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Abstract

Sensory perception is dramatically influenced by the context. Models of contextual
neural surround effects in vision have mostly accounted for Primary Visual Cortex (V1)
data, via nonlinear computations such as divisive normalization. However, surround
effects are not well understood within a hierarchy, for neurons with more complex
stimulus selectivity beyond V1. We utilized feedforward deep neural networks and
developed a gradient-based technique to visualize the most suppressive and excitatory
surround. We found that deep neural networks exhibited a key signature of surround
effects in V1, highlighting center stimuli that visually stand out from the surround and
suppressing responses when the surround stimulus is similar to the center. Even when
the center stimulus was altered, the most suppressive surround surprisingly followed.
This ties to notions of efficient coding and salience perception, although the networks
were trained to classify images. Through the visualization approach, we generalized
previous understanding of surround effects to more complex stimuli, in ways that have
not been revealed in visual cortices. Our results emerged without specialized nonlinear
computations, but due to subtraction and the stacking of layers. We identified further
successes including V2 surround data for textures that cannot be explained by divisive
normalization models, along with mismatches to the biology that could not be explained
by the feedforward deep neural networks. Our results provide a testable hypothesis of
surround effects in higher visual cortices, and the visualization approach could be
adopted in future biological experimental designs.

Author summary

Neural responses and perception of a visual stimulus are influenced by the context, such
as what spatially surrounds a given feature. Contextual surround effects have been
extensively studied in the early visual cortex. But the brain processes visual inputs
hierarchically, from simple features up to complex objects in higher visual areas.
Contextual effects are not well understood for higher areas of cortex and for more
complex stimuli. Utilizing artificial deep neural networks and a visualization technique
we developed, we found that deep networks exhibited a key signature of surround effects
in the early visual cortex, highlighting center stimuli that visually stand out from the
surround and suppressing responses when the surround stimulus is similar to the center.
Even when the center stimulus was altered, the most suppressive surround surprisingly
followed. This generalized for more complex stimuli that have not been revealed in the
visual cortex. Our findings relate to notions of efficient coding and salience perception,
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and emerged without incorporating specialized nonlinear computations typically used to
explain contextual effects in the early cortex. Our results provide a testable hypothesis
of surround effects for more complex stimuli in higher cortical areas; the visualization
approach could be adopted in biological experimental designs.

Introduction 1

Both biological and artificial systems seek to make sense of complex structured 2

information in the world. A key aspect of sensory input is that its interpretation at a 3

given point depends on the context, for example, what surrounds a given feature or 4

object. Spatial context in vision plays a role in perceptual grouping [1] and 5

segmentation [2], highlighting salient objects in which a stimulus stands out from its 6

background [3], and resulting in visual illusions [4,5]. Deficits have been associated with 7

disorders [6–8]. Though contextual surround effects are ubiquitous in visual cortex, they 8

are not well understood within hierarchical systems such as deep neural networks and 9

for neurons with more complex stimulus selectivity beyond V1. 10

A rich set of surround effects have been documented in the Primary Visual Cortex 11

(V1) in neurophysiology experiments and respective modeling studies [9–28]. In the 12

experiments, researchers typically place a stimulus in the center (i.e. the classical 13

receptive field) and in the surround (i.e. beyond the classical receptive field). Although 14

the surround stimulus does not elicit a response by itself, it can nonlinearly modulate 15

the response to the center stimulus. Modeling studies have addressed V1 data by 16

incorporating nonlinear computations such as divisive normalization or dynamical 17

circuitry [14,19,23,28,29]. 18

Surround effects are less well understood in cortical areas beyond V1 (though 19

see [30, 31]). Moreover, surround suppression in V2 for textures versus noise [30] cannot 20

be simply explained by divisive normalization models that have been successful for V1 21

data. Therefore, novel experimental paradigms and hierarchical models that make 22

predictions on complex features are in demand to study surround effects in higher visual 23

areas. In recent years, Deep Convolutional Neural Networks (CNNs) that stack up 24

multiple layers of computation have achieved astonishing visual task performance and 25

have been used to model visual neurons across the cortical hierarchy [32–39]. But 26

beyond the observation that deep neural networks can exhibit surround suppression [39], 27

it is not clear what properties of the center and surround stimuli lead to surround 28

suppression; to what extent feedforward CNNs that lack specialized nonlinear 29

computations such as divisive normalization and lateral or feedback connections can 30

capture the rich surround effects that have been studied biologically; and excitingly, 31

what predictions CNNs can make about surround effects in higher visual cortex with 32

complex stimuli. 33

Moreover, feature visualization techniques have become popular in neurophysiology 34

experiments [40–42] and in analyzing what stimuli most excite CNN artificial 35

neurons [43–45]. However, neither in CNN studies nor in neurophysiology, have such 36

techniques been extended to visualizing surrounding effects. Developing surround 37

visualization techniques could address the limitation in current neurophysiology studies 38

that the surround stimuli are usually simple parametric stimuli or are selected from a 39

fixed set of textures or natural images. 40

Utilizing feedforward deep neural networks and developing a novel gradient-based 41

visualization technique, we found that CNN neurons exhibit a key signature of surround 42

suppression, namely that they are most suppressed when the surround matches the 43

center and less suppressed when the surround differs from the center; and that this even 44

follows when the center orientation is altered. This is known for V1 data [46], but has 45

not been observed in higher cortical areas. These findings generalize the idea of 46
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homogeneity-dependent surround suppression to more complex stimuli, thus providing a 47

testable hypothesis of surround effects in higher visual cortices. Surround suppression 48

for homogeneous center and surround can highlight center stimuli that stand out from 49

the surround, relating to visual salience [3]. Suppression based on center-surround 50

similarity also relates to notions of efficient coding. Note that we use the term 51

homogeneity to indicate similarity of the center and surround in terms of stimulus 52

features such as orientation, color, spatial frequency and textures, rather than 53

examining the conditions of statistical similarity as in some modeling studies of natural 54

stimuli [25]. Our results can partly be attributed to subtraction within the receptive 55

field, but the observation that the surround could follow the center change requires a 56

stacking of layers. The visualization method reveals a generalization of the idea of 57

homogeneity to complex stimuli and provides a new experimental scheme that can be 58

used in biological experiments. We also found mismatches to the biology, highlighting 59

the limitations of the feedforward architectures, and identifying the need to further 60

incorporate nonlinear computations and circuitry into deep neural networks [47–52]. 61

