 

decoder or cross-temporal decoder performance in individual sessions between training stages, a 729 

one-way ANOVA was performed followed by a multiple comparisons test. For performance of 730 

linear decoders for direction or speed, a Student’s t-test was used to compare correct versus error 731 

trials at specific training stages. For comparisons of choice selectivity in individual neurons 732 

across training stages, a one-way ANOVA was performed followed by a multiple comparisons 733 

test. For statistical tests of Ach signal encoding, a repeated-measures ANOVA was performed 734 

followed by a multiple comparisons test was used to compare the strength of GLM ΔAIC values 735 

between task factors. A Student’s t-test was used to compare AP versus PA decoder performance 736 

as well as cross-conditional decoder performance at specific T3 sessions. The Bonferroni-Holm 737 

method was used to correct for multiple comparisons. 738 

 739 
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   857 

Figure 1. Perirhinal cortex is necessary for learning an abstract sensory task. a, Schematic 858 

of an abstract sensory learning task. For home cage task training, animal licked left port (L) or 859 

right port (R) for reward for non-match or match stimulus conditions, respectively. For head-860 

fixed task training (2P), non-match stimulus conditions were reward (Yes) while match 861 

conditions were not (No). During head-fixed task training, animals were primarily trained on 862 

directions with fast speeds (95% across T1-T4, 75% for T5) with a smaller fraction of slow 863 

speeds trials provided as unexpected stimulus (5% across T1-T4, 25% for T5). b, Coronal 864 

section stained with DAPI (blue) showing bilateral expression of hM4Di-mCherry (magenta) 865 

from chemogenetic inactivated animals during home cage task training. c, Distribution of final 866 

training stage reached for each animal after 84 training sessions for hM4Di- (top) versus 867 

hM4Di+ (bottom) groups. The majority of hM4Di+ animals failed to advance past T2. d, 868 

Number of trials performed in stages T1-T2 by hM4Di- versus hM4Di+ groups. hM4Di+ 869 

animals spent more training time in T1-T2. (*P<0.05, Student’s t-test, n = 13 hM4Di- animals, 9 870 

hM4Di+ animals). Scale bar = 0.5mm. Error bars = SEM.  871 
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   872 

Figure 2. Measuring behavioral correlates throughout task learning. a, Schematic of two-873 

photon imaging of Prh using chronically implanted microprisms allowed during head-fixed task 874 

training. b, Learning curves for individual head-fixed animals trained during two-photon 875 

imaging. Only imaged animals reaching T5 were analyzed. c, High-speed videography was used 876 

to measure whisker kinematics during task behavior. d, Whisking amplitude during each trial 877 

period across training stages. e-f, Change in whisker angle [e] and curvature [f] during sample 878 

and test stimulus periods across training stages sorted by speed and direction. g, Licking rate 879 

during each trial period across training stages sorted by choice. Scale bar = 2mm. Error bars = 880 

SEM. 881 
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 882 

Figure 3. Perirhinal cortex learns sensory prediction errors. a, Behavioral performance 883 

across training stages separated by fast versus slow speed trials. b, Example imaging area at 884 

denoted training stage and session number (top row). Mean activity sorted by stimulus condition 885 

or choice (bottom row) for indicated neuron (yellow arrow). c, Schematic of population decoders 886 

to stimulus direction or speed. Black line separates decoder trial types. For correct trials, only hit 887 

and correct rejection (CR) trials were used. For error trials, only miss and false alarm (FA) trials 888 

were used. d, Example neuron with selectivity to direction and speed during early training 889 

sessions (T14) that showing reduced selectivity in expert sessions (T51). e, Example neuron with 890 

developing selectivity to speed in expert sessions (T52). f, Decoder performance to stimulus 891 

direction across training stages (P < 1x10-8, one-way ANOVA with post-hoc multiple 892 

comparison test). g, Decoder performance to stimulus speed across training stages (P<0.02, one-893 

way ANOVA with post-hoc multiple comparison test). h-i, Decoder performance to stimulus 894 

direction [h] or speed [i] across training stages during the sample (left) and test (right) stimulus 895 

period separated by correct versus error trials (Student’s t-test). j, Example population vector 896 

weights for decoder to stimulus speed from one imaging session. Significant weights are 897 

indicated (red). k, Mean event rates for example neurons with significant weights in [j] sorted by 898 

fast versus slow speed trials (left) or correct versus error trials (right). l, Distribution and box plot 899 

of choice selectivity during sample (left) or test (right) stimulus period for speed-tuned neurons 900 

across training stages (sample period: P<1x10-15; test period: P<1x10-41, one-way ANOVA with 901 

post hoc multiple comparison test). Lines indicate 95th percentile of shuffled performance in [f-i]. 902 

