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Abstract

Motivation: With the wide availability of single cell RNA-seq (scRNA-seq) technology, population-scale
scRNA-seq datasets across multiple individuals and time points are emerging. Although the immediate
analysis of these datasets tend to focus on standard analysis of clustering and differential expression,
leveraging the power of scRNA-seq data at the personalized dynamic gene co-expression network-level
has the potential to unlock subject and/or time-specific network-level variation critical for phenotypic
differences. Community detection from co-expression networks of multiple time points or conditions has
been well-studied; however, none of the existing settings included networks from multiple subjects and
multiple time points simultaneously. To address this, we develop MuDCoD for multi-subject community
detection in personalized dynamic gene networks from single cell RNA sequencing. MuDCoD builds on
the spectral clustering framework and promotes information sharing among the subjects’ networks as well
as networks at different time points. It clusters genes in the personalized dynamic gene networks and
reveals gene communities that are variable or shared not only across time but also among subjects.
Results: Evaluation and benchmarking of MuDCoD against existing approaches reveal that MuDCoD
effectively leverages apparent shared signals among networks of the subjects at individual time points,
and performs robustly when there is no or little information sharing among the networks. Applications
to population-scale scRNA-seq datasets of human-induced pluripotent stem cells during dopaminergic
neuron differentiation and CD4+ T cell activation indicate that MuDCoD enables robust inference for
identifying time-varying personalized gene modules. Our results illustrate how personalized dynamic
community detection can aid in the exploration of subject-specific biological processes that vary across
time.
Availability: MuDCoD is publicly available at https://github.com/bo1929/MuDCoD as a
Python package. Implementation includes simulation and real-data experiments together with extensive
documentation.
Contact: keles@stat.wisc.edu, otastan@sabanciuniv.edu
Supplementary information: Supplementary data are available at Bioinformatics online.

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted March 19, 2023. ; https://doi.org/10.1101/2021.11.30.470619doi: bioRxiv preprint 

https://github.com/bo1929/MuDCoD
name@bio.com
https://doi.org/10.1101/2021.11.30.470619


1 Introduction
The advent of single-cell RNA sequencing (scRNA-seq) has provided

unparalleled insights into the transcriptional programs of different cell
types and cellular stages at the individual cell level (Zeisel et al., 2015;
Chen et al., 2017; Travaglini et al., 2020). Population-scale scRNA-
seq datasets across multiple individuals and time points are becoming
increasingly available (Mathys et al., 2019; HipSci Consortium et al.,
2020, 2021; Soskic et al., 2022). These datasets make it possible to
construct personalized, i.e., subject-specific, dynamic gene networks
that vary across individuals and across time. Community structures
emerge in these dynamic networks when there is strong local clustering
of genes that are synchronized to function together. Unravelling the
differentiation dynamics or deciphering pathways affected in various
diseases requires discovering which genes cooperate in specific cellular
processes. Thus, a key inference from the analysis of gene networks is
detecting time/condition varying gene modules that might correspond to
genes cooperating in various biological processes. While these modules
change over time due to the dynamic nature of the relations among the
genes in the processes, they may also vary among different subjects.
Variation and similarity among subjects at the network-level, when
combined with subject-level phenotype information, can reveal critical
information such as differential dynamics of the gene modules driving
specific phenotypes. Thus, identifying gene modules by taking into
account multiple subjects at once is of paramount importance.

Gene module detection methods for scRNA-seq data have mostly
focused on the construction of static gene networks that capture a snapshot
of time or a developmental epoch (Dai et al., 2019; Jackson et al., 2020).
Many methods exist for detecting modules/communities in networks with
or without specialization in multiple subjects or time points, both within
and outside of genomics research (summarized in Table S2). These
approaches leverage and combine stochastic block models (SBMs) (Matias
and Miele, 2017a) with Kalman filters (Xu and Hero, 2014) or hidden
Markov models (Ting et al., 2021), impose smoothing in spectral clustering
(Chi et al., 2007; Liu et al., 2018), and utilize Steiner tree formulation
(Norman and Cicek, 2019). Modularity maximization (Bassett et al., 2013;
Betzel et al., 2019), non-negative matrix factorization (Ma et al., 2019),
and network change point detection (NCPD) (Cribben and Yu, 2017) were
also explored in community detection from brain and behavioral networks.

Recently, Liu et al. (2018) developed a global spectral clustering
framework named PisCES for inferring communities in dynamic networks.
PisCES detects gene modules at each time point by imposing module
smoothness across time in a spectral clustering formulation. They
show that such information sharing across the time domain improves
community detection in dynamic networks (Liu et al., 2018). However,
PisCES does not accommodate joint analysis of networks from multiple
subjects, potentially overlooking information that could boost the signal
for discovering communities. Here, we generalize the PisCES to detect
communities in personalized dynamic gene networks and identify gene
modules that vary or persist not only across time but also among subjects.
Our method, named MuDCoD (Multi-subject Dynamic Community
Detection), infers gene communities per subject and per time point by
extending the temporal smoothness assumption to the subject dimension.

