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Shahabeddin Sotudian, Ioannis Ch. Paschalidis

• The proposed framework is a transformer-based model to predict drug responses using RNAseq gene expression profile,
drug descriptors and drug fingerprints.

• ITNR utilizes a Context-Aware-Transformer architecture as its scoring function that ensures the modeling of inter-item
dependencies.

• We introduced a novel loss function using the concept of Inversion and Approximate Permutation matrices.
• Our computational results indicated that our method leads to substantially improved performance when compared to the

baseline methods across all performance metrics, which can lead to selecting highly effective personalized treatment.
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A B S T R A C T
Personalized drug response prediction is an approach for tailoring effective therapeutic strategies
for patients based on their tumors’ genomic characterization. The current study introduces a new
listwise Learning-to-rank (LTR) model called Inversion Transformer-based Neural Ranking (ITNR).
ITNR utilizes genomic features and a transformer architecture to decipher functional relationships and
construct models that can predict patient-specific drug responses. Our experiments were conducted
on three major drug response data sets, showing that ITNR reliably and consistently outperforms
state-of-the-art LTR models.

1. Introduction
Conventional Machine Learning (ML) algorithms are

generally designed to minimize regression or classification
errors [12, 13, 16, 32, 42]. Many real-world applications, on
the other hand, deemphasize prediction accuracy and prior-
itize the correct ordering among all the instances [33, 34].
The aim of Learning-to-rank (LTR) methods is to apply
ML techniques to solve ranking problems and predict the
optimal ordering among the instances according to their
degrees of relevance, importance, or preference as defined
in the specific application.

Ranking plays a central role in a wide variety of appli-
cations, including document retrieval, online advertisement,
drug discovery, machine translation, feature selection, docu-
ment summarization, definition search, question answering,
and recommendation systems, among others [27, 25]. In
these applications, it is highly desirable to design a model
that places relevant/important items at the top of the ranking
list. In this work, and without loss of generality, we focus
on cancer Drug Response Prediction (DRP) where the
goal is to prescribe an optimal therapeutic option for each
patient based on their cancer’s unique molecular fingerprints
(i.e., the goal of “precision oncology”). Not every patient
responds to medical treatment in the same way. Effective-
ness of a medication is influenced by various factors in-
cluding physiological, pathological, environmental, and ge-
netic factors [40]. Since in-vitro experiments are exceedingly
costly and time-consuming, DRP algorithms could serve as
promising strategies for the accurate prediction of optimal
drug therapies based upon the personalized molecular pro-
files of patient tumors [35].

The confluence of efficient computational tools and
a significant number of samples has ushered in a new
generation of ML models for drug recommendation. The
literature offers a variety of traditional approaches from
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Support Vector Machines (SVMs); Principal Component
Regression; Ridge, LASSO, and Elastic Net Regressions;
to more advanced methods such as multiple-output [33],
multiple-kernel [19], and multiple-task learning [30] tech-
niques. As for traditional methods, comprehensive compar-
ative studies [15, 35] demonstrated that Elastic Net or Ridge
regression-based models will most likely yield the most
accurate predictors. On the other hand, deep learning (DL)
models have demonstrated their superiority in capturing
the non-linear and complex relationships of biological data
better than the traditional algorithms [1]. Representative
DL-based algorithms include [2, 29, 21]. These works, [5, 1]
and [40] provided a comprehensive analysis of DRP models
and other related topics such as data integration, feature
selection, experimental settings, combination therapy, and
so on.

In the current work, we seek to use an under-explored
approach for drug response prediction problems, namely
transformer models. The application of transformer-based
techniques in LTR signifies the high capability of these mod-
els in various applications [21]. Equipped with this perspec-
tive, we make the following contributions. We developed
our LTR framework using a context-aware scoring function
and an inversion-based loss function. Unlike the majority of
LTR models whose scoring functions score items separately,
transformer models (i.e., a popular self-attention-based neu-
ral machine translation architecture) allow for the modeling
of inter-item dependencies. We adopt the Context-Aware-
Transformer [21] which is a special case of the encoder part
of the transformer. Additionally, this architecture takes into
account the inter-dependency of scores between items in
the computation of items’ scores. We also proposed a loss
function using the concept of Inversion and Approximate
Permutation matrices.

In experiments, our framework yields state-of-the-art
results in three major drug response data sets, showing
that our model maintains a consistently good performance
under various experimental settings. Thus, the proposed
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architecture can capture local context information and cross-
item interactions that lead to a reliable drug recommendation
system.