Results 62

The most suppressive surround grating matches the optimal 63

orientation 64

Before studying the surround effects in CNN neurons, we first defined the center and 65

surround region through a method inspired by neurophysiology studies [16] (Fig 1). We 66

trained two standard network architectures, Alexnet [53] and VGG16 [54], which have 67

been used extensively in neural modeling (see Methods). Without losing generality, we 68

focused on the center neurons in each feature map. However, unlike cortical neurons, 69

each CNN neuron has a well-defined receptive field (see Methods). We used this 70

theoretical receptive field as the outer size of the stimuli in the following experiments. 71

To define a ”classical receptive field” for the CNN neurons, we adopted a physiology 72

approach [16]: first, we used a grid search to find the optimal spatial frequency and 73

orientation for each neuron; then we used these optimal stimuli to find the diameter 74

tuning curves. For the boundary between the center and surround, we used the grating 75

summation field that reached at least 95% of the peak responses (see Methods). By the 76

conventional definition used in neuroscience, a stimulus placed outside the classical 77

receptive field by itself does not elicit any neural responses (Fig 1, Fig 2B). CNN 78

neurons do not have a clear separation of center and surround and therefore did not 79

match this exactly, but the surround orientation tuning curves were mostly flat and low, 80

except for some early layers (Alexnet layer 2 and VGG16 layer 5). 81

First, we tested one of the most well-known surround effects found in V1 that the 82

surround induces the largest response suppression when the grating orientations of the 83

center and surround are the same [15,17]. We computed three types of orientation 84

tuning curves: the center orientation tuning curve, the surround orientation tuning 85

curve, and the surround suppression orientation tuning curve for stimuli with a fixed 86

optimal center and a varying surround orientation (surround suppression tuning curve 87

for abbreviation) (Fig 2A). We only included neurons with sufficiently large center and 88

surround (grating summation field in between 30% and 70% of the theoretical receptive 89

field) in the analysis. Due to the tiny receptive fields in the early layers in VGG16, only 90

layer 4 and successors had neurons that satisfied this criteria. 91

In neurophysiology studies, the most suppressive surround has the same orientation 92

as the optimal center orientation, and the surround can be facilitative when it differs 93

from the center [15, 17] (Fig 2B). We found that on average, most layers in both CNNs 94

showed the most suppression when the surround orientation matched the center and the 95
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Fig 1. Probing surround effects in CNNs. Top left: A neuron was taken from
either Alexnet or VGG16. Top middle: The optimal spatial frequency and grating
orientation were found by grid search. Top right: Then the grating summation field
(GSF) was read from the grating diameter tuning curve. Bottom left: We simulated a
set of in-silico physiology experiments with the stimuli that were used in
neurophysiology studies. Representative stimuli are shown. The responses of CNN
neurons are compared with cortical neurons. Bottom right: We visualized surround
effects in CNN neurons by a two-step optimization approach. First, the most facilitative
center was optimized within the grating summation field. Then, the most suppressive
and facilitative surround were optimized with the fixed most facilitative center.
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Fig 2. Grating orientation tuning of the CNN neurons. A. Stimuli used in the
experiments: rotating the center (left, black); rotating the surround (middle, purple);
fixing the center at the optimal orientation and rotating the surround (right, cyan). B.
Neurophysiology V1 data of the three types of orientation tuning curves (reproduced
from [17]). The most suppressive surround orientation matches the optimal center
orientation. The surround stimuli alone hardly elicit responses. 0° represents the
optimal orientation (same for the following plots). C. Example orientation tuning curves
of CNN neurons. D. Averaged orientation tuning curves in CNN layers. Shaded area
indicates s.e.m.
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least suppression (and even facilitation in some layers of VGG16) when the orientations 96

differed. This similarity between the CNNs and the neurophysiology held for most 97

layers, except for Alexnet layer 1 and VGG16 layer 4 which lacked sufficient neurons 98

due to the small receptive fields and not meeting our selection criteria (Fig 2D). We 99

further found that when the center contrast is low, there is less influence of whether the 100

surround orientation matches the center or is orthogonal to the center (Supplementary 101

Fig 5). Such finding aligns with neurophysiology studies [9, 10,15,21,55]. 102

We found that the surround suppression in the early layers was weaker than in the 103

late layers. Regarding the amount of surround suppression, Alexnet layer 3 and VGG16 104

layer 10 were closest to the V1 data. In the neurophysiology data, the strongest 105

responses in the center tuning curve are aligned with the strongest suppression in the 106

surround suppression tuning curve. To examine this quantitatively in the CNN, we 107

measured the negative correlation between the two curves. Consistent with the 108

neurophysiology observations (-0.858 in [17]), all layers of the CNN showed significant 109

negative mean correlations between the two curves (Supplementary Fig2-4). 110

By screening individual neurons, we found that there were a variety of interesting 111

surround suppression behaviors that had not been documented in neurophysiology 112

studies (Fig 2C). This included neurons with a double-peak center orientation tuning 113

curve, for which their surround suppression curve matched both peaks 114

(Alexnet L2 N78); neurons with a regular single-peak center orientation tuning curve 115

but for which their surround suppression curve had two peaks (Alexnet L2 N68); 116

neurons for which their most suppressive surround orientation did not match the center 117

orientation (Alexnet L2 N77); and neurons for which their surround suppression curve 118

matched the center orientation tuning curve (Alexnet L2 N97). 119

Visualization of the most suppressive surround appears 120

homogeneous to the center 121

In both neuroscience and machine learning, there is interest in understanding what 122

visual features neurons are sensitive to. Indeed, with recent advances in deep neural 123

networks, there has been some focus on visualizing what input features induce the most 124

or the least responses in CNN neurons, for instance using gradient based optimization 125

methods [43]. Inspired by neurophysiology studies, we were interested in going beyond 126

such methods and visualizing the most suppressive and facilitative surround and testing 127

if the homogeneous surround induces the most suppression is still applicable to complex 128

stimuli that are beyond gratings. We therefore modified the gradient-based optimization 129

approach to a two-step optimization: first, we optimized the stimuli inside the center 130

region to elicit the strongest response; then, we optimized the stimuli in the surround 131

region that suppressed or facilitated the strongest response when combined with the 132

optimal center stimuli (Fig 1) (see Methods). An advantage of optimizing via two steps 133

over one step is that we can separate the center and surround components more clearly; 134

thus we can study the questions such as what are the most suppressive surround when 135

the center is not optimal. 136

Figure 3 shows a curation of the visualizations (see the full set in the online 137

repository https://gin.g-node.org/xupan/CNN surround effects visualization). We 138

selected them to show the variety. In general, the most suppressive surround looked 139

similar to the center, whereas the most facilitative surround looked dissimilar to the 140

center. Based on the visual appearance, we found several typical patterns. We observed 141

visual similarity along various features, such as color and spatial frequency; the most 142

suppressive surround could have similar color or spatial frequency to the center (Fig 143