We evaluated MuDCoD with simulation experiments in a wide variety
of scenarios. To this end, we extended the dynamic degree corrected block
model (Dynamic DCBM) (Matias and Miele, 2017b), which provides a
setting for time-varying networks to multi-subject scenarios. This multi-
subject dynamic DCBM setting accommodates the characteristics of
scRNA-seq-based personalized gene networks not only across time but
also in the subject dimension. While there are several community detection

methods within and outside of genomics, as we summarized above, they
are limited in their applicability to handle dynamic multi-subject networks.
After taking these approaches and the accessibility of their software
into consideration, we compared MuDCoD with the recently developed
multi-layer multi-subject modularity maximization technique (referred
to as Betzel-2019 hereafter) (Betzel et al., 2019), PisCES, and static
spectral clustering. We observed that MuDCoD markedly outperforms
other methods when subjects share information at the network level and
performs robustly otherwise. In addition to the simulation experiments,
we also applied MuDCoD to scRNA-seq studies of long-term human
induced pluripotent stem cells (iPSC) (HipSci Consortium et al., 2021)
and activation of naive and memory human CD4+ T cells isolated from
peripheral blood (Soskic et al., 2022). Our results highlight that MuDCoD
is able to leverage information sharing across subjects and infer gene
modules that contribute to network variation across subjects and time
points. Downstream gene set enrichment analysis of inferred modules
highlights persistent biological processes across subjects, as well as
biological processes that are specific to subsets of subjects and/or time
points. A detailed analysis of HipSci Consortium et al. (2021) dataset
by leveraging the differentiation efficiency of subjects reveals that the
gene modules of high differentiation efficiency subjects tend to exhibit
higher variation across the differentiation time points compared to subjects
with low differentiation efficiency. For Soskic et al. (2022) dataset, we
observe that module structures inferred by MuDCoD and the dynamics of
enriched biological process annotations for such modules are consistent
with mechanisms governing CD4+ T cell activation.

2 Methods
2.1 Problem Formulation

We define a multi-subject dynamic gene co-expression network for
discrete time steps t = 1, . . . , T and for subjects s = 1, . . . , S as a
time series of undirected and unweighted graphs Gs,1, . . . ,Gs,T for each
subject s. Given a multi-subject dynamic gene co-expression network,
the key task is to infer the community structure for each time point
and subject. The community structure of a gene co-expression network
of size G is defined as a partition of genes into K disjoint cohesive
modules/subsets, where K is a hyperparameter determining the number
of communities. Each community is essentially a group of gene nodes,
densely connected inside and loosely connected outside the community.
The problem structure is shown in Fig. 1. In what follows, we use
“community” and “module” interchangeably.
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Fig. 1. A schematic for multi-subject dynamic gene networks. A gene network is observed
for each subject at each time step among a common set of nodes. The sets of edges vary
among both the subjects and the time steps. These networks are estimated from scRNA-seq
data and are expected to harbor communities that are conserved at varying levels among the
subject and time dimensions. Different colors mark distinct communities, where the nodes
(genes) within the same communities are depicted with the same color. MuDCoD assumes
that communities change smoothly across both the subject and the time dimensions.
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2.2 Promoting Signal Sharing Simultaneously in Subject
and Time Dimensions

LetAs,1, . . . , As,T denote a time series of symmetricG×G adjacency
matrices of networks Gs,1, . . . ,Gs,T varying across discrete time steps
t = 1, . . . , T , for subjects s = 1, . . . , S. Let Ls,t denote the degree-
normalized Laplacian of As,t as defined by:

L = D−1/2AD−1/2 where Di,j =

{
deg(vi) if i = j,

0 otherwise,
(1)

where deg(vi) denotes the degree of node vi.
Let K be fixed, and Vs,t ∈ RG×K denote a matrix with columns

corresponding to the K leading eigenvectors of Ls,t. A baseline strategy
for inferring communities from these adjacency matrices is finding
communities separately at each snapshot of time step and for each
individual. To detect communities that change longitudinally, PisCES (Liu
et al., 2018) applies smoothing to the eigenvectors of Ls,t across time.
We develop MuDCoD as a novel and data-motivated (Supp. Section S3)
extension of this framework. MuDCoD applies eigenvector smoothing
across both the subject and the time dimensions to promote signal sharing
across the subjects in addition to the time dimension. Let Us,t = Vs,tV T

s,t

be the projection matrix onto the column space of Vs,t and define mean
projection matrix

µs

(
U :,t

)
=

1

S − 1

∑
1≤s′≤S
s′ ̸=s

Us′,t, (2)

where Us,t is the smoothed version of Us,t. We estimate Us,t by:

min
Us,t

s=1,...,S
t=1,...,T

S∑
s=1

 T∑
t=1

∥∥Us,t − Us,t

∥∥2
F

+

T∑
t=1

β
∥∥Us,t − µs

(
U :,t

)∥∥2
F

+

T−1∑
t=1

α
∥∥Us,t − Us,t+1

∥∥2
F

 (3)

subject to Us,t,∈
{
V V T : V ∈ RG×K , V TV = I

}
∀s, ∀t.