Notational conventions: We use boldfaced lowercase
letters to denote vectors, ordinary lowercase letters to denote
scalars, boldfaced uppercase letters to denote matrices, and
calligraphic capital letters to denote sets. All vectors are
column vectors. For space saving reasons, we write 𝐱 to
denote the column vector (𝑥1,… , 𝑥dim(𝐱)), where dim(𝐱) is
the dimension of 𝐱. We use prime to denote the transpose,
and J𝑁K for the set {1,… , 𝑁} for any integer 𝑁 .

2. Materials and Methods
2.1. Problem Formulation

Data in a drug ranking problem consist of a set of triples
(cell line, drug, drug response score). A cell line-drug pair
is represented by a feature vector. Our ultimate goal is to
select the most effective drugs from a set of drugs based
on their response. We characterize a drug ranking data set
with tuples {(𝐗𝑞 ,𝜽𝑞)}𝑇𝑞=1 where 𝑞 ∈ J𝑇 K indexes cell lines,
and 𝐗𝑞 and 𝜽𝑞 represent the list of cell line-drug pairs and
corresponding drug response scores, respectively. For the 𝑞-
th cell line, we have 𝑛𝑞 drugs. 𝐗𝑞 ∈ IR𝑛𝑞×(𝑁𝐷+𝑁𝐶 ) has rows
(𝐱𝑞1,… , 𝐱𝑞𝑛𝑞 ), each of which is a (𝑁𝐷+𝑁𝐶 )-dimensional cell
line-drug vector, formed as the concatenation of an (𝑁𝐶 )-dimensional cell line feature vector (i.e., gene expression for
cell lines) and an (𝑁𝐷)-dimensional drug feature vector. The
vector 𝜽𝑞 = (𝜃𝑞1 ,… , 𝜃𝑞𝑛𝑞 ) ∈ IR

𝑛𝑞
+ contains the corresponding

ground-truth drug response scores. The drug response scores
are in [0, 1] and a higher score (in our data) implies a more
effective drug. Our goal is to learn a scoring function 𝑓 ∶
IR(𝑁𝐷+𝑁𝐶 ) → IR from a training data set with given drug
response scores that minimizes the empirical loss:

̂(𝑓 ) ≜ 1
∑

𝑞 𝑛𝑞

𝑇
∑

𝑞=1

𝑛𝑞
∑

𝑑=1
𝓁
(

𝜃𝑞𝑑 , 𝑓 (𝐱
𝑞
𝑑)
)

, (1)

where 𝓁 ∶ IR × IR → IR is a loss function. For a new
cell line-drug matrix 𝐗𝑡 ∈ IR𝑛𝑡×(𝑁𝐷+𝑁𝐶 ), we can obtain the
predicted ranking list by ranking the rows in 𝐗𝑡 based on
their inferred ranking scores �̂�𝑡 = (𝑓 (𝐱𝑡1),… , 𝑓 (𝐱𝑡𝑛𝑡 )). Two
pivotal elements of an LTR framework are a scoring function
and a loss function. In subsequent subsections, we describe
the construction of our LTR framework using a context-
aware scoring function and an inversion-based loss function.
2.2. Multi-Headed Self-Attention Scoring

Function
Most algorithms in the DRP literature are trained to

optimize a loss function that may not capture the interactions
among drugs [35]. Moreover, they score them individually
at inference-time without regard to any mutual influences
among the drugs. Given that context-aware models based on
transformers [21] have been successfully used for document

retrieval, we adopt a similar approach of applying a context-
aware ranker for our scoring function. The transformer archi-
tecture proposed by [21] plays the role of the Multi-Headed
Self-Attention (MHSA) scoring function in our LTR frame-
work. The self-attention mechanism of this architecture aims
to handle long-range and inter-item dependencies. Since the
MHSA scoring function scores a drug by considering all
other drugs applicable to a cell line, it fully captures the
interactions among drugs.
We consider the list’s items as our tokens where item fea-
tures are token embeddings. We feed these embeddings to
an Encoder Layer. The attention mechanism is the core
of the encoder layer to catalyze learning the higher-order
representations of items in the list. Mapping query (𝐪𝑖), key
(𝐤𝑖), and value (𝐯𝑖) vectors to a higher level representation
by taking a weighted sum of the values over all items is the
essence of the self-attention mechanism. We use the Scaled
Dot-Product form to compute attention as follows:

Ψ(𝐐,𝐊,𝐕) = softmax
(

𝐐𝐊′

√

𝑑𝑚

)