3A). We quantified the color similarity between the center and surround, by using the 144

correlation between the averaged color channels in the center and surround (Fig 5A) as 145
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a metric. The most suppressive surround showed a high (positive) color correlation with 146

the center, whereas the most facilitative surround showed a low (negative) color 147

correlation in all layers. 148

Many neurons showed combined features of color and spatial frequency. And in 149

deeper layers, the visual similarity between the center and the most suppressive 150

surround could be more complex (Fig 3B). For example, the color similarity was not 151

limited to a single color, but to a color scheme (VGG L10 N124, VGG L10 N33, 152

VGG L10 N114, etc.); if a swirl was in the center, the most suppressive surround could 153

include several swirls (Alexnet L4 N3, VGG L8 N130, VGG 133 N75, etc.); the line 154

shapes of the center and most suppressive surround matched (VGG L10 N124, 155

VGG L10 N114, VGG L10 128, Alexnet L5 N57, etc.). 156

These effects were not rare in the CNN neurons; we found that most neurons showed 157

visual similarity/dissimilarity between the most suppressive/facilitative surround and 158

the center to some extent. For a full visualization of all neurons in the two CNNs, see 159

the online repository. However, we found neurons that did not show this effect, 160

especially when the surround features were geometrically arranged rather than uniform 161

across the surround, and when the features were arranged as object-like shapes 162

(Supplementary Fig1). 163

Our visualizations align with findings from neurophysiology studies that the most 164

suppressive surround occurs when the center and surround are 165

homogeneous [15,17,25,46], but go beyond simple stimuli and early processing stages. 166

The most suppressive grating surround follows the change of the 167

center orientation 168

An interesting nonlinear interaction between the center and surround is that even when 169

the center grating orientation is not optimal, the most suppressive surround orientation 170

still matches the non-optimal center orientation. This has been documented in V1 171

neurons [15,46] (Fig 4B). We tested this effect in the CNN neurons. We used a similar 172

design to the neurophysiology studies [15], setting the center orientation at 0°, 15°, 30°, 173

and 45° degrees off from the optimal orientation, and rotating the surround. We 174

obtained four surround suppression curves for four center orientations and each neuron 175

(Fig 4A). On average, later layers (Layer 6 and successors) in VGG16 captured this 176

effect, with shifted dips matching the center orientation (Fig 4D). This trend was less 177

pronounced in Alexnet. It is surprising that CNNs could capture this effect to some 178

extent, since all previous successful models of surround effects included non-linear 179

interactions between the center and surround (e.g., in a divisive manner). It appears 180

that even without an explicitly divisive surround, CNNs could still achieve similar 181

center-surround interactions by stacking layers. However, we did not see this effect in 182

more shallow networks and early layers of deep networks (e.g. a 5-layer Alexnet, and 183

earlier layers of VGG16), indicating the computations may not be complex enough to 184

support this interaction (Fig 4D). 185

Although the average effects were consistent with the biology, we also found a 186

variety of untypical behaviors (Fig 4C). When the curve had two peaks/dips, some 187

neurons showed a shift of both dips (VGG L9 N228). Some neurons also showed a 188

uniform drop of the curves without shifting the dips (VGG L9 N19). Interestingly, some 189

neurons showed dip shifts in the opposite direction (VGG L9 N16). Again, these 190

untypical behaviors may possibly be found in the brain and play a role in completing 191

the representation space. 192
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Fig 3. A curation of visualizations. The most facilitative center (left image with no
frame), most suppressive surround (middle image with cyan frames), and most
facilitative surround (right image with pink frames) are shown for each selected neuron.
A. Example neurons in early layers that have recognizable features: color (left column)
and frequency (middle and right column). The most suppressive surrounds appeared
similar to the center, whereas the most facilitative surrounds appeared different from
the center. B. Example neurons in late layers that have more complex patterns.
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Fig 4. Surround suppression tuning when the center is not at the optimal
orientation. A. Stimuli used in the experiments: the center was either fixed at the
optimal orientation or rotated 15°, 30°, 45° off from the optimal orientation. The
surround suppression tuning curve was acquired by changing the surround orientation.
B. Neurophysiology V1 data of Surround suppression tuning curves, when the center
was either optimal or rotated 45° away from the optimal (reproduced from [15]). Arrow
indicates the center orientation. The most suppressive surround matched the center
orientation. C. Example surround suppression tuning curves of CNN neurons. D.
Averaged surround suppression tuning curves in CNN layers. Shaded area indicates
s.e.m.
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Visualization of the most suppressive surround follows changes in 193

the center 194

Since, in the above simulation, the homogeneity idea is still valid for non-optimal center 195

grating orientation, we asked if such effects can be revealed in visualizations and 196

generalized for complex stimuli. We altered the optimal center stimuli in two ways and 197

tested if the most suppressive surround can follow the change in the center. First, for 198

each neuron we permuted the three color channels, i.e. red, green, and blue, of the 199

center stimuli. Then we computed the most suppressive and facilitative surround as 200

before (Fig 5). We found that for many neurons the most suppressive surround matched 201

the altered center color. The averaged color correlations are shown in Figure 5A. The 202

altered center of most later layers (after layer 5 in VGG16) had positive color 203

correlations with the most suppressive surround and negative color correlations with the 204

most facilitative surround, though the magnitudes of correlation/discorrelation were 205

smaller than the optimal center. This effect was less pronounced in Alexnet, which 206

indicates the CNNs may need a sufficient number of layers to achieve this type of 207

nonlinearity. 208

We then further tested the idea of homogeneity by exchanging the entire optimal 209

center. Some CNN neurons showed an ability to match the surround to the exchanged 210

center stimuli. Figure 6A shows an example neuron that had such ability. Its optimal 211

center appeared as purple curves; when the center was changed to triangles, yellow 212

curves, and blobs, the most suppressive surround could match the altered center pattern. 213

Figure 6B shows 5 neurons (including the one in Figure 6A) in VGG16 layer 10. The 214

leftmost column shows the optimal center for each neuron. The 5 optimal centers were 215

used for each neuron to derive the most suppressive surround stimuli. By looking at the 216

columns, we see that the most suppressive surround depends on the center stimuli. 217

Furthermore, some neurons could match the surround to the altered center stimuli. 218