Here, the penalty term with parameter α enforces smoothness over
the adjacent time points, whereas the term with parameter β constrains
subject-specific variation from the mean time-dependent projection matrix
µs

(
U :,t

)
. The solution of Eq. 3 yields a series of smoothed mean projection

matrices for each subject. Similar to PisCES, we propose to solve this
non-convex optimization problem with the following iterative method:

Uℓ+1
s,1 = ΠK

(
Us,1 + αUℓ

s,2 + β µs

(
Uℓ

:,1

))
Uℓ+1

s,T = ΠK

(
αUℓ

s,T−1 + Us,T + β µs

(
Uℓ

:,T

))
Uℓ+1

s,t = ΠK

(
αUℓ

s,t−1 + Us,t + αUℓ
s,t+1 + β µs

(
Uℓ

:,t

))
,

(4)

where t = 2, . . . , T −1, s = 1, . . . , S for all iterations ℓ and the iterative
algorithm is initialized by U0

s,t = Us,t for 1 ≤ t ≤ T , s = 1, . . . , S.
The mapping ΠK(M) extracts the K leading eigenvectors, and is given
by ΠK(M) =

∑K
k=1 vkv

T
k , for a matrix M , where v1, . . . , vk are the

K leading eigenvectors of M . This formulation allows the model order
K to be unknown and possibly varying over time by replacing ΠK(M)

with Π(M) =
∑K(M)

k=1 vkv
T
k . We provide a proof of convergence for

this iterative algorithm and a range of hyperparameter values (α and β) for
guaranteed convergence in Supp. Section S2.1. We utilize the eigengap

statistics to select K(M), and α and β are chosen with a re-sampling-
based cross-validation strategy by Li et al. (2020), as we discuss in the
next section. Supp. Fig. S1 illustrates the experimental convergence status
for different α and β values.

2.3 Hyperparameter Selection
Selecting the number of communities: We allow the number of
communities, K, to be unknown and possibly varying over time by
exploiting the eigengap statistics. Shen and Cheng (2010) demonstrated
that the degree-normalized Laplacian matrix and the correlation matrix
significantly outperform the adjacency matrix, the standard Laplacian
matrix, and the modularity matrix at identifying the community structure of
networks. Therefore, we use eigenvalues of degree-normalized Laplacian
matrix to estimate K as described in Supp. Section S1.2.
Cross-validation to tune α and β: We adopt the re-sampling based
network cross-validation strategy of Li et al. (2020) to tune the
hyperparameters α and β. This network cross-validation strategy makes
sure to keep the node pairs in one fold when splitting the data into training
and validation folds to avoid deleting edges and changing the network
structure. Then, we apply grid search to find the best combination of
hyperparameters α and β, where we define the best with respect to a
higher DCBM likelihood function. In our experiments, we observed best
performingα andβ values to range between 0.25 and 0.75. Further details
on this strategy are available in Supp. Section S1.1.

2.4 Prioritizing communities with CRank
Many community detection methods, including MuDCoD, fully

partition network nodes into non-overlapping groups. However, in real-
world datasets, only a few communities can typically be interpreted and
linked to relevant underlying factors. Therefore, it is important to prioritize
communities for downstream experimentation and further investigation.

CRank (Zitnik et al., 2018) prioritizes network communities by
considering the structural features of each community and combining
these features into an overall community score. Using metrics such as
density, likelihood, allegiance, and boundary, CRank effectively ranks
communities inferred by an external method.

We consider CRank as an optional but useful component of any analysis
pipeline that includes MuDCoD. This is especially important for datasets
with large numbers of subjects/time points, where aligning or matching
subject/time-specific modules becomes infeasible. In our applications of
MuDCoD, we benefitted from CRank by conducting a gene set enrichment
analysis of only the prioritized communities for each subject.

3 Experimental Setup
3.1 Simulations

To evaluate MuDCoD, we extended the dynamic degree corrected block
model (Dynamic-DCBM) (Xu and Hero, 2013) simulation set up to multi-
subject setting (multi-subject dynamic degree corrected block model (MuS-
Dynamic-DCBM)). This extension captures the overall characteristics of
scRNA-seq-based personalized gene networks both in time and subject
dimensions. In our computational experiments, we simulated modules
from this model and assessed the performances of different methods in
recovering the true modules.