Error bars = SEM; [f-i]. **P<0.005 for [f-i]. n = 70 T1 sessions, 75 T2 sessions, 30 T3 sessions, 903 

79 T4 sessions, 48 T5 sessions from 7 animals for [f-i]. n = 529 neurons from 7 animals for [l]. 904 

 905 
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 906 

 907 

Figure 4. Learning of stimulus-reward associations. a, Example of cross-session decoder 908 

performance trained on Hit trials during the report period for one animal across training. b, 909 

Cross-session performance for decoders trained on sessionN and tested on sessionN+1 for report 910 

activity (left) or pre-stimulus activity (right) across training stages. c, Cross-session decoder 911 

performance across training stages for report activity (left) or pre-stimulus activity (right). d, 912 

Example of cross-temporal (CT) decoder for reward conditions trained on report activity across 913 

each training session for one animal. First decodable time point above chance is shown (white 914 

dot). e, Decodable onset timepoint for cross-temporal decoder of report activity for decoders 915 

trained on hit, false alarm, or correct rejection trials (P<0.002, F4,282=4.44, one-way ANOVA 916 

with post-hoc multiple comparison test. Error bars = SEM. Lines indicate 95th percentile of 917 

shuffled performance [b]. n = 70 T1 sessions, 75 T2 sessions, 30 T3 sessions, 79 T4 sessions, 48 918 

T5 sessions from 7 animals. 919 

 920 

 921 
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 922 

Figure 5. Stimulus-reward associations are abstract. a, Behavioral performance aligned to the 923 

first T3 session for AP versus PA stimulus conditions. Mean and individual animal performance 924 

is shown. b, Mean activity in an example neuron separated by stimulus conditions across the first 925 

four T3 sessions. c, Schematic for population decoder for reward using either only AP or PA 926 

stimulus conditions. Cross-condition (CC) decoder also shown for the complementary condition. 927 

d, Cross-temporal decoder performance trained on report activity for the rewarded AP or PA 928 

condition during the T30 or T34 session. e, Decodable onset timepoint for either the rewarded AP 929 

or PA condition T3 sessions (P<0.002, two-way repeated measures ANOVA with post-hoc 930 

Student’s t-test). f, Cross-temporal decoder performance trained on report activity for the 931 

rewarded AP or PA condition and tested on the cross condition during the T30 or T312 session. g, 932 

Cross-temporal decoder performance trained on report activity for the rewarded AP or PA 933 

condition and tested on the cross condition test period activity across T3 sessions (P<0.05 ). 934 

Error bars = SEM. *P<0.05, **P<0.02, ***P<0.001 for [e] and [g]. n = 7 animals for [b, d-g]. 935 

 936 
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 937 

 938 

Figure 6. Perirhinal cortex encodes expected outcome throughout task learning. a, 939 

Schematic of population decoder trained to Expected Hit (top) or Expected CR (bottom). b, 940 

Decoder performance to Expected Hit (top) and Expected CR (bottom). c, Cross-temporal (CT) 941 

decoder performance to Expected Hit (top) and Expected CR (bottom). Black box indicates 942 

trained time window during the pre-stimulus period. Grey box indicates (solid box) tested time 943 

window during the report period. d, Decoder performance during the report period for Hit (top) 944 

and CR (bottom).  945 

e, CT decoder performance trained during the report period (black box) and tested during the 946 

pre-stimulus period (grey box) for Hit (top) and CR (bottom) trials. f, CT decoder performance 947 

trained during the report period (black box) and tested during the pre-stimulus period of the 948 

following trial (grey box) for Hit (top) and CR (bottom) trials. g, CT decoder performance 949 

trained during the pre-stimulus period (black box) and tested during the report period of the 950 

previous trial (grey box) for Hit (top) and CR (bottom) trials. h, Mean estimated firing rate for 951 

example neurons with significant weights for Expected Hit decoder. Cell 1 shows elevated firing 952 

during the pre-stimulus period on CR trials but strongly responses during the report period of Hit 953 

trials. Cell 484 shows elevated firing during the pre-stimulus period on Hit trials but strongly 954 

responses during the report period of CR trials. i, Projection of neural activity along the decision 955 

variable for Expected Hit [c] across the trial period sorted by trial type across training stages. 956 