Our results suggest that the findings that the most suppressive surround orientation 219

follows the center stimulus in Figure 4 [15,46] can be generalized to more complex 220

stimuli in the CNN neurons. Such effects with complex stimuli have not been tested in 221

cortical neurons, and therefore provide a testable hypothesis of surround effects in 222

higher visual cortices. 223

Texture induces less surround suppression than spectrally 224

matched noise 225

There have been limited studies on surround effects beyond V1. When using grating 226

stimuli, V2 neurons have shown some similar properties to V1 regarding surround 227

effects [56]. Textures that extend beyond the classical receptive field can result in 228

surround suppression in both V2 [30] and V4 [31], an observation that has been referred 229

to as ”de-texturization”. However, other observations in V2 cannot be simply explained 230

by surround suppression based on the center surround similarity, and rather depend on 231

whether the stimulus is naturalistic or noise. In particular, V2 neurons show less 232

surround suppression for naturalistic textures (that include dependencies across space) 233

than for spectrally matched noise [30] (Fig 7D). We therefore asked whether CNN 234

neurons could capture such effects, following a similar design [30]. We synthesized 225 235

naturalistic texture images from 15 original texture images and their corresponding 236

spectrally matched noise images (see Methods). The optimal textures for each neuron 237

were determined by finding the modulation indexes, i.e. the difference of the responses 238

to the naturalistic and noise images divided by the sum of the two (Fig 7B). The top 5 239

textures for each neuron were used for the following experiment. For each neuron, we 240

computed the naturalistic and noise diameter tuning curves (Fig 7C, E). We then 241

computed the suppression index (SI), i.e. the difference of the max and min response 242
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Fig 5. The most suppressive surround can follow the center color change. A.
Averaged color correlation of the center the surround in VGG16 (left) and Alexnet
(right). Higher values indicate higher color similarity between the center and surround.
Four conditions are shown in the plot: the correlation between the optimal center and
the most suppressive surround (solid blue); the optimal center and the most facilitative
surround (solid red); the altered center and the most suppressive surround (dotted
blue); the altered center and the most facilitative surround. The optimal center is
defined as the most facilitative center. The altered center is the optimal center with
three color channels permuted. The shaded area indicates the s.e.m. B. Two example
neurons (VGG L7 N7 and (VGG L10 N55)) showing that the most suppressive
surround can match the center color. For each neuron, the first row are the center
stimuli; the second row are the center stimuli with the most suppressive surround; the
third row are the center stimuli with the most facilitative surround. The first column is
the optimal center; other columns are the optimal center with the three color channels
permuted. The area of the red bars on the right of each image represents the
normalized response (relative to the optimal center response).
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Fig 6. The most suppressive surround depends on the center pattern. A. An
example neuron in VGG16 layer 10. The first row is the center stimulus used to
optimize the most suppressive surround; the second row is the most suppressive
surround using the corresponding center in the first row. The first column is this
neuron’s optimal center; the remaining columns are center patterns from the other
neurons. B. Visualizations of most suppressive surround of 5 neurons with exchanged
centers. The first column shows 5 optimal centers for the 5 selected neurons. Other
columns are the most suppressive surround with different centers. The visualizations on
the diagonal line used neurons’ own optimal center. The most suppressive surround
strongly depends on the center pattern. Some most suppressive surrounds visually
matched the center pattern.
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divided by the max response, for the naturalistic and noise stimuli from the diameter 243

tuning curves. 244

The CNN neurons exhibited more surround suppression for the naturalistic textures 245

than for the spectrally matched noise, except for early layers of the CNNs (Alexnet 246

layer 1 and VGG16 layer 4). This was observed in both the averaged diameter tuning 247

curves (Fig 7E) and scatter plots (Supplementary Fig6) of the suppression index. Such 248

effects were consistent with the V2 neurophysiology data (Fig 7D). This result is 249

interesting because it is not expected from a divisive normalization model that focuses 250

on the homogeneity of center and surround. We found that it arises in the CNN from a 251

stacking of layers. 252

Failures of capturing cortical contextual surround effects in 253

CNNs 254

Though in the above experiments we found some striking commonalities between the 255

CNN neurons and cortical neurons regarding surround effects, we also found failures of 256

the CNNs. One mismatch we found is related to the geometric structure of the surround. 257

Cortical neurons show the largest suppression when the stimulus in the surround is in 258

the location that aligns with the orientation [15] (Fig 8A). We did not find this effect in 259

CNN neurons. Though in some layers responses were significantly different with 260

different surround locations, the effect size was small compared to the biology (Fig 8C). 261

In particular, when the orthogonal surround was used, the trend did not match biology 262

(Fig 8C). We also did not find individual neurons that matched the biological trend (Fig 263

8B). See supplementary figure 7 for the average effects of the layers. 264

Other mismatches we found are related to the contrast. Neurophysiology studies 265

have shown that the grating diameter tuning curve peaks later when the contrast is 266

low [10,16] (Fig 8 D, E). Though some individual CNN neurons showed this effect, we 267

did not find this consistently in the CNN neurons (Fig 8 F, G, Supplementary Fig 8). 268

Only layer 8 in the VGG16 showed significantly more neurons where the low contrast 269

stimuli shift peak later (Fig 8 G, Supplementary Fig 8). See supplementary figure 8 for 270

the averaged curves and peak shift histogram of the layers. 271

Discussion 272

We studied visual contextual surround effects in CNN neurons. First, we simulated a 273

classic visual surround effects experiment in CNN neurons and found that the most 274

suppressive surround grating orientation matches the optimal center orientation (Fig 2). 275