The entries of the adjacency matrix As,t under MuS-Dynamic-DCBM
are generated by the following Bernoulli distribution:

[As,t]ij ∼Bernoulli

(
Ψ

(s,t)
i Ψ

(s,t)
j B

(s,t)

z
(s,t)
j z

(s,t)
j

)
,

i, j ∈ [G] , j > i, t = 1, . . . , T , s = 1, . . . , S,

(5)

with [As,t]ij = [As,t]ji, and [As,t]ii = 0. Here z(s,t) ∈ [K]G are

vectors of community labels. More specifically, i-th entry z
(s,t)
i of z(s,t)
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Fig. 2. Multi-subject dynamic degree corrected block models (MuS-Dynamic-DCBM) for the two proposed settings. (a) SSoS setting: subjects evolve from a common ancestor at each time
step t; and only the ancestor’s evolution over time is parameterized. (b) SSoT setting: subjects evolve from a common ancestor at t = 0; and then they evolve independently over time.

denotes the module assignment of gene i for subject s at time point t.
Ψ(s,t) ∈ RG are degree parameters and B(s,t) ∈ [0, 1]K×K is a
connectivity matrix at time t for subject s. As we describe below with
specific cases, variations in the generation process of z(s,t)i as a function
of s and t provide a systematic way of modulating shared information, i.e.,
similarities, across the subject and time dimensions.

The degree parameters and the connectivity matrix (Ψ(s,t) and B(s,t))
for subject s at time t are randomized as follows:

Blk =

{
Uniform(p

(0)
in , p

(1)
in ) if l = k,

Uniform(p
(0)
out , p

(1)
out ) if l ̸= k,

(6)

Ψ(s,t) = γ0 + γ1π
(s,t)/G, (7)

where pin=(p
(1)
in , p

(2)
in ) and pout=(p

(1)
out , p

(2)
out ) are in-cluster and between-

cluster density parameters (pin ≥ pout), respectively, π is a random
permutation of 1:G, and γ0 and γ1 are determined based on the value
of G and the desired degree distribution. We set γ0 = 0.5 and γ1 = 1

in our experiments. For the original network (s=1, t=1), community
memberships of nodes are initialized from the following multinomial
distribution: z(1,1)i ∼ Multinomial

(
1
K
, . . . , 1

K

)
.

Our extension MuS-Dynamic-DCBM spans two distinct multi-subject
settings: Signal-Sharing-over-Subjects (SSoS) and Signal-Sharing-over-
Time (SSoT) (Fig. 2). Both of these vary the degree of similarity
between subject-specific networks while maintaining their time-dependent
components and developing corresponding generation processes for
community memberships across the time and subject dimensions. Signal-
Sharing-over-Subjects (SSoS) enables modulation of signal sharing across
subjects. For both settings, each subject’s network at time t is generated
based on the corresponding module labels.

3.1.1 Signal-Sharing-over-Subjects (SSoS)
In SSoS, gene modules of an “ancestor” progress over time with

controllable similarity along the adjacent time points, and each subject’s set
of gene modules at time t is a realization from this progressing ancestor
(Fig. 2a). Let s = 1 index the subject for the ancestor network, and
z(1,t−1) denote its community labels for t = 2, . . . , T . In SSoS, z(1,t−1)

progresses over time according to

z
(1,t)
i =

{
z
(1,t−1)
i with probability 1−rtime,

Multinomial( 1
K
, . . . , 1

K
) otherwise,

for i ∈ [G] , t = 2, . . . , T ,

(8)

where rtime denotes the probability that a node i changes its previous
community label, z(1,t−1)

i . Then, community labels of other subjects for
each time point t are generated as follows:

z
(s,t)
i =

{
z
(1,t)
i with probability 1−rsubject,

Multinomial( 1
K
, . . . , 1

K
) otherwise,

for i ∈ [G] , t = 1, . . . , T , s = 2, . . . , S,

(9)

where rsubject is the probability that the node i changes community label

while progressing from z
(1,t)
i .

3.1.2 Signal-Sharing-over-Time (SSoT)
In contrast to SSoS, in SSoT, each subject’s gene modules start out

from a common ancestor network at time t = 1 and progress over time
independent of other subjects. In this setting, gene modules of a subject
share similarities between time points (Fig. 2b). Lets = 1 index the subject
for the ancestor network, and z(1,1) denote its community labels at t = 1.
The community labels of other subjects progress from the ancestor network
only at time t = 1 according to:

z
(s,1)
i =

{
z
(1,1)
i with probability 1−rsubject,

Multinomial( 1
K
, . . . , 1

K
) otherwise,

for i ∈ [G] , s = 2, . . . , S.