𝐕, (2)

where 𝐐 is a query matrix that contains all items (queries) in
the list; 𝐊 and 𝐕 are the key and value matrices, respectively.
To empower the model to leverage the order of the input
tokens, we use fixed positional encodings for the input
embeddings as follows:

𝛀(𝑝,2𝑖) = sin(𝑝∕10000(2𝑖∕𝑑𝑚)),

𝛀(𝑝,2𝑖+1) = cos(𝑝∕10000(2𝑖∕𝑑𝑚)),
(3)

where 𝑝 refers to the position, and 𝑖 is the dimension. Here,
𝛀 is a matrix and positional encoding is a system to encode
each position into a vector. For instance, given that the model
uses 256 dimensions for positional encoding (𝑑𝑚 = 256), we
represent each element of the feature vector (i.e., token) as a
256-dimensional vector. In the display above, 𝑝 is an integer
from 0 to a pre-defined maximum number of tokens minus
1. Since we have 256 dimensions, we can define 128 pairs
of sine and cosine values. Accordingly, the value of 𝑖 goes
from 0 to 127. By ensembling multiple attention modules
(a.k.a Multi-Head Attention (MHA)), we can improve the
ability of the model to learn representations from various
subspaces of the input data. MHA can be expressed as:

MHA(𝐐,𝐊,𝐕) = Concat(𝚲1,𝚲2, ...,𝚲𝑟)𝐖𝐎,

𝚲𝑖 = Ψ(𝐐𝐖𝐐
𝑖 ,𝐊𝐖𝐊

𝑖 ,𝐕𝐖
𝐕
𝑖 ),

(4)

where in the above equations, each head 𝚲𝑖 (out of 𝑟 heads)
refers to the 𝑖-th attention mechanism of Equation (2), and
𝐖𝐐

𝑖 ∈ IR𝑑𝑚×𝑑𝑞 , 𝐖𝐊
𝑖 ∈ IR𝑑𝑚×𝑑𝑘 , 𝐖𝐕

𝑖 ∈ IR𝑑𝑚×𝑑𝑣 , and
𝐖𝐎 ∈ IR𝑟𝑑𝑣×𝑑𝑚 are learnable matrices. Moreover, 𝑟 refers
to the number of parallel attention layers or heads. Here,
Concat(⋅) represents a concatenation operation. It is ex-
tremely advantageous to perform the self-attention operation
several times and concatenate the outputs. The main problem
is the growing size of the resulting output vector. This can
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be solved by linearly projecting the matrices 𝐐, 𝐊, and 𝐕
to 𝑑𝑞 , 𝑑𝑘, and 𝑑𝑣-dimensional spaces 𝑟 times, respectively.
Note that we typically use 𝑑𝑞 = 𝑑𝑘 = 𝑑𝑣 = 𝑑𝑚∕𝑟. We refer
the interested reader to [37] for more information.

In our transformer model, we use a more complex ar-
chitecture by stacking multiple encoder blocks. The main
components of an encoder block including an MHA layer
with a skip connection, layer normalization, time-distributed
feed-forward layer, and dropout layer can be seen in Figure 1.
For more information regarding these components, please
refer to [37]. Specifically, the encoder part of the Trans-
former includes 𝑁 encoder blocks, 𝐻 heads, and hidden
dimension 𝑑ℎ. First, a shared fully connected (FC) input
layer of size 𝑑fc is applied to each item. Then, we feed hidden
representations to the encoder part of the transformer. Our
final scoring model can be achieved by iteratively stacking
multiple encoder blocks where the output of each block is
fed into the next one. The final model can be expressed as
follows:

𝐟 (𝐱) = 𝜌(Π1(…Π𝑁 (𝜌(𝐱)))), (5)
where 𝜌(⋅) represents a projection onto a fully-connected
layer and Π𝑖(⋅) refers to a single encoder block. We define
a single encoder block Π𝑖(⋅) as:

Π𝑖(𝐱) = 𝑁(𝐳 +𝐷(𝜌(𝐳))),
𝐳 = 𝑁(𝐱 +𝐷(𝛼(𝐱)))

(6)

where 𝛼(⋅) is the MHA module, 𝑁(⋅) refers to the layer
normalisation, and 𝐷(⋅) is the dropout layer. Eventually,
a score for each item is calculated using a shared fully-
connected layer. Figure 1 provides a schematic overview of
our LTR framework.
2.3. Inv-Rank Loss Function