Second, we developed a method to visualize the surround effects in CNN neurons and 276

found that the most suppressive surround is visually similar to the optimal center 277

pattern (Fig 3). The visualization experiments could be thought of as a generalization 278

of the classic grating experiments, but with complex stimuli. We also found that for 279

both grating (Fig 4) and more complex stimuli per the visualization (Fig 5) 280

experiments, the most suppressive surround in deeper layers can still match the center 281

even when the center is non-optimal. The finding for more complex stimuli presents an 282

interesting prediction that could be tested experimentally. 283

In recent years, optimization-based neuron control techniques have been used in 284

neuroscience experiments to find stimuli that elicit the strongest neural responses and 285

even control the population activation pattern [40–42]. Optimization techniques similar 286

to what we have shown here for the CNNs could be modified to find the most 287

suppressive surround stimuli in neurophysiological studies (since it is extremely difficult 288

to calculate the gradient in the brain, one would need to replace the gradient-based 289

optimizer with a gradient-free optimizer such as Covariance Matrix Adaptation). Such 290
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Fig 7. Surround suppression of naturalistic textures and noise. A. Naturalistic
textures and spectrally matched noise used in the experiments. Naturalistic textures
were synthesized using an algorithm described in Methods. B. Texture tuning of an
example CNN neuron. The ”optimal” textures for each CNN neuron was determined by
the textures with the highest modulation index (see details in Methods). The ”optimal”
textures were then used to study the texture surround effects. C. Texture and noise
diameter tuning curves for an example CNN neuron. D. Averaged naturalistic texture
and spectrally matched noise diameter tuning curves in monkey V2 (Reproduced
from [30]). Noise induces stronger surround suppression. E. Averaged diameter tuning
curves in CNN layers. Noise appears to induce stronger surround suppression in most
layers.
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Fig 8. Two mismatches between CNN neurons and cortical neurons. A, C:
Geometry effects of the surround suppression. A. Strength of the surround suppression
depends on the location of the surround stimuli. Embed images show the stimuli used
in this experiment. The center was fixed at the optimal orientation. The surround had
two patches at different locations relative to the center stimuli. The surround was either
at optimal orientation or orthogonal orientation. Surround patches that align with the
center stimuli induce the strongest suppression when it is at optimal orientation and the
strongest facilitation when it is at orthogonal orientation. The polar radius represents
the normalized response where the gray circle represents 1 (reproduced from [15]). B.
Plots of two example CNN neurons. C. Averaged plots of two CNN layers. P values
were calculated from one-way repeated measure ANOVA. Though some neurons and
layers showed significant modulation effects of surround location, the effect size and
shape of the plots did not match the cortical neurons. D, E, F, G: Peak shift of the low
contrast diameter tuning curve. D. We computed diameter tuning curves of each neuron
with the normal contrast (high contrast, black line) and 17% of the normal contrast
(low contrast, gray line). Dotted vertical lines indicate peaks of the diameter tuning
curves. E. Two diameter tuning curves of an example V1 neuron (reproduced from [15]).
The low contrast peak is shifted rightward. F. Three example CNN neurons with
different directions of peak shift. G. Histogram of peak shift in three CNN layers. Peak
shift is defined as low contrast peak diameter subtracting high contrast peak diameter.
Positive values are more commonly found in cortical neurons. P values were calculated
from paired t-test.
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findings could reveal new surround effects across the visual hierarchy, and help elucidate 291

to what extent paradigms of homogeneity play a role in surround suppression in higher 292

visual areas. 293

How can a generic feedforward CNN capture a signature of surround suppression? 294

Since surround effects are thought to arise from nonlinear computations such as divisive 295

normalization and recurrent and feedback connections, feedforward CNNs without those 296

connections are not supposed to capture such effects. However, CNNs can potentially 297

capture surround effects by stacking layers. From a statistical perspective, this could 298

relate to computational studies showing that in deeper layers of CNNs, the activations 299

of neighboring neurons are less statistically dependent, thereby achieving some of the 300

statistical properties that have been attributed to divisive normalization [57]. Surround 301

suppression in CNNs may also be achieved by subtractive suppression from the 302

surround, due to a combination of weighted outputs from the previous layer (i.e., more 303

negative weights on average in the surround). 304

Is the surround suppression we observe in standard feedforward architectures 305

subtractive or divisive? Some studies have shown that surround effects in 306

neurophysiology are better fit with a divisive than subtractive model [16,58,59]. 307

Contrast experiments have been used to distinguish if the surround effects are divisive 308

and/or subtractive. We simulated an experiment with such a design (Supplementary 309

Fig 9). The results showed a weak preference for the subtractive model over the divisive 310

model (Supplementary Fig 10). Though generic CNNs do not contain division explicitly, 311

our results rejected that the surround effects are purely subtractive. Elucidating the 312

abstract mathematical form of surround effects in CNNs will require future studies. 313

How can the most suppressive surround in the CNN follow the change in the center? 314

This surprising observation in CNNs can be conceptually explained by stacking two 315

layers. Assume that the most suppressive surround of the previous layer is similar to 316

the preferred center, but that it cannot follow a change in the center stimulus (i.e., 317

when the neuron is presented with a non-optimal center stimulus). In the next layer, 318

the most suppressive surround can gain this ability due to the nonlinear activation 319

function after the previous layer. In detail, one center stimulus elicits an activation 320

profile in the previous layer; the most suppressive surround should match this profile to 321

gain the maximum suppression. Thus, the surround matches the center pattern. 322

Otherwise, if the most suppressive surround stays the same as the preferred center 323

rather than the altered center pattern, the excessive suppression to some neurons in the 324

previous layer will not be passed due to rectification of the ReLU activation function. 325

Though theoretically two layers can achieve this ability, in practice more layers may be 326

required according to how the assumption is satisfied. This may explain why we only 327

see this ability clearly in later layers in VGG16 but not in early layers or in Alexnet 328

which is shallower. 329

Studies in V2 have shown that there are additional factors that influence surround 330

suppression, namely whether the stimulus itself is naturalistic or noise. In particular, 331

there is less surround suppression for extended natural textures than for spectrally 332

matched noise ( [30], Fig 7), suggesting that the brain suppresses noise stimuli more 333

than naturalistic stimuli. This result cannot be explained by divisive normalization 334

models based on center surround homogeneity, but is interestingly captured in CNNs by 335

the stacking of layers. 336

In addition to the success cases, we also found important mismatches between CNN 337

neurons and cortical neurons. First, we point out that in the generic CNN model, there 338

is not a clear separation of center and surround regions as in the visual cortex (see 339

Methods). The surround alone in our simulations sometimes elicited a weak response 340

unlike the convention in neurophysiology, especially in early layers (see Figure 2). In 341

terms of the simulations, surround suppression was less dependent on the geometric 342
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location of the surround stimuli in CNN neurons than in the neurophysiology (Fig 8, 343

Supplementary Fig 7). Our notion of homogeneity in this study is indeed more limited 344

than image statistics models that infer the statistical dependencies between the center 345

and surround stimuli, and therefore can capture such geometric effects [21]. This 346

indicates that CNNs do not capture natural scene statistics pertaining to the geometry, 347

or that this type of geometric dependency is not required for the image classification 348

task which the neural network was trained on. This suggests that explicitly 349

incorporating such scene statistics in deep neural networks via divisive 350

normalization [25,48] may improve the results. We also found that for contrast changes, 351