Error bars = SEM. , ***P<1x10-3, one-way ANOVA with post-hoc multiple comparisons test. 957 

For [b-g], dashed lines indicate 95th percentile (red) and 5th percentile (blue) of nulled 958 

performance for classifier after shuffling trial labels. n = 70 T1 sessions, 75 T2 sessions, 30 T3 959 

sessions, 79 T4 sessions, 48 T5 sessions from 7 animals.   960 
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 962 

Figure 7. Expected outcome depends on acetylcholine signaling. a, Two-photon images of 963 

GRAB-Ach3.0 expression in perirhinal cortex. b, Example bulk Ach signals (left) and licking 964 

behavior (right) sorted by trial type for one session. Timepoint of reward and the end of the trial 965 

are also indicated. c, Mean Ach signals across the trial period separated by choice aligned 966 

beginning of trial (top). Bottom panel shows magnified view of signals (dotted line in top panel) 967 

aligned to behavioral report. d, Schematic of GLM depicting basis functions for task variables 968 

(top) applied to model Ach signals (bottom). e, Example encoding of task factors from imaging 969 

session shown in [b]. f, Encoding of task factors across T1 and T2 sessions. g, Schematic of T2 970 

calcium imaging sessions alternating between control no inactivation (Ctl), nAch receptor 971 

inactivation by mecamylamine (Mec.), and mAch receptor inactivation by scopolamine (Sco.). h, 972 

Task performance across pharmacological inactivation sessions. i, Stimulus-reward association 973 

determined by cross-temporal (CT) decoder performance for Hit vs. non-Hit trials across 974 

pharmacological conditions. j, Decodable onset timepoint for Stimulus-reward association for [i] 975 

across pharmacological conditions. k, Decoder performance to Expected Hit (left) across 976 

pharmacological conditions. Scatter plot (right) correlation to task performance for individual 977 

behavior sessions. l, Decoder performance to Expected CR (left) across pharmacological 978 

conditions. Scatter plot (right) correlation to task performance for individual behavior sessions. 979 

m, Cross-temporal (CT) performance to Expected Hit (left) across pharmacological conditions. 980 

Scatter plot (right) correlation to task performance for individual behavior sessions. n, CT 981 

performance to Expected CR (left) across pharmacological conditions. Scatter plot (right) 982 

correlation to task performance for individual behavior sessions. Error bars = SEM. Scale bar = 983 

20µm. *P<0.05, **P<0.01, ***P<1x10-4. n=4 animals, 29 T1, 26 T2 sessions for [f]; n=4 984 

animals, 19 Ctl., 10 Mec., 11 Sco. sessions for [g-n]. 985 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 18, 2023. ; https://doi.org/10.1101/2023.03.17.532214doi: bioRxiv preprint 

https://doi.org/10.1101/2023.03.17.532214
http://creativecommons.org/licenses/by-nc-nd/4.0/


 986 

Extended Data Figure 1. Automated home cage training system. a, Mechanical design of 987 

home-cage training system designed to support automated training of three individual housed 988 

mice. b, Rotating daily timetable used for training three animals (1, 2, 3). c, Flow chart for 989 

managing individual animals in the training system.  990 
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 992 

 993 

Extended Data Figure 2. Reciprocal connections between perirhinal cortex and secondary 994 

somatosensory cortex. Fluorescent micrographs of coronal sections showing retrograde labeling 995 

of projection neurons between perirhinal cortex (CTB-647) and secondary somatosensory cortex 996 

(CTB-488). Right panels show magnified view of indicated area in left panel (dotted rectangle). 997 

Scale bars: 1mm (left panels), 0.2mm (right panels). 998 
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 1001 

Extended Data Figure 3. Chemogenetic inactivation of perirhinal cortex. a, Validation of 1002 

chronic inactivation of perirhinal cortex by Fos mRNA expression. Animals received Compound 1003 

21 in drinking water for up to 6 weeks. Fos mRNA was visualized using HCR-FISH. Examples 1004 

of hM4Di-mCherry+ neurons (yellow) with low Fos expression versus hM4Di-mCherry- 1005 

neurons (grey) with high Fos expression are shown. b, Cumulative distribution of Fos expression 1006 

measured by HCR-FISH in hM4Di-mCherry+ vs. hM4Di-mCherry- neurons. 74.9±3.0% of 1007 

neurons were  hM4Di-mCherry+, n=4 animals. Scale bar: 20 µm. 1008 
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 1010 