In the previous subsection, we presented the scoring
function of our ranking framework. The architecture of this
model allows the networks to exploit local features. More
importantly, the final score for each item will be calculated
by considering all other items on the list. Now, we can use
the scores and the ground truth labels to optimize any desired
ranking loss.
It has been demonstrated that the sorting operator can be ap-
proximated by the induced permutation matrix, 𝑃𝑠𝑜𝑟𝑡(𝐬) [21].
We use the concept of permutation matrices to define
our proposed loss function. Permutation matrices are both
doubly-stochastic (i.e., a square matrix with entries in [0, 1]
where every row and column sum to one) and unimodal (i.e.,
a square matrix with entries in [0, 1] where each row sums
to one, but also has the constraint that the maximizing entry
in every row should have a unique column index) [10, 21].
Assume 𝐀𝐬 represents the matrix of absolute pairwise score
differences of 𝐬 with the 𝑖, 𝑗-th element given by 𝐀𝐬[𝑖, 𝑗] =
|𝑠𝑖− 𝑠𝑗|. Grover et al. [10] proposed a continuous relaxation
of the permutation matrix 𝑃𝑠𝑜𝑟𝑡(𝐬) in the space of unimodal
row-stochastic matrices. The 𝑖-th row of 𝑃𝑠𝑜𝑟𝑡(𝐬) can be

computed as follows:
𝑃𝑠𝑜𝑟𝑡(𝐬)[𝑖, ∶](𝜏) = softmax[((𝑛+ 1− 2𝑖)𝐬−𝐀𝐬𝟏∕𝜏], (7)

where 𝟏 is an all-one vector, 𝑛 is the number of items in a list,
and 𝜏 behaves like a temperature knob that controls the de-
gree of approximation and the variance of the gradients (i.e.,
lower 𝜏 leads to better approximation and higher variance).
Moreover, softmax is a function that scales the values in the
list and transforms them into values between 0 and 1 such
that all values in the returned list sum to 1 (i.e., they can be
interpreted as probabilities). Essentially, if we left-multiply
a column vector of scores by its 𝑃𝑠𝑜𝑟𝑡(𝐬), we can achieve
the approximated sorted list [22]. Note that we perform
Sinkhorn scaling [31] to obtain doubly stochastic permuta-
tion matrices. The Sinkhorn scaling method normalizes all
rows and columns; this process is repeated until convergence
is achieved (i.e., 30 iterations or the greatest gap between
the sum of a row or column and one must be maintained
below 10−6, whichever occurs first). Assume we use the
MHSA scoring function to calculate scores 𝐬𝑞 = 𝑓 (𝐗𝑞) for
the 𝑞-th cell line 𝐗𝑞 . We also have the ground truth labels
𝜽𝑞 for the cell line. We define true and predicted Weighted
Approximate Permutation (WAP) matrices using Equation
(7) as:

• 𝐒𝑃 = 𝑃𝑠𝑜𝑟𝑡(𝐬𝑞)⊗𝐰(𝜽𝑞): predicted WAP matrix induced
by the scores 𝐬𝑞 ,

• 𝐒𝑇 = 𝑃𝑠𝑜𝑟𝑡(𝜽𝑞) ⊗ 𝐰(𝜽𝑞): true WAP matrix induced by
the ground truth labels 𝜽𝑞 ,

where 𝐰(𝜽𝑞) = (𝑔(𝜃𝑞1), 𝑔(𝜃
𝑞
2),… , 𝑔(𝜃𝑞𝑛𝑞 )) is the drug im-

portance vector, and 𝑔(𝑥) = 2𝑥 − 1 is a famous LTR gain
function. Here, ⊗ indicates the multiplication of columns
of 𝑃𝑠𝑜𝑟𝑡(⋅) by elements of the vector 𝐰(⋅) (i.e., multiply the
first column by the first element, second column by the
second element and so on). The WAP matrix (i.e., 𝐒𝑃 and
𝐒𝑇 ) captures the relative position of a drug in a list. Each
column of this matrix refers to a drug and the non-zero
element of a column represents the predicted/true position
of a drug in a ranking list. Note that if the ground truth
labels of multiple drugs in a list are the same, then we have
multiple ideal positions for each of them. Thus, multiple
elements of those columns (i.e., drugs) will be non-zero
which shows the potential predicted/true positions of those
drugs in the list. We use 𝐰 to force our model to focus on
more sensitive drugs (i.e., it gives higher weights to more
sensitive drugs) rather than insensitive drugs. Consequently,
the model pushes sensitive drugs to the top of the ranking
list.
We use the concept of Inversion to define our loss function.
Inversion can be defined as a pair of elements that are out of
their correct order in a permutation. Let 𝜋 be a permutation.
If 𝑖 < 𝑗 and 𝜋(𝑖) > 𝜋(𝑗) , either the pair of places (𝑖, 𝑗) or
the pair of elements (𝜋(𝑖), 𝜋(𝑗)) is called an inversion of 𝜋.
We define 𝚯 to capture inversions in a permutation matrix
as follows:

𝚯(𝐬𝑞 ,𝜽𝑞) =
(

𝐈′ ⊗ 𝜷
)′
, (8)
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(a)Single Encoder Layer (b)Ranking Framework

Figure 1: Architecture for the context-aware ranking model. After feeding an item’s features into a fully connected layer, we pass
its output through 𝑁 encoders blocks. Finally, another fully-connected layer is used to calculate scores.

where 𝐈 = 𝐒𝑃𝐒′𝑇 −𝐒𝑇 𝐒′𝑇 and 𝜷 = (1, 2, 3,… , 𝑛𝑞). Precisely,
𝐈 measures the deviation between predicted and true WAPs
and penalizes the model for any inversion. The rows of a
WAP matrix represent ranks. There exist various degrees
of inversion. For instance, there is a big difference between
(𝜋(1), 𝜋(3)) and (𝜋(1), 𝜋(7)). Our model should penalize
(𝜋(1), 𝜋(7)) more than (𝜋(1), 𝜋(3)). To that end, we multiply
the rows of the 𝐈 matrix by the elements of 𝜷. Therefore,
our model places greater emphasis on high inversions. Even-
tually, we define the Inv-Rank loss of all cell lines in our
training data set as follows:

̂(𝑓 ) ≜ 1
∑

𝑞 𝑛𝑞

𝑇
∑

𝑞=1

𝑛𝑞
∑

𝑑=1
|𝚯𝑑(𝐬𝑞 ,𝜽𝑞)

′
𝟏|, (9)

where𝚯𝑑(𝐬𝑞 ,𝜽𝑞) is the 𝑑-th column of𝚯(𝐬𝑞 ,𝜽𝑞). Since 𝐒𝑃 is
differentiable with respect to the elements of 𝐬 [10], it is easy
to show that the proposed loss function is a differentiable
function of scores. Therefore, the SGD method can be used
to optimize the loss function.
2.4. Data sets and Pre-processing Steps

The current study focused on single-drug response pre-
diction and we designed, trained, and evaluated all models
using the cell line data and drug sensitivity data from the
Predictive Oncology Model & Data Clearinghouse hosted
at the National Cancer Institute [40]. We used three main
drug-cell line data sets from the Cancer Cell Line Encyclo-
pedia (CCLE), the Genomics of Drug Sensitivity in Cancer
(GDSC), and the Genentech Cell Line Screening Initiative
(gCSI) studies; and molecular descriptors generated using

the Dragon 7.0 and the Mordred software packages [40].
Specifically, we represented a cell line using its RNAseq
gene expression profile [36]; and we used drug descriptors
and drug fingerprints to characterize a drug. The Area Under
the drug response Curve (AUC) was used to quantify drug
sensitivity. AUC ∈ [0, 1] can be compared across studies
and a lower value indicates higher drug sensitivity. We
modified drug sensitivities so that a higher value indicates
a more effective drug (i.e., one minus AUC). The details of
the data sets can be found in [40]. To follow the best practice
of LTR [25], the continuous drug responses were converted
to graded ones. Accordingly, we classified drugs into three
categories 0 (i.e., “insensitive”), 1 (i.e., “sensitive”), and
2 (i.e., “highly sensitive”). For the 𝑘-th cell line, let 𝑃80and 𝑃90 denote the 80-th and 90-th percentiles of its drug
response values {𝑟1𝑘, 𝑟2𝑘,… , 𝑟𝑁𝐷𝑘}, respectively. Then, the
drug relevance score for the 𝑖-th drug, �̂�𝑖𝑘 (𝑖 = 1,… , 𝑁𝐷),
can be computed as:

�̂�𝑖𝑘 =

⎧

⎪

⎨

⎪

⎩

2, if 𝑟𝑖𝑘 ≥ 𝑃90,
1, if 𝑃80 ≤ 𝑟𝑖𝑘 < 𝑃90,
0, otherwise.