CNNs behave differently from cortical neurons. In the brain, the grating diameter 352

tuning curve peaks later when the contrast is low [10,16,26], suggesting, for instance, 353

that there is broader facilitation rather than suppression of lateral inputs when the 354

inputs are weak [28]. Though this emerged for some CNN neurons, it did not reach 355

statistical significance in most layers of the CNN (Fig 8, Supplementary Fig 8). This 356

may be due to the activation function used in CNNs (in our case, ReLU), rather than 357

saturating functions that could emerge from divisive normalization. Such contrast 358

phenomena have been explained by image statistics models [21,24], and again suggest 359

routes for improving the results of CNNs in future work. Another aspect that the model 360

did not capture is the greater suppression for gratings than for texture and noise 361

stimuli [30], which may again require a mechanism for contrast normalization. 362

Surround suppression has been considered to have a number of beneficial roles in 363

neural computation, for example, reducing coding redundancy and yielding more 364

efficient neural codes [12,14,19,21,22,24,25,27,60,61]. Some studies in machine 365

learning noticed the lack of more sophisticated forms of brain-like divisive normalization 366

in generic feedforward CNNs, and tried to integrate them into the network [47–51]. 367

These studies found that incorporating divisive normalization in CNNs improves image 368

classification in some limited cases, such as when the network is more shallow [49], when 369

the dataset requires strong center-surround separation [49], or when the divisive 370

normalization is combined with batch normalization [50]. The correspondence we found 371

between generic CNNs and the brain regarding center surround similarity may explain 372

why including divisive normalization explicitly in CNNs has only limited improvement 373

in classification, especially when the networks are deep. However, some of the 374

mismatches also suggest a need for exploration of such deep learning architectures that 375

explicitly incorporate contextual information. This is in line with other studies showing 376

that complex perceptual uncrowding phenomena are not explained by generic CNNs 377

and require a mechanism for grouping and segmentation [62]. Studies of contour 378

integration have also incorporated functional columns and lateral connections [52,63]. 379

Biologically inspired computations that efficiently capture surround effects may help 380

design artificial neural networks that are shallow and more efficient. 381

Our findings overall demonstrate that standard feedforward architectures exhibit 382

surround suppression based on the similarity between center and surround stimuli, 383

suggesting that such architectures can capture and generalize an important 384

characteristic of surround effects in cortical neurons. Our findings extend the ability of 385

generic CNNs as models of visual cortices. The mismatches we found may inspire future 386

studies of contextual effects in deep neural networks with more sophisticated circuitry, 387

including the role of divisive normalization [47–51,64], recurrent connections and 388

feedback [65–70] in hierarchical architectures. 389
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Alexnet VGG16
Conv2D 11 4 96-BN-ReLU (L1) Conv2D 3 1 64-ReLU (L1)
MaxPooling 2 2 Conv2D 3 1 64-ReLU (L2)
Conv2D 5 1 256-BN-ReLU (L2) MaxPooling 2 2
MaxPooling 2 2 Conv2D 3 1 128-ReLU (L3)
Conv 2D 3 1 384-BN-ReLU (L3) Conv2D 3 1 128-ReLU (L4)
Conv 2D 3 1 384-BN-ReLU (L4) MaxPooling 2 2
Conv 2D 3 1 256-BN-ReLU (L5) Conv2D 3 1 256-ReLU (L5)
MaxPooling 2 2 Conv2D 3 1 256-ReLU (L6)
Dense 4096-BN-ReLU Conv2D 3 1 256-ReLU (L7)
Dropout 0.4 MaxPooling 2 2
Dense 4096-BN-ReLU Conv2D 3 1 512-ReLU (L8)
Dropout 0.4 Conv2D 3 1 512-ReLU (L9)
Dense 1000-BN-ReLU Conv2D 3 1 512-ReLU (L10)
Dropout 0.4 MaxPooling 2 2
Dense 1000-BN-Softmax Conv2D 3 1 512-ReLU (L11)

Conv2D 3 1 512-ReLU (L12)
Conv2D 3 1 512-ReLU (L13)
MaxPooling 2 2
Dense 4096-ReLU
Dropout 0.5
Dense 4096-ReLU
Dropout 0.5
Dense 1000-Softmax

Table 1. CNN architectures used in this study. The input size of both networks is
224x224x3. Conv2D represents 2D convolutioanl layer. Three following numbers
denotes the kernel size, stride size and channel numbers. BN represents batch
normalization. MaxPooling represents 2D max pooling layer. The following numbers
denotes the pool size and stride size. Dropout represent dropout layer. The following
number denotes dropout rate.

Methods 390

CNN models 391

We trained an Alexnet-style and a VGG16-style network on the Imagenet dataset 392

mostly following the original papers respectively [53, 54]. Model files are available in the 393

online repository. Our results are not altered qualitatively when using other publicly 394

available CNN instances. There are several changes we made to the original model. 395

These changes are prevalent and have become almost new standards. We replaced local 396

response normalization in Alexnet with batch normalization, and step decay with cosine 397

decay for the learning rate scheduling. For training Alexnet, we trained on one GPU 398

rather than two as in the original study. We used the data augmentation process 399

described in [53] for training the CNNs. We applied the standard Xavier uniform 400

method to initialize weights in the convolutional and dense layers. The architectures are 401

shown in table 1. Since the dense layers do not have spatial feature maps that are crucial 402

for determining surround effects, only convolutional layers are analyzed in this study. 403

Since the feature maps of all the convolutional layers in our study have an even
number of neurons in height and width, the center neurons we selected are actually a
half unit away from the image center. And these half unit displacements in the feature
maps correspond to different pixel numbers when tracing back to the input image. In
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this study, we always put stimuli at the true center of each neuron. That means for each
layer, the displacement of the stimuli from the image center was adjusted based on the
shape of the feature maps. The displacement in pixels is calculated by the formula:

224

2× height of the feature map

For each CNN neuron, we can derive a theoretical receptive field by tracing the 404

feedforward computations [71]. Note that this theoretical receptive field is different from 405

the classical receptive field in the neurophysiology literature. Stimuli beyond the 406

theoretical receptive field are guaranteed to have no effect on the neuron’s responses. 407

We followed the method in [71] to compute the theoretical receptive field for each CNN 408

layers. The values are shown in Supplementary figure 11. 409

Finding optimal grating stimuli for each CNN neuron 410

A key component of our simulations was to define the diameter that separates the 411

center and surround; in other words, an analogy to the classical receptive field in 412

neurophysiology settings. We tried to mimic the neurophysiology experiments that 413

define these diameters as much as possible [15] (Fig 1A). First, we characterized 414

neurons by their optimal grating orientation and spatial frequency by grid searching. 415