(10)

Then, each subject progresses independently over time by:

z
(s,t)
i =

{
z
(s,t−1)
i with probability 1−rtime,

Multinomial( 1
K
, . . . , 1

K
) otherwise,

for i ∈ [G] , t = 2, . . . , T , s = 1, . . . , S.

(11)

3.2 Experiments on Real Biological Datasets
We applied MuDCoD to two population-scale scRNA-seq datasets. In

this section, we provide details on the data-processing steps of these
applications.

3.2.1 scRNA-seq of iPS cells during dopaminergic neuron differentiation
The Jerber-2021 dataset (HipSci Consortium et al., 2021) contains

scRNA-seq data of 215 iPSC lines differentiating toward a mid-
brain neural fate from the Human Induced Pluripotent Stem Cell
Initiative (HipSci). Cells were collected for scRNA-seq profiling on
days 11, 30, and 52 (day-11, day-30, and day-52). We considered
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the scRNA-seq count matrices from the three time points together for
pre-processing. We retained genes expressed in at least 0.5% of the
cells and selected top 3, 000 highly variable genes using the function
pp.filter_genes_dispersion from Python package Scanpy.
We normalized the count matrix for each donor using the R package
SCTransform (Hafemeister and Satija, 2019) and adjusted for covariates
“pool_id”, “time_point”, and “treatment” for batch correction.
Leveraging the cell type annotations from the original publication (HipSci
Consortium et al., 2021), we excluded day-11 from the analysis as it
predominantly harbored progenitor cells which matured into young and
mature neurons in the following time points. We focused on day-30 and day-
52 both of which had dopaminergic neurons (DA), serotonin transporter
(Sert), and ependymal-like 1 (Epen1) cell types. Furthermore, donors
that (i) do not express the 3, 000 highly variable genes, i.e., have zero
expression count across all cells, for one or more “time point-cell type”
combinations; (ii) have fewer than 500 cells for any specific “time point-
cell type” combination were filtered out for a robust estimation of gene
co-expression networks. This resulted in16, 22, and8 donors, respectively,
for DA, Sert, and Epen1 cell types. Finally, we constructed cell-type
specific gene-gene Pearson correlation matrices for each donor at each
time point. These matrices were then converted into unweighted adjacency
matrices by keeping the top 5% of the edges (as commonly practiced in
gene co-expression network construction from scRNA-seq (Iacono et al.,
2019)) based on absolute values of their correlations.

3.2.2 scRNA-seq of CD4+ T cells during activation
The Soskic-2022 dataset (Soskic et al., 2022) contains scRNA-seq

profiling of 600k CD4+ T cells in a time course of activation after
stimulation with anti-CD3/anti-CD28 beads. Cells were collected for
scRNA-seq profiling before (0-hours) and at 16-hours, 40-hours, and
5-days after stimulation. We considered the scRNA-seq count matrices
from the four time points together for pre-processing and retained genes
expressed in at least 2% of the cells for initial gene filtering. All the
ribosomal and mitochondrial genes were further removed. Datasets from
specific time point and donor combinations with more than 200 cells were
retained for the construction of networks. Due to the large sequencing
depth differences between the cells profiled at different time points in this
dataset, we applied Dozer (Lu and Keleş, 2022) to robustly estimate
personalized gene co-expression networks. Furthermore, to improve the
reliability and reproducibility of gene co-expression networks, we filtered
out noisy and sparse genes using the “noise-ratio” metric from Dozer and
retained 408 genes. Finally, this pre-processing yielded 79 healthy donors
with co-expression networks of CD4+ Naive cells for 408 genes across the
four time points.

4 Results
4.1 Performance Comparison with Simulation Experiments

We compared MuDCoD, PisCES, baseline static spectral clustering
(“static”), and Betzel-2019 on simulated networks to assess their
performance in community detection over the subject and time dimensions.
We utilized the same selection procedure for the number of communities,
K, when running PisCES, MuDCoD and “static” (Supp. Section S1.2).
We used the network cross-validation approach to determine the tuning
hyperparameters α and β for MuDCoD, and α for PisCES. Our choice
of PisCES and “static” to compare MuDCoD with is motivated by
PisCES’s overall established advantages over the two additional methods
that Liu et al. (2018) had considered. Since Betzel-2019 has a different
hyperparameter structure, we followed its default procedure, and provided
the implementation details in Supp. Section S7. To measure the similarity
between the inferred and the ground truth gene communities of each
method, we used the adjusted Rand index (ARI) (Hubert and Arabie, 1985))
as also used in Liu et al. (2018).