We also performed several pre-processing steps to reduce the
training complexity and improve the overall performance.
We standardize the features by subtracting the mean and
scaling to unit variance [28]. Originally, RNAseq gene ex-
pressions are represented by approximately 17,000 features.
Several studies [6] demonstrated that the LINCS1000 gene
set [17] can outperform or achieve similar performance com-
pared to any other superset of LINCS1000. Therefore, we
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only included LINCS1000 genes in our analysis. Moreover,
the data sets include 3838 molecular descriptors and 1024
path fingerprint features to represent a drug. To further
reduce the dimensionality of our data and select informative
features, we used a regression model as the feature selection
method. Specifically, we considered drug-cell line vectors
(i.e., 5862 features including 1000 genes, 3838 molecular
descriptors, and 1024 path fingerprint features) and the re-
sponse values (i.e., one minus AUCs) as independent and de-
pendent variables, respectively. First, the regression model is
applied to these variables and the importance of each feature
is obtained through regression coefficients. After standard-
izing the variables, a larger absolute regression coefficient
indicates that this specific variable has more influence on
drug sensitivity (i.e., dependent variable). We have two
groups of features, namely 1000 cell line features and 4862
drug features. We kept 500 genes out of 1000 gene features
with the highest coefficient values. Similarly, we selected
500 features out of the 4862 drug features. Consequently, we
used 1000 selected gene-drug features in our experiments.
We repeated this procedure for all three data sets.
2.5. Performance metrics

Two main LTR evaluation metrics, namely NDCG@k
and MRR@k are used to assess the performance of the
models. Let 𝐷(𝑠) = 1∕log(1 + 𝑠) be a discount function,
𝑔(𝑠) = 2𝑠 − 1, a monotonically increasing gain function,
and 𝑛 = {(𝐱1, 𝑦1), ..., (𝐱𝑛, 𝑦𝑛)} a set of items ordered
according to their ground-truth labels, with 𝐱𝑖 and 𝑦𝑖 being
an item feature vector and score, respectively. Moreover, let
̃𝑛 be a ranked list for 𝑛 according to the 𝐲 scores. We
define the Discounted Cumulative Gain (DCG) of ̃𝑛 as
Φ(̃𝑛) =

∑𝑛
𝑟=1 𝑔(𝑦𝜋𝑟 )𝐷(𝑟), where 𝜋𝑟 is the index of the

item ranked at position 𝑟 of ̃𝑛. The Ideal DCG (IDCG),
Φ𝐼 (𝑛) is the DCG score of the ideal ranking result. NDCG
normalizes DCG by the IDCG and can be calculated by
Φ𝑁 (̃𝑛) = Φ(̃𝑛)∕Φ𝐼 (𝑛) ∈ [0, 1]. To force the metric
to focus on the top-k items, we use NDCG@k, which is
the top-k version of NDCG, where the discount function is
𝐷(𝑠) = 0 for 𝑠 > 𝑘. Mean Reciprocal Rank (MRR) puts
a high focus on the most relevant item of a list. Assume
𝑟𝑖 denotes the rank of the most relevant item in the 𝑖-th
list, then the reciprocal rank is defined as 𝑅𝑖 = 1∕𝑟𝑖. For
𝑁 lists, the MRR is the mean of the N reciprocal ranks,
MRR = 1

𝑁
∑𝑁

𝑖=1𝑅𝑖. MRR@k is simply the top-k version of
MRR. The significant difference between MRR and NDCG
is that NDCG distinguishes between “partially sensitive”
and “highly sensitive” drugs while MRR only focuses on
the most sensitive drugs. From now on, we use NDCG@k
and MRR@k to denote the mean NDCG@k and the mean
MRR@k (i.e., the mean of the performance metric for all
lists in our test set).
2.6. Experimental settings and hyper-parameter

optimization
We conducted our experiments based on the standard su-

pervised LTR framework [20]. The authors of LETOR [25]

partitioned the LTR data sets into five parts for five-fold
cross-validation where three parts were used for training, one
part for validation (i.e., tuning the hyperparameters of the
learning algorithms), and the remaining part for evaluating
the performance of the learned model. We followed the
same procedure, partitioning our data sets into five-folds,
and conducting five-fold cross-validation to train the models.
The hyperparameters were tuned on the validation sets (i.e.,
we optimized the hyperparameters to maximize the NDCG
score) and the average on the test sets over the 5 folds
was reported in the various tables. For more details on
the parameter-tuning procedure and experimental settings,
please refer to Appendix.
2.7. Competing Methods