We used 3 different stimuli sizes: 30%, 50%, and 70% of the theoretical receptive field 416

described in the previous section; 24 spatial periods (the reciprocal of spatial frequency) 417

from 4 pixels to 50 pixels; and 12 orientations from 0° to 180°. Each response value of 418

these stimuli is the average of 8 different phases mimicking the drifting effects in some 419

experiments [15]. We defined the optimal grating orientation and spatial frequency of 420

each neuron by the stimulus that maximally activates it regardless of the stimulus size. 421

Then, these optimal parameters were used to get the diameter tuning curve of each 422

neuron. The grating summation field was defined by the smallest diameter that elicits 423

at least 95% of the maximum response [15]. The grating summation field was used as 424

the border of the center and surround in our experiments. 425

In-silico simulations 426

We did in-silico simulations on CNN neurons following the experimental 427

neurophysiology paradigms as much as possible. For each neural feature map in each 428

layer, we only selected the center neuron (see the section ”CNN models”) to do the 429

simulation. The method we used to get optimal grating parameters and define the 430

center region are described in the previous sections. 431

We did not include all the neurons in the analysis due to either an unsuitable center 432

and surround ratio or lack of response variation in the orientation tuning curve. In 433

detail, in Fig 2, 4, and 8, if a neuron’s grating summation field is smaller than 30% or 434

larger than 70% of the theoretical receptive field, or the center orientation turning or 435

surround suppression curve has less than 0.001 variation, we excluded it in the analysis. 436

This process ensures the selected neurons have biologically plausible response profiles 437

(i.e. excluding silent neurons) and reasonably large center and surround extents to do 438

the simulations. The included neuron numbers are shown in 2. In early layers, due to 439

the small receptive field size, only few neurons were included. Beyond Alexnet layer 2 440

and VGG16 layer 5, about half the neurons were included. The neural responses were 441

normalized by dividing the optimal center grating stimuli responses for each neuron. 442

The center and surround border has been described in the previous sections. In more 443

detail, for our simulations, we chose the center diameter according to the grating 444

summation field; the inner diameter of the surround as the grating summation field plus 445
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4 pixels; and the outer diameter of the surround according to the theoretical receptive 446

field size (Fig 2, 4, 8). 447

Some neurophysiology studies use the diameter tuning curve for the annular stimuli 448

to determine the inner diameter of the surround stimuli [15, 16]. We did not follow this; 449

if we chose the surround extent according to [15, 16] as a 95% reduction in the diameter 450

tuning of the annular stimuli responses, many CNN neurons would have a small 451

surround region. As we noted earlier, in the generic CNN, the center and surround are 452

not entirely separable, and the surround in our simulations elicited a weak response (Fig 453

2). Instead, we set the inner diameter of the surround as the grating summation field 454

plus a fixed value (4 pixels). 455

Feature visualization 456

One can visualize the features in CNNs by finding the optimal inputs that lead to the 457

maximum activations [43–45]. This optimization is done by using the gradient of an 458

activation target regarding the parameterized inputs. In our case, the optimization 459

targets are the responses of each center CNN neuron before the ReLU activation layer. 460

We chose to optimize responses before ReLU to let the gradient flow better to the input; 461

otherwise, the flat zero part of the activation can cause 0 gradient. If no regularization 462

is applied to the optimization, the visualization is usually biased to high frequency and 463

visually unrecognizable noise. We therefore used two kinds of regularizations: 464

naturalistic power spectrum prior and jitter. In detail, we parameterized the input 465

images into the frequency domain, then used the well-known 1/f power law to rescale 466

the frequency components. For the jitter, images in the spatial domain were randomly 467

shifted in both axes with a maximum value of 8 pixels. These two regularizations can 468

help the visualizations appear more natural. We adapted some code from the python 469

package ”lucid” to do the visualization. Our code is available in the online repository. 470

The innovation of our visualization method is to visualize the surround effects in two 471

steps: first find the most facilitative center image; then find the most suppressive or 472

facilitative surround image. 473

In detail, to find the most facilitative center image, the center image parameters 474

were used to construct an image; the surround region (see the previous section for the 475

definition) of the image was replaced by gray; then the resulting image was passed to 476

the CNN. We computed the gradient of a center neuron’s response with respect to the 477

center image parameters. The gradient was used to optimize the center image 478

parameters by the Adam optimizer. This optimization step was repeated for 500 479

iterations for each neuron. 480

To find the most suppressive or facilitative surround image, the surround image 481

parameters were used to construct an image; then the center region of this image was 482

replaced by the most facilitative center image described in the previous paragraph; then 483

the optimization procedure for the surround image parameters was the same as the 484

procedure for the center. 485

We used the Adam optimizer for all the layers in both networks. We found that the 486

learning rate that can generate visualizations with vivid color and clear patterns varies 487

across layers. In Alexnet, the first three layers are 0.001; the latter two layers are 0.005. 488

In VGG16, layers 1 to 5 are 0.0005; layers 6 to 9 are 0.001; layers 10 to 11 are 0.0025, 489

layers 12 to 13 are 0.005. 490

Naturalistic texture synthesis 491

In the naturalistic and spectrally matched noise simulation, we synthesized 225 492

naturalistic texture images from 15 original texture images and their corresponding 493

spectrally matched noise images [72, 73]. We found the optimal textures for each neuron 494
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via the modulation indexes, i.e. difference divided by the sum of responses to the 495

naturalistic and noise images (Fig 7B). We used the top 5 textures for each neuron in 496

the simulations. If there were not 5 textures that could elicit non-zero responses, we 497

only used the textures that could elicit non-zero responses. If no texture could elicit 498

non-zero responses, we dropped the neuron in the analysis. The neural responses were 499

first averaged per texture family for naturalistic or spectrally matched noise respectively. 500

For each neuron, the normalization factor was the maximum of all response values. The 501

responses of a texture family, both naturalistic and spectrally matched noise, were 502

divided by the normalization factor. Then the diameter tuning curves were averaged 503

across neurons to get the averaged diameter tuning curves in (Fig 7E). 504

The naturalistic and spectrally matched noise images used in this study are 505

generated according to [74]. We used a texture synthesis algorithm that has been 506

applied in many neurophysiology experiments [30,72,73,75]. The algorithm takes an 507

example image as input and a random seed, and iteratively modifies a noise image to 508

match a set of defined image statistics of the example images. The source images we 509

used are from previous neurophysiology studies [73,75] and include 15 grayscale images 510

with 320 x 320 resolution. We synthesized 15 naturalistic images with different random 511

seeds for each source image. The spectrally matched noise images were generated by 512

replacing the phase of the naturalistic images in the Fourier domain with the phase of 513