We conducted simulations under the SoSS and SSoT settings of MuS-
Dynamic-DCBM with 16 subjects and for T ∈ {2, 4, 8}. The rest
of the parameters were set as follows: network sizes G=500, number
of communities K=10, in-cluster and out-cluster density parameters
pin=(0.2, 0.4) and pout=(0.1, 0.1). We further considered varying rtime

and rsubject levels. Here, rtime is the probability of a node changing its
module label over two adjacent time points, and, similarly, rsubject is the
probability of a node changing its module label across two subjects. For
example, setting rsubject=0 corresponds to the case where modules are
similar across subjects, while rsubject=0.5 corresponds to the setting where
the modules of the subjects vary considerably and do not share any signal.
Similarly, rtime = 0 and rtime=0.5 yield constant and rapidly changing
module labels across time, respectively. We conducted 100 simulation
replicates and compared the methods based on the average ARI values
over these replicates.

Fig. 3a and Fig. 3b summarize the results of these two general settings.
For both settings, as rsubject and/or rtime increases, ARIs of MuDCoD,
PisCES, and Betzel-2019 tend to decrease and, eventually, MuDCoD
and PisCES perform similarly to the baseline “static”. This immediate
observation is expected because, as the community structures among the
subjects and/or along the adjacent time points become more dissimilar,
promoting information sharing across either dimension is no longer
advantageous. Compared to other methods, performance of Betzel-2019
appears to be most sensitive against increasing rsubject and rtime. For
rsubject≥0.2 and/or rtime≥0.2, Betzel-2019 achieves ARI values that are
even less than (up to 0.2 less) those of the baseline static spectral clustering,
and results in ARI values less than 0.2when rsubject=0.5 and/or rtime=0.5.

For the SSoT setting, Fig. 3b reveals that even for the case with
the most module heterogeneity along the subject and time dimensions(
rsubject = 0.5 and rtime =0.5), PisCES and MuDCoD perform slightly

better than both “static” and Betzel-2019. MuDCoD consistently performs
better when there are varying levels of information sharing among
the subjects

(
rsubject ∈ {0, 0.2, 0.5}

)
and the modules are completely

conserved across the time dimension (rtime =0.0), yielding more than
20% increase in the ARI with T = 8, compared to second best PisCES.

For the SSoS setting, Fig. 3a highlights MuDCoD as significantly
outperforming other methods for relatively small rsubject values, and
performing robustly against increasing rtime values. For the rsubject =0.5,
MuDCoD performs no worse than other methods, if not negligibly better.
When T=8, the average increase in ARI is about 20% and 8% for
rsubject =0 and rsubject =0.2, respectively. The mean ARI increase is
markedly high for some settings. For example, when rsubject = 0

and rtime =0.2, increase in the mean ARI reaches to almost 30% with
T=8. Even with an extreme value of rsubject =0.5, which corresponds
to high levels of heterogeneity between the subject modules, MuDCoD
performs again at least as well as the other methods. PisCES and MuDCoD
exhibit increasing performances as T increases, supporting the merits of
information sharing across the time dimension. In contrast to PisCES and
MuDCoD, Betzel-2019 appears to only benefit from increasing the time
horizon when rsubject and rsubject are both set to zero.

4.2 Application of MuDCoD to discover multi-subject
dynamic gene communities

4.2.1 Analysis of HipSci Consortium et al. (2021) dataset
We next applied MuDCoD along with PisCES to discover personalized

gene communities from the scRNA-seq data of human-induced pluripotent
stem cells (HipSci Consortium et al., 2021). We specifically focused on
cell types DA (16 donors, 1, 955 retained genes), Sert (22 donors and
2, 234 retained genes) and Epen1 (8 donors and 2, 475 retained genes) on
days 30 and 52. Inferred communities varied in size and density (Table S1).

MuDCoD promotes the smoothness of spectral representations over
donors within a time point; therefore, we would expect the gene modules
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Fig. 3. Evaluation of the identified communities under two different MuS-Dynamic-DCBM settings: (a) SSoS and (b) SSoT. The simulation parameters were set as follows: the network
size is G=500, the number of class labels K=10, the in-cluster and out-cluster density parameters pin=(0.2, 0.4) and pout=(0.1, 0.1), number of subjects S=8, and the number of
time points T ∈ {2, 4, 8}. x-axis is the number of time points T , and y-axis is the mean ARI of the inferred modules for all subjects and time steps across 100 simulation replicates.

across donors within a time point to be more similar to each other compared
to PisCES, which treats each donor separately. We assessed to what extent
this was realized in this application by calculating the normalized mutual
information (NMI) scores (Strehl and Ghosh, 2003) among the discovered
gene modules of the donors at each time point. Fig. 4a and Fig. 4b display
the histograms of NMI scores between every pair of donors on day-30
and day-52. We observe that MuDCoD tends to yield higher, but not
statistically significant, NMI scores between donors on day-30 (Fig. 4a)
and it leads to significantly higher scores at day-52 (Fig. 4b, Wilcoxon
rank-sum test p-value of 0.0003), highlighting the impact of information
sharing across the donors. Furthermore, this does not incur at the cost
of additional smoothing over the time domain, as MuDCoD identified
communities of donors display a level of heterogeneity comparable to
those of PisCES across the time points (Fig. 4c).