 1011 

Extended Data Figure 4. Performance curves for individuals in home cage training task. a, 1012 

Session performance across training for hM4Di- animals sorted by final training stage reached 1013 

after 84 sessions. Training was stopped prior to 84 sessions for some animals that reached T5. 1014 

The majority of hM4Di- animals passed T2. The noted animal (*) reached T4 at session 84. b, 1015 

Session performance across training for hM4Di+ animals sorted by final training stage reached 1016 

after 84 sessions. The majority of hM4Di+ animals failed to passed T2. 1017 
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 1019 

 1020 

Extended Data Figure 5. Sensory and motor variables throughout learning. a, Mean 1021 

whisking amplitude over the trial period averaged across training stages. b-c, Mean change in 1022 

whisker angle [b] and curvature [c] by sorted stimulus condition across training stages. d-e, 1023 

Mean lick rate through the trial period across training stages sorted by choice [d] or stimulus 1024 

speed [e]. Shaded regions = SEM. 1025 
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 1026 

Extended Data Figure 6. ROI selection across imaging sessions. Examples of ROIs identified 1027 

throughout the time course of training. ROIs were manually identified and segmented by 1028 

comparing structural images of native RCaMP1.07 fluorescence and images of ‘active’ neurons 1029 

through constrained non-negative matrix factorization (CNMF) of the image timeseries across 1030 

the training session. Structural images were used to identify all neurons (active and inactive) in 1031 

the session while the CNMF images helped to define boundaries of ROIs. Scale bar: 50µm. 1032 
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 1034 

Extended Data Figure 7. Population encoding of stimulus direction Prh versus S1 in expert 1035 

animals. Decoder performance on stimulus direction during Sample or Test periods using 1036 

activity T5 sessions from Prh or S1. S1 neural data was obtained from (ref. 27). Separate 1037 

decoders were for  Correct (Hit and Correct Rejection) or Error (False Alarm and Miss) trials. 1038 

Error bars = SEM. Red and gray bars = 95th percentile of shuffled distribution on Error and 1039 

Correct trials, respectively. 1040 
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 1042 

 1043 

Extended Data Figure 8. Population coding of reward prediction during sample and test 1044 

periods and its relationship to stimulus coding. a, Linear decoder performance of sample 1045 

period activity to rewarded conditions across training. b, Linear decoder performance of test 1046 

period activity to rewarded conditions across training. c, Cross-condition performance of sample 1047 

period activity trained to rewarded conditions and tested on stimulus direction conditions across 1048 

training. d, Cross-condition performance of test period activity trained to rewarded conditions 1049 

and tested on stimulus direction conditions across training. e, Cross-condition performance of 1050 

sample period activity trained to rewarded conditions and tested on stimulus speed conditions 1051 

across training. f, Cross-condition performance of test period activity trained to rewarded 1052 

conditions and tested on stimulus speed conditions across training. Error bars = s.e.m. Red line = 1053 

95th percentile performance of the shuffled distribution.  1054 
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 1056 

Extended Data Fig. 9. Validation of GRAB-Ach3.0. Z-scored fluorescence traces across the 1057 

trial period during T2 sessions in task trained animals expressing either GRAB-Ach3.0 or GFP. n 1058 

= 16 T2 sessions from 4 GRAB-Ach3.0 animals, 17 T2 sessions from 2 GFP animals.  1059 
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 1062 

Extended Data Fig. 10. Task encoding of acetylcholine signals. a, Overview of covariate 1063 

representations and their corresponding task factors used in the GLM for acetylcholine signals 1064 

over six trials. b, Schematic of full and partial models used to calculate ∆AIC for individual task 1065 

factors.  1066 
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 1068 

 1069 

Extended Data Fig. 11. Model of predictive map in Prh. Prh forms a model task-relevant 1070 

stimulus information through error learning. Differences in predicted stimulus features elicits 1071 

sensory prediction errors. Stimuls-reward association are emerges in a retrograde manner from 1072 

reward outcomes and generalizes to similar stimulus-reward contingencies. Expected outcomes 1073 

are linked to experienced outcomes via a network space that is regulated by cholinergic 1074 

signaling.  1075 
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SUPPLEMENTARY TEXT 1077 

S1. Home-cage task training 1078 

In this study, two variations of the tactile working memory task were used to study the role of 1079 