Gaussian white noise images. 514

Supporting information 515

S1 Appendix. Online repository CNN model files, code, and the full set of the 516

visualization can be found in the online repository: 517

https://gin.g-node.org/xupan/CNN surround effects visualization 518

519

S1 Fig. Examples of visualization of the most suppressive and facilitative 520

surround for CNN neurons that do not show obvious homogeneity. The blue 521

background denotes the most suppressive surround; the pink background denotes the 522

most facilitative surround. These neurons do not have clear center-surround contrastive 523

features; they are likely to include surround features that are geometrically arranged 524

rather than uniform across the surround or features that are arranged as object-like 525

shapes 526
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527

S2 Fig. Correlation coefficients between the center orientation tuning 528

curve and surround suppression orientation tuning curve, i.e. tuning curve 529

correlation. Correlation coefficients were computed per neuron and then averaged per 530

layer. Note that the correlation coefficients are all negative in all layers, which indicates 531

the most suppressive surround orientation matches the optimal center orientation. 532

Shaded area indicates s.e.m. 533

534

S3 Fig. Relationship between tuning curve correlation and the relative size 535

of the center to the surround, i.e. grating summation field divided by 536

theoretical receptive field. In the main experiments, we focused our analysis on the 537

neurons with sufficiently large center and surround sizes. In some layers, especially 538

middle layers, neurons with negative tuning curve correlation are concentrated at a 539

center-surround ratio of 0.2 to 0.5. 540
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541

S4 Fig. Relationship between tuning curve correlation and the optimal 542

spatial period. We found the distributions are multi-model. Many neurons with 543

negative tuning curve correlation are concentrated below 30-pixel spatial period. There 544

are some neurons that have large spatial periods, e.g. 50 pixels. Those neurons are 545

likely to be tuned to large color patches or complex patches beyond simple gratings. 546
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547

S5 Fig. The optimal surround stimulus orientation is more suppressive 548

when the center contrast is high. A. Stimuli used in the experiments. The 549

surround is either at the optimal orientation (preferred surround) or orthogonal to the 550

optimal orientation (orthogonal surround). The center contrast is either at the regular 551

pixel range (high contrast) or 17% of the regular range (low contrast). B. Scatter plots 552

of the responses for preferred surround versus orthogonal surround. Plots with black 553

frames used high contrast center; plots with gray frames used low contrast center. P 554

values were calculated from the paired sample t-test (preferred surround versus 555

orthogonal surround). Points below the diagonal lines indicate more suppression when 556

the surround is at the optimal orientation than when it is at the orthogonal orientation. 557

This effect is more pronounced when the center contrast is high. 558
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559

S6 Fig. Naturalistic texture suppression index versus spectrally matched 560

noise suppression index. Each dot represents a neuron. In most middle and later 561

layers, neurons have higher suppression indexes with noise images than with naturalistic 562

images, as indicated by the positive t-value and small p-value. T and P values are from 563

paired t-test. 564
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565

S7 Fig. Geometry effects of the surround suppression. A. Strength of the 566

surround suppression depends on the location of the surround stimuli. Embed images 567

show the stimuli used in this experiment. The center was fixed at the optimal 568

orientation. The surround had two patches at different locations relative to the center 569

stimuli. The surround was either at optimal orientation or orthogonal orientation. 570

Surround patches that align with the center stimuli induce the strongest suppression 571

when it is at optimal orientation and the strongest facilitation when it is at orthogonal 572

orientation. The polar radius represents the normalized response whereas the gray circle 573

represents 1 (reproduced from [15]). C. Averaged plots of CNN layers. P values were 574

calculated from one-way repeated measure ANOVA. Though some neurons and layers 575

showed modulation effects of surround location, the effect size and shape of the plots 576

did not match the cortical neurons shown in A. 577
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578

S8 Fig. Low contrast does not consistently shift the peak of the diameter 579

tuning curve as expected in neurophysiology. In neurophysiology studies, a low 580

contrast grating causes the peak of the diameter tuning curves to shift to a larger size. 581

We tested this effect in CNN neurons. A. Stimuli used in the simulation. Low contrast 582
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stimuli are at 17% of the regular pixel value range. B. Averaged diameter tuning curves 583

with regular and low contrast stimuli. The black line denotes the regular contrast 584

stimuli; the gray line denotes the low contrast stimuli. C. Histograms of the peak shift 585

values. Positive values indicate low contrast stimuli shifted peak to a larger size, which 586

is seen in cortical data. CNN neurons did not consistently show similar effects. In later 587

layers, the low contrast peak even shifted to a smaller size significantly. Shaded area 588

indicates s.e.m. P values are from paired t-test. 589

590

S9 Fig. Center contrast responses for no surround and preferred surround. 591

Contrast values were normalized to the regular pixel value range. We fixed the surround 592

contrast at 1, changed the center contrast, and measured the contrast response function. 593

We then fitted two curves with subtractive and divisive models. The subtractive model 594

is described as Rs = max(0, Rc - a), where Rc is the responses of the center stimuli; Rc 595

is the responses of the center stimuli with preferred surround; a is a subtractive 596

parameter that is to be fitted. The divisive model is described as Rs = Rc/b, where b is 597

a divisive parameter that is to be fitted. A. An example V1 neuron from a reference 598

neurophysiology study (reproduced from [16]). Black line denotes no surround; cyan line 599

denotes orthogonal surround. The contrast responses are shifted rightward and 600

downward with surround suppression. B. Stimuli examples used in the experiments. C. 601

Example CNN neurons with different behaviors. Blue line denotes a fitted surround 602

suppression contrast curve with the divisive model; red line denotes a fitted surround 603

suppression contrast curve with the subtractive model. 604
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605

S10 Fig. Explainability of subtractive and divisive models. To determine if 606

the surround suppression effect is more likely to be in subtractive form or divisive form, 607

we fitted contrast curves in supplementary figure 9 with no surround and preferred 608

surround by two models. The x-axis is the fitting error (squared error in log scale, R2) 609

of the divisive model; The y-axis is the fitting error of the subtractive model. Points 610

below the diagonal line indicate neuron’s surround is more likely to be subtractive than 611

divisive, which is commonly seen in most layers, especially early layers in both networks. 612

613

S11 Fig. Theoretical receptive field in VGG13 and Alexnet. See Methods for 614

more details. 615
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