Following these general observations, we investigated the biological
implications of MuDCoD results. To elucidate the biological processes
that the modules might be involved in, we conducted gene set enrichment
analysis of the discovered modules of each donor at each time point with
clusterProfiler (Yu et al., 2012), with an emphasis on the Gene
Ontology (GO) biological processes. We only focused on the communities
with sizes larger than >20. Our analysis limited the background gene
sets in clusterProfiler to only those genes that were used in the
construction of the adjacency matrices and used the Benjamini-Hochberg
procedure (Benjamini and Hochberg, 1995) for false discovery rate (FDR)
control at 0.2. Supp. Fig. S3 highlights that some general biological
processes, e.g., general cell-cycle and cell division-related processes,
are enriched across the communities of all donors. Additionally, we
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Fig. 4. NMI scores between inferred gene modules of donor and time point pairs aggregated
across all cell types. (a) and (b) quantify NMI scores between modules of every pair of donors
on day-30 and day-52, respectively. (c) displays NMI scores between inferred gene modules
of each donor on day-30 and on day-52. The y-axis denotes the percentage of donor pairs.

also observe processes specific to subsets of donors, highlighting the
personalized nature of the communities.

Next, to further explore the utility of our results, we leveraged the
grouping of the donors based on the differentiation efficiency of their
cells during dopaminergic neuron differentiation, as defined in HipSci
Consortium et al. (2021). We specifically assessed whether donors with
low and high differentiation efficiency exhibited varying levels of similarity
among their modules inferred at different time points. Fig. 5a displays
the NMI scores between the inferred modules of day-30 and day-52
for each donor, and suggests that donors with lower differentiation
efficiency tend to have higher levels of similarity among their gene
communities inferred at the two-time points. We then focused on cell
type Epen1, which is not used in the definition of differentiation efficiency
by (HipSci Consortium et al., 2021), and asked whether differences in
the donor-specific communities are associated with the differentiation
efficiency. This resulted in markedly higher module similarity within
each group (i.e., high vs. low differentiation efficiency) and lower
across groups (Fig. 5b). Furthermore, consistent with the differentiation
dynamics (HipSci Consortium et al., 2021), we also observed relatively
higher heterogeneity within the high group compared to the low group.
Collectively, these observations support that personalized modules inferred
by MuDCoD recapitulate the underlying differentiation efficiencies of
donor iPS cells.

4.2.2 Analysis of Soskic et al. (2022) dataset
We applied MuDCoD along with PisCES to discover dynamic gene

modules from the scRNA-seq data of CD4+ T cell activation (Soskic et al.,
2022). This dataset includes both memory and naive CD4+ T cells isolated
from peripheral blood. We focused on Naive CD4+ T cells, which have
not yet encountered an antigen. The entire dataset captures transcriptional
states of unstimulated cells (0-hours) and three time points (16-hours, 40-
hours, and 5-days after the stimulation) of cell activation in 79 healthy
donors, and 408 retained genes, as described in Section 3.2.2. Table S1
reports characteristics of inferred communitites at different time points.

Similar to the analysis of HipSci Consortium et al. (2021) dataset, we
first evaluated to what extent MuDCoD promoted smoothness of spectral
representations among donors within a time point compared to PisCES by
leveraging the NMI scores. Supplementary Fig. S4 displays the histograms
of NMI scores between all possible pairs of donors at time points 0-
hours, 16-hours, 40-hours, and 5-days. Consistent with our expectation,
MuDCoD tends to yield higher NMI scores (one-sided Wilcoxon rank-
sum test p-values of 0.0003, 0.01 and 0.00019, respectively, for the time
points 0-hours, 16-hours, and 5-days). The higher similarities among the
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Fig. 5. (a) NMI scores of each donor between the MuDCoD inferred modules on day-30 and on day-52 against the differentiation efficiency. For each cell type (DA, Sert, Epen1), each
donor’s modules from day-30 and day-52 were compared with NMI and plotted against donor’s differentiation efficiency. (b) Comparison of the mean NMI scores within and between the
low and high differentiation efficiency groups of Epen1 cells. Donor labels for differentiation efficiency were obtained from HipSci Consortium et al. (2021). NMI scores between pairs
of donors are calculated based on their MuDCoD inferred modules. Differentiation efficiency groups were generated based on the percentiles of differentiation efficiency values across the
donors, i.e., 50-th percentile (inclusive) corresponds to the low differentiation efficiency group.

gene modules across donors highlight the impact of information sharing
across the donors at fixed time points.