Prh in abstract sensory learning. To assay the effects of inactivating Prh on behavior, the home 1080 

cage version of the task was designed to train animals in an unbiased manner. Task training 1081 

occurred in a training module consisting of a narrow passageway that restricted movement of 1082 

freely moving animals so that head position was consistent throughout training for reliable 1083 

delivery of whisker stimulus and water reward (Extended Data Fig. 1a). For whisker stimulus, 1084 

commercial grade sandpaper (3M; P100) was mounted along the outside edge of a 6 cm diameter 1085 

rotor, attached to a stepper motor (Zaber) to deflect the whiskers. This was mounted onto a linear 1086 

stage (Zaber) to place the rotor within whisker reach. 1087 

 For lick sensing and water delivery, an angled dispensing needle (75165A22; McMaster-1088 

Carr) served as a water port. This was attached to a capacitive touch sensor (AT42QT1010; 1089 

SparkFun) that dispensed 5-7 µL of water through a miniature solenoid valve (LHDA0531115H; 1090 

The Lee Company). Unlike head-fixed behavior (Supplementary Text S2), persistent and 1091 

impulsive licking was prevalent during freely moving behavior. Attempts to train home-cage 1092 

animals to learn a go/no go stimulus-reward contingency were not successful due to impulsive 1093 

licking (data not shown). For these reasons, a two-alternative forced choice (2AFC) task 1094 

structure using two lick ports was employed for home-cage behavior. To further discourage 1095 

impulsive licking, lick spouts were mounted onto a linear actuator (L12-P; Actuonix) and only 1096 

presented to the animals during the report period. This differed from head-fixed training in which 1097 

lick spouts were fixed always in reach of the animal. Air puffs were controlled using a 12V 1098 

solenoid (EV-2-12; Clippard). Task training was performed using a custom written LabVIEW 1099 

software (National Instruments) to control hardware and a data acquisition interface (USB-6008; 1100 

National Instruments) for measuring licks, water delivery, and air puff delivery.  1101 

 The task was designed for live-in conditions in which trials were self-initiated and task 1102 

parameters automatically adjusted based on performance. A single training module was 1103 

connected to three cages, each containing a singly-housed mouse. Mice were singly-housed to 1104 

avoid social interactions that would interfere with equal access to task training. Head-fixed mice 1105 

were similarly singly-housed to minimize potential damage to their implants. Cages were 1106 

connected via passageways to a common meeting chamber. For each passageway, access to the 1107 

training module via the meeting chamber was regulated by mechanical doors. These doors were 1108 

controlled by servos operated by an Arduino microcontroller. Door closing was trigged by an 1109 

infrared beam break sensor placed between the door and home cage in order to ensure that the 1110 

door did not close while the animal was in the training module.  1111 

 Access to home-cage training was scheduled similarly to head-fixed task conditions to 1112 

ensure equivalent water deprivation periods, motivation levels, session duration, and trial 1113 

numbers.  1114 

Each animal gained daily access to the training module for two, two-hour sessions (Extended 1115 

Data Fig. 1b). To ensure that each animal performed the task across all dark portions of light-1116 

dark cycle, the scheduled animal order was rotated daily. At the end of each session, the training 1117 

module break beam sensor was deactivated to prevent trial initiation. A continuous train of air 1118 

puffs was delivered into the chamber signaling the animal to exit and for the door to close behind 1119 

them (Extended Data Fig. 1c). A USB radio frequency identification (RFID) reader above the 1120 

meeting chamber was used to ensure that the correct animal accessed the training module at the 1121 

properly scheduled time. 1122 
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 1123 

S2. Head-fixed task training 1124 

The head-fixed version of the task was designed to reliably image neuronal activity during 1125 

learning under highly consistent, well-controlled stimulus conditions. A go/no go stimulus-1126 

reward contingency was employed to characterize activity patterns related to stimulus 1127 

information with and without reward associations. Similar to home-cage training, the task was 1128 

performed using a custom written LabVIEW software (National Instruments) to control 1129 

hardware and a data acquisition interface (USB-6008; National Instruments) for measuring licks, 1130 

water delivery, and air puff delivery. A water port was attached to a capacitive lick sensor 1131 

(AT42QT1010; SparkFun) that dispenses 5 to 6 µL of water through a miniature solenoid valve 1132 

(0127; Buekert). For the rotation stimulus, commercial grade sandpaper (3M; roughness: P100) 1133 

was mounted along the outside edge of a 6 cm diameter rotor, attached to a stepper motor 1134 