We compared our proposed ranking algorithm with
three types of algorithms, namely Transformer-based Neu-
ral Ranking (TNR), Deep Neural Networks (DNN), and
traditional models. In recent years, the attention mecha-
nism in transformers began a revolution in deep neural
networks that led to major advances in the performance of
many models obtained in this fashion. We compared our
model with four TNR models (i.e., NDCGLoss2++ [38],
ListMLE [41], ApproxNDCG [24], and RankNet [4]) to
ensure its superior performance and stability compared to
similar methodologies. Second, we also compared ITNR
with other deep learning-based models. To that end, we
compared ITNR with the so-called DNN-Sakellaropoulos
(DNN-S) [29]. DNN-S has been reported as one of the best
DNN models in the DRP literature [18, 35]. Third, several
DRP comparative studies [11, 8, 26] reported tree-based
models as one of the best-performing algorithms for drug
recommendation. Specifically, LambdaMARTMAP [39] has
been shown repeatedly to surpass other LTR methods such
as Coordinate Ascent, Random Forests, BoltzRank, Rank-
Boost, AdaRank, SoftRank, and so on [8, 3, 38]. Finally,
we compared ITNR with Elastic Net Regression (ENR) as
a traditional DRP model. Multiple studies [14, 35, 9] have
suggested that elastic net will most likely yield the most
accurate predictors for drug response prediction.

3. Experimental Results
In Table 1, we summarized the performance of the

models on various DRP data sets. We report NDCG@k
and MRR@k, both computed out-of-sample (i.e., test set
not used for training the model). The average on the test
set over the 5 folds was reported. Bold and underlined
numbers indicate the best performance among all methods
for each metric. Bold numbers demonstrate the second-best
performance among all methods for each metric.
The best model for the CCLE data set (474 unique samples
and 24 unique drugs) is ITNR with an NDCG@10 of 94.03%
and an MRR@10 of 93.90%, with the ENR model close
behind (NDCG@10 of 93.85% and MRR@10 of 93.64%).
While DNN-S achieved the highest MRR among the base-
line models, ITNR outperformed it by a relatively large
margin. Moreover, although NDCG@5 of TNR-RankNet
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Table 1
Performance Comparison of Ranking Methods on CCLE, GDSC, and gCSI Data Sets.

Algorithms NDCG@5 NDCG@10 NDCG@25 MRR@5 MRR@10 MRR@25
CCLE Data set

ITNR 92.15% 94.03% 94.09% 93.87% 93.90% 93.90%
TNR-NDCGLoss2++ 91.87% 93.71% 93.85% 92.93% 92.96% 92.96%

TNR-ListMLE 91.78% 93.41% 93.93% 93.62% 93.71% 93.71%
TNR-RankNet 92.39% 93.76% 94.00% 93.52% 93.52% 93.52%

TNR-ApproxNDCG 90.71% 92.40% 92.49% 88.05% 88.08% 88.08%
DNN-S 92.06% 93.63% 93.99% 93.71% 93.74% 93.76%

LambdaMARTMAP 92.03% 93.46% 93.72% 92.25% 92.28% 92.28%
ENR 91.73% 93.85% 93.94% 93.55% 93.64% 93.64%

GDSC Data set
ITNR 83.36% 79.26% 82.40% 92.74% 92.76% 92.76%

TNR-NDCGLoss2++ 82.01% 78.47% 82.12% 91.33% 91.33% 91.33%
TNR-ListMLE 80.89% 77.08% 80.04% 88.77% 88.79% 88.79%
TNR-RankNet 82.69% 78.59% 82.38% 92.16% 92.16% 92.16%

TNR-ApproxNDCG 82.22% 77.84% 80.86% 90.79% 90.79% 90.79%
DNN-S 77.80% 76.18% 80.15% 83.96% 83.96% 83.96%

LambdaMARTMAP 81.31% 78.24% 82.79% 89.62% 89.64% 89.64%
ENR 76.97% 74.89% 78.39% 83.70% 83.82% 83.82%

gCSI Data set
ITNR 80.36% 83.20% 83.35% 77.67% 77.71% 77.71%

TNR-NDCGLoss2++ 78.91% 82.62% 82.70% 76.38% 76.52% 76.52%
TNR-ListMLE 76.97% 81.08% 81.31% 75.38% 75.47% 75.47%
TNR-RankNet 79.59% 82.95% 82.99% 76.33% 76.47% 76.47%

TNR-ApproxNDCG 78.56% 82.50% 82.61% 76.09% 76.09% 76.09%
DNN-S 79.59% 82.67% 82.83% 76.41% 76.45% 76.45%