Next, we assessed how the similarities between donors change as donor
cells respond to stimulation over time. Specifically, we computed the mean
NMI scores between each donor and the rest of the donors at all four time
points separately. Figure 6a displays mean NMI scores that range between
0.05 and 0.2 across the time points. This comparison reveals that the
inferred community structures of donors tend to be more similar at 16-
hours after stimulation, as evidenced by the significant p-values (≤0.05)
of the one-sided Wilcoxon rank sum tests comparing mean NMI scores at
16-hours with those at other time points. We note that 16-hours corresponds
to the first measurement of gene expression right after stimulation of the
T cells and before the first cell division. Hence, the increased similarity
across donors may correspond to the concerted activity of T cell activation
related genes and pathways.

Following these general observations, we investigated the biological
implications of MuDCoD results. MuDCoD fully partitions genes into
modules. However, not all gene modules are necessarily interesting or

biologically relevant. Furthermore, due to dropouts in scRNA-seq data,
it is likely that only a small number of the inferred communities are
biologically relevant (i.e., prioritized communities) and should be subject
to further interpretation. We utilized CRank (Zitnik et al., 2018) to rank the
resulting communities. Specifically, we ranked inferred communities of
each donor’s network and identified the one with the highest rank, i.e., most
prioritized community. In the case of ties in CRank scores, we prioritized
the larger community. This prioritization resulted in 79 × 4 = 316 gene
sets when aggregated across donors and time points. Next, we conducted
gene set enrichment analysis with GO biological processes for each of
the prioritized modules using clusterProfiler (Yu et al., 2012). In
order to summarize and elucidate the underlying biological processes
at each time point, we calculated the frequencies of significant GO
terms (FDR control at level 0.05 with the Benjamini-Hochberg procedure
(Benjamini and Hochberg, 1995) at each time point). Figure 6b displays
the top 15 most frequently enriched GO terms at each time point, along
with their frequencies (i.e., number of appearances across donors) and
minimum adjustedp-values across the donors. Time point specific enriched
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Fig. 6. (a) Normalized mutual information scores between pairs of donors based on their inferred gene communities at each time point. Each data point stands for a donor, and the
y-axis denotes the mean of NMI scores between that donor and other donors at the corresponding time point. All the statistically significant comparisons with time point 16-hours from the
one-sided Wilcoxon rank-sum test are marked (with p-value≤0.05), ∗∗∗ and ∗∗∗∗ stand for p-value≤0.001 and p-value≤0.0001, respectively. (b) Set of top fifteen frequent significantly
enriched biological processes (with the adjusted p-values ≤0.05) of most prioritized communities contributed by each donor at different time points. Overall, 79 × 4=316 gene sets
were contributed by 79 donors at 4 time points, and correspondingly, 316 separate enrichment analyses were performed. Displayed are significant biological processes, their corresponding
number of appearances in the most prioritized communities of donors, and the minimum p-values of enrichment among those communities.
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biological processes appear consistent with the mechanisms governing
CD4+ T cell activation (Hwang et al., 2020). For example, positive
regulation of T cell activation is among the top 15 most frequent terms
only at 16-hours and 40-hours after stimulation, and we start to observe
positive regulation of cytokine production more frequently at 40-hours
after stimulation. While these results require further analysis to reveal
more detailed biological insights, MuDCoD successfully highlights how
multi-subject module detection promoting module smoothness over the
subject and time dimensions can yield gene modules that associate with
specific biological conditions and phenotypes.

5 Conclusion
As advances in single-cell profiling technologies allow charting

transcriptomes of individuals at unprecedented resolutions across
developmental and cellular stages, analysis of personalized dynamic
gene networks is poised to emerge as a critical tool for elucidating
network-level variations among subjects to explain phenotypic variation.
In this work, we developed a global spectral clustering framework that
promotes information sharing among subjects and adjacent time points.
Our simulation experiments highlighted the superior performance of
MuDCoD over existing alternatives. Applications to two population-scale
scRNA-seq datasets revealed that MuDCoD infers biologically meaningful
and relevant communities in multi-subject dynamic scRNA-seq datasets.
While our current framework encourages information sharing among all
subjects, it can be extended to accommodate groupings among subjects
where the communities are persistent only within the group members. Such
an extension could be useful, especially when an apparent grouping such
as healthy versus diseased subjects exists in the dataset. Finally, we expect
this multi-subject setting to be useful in other domains to infer network
community structures with the availability of multiple samples.
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