(Zaber) to deflect the whiskers which was mounted onto a linear stage (Zaber) to place the rotor 1135 

within whisker reach.  1136 

 Given the time demands of the experiment for operating the two-photon microscope 1137 

through learning (~70 sessions, 2 sessions per day, 7 days per week), ensuring successful 1138 

training was a priority for animals undergoing imaging. Given the natural variability in learning 1139 

across individual animals, experimenters manually adjusted a range of behavioral parameters 1140 

designed to reinforce correct choice behavior (Supplementary Text S4). 1141 

 1142 

S3. Training stages 1143 

The task settings defining each training stage in the home cage (Table 1) and head-fixed (Table 1144 

2) training task were largely similar with the following exceptions. For the head-fixed task, the 1145 

proportion of non-match versus match trials were gradually changed from 0.9/0.1 to 0.5/0.5 1146 

(non-match/match) over the course of the first 5 T1 sessions. The purpose of this was to 1147 

acclimate the animals to licking for reward and to avoid miss trials by providing a high 1148 

proportion of rewarded (non-match) stimulus trials and gradually exposing animals to the non-1149 

rewarded (match) stimulus trials. For the home cage task, the proportion of non-match versus 1150 

match trials were set to 0.5/0.5. During early T1 sessions, the maximum consecutive trials 1151 

belonging to either match or non-match stimulus was set to 1. This meant that water reward 1152 

alternated between each lick port in order to acclimate the animal to licking to each port. The 1153 

target spout alternated between trials through four sub-stages which taught animals how to 1154 

receive rewards and gradually introduced the moving parts of the task. In the first sub-stage, the 1155 

texture was positioned against the training module but did not provide directional stimuli. 1156 

Instead, animals were able to trigger a trial and lick when an audible tone was played in order to 1157 

receive a water reward. With consistent lick responses, the delay between triggering a trial and 1158 

the tone indicating the report period was increased from 100ms to 6s, approximating the time 1159 

course of a trial with two stimuli and a 2s delay. In the second sub-stage, the sample and test 1160 

stimuli were presented and the report period was still indicated with a tone. This tone was 1161 

removed during the third sub-stage. The fourth sub-stage introduced linear movement of the 1162 

texture, withdrawing it at the end of a trial and moving it to presentation position for the sample 1163 

and test periods. The maximum number of consecutive trials with the same target spout was then 1164 

increased to 3 in the fifth sub-stage to randomize the stimulus conditions. 1165 

 During T4, the delay between the sample and test stimulus was gradually increased 1166 

through a progression of sub-stages. An initial delay was used at the beginning of the session. 1167 

Behavioral performance was measured every 15 trials. The delay was increased by a defined 1168 
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increment if performance exceeded >85% correct (d’ > 2.07) over the past 15 trials up to a 1169 

maximum of 2 seconds. If the overall performance for the session was d’>1.68, the animal 1170 

advanced to the next T4 sub-stage in which the starting delay and increment was greater than that 1171 

used in previous session. The rotor was withdrawn once animals could begin sessions with 1172 

delays of 2 seconds. In general, head-fixed animals could readily adapt to the rotor withdrawal 1173 

during the delay period. Initial piloting of the same training progression during home-cage task 1174 

training suggested that animals had difficulty with adapting to this transition. For this reason, the 1175 

training protocol in the home-cage task was modified to include a gradual withdrawal of the 1176 

rotor occurring concurrently with the gradual increase in delay period.  1177 

 During T5, delays were randomly varied between 2, 3, and 4 seconds for head-fixed 1178 

animals to examine sequential activity across varying delay periods. In home-cage animals, the 1179 

delay was fixed at 2 seconds. Finally, slow speed stimulus conditions were included for head-1180 

fixed task in order to measure activity related to relevant and irrelevant stimulus features but 1181 

were not included during the home-cage task since the motivation of the latter was to broadly 1182 

assay the dependence of Prh on task learning. 1183 

 1184 

S4. Reinforcing correct choice 1185 

Due to the complexity of task conditions and stimuli, we observed that individual animals 1186 

adopted a range of incorrect choice strategies early during task training. Occasionally, behavioral 1187 

lapses were also observed in which animals demonstrated correct choice strategies across 1188 

extended trial periods but then reverted to incorrect choice strategies. Incorrect choice strategies 1189 

were categorized as report bias, primacy bias, and recency bias. A set of task parameters were 1190 