LambdaMARTMAP 78.36% 82.19% 82.29% 77.67% 77.67% 77.67%
ENR 76.45% 81.12% 81.17% 75.01% 75.10% 75.10%

is higher than our model, it does not have comparable
performance considering other evaluation metrics.
On the gCSI data set (357 unique samples and 16 unique
drugs), ITNR demonstrates consistent performance im-
provement overall baseline models across all performance
metrics and any of the chosen rank cutoffs. Notably, we
observe a 2.6% performance improvement compared to
the average of baseline models (i.e., 78.34%) in terms of
NDCG@5. Moreover, ENR which performed really well on
the CCLE data set demonstrated poor performance on the
gCSI data set. TNR-RankNet and LambdaMART models
achieved moderate performance and are the second-best
methods. The models trained on gCSI did not generalize
well. This was not surprising as gCSI had the smallest num-
ber of drugs and was thus prone to overfitting. Nevertheless,
our method is able to maintain its high performance.

In general, the results for these two data sets indicate
that ITNR significantly outperforms other competing meth-
ods. All models except ENR and LambdaMART are Deep
Learning (DL) based models. Since DL models are complex
and have many learnable parameters, they tend to overfit
easier than traditional models. Due to this, DL algorithms
perform better when trained on large amounts of data. To
that end, we also conducted experiments on the GDSC data
set (670 unique cell lines and 233 unique drugs) which is one
of the largest public DRP data sets. Generally, DL models
outperformed other traditional methods (i.e., ENR), since a

model like ENR may not fully capture the structural infor-
mation within drugs. Among transformer-based baselines,
we observed that ITNR achieved the best performance, with
83.36% for NDCG@5 and 92.74% for MRR@5. NDCG@25
of LambdaMART is higher than our model. However, this
model is not even the second-best model considering other
evaluation metrics. Among the competing models, TNR-
RankNet outperformed other methods by a relatively large
margin.
All in all, ITNR consistently outperforms all baseline meth-
ods across all metrics and data sets. In our experiment
on three DRP data sets, TNR-RankNet and LambdaMART
demonstrated reasonably good overall performance and they
are the second-best methods. ITNR is not only able to push
the most sensitive drugs to the top of the ranking list, but it
can put them in the right order. Further, it can also generalize
better and achieve superior performance on large DRP data
sets like GDSC.

4. Discussion and Conclusion
Our study presented a novel transformer-based model,

called Inversion Transformer-based Neural Ranking (ITNR),
to predict cancer drug response. Our model used the well-
known Transformer architecture to extract a better drug-
cell line representation. We also developed a novel loss
function based on the concept of inversion and approximate
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permutation matrices. Our results suggest that the trans-
former network with multi-head attention is suitable for
modeling the interactions of drug substructure and multi-
omics data. Extensive experimental results demonstrated
that our model is more effective than the current state-of-
the-art methods highlighting the predictive capability of our
model and its potential translational value in personalized
medicine. There are several directions for future work. In
the current model, we use an approximated permutation
matrix (i.e., NeuralSort) as the sorting operator. We can
replace NeuralSort with another approximation of a sorting
operator such as the Optimal Transport [7] and SoftSort [23].
Furthermore, the current model disregards the side effects
and toxicity of drugs when predicting the best medication
option. We can further optimize our recommendations by
including the toxicity of drugs in our predictions.
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Appendix
A. Hyper-parameter optimization

The list of hyper-parameters and their values for all
ranking algorithms can be found in Table 2. In this table, 𝐿
is the list length used for training (note that a list was either
padded or sub-sampled to that length), 𝑑fc is the dimension
of the linear projection, 𝑁 is the number of encoder blocks,
𝑑ℎ is the transformer hidden dimension, 𝐻 is the number
of attention heads, 𝐷𝑟 refers to the hidden dropout ratio,
𝐵 is the batch size, 𝐸 is the number of epochs, 𝓁2 is the
parameter of the 𝓁2-norm penalty for the DNN-S model, 𝜂
is the learning rate, 𝐷𝑚𝑎𝑥 is the maximum depth of a tree,
ℎ𝑚𝑖𝑛 is the minimum sum of the instance weight (Hessian)
needed in a leaf, 𝑁𝑇 is the number of estimators, 𝛼 is the
regularization strength of the model, and 𝑅𝓁1

controls the
contribution of the 𝓁1 and 𝓁2 penalties in the ENR model.
The details of hyper-parameter settings of all methods for the
five folds can be found in Tables 3, 4, 5, and 6.
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