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Natural scene responses in the primary visual cortex are mod-
ulated simultaneously by attention and by contextual signals
about scene statistics stored across the connectivity of the vi-
sual processing hierarchy. We hypothesize that attentional and
contextual top-down signals interact in V1, in a manner that
primarily benefits the representation of natural visual stimuli,
rich in high-order statistical structure. Recording from two
macaques engaged in a spatial attention task, we show that at-
tention enhances the decodability of stimulus identity from pop-
ulation responses evoked by natural scenes but, critically, not
by synthetic stimuli in which higher-order statistical regulari-
ties were eliminated. Attentional enhancement of stimulus de-
codability from population responses occurs in low dimensional
spaces, as revealed by principal component analysis, suggesting
an alignment between the attentional and the natural stimulus
variance. Moreover, natural scenes produce stimulus-specific
oscillatory responses in V1, whose power undergoes a global
shift from low to high frequencies with attention. We argue that
attention and perception share top-down pathways, which me-
diate hierarchical interactions optimized for natural vision.

natural scenes | visual attention | primary visual cortex | neuronal
populations | stimulus encoding

Introduction
Neuronal circuits across the visual hierarchy make efficient
use of limited resources to encode complex natural scenes
by exploiting their structural regularities (1, 2). Growing
evidence suggests that during perceptual inference the vi-
sual system employs a hierarchical internal model of the
visual environment that integrates current sensory evidence
with previously acquired knowledge of natural scene statis-
tics (3, 4).
When visual attention is directed towards a specific spatial
location, it is thought to facilitate the perception of the tar-
geted sensory input by prioritizing its processing. The sig-
natures of this process can already be observed in primary
visual cortex (V1). In this area, spatial and object centered
attention modulate the firing rates of neurons responding to
the selected stimuli (5–9). Responses in V1 are also shaped
by context-dependent top-down signals that convey informa-
tion stored in the hierarchically organized internal model of
the world, required for the parsing of visual scenes (4). Thus,
attentional mechanisms must interact with other sources of
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Fig. 1. Neuronal population recordings from primary visual cortex during an atten-
tion task with natural scene stimuli. (A) Multi-unit responses to the same stimulus
in two example trials, corresponding to the attention in and attention out conditions.
Markings represent timing of stimulus onset (yellow), attention cue (red) and stim-
ulus change (purple). Bottom subplot shows grand average firing rates in the at-
tention in and out conditions (legend as in D). (B) Chronic implantation device with
movable electrodes (GrayMatter probe). (C) Receptive field locations in the two
monkeys. (D) Effects of attention on stimulus discriminability along the trial, quan-
tified by population d′. (E) Effects of attention on stimulus discriminability shown
across sessions (reported in % change) for data aligned on stimulus onset (1700-
1900 ms window) or stimulus change (200 ms window before change).

top-down influences raising the key question: how do these
two processes — one that reflects the current