included in the training protocol to identify and correct for these biases without changing the 1191 

stimulus-reward contingency (Table 3).  1192 

 For go/no-go behavior under head-fixed conditions, a report bias was defined as 1193 

persistent licking of the lick port regardless of stimulus condition. For 2AFC version of the task 1194 

used in the home cage training system, persistent licking of one of two lick ports regardless of 1195 

stimulus condition was considered a report bias. Report bias primarily contributed to poor task 1196 

performance early in training during T1 and was also occasionally observed at the beginning of 1197 

behavior sessions in trained mice. For the go/no go head-fixed task, report biases were defined 1198 

by a high fraction of total hit and false alarm trials. For 2AFC home cage task, report biases were 1199 

defined a high fraction of hit and false alarm trials attributed to one of the two lick ports. 1200 

Depending on the severity of the report bias, two corrective strategies were adopted. The first 1201 

strategy is the use of punishment to discourage licking of the incorrect stimulus condition. 1202 

Punishment consisted of a combination of time out and air puffs to the face. Initially introduced 1203 

punishment was mild and gradually became more severe with longer time outs and multiple air 1204 

puffs considered as more severe punishment. Tolerance for punishment can vary for individual 1205 

animals (data not shown). For both task conditions, animals disengaged from the task if 1206 

punishment was too aversive, resulting in miss trials. Punishment levels are reduced if misses 1207 

increase. In addition to adjusting punishment levels, the probability of stimulus conditions was 1208 

also adjusted to increase the frequency of the incorrect stimulus condition in order for animals to 1209 

“practice” the correct response. Typically, non-match and match stimulus conditions were 1210 

presented at 50% probability. This was increased up to 80% for the incorrect stimulus condition 1211 

depending on the severity of the report bias. 1212 

 A primacy stimulus bias represented incorrect choice strategies in which the animal 1213 

responded based on whether the sample stimulus was A or P. In contrast, a recency stimulus bias 1214 
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represented incorrect choice strategies in which the animal responded based on whether the test 1215 

stimulus was A or P. These biases were operationally defined as differences in performance 1216 

between the two stimulus conditions belonging to the same category (AP vs. PA for non-match, 1217 

AA vs. PP for match). Typically for each stimulus category, one of the two possible stimulus 1218 

conditions is presented with 50% probability with respect to the other. To correct for primary or 1219 

recency bias, the probability of stimulus conditions belonging to the same category was adjusted 1220 

to increase the frequency of the incorrect stimulus condition in order for animals to “practice” 1221 

the correct response.  1222 
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 Performance Criteria NM/M PA? Fast/Slow Delay (ms) Withdraw (cm) 
T1 d’>0.45, 2 sessions 0.5/0.5 No 1/0 100ms 0 
T2 d’>1.68, 2 sessions 0.5/0.5 No 1/0 100ms 0 
T3 d’>1.68, 2 sessions 0.5/0.5 Yes 1/0 100ms 0 
T4 d’>1.68 / 2.05 (skip) 0.5/0.5 Yes 1/0 100-2000 (100 inc.) 0 
 d’>1.68 / 2.05 (skip) 0.5/0.5 Yes 1/0 200-2000 (200 inc.) 0 
 d’>1.68 / 2.05 (skip) 0.5/0.5 Yes 1/0 300-2000 (300 inc.) 0 
 d’>1.68 / 2.05 (skip) 0.5/0.5 Yes 1/0 400-2000 (400 inc.) 0.1-1.5 (0.1 inc.) 
 d’>1.68 / 2.05 (skip) 0.5/0.5 Yes 1/0 500-2000 (500 inc.) 0.2-1.5 (0.2 inc.) 
 d’>1.68 / 2.05 (skip) 0.5/0.5 Yes 1/0 1000-2000 (500 inc.) 0.3-1.5 (0.3 inc.) 
 d’>1.68 / 2.05 (skip)  0.5/0.5 Yes 1/0 1500-2000 (500 inc.) 0.6-1.5 (0.3 inc.) 
 d’>1.68 / 2.05 (skip)  0.5/0.5 Yes 1/0 2000  0.9-1.5 (0.3 inc.) 
 d’>1.68 0.5/0.5 Yes 1/0 2000 1.2-1.5 (0.3 inc.) 
T5  0.5/0.5 Yes 1/0 2000 1.5 
Table 1. Home-cage task training stages. Summary of task settings utilized at each training 1224 

stage. Performance criteria indicates the behavioral performance necessary to graduate to the 1225 

next training stages. NM/M indicates the proportion of stimulus conditions belonging to each 1226 

category. PA indicates whether that stimulus condition was included in the stimulus set. 1227 

Fast/Slow indicates the proportion of speed stimulus conditions. Delay indicates the starting and 1228 

ending delay period length along with the interval in which the delay was increased. Withdraw 1229 

indicates the distance in which the rotor was withdrawn during the delay period along with the 1230 

increments of increase.  1231 
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 Performance criteria NM/M PA Fast/Slow Delay (ms) Withdraw 
(cm) 

T1 d’>0.45, 2 sessions 0.9/0.1 to 0.5/0.5 
over 5 sessions 

No 0.95/0.05 100 0 

T2 d’>1.68, 2 sessions 0.5/0.5 No 0.95/0.05 100 0 
T3 d’>1.68, 2 sessions 0.5/0.5 Yes 0.95/0.05 100 0 
T4 d’>1.68 0.5/0.5 Yes 0.95/0.05 100-2000 (100 inc.) 0 

d’>1.68 0.5/0.5 Yes 0.95/0.05 200-2000 (200 inc.) 0 
d’>1.68 0.5/0.5 Yes 0.95/0.05 300-2000 (300 inc.) 0 
d’>1.68 0.5/0.5 Yes 0.95/0.05 400-2000 (400 inc.) 0 
d’>1.68 0.5/0.5 Yes 0.95/0.05 500-2000 (500 inc.) 0 
d’>1.68 0.5/0.5 Yes 0.95/0.05 1000-2000 (500 inc.) 0 
d’>1.68 0.5/0.5 Yes 0.95/0.05 1500-2000 (500 inc.) 0 
d’>1.68 0.5/0.5 Yes 0.95/0.05 2000  1.5 

T5  0.5/0.5 Yes 0.75/0.25 2000/3000/4000 
(0.5/0.25/0.25) prob. 

1.5 

Table 2. Head-fixed task training stages. Summary of task settings utilized at each training 1235 

stage. Performance criteria indicates the behavioral performance necessary to graduate to the 1236 

next training stages. NM/M indicates the proportion of stimulus conditions belonging to each 1237 

category. PA indicates whether that stimulus condition was included in the stimulus set. 1238 

Fast/Slow indicates the proportion of speed stimulus conditions. Delay indicates the starting and 1239 

ending delay period length along with the interval in which the delay was increased. Withdraw 1240 

indicates the distance in which the rotor was withdrawn during the delay period.  1241 
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Task Goal  Criteria Adjustment 
Head-fixed Increase punishment to correct for 

port bias.  
Manual 
>70% (hit + false alarm) 

Manual 
2-10s time out 
1-10 air puffs 

Head-fixed Decrease punishment to reduce 
disengagement 

Manual 
20-50% miss  

Manual 

Home cage Increase punishment to correct for 
port bias.  

50 trial sliding window 
<70% correct (d’ ~1.05)  

Increase 1s time out (10s max) 
For >7s time out, increase 
1 air puff (5 max) 

Home cage Decrease punishment to reduce 
disengagement 

50 trial sliding window 
>50% miss 
 

Decrease 2s time out and 2 air 
puffs  

Head-fixed Adjust stimulus probability to 
correct for report biases  

Manual 
>70% (hit + false alarm) 

Manual 
Up to 0.35/0.65 (NM/M) 

Home cage Adjust stimulus probability to 
correct for report biases  

20 trial sliding window 
X=% trials favored port  
Y=% trials neglected port 
Moderate bias: X-Y>0.25  
Severe bias: X-Y>0.5 

X=stim. of favored port 
Y=stim. of neglected port 
moderate: 0.35/0.65 (X/Y)  
severe: 0.2/0.8 (X/Y) 

Both Adjust stimulus probability to 
correct for primacy or recency 
stimulus bias 

20 trial sliding window 
For non-match stim: 
X = % correct fav. stim  
Y = % correct NM stim 
For match stim: 
X = % correct fav. stim  
Y = % correct M stim 
moderate: (X/Y-0.5)>0.55  
severe: (X/Y-0.5) >0.6 

X=favored stim.  
Y=neglected stim. 
moderate: 0.4/0.6 (X/Y) 
severe: 0.3/0.7 (X/Y) 

Table 3. Training parameters to reinforce correct choice. 1244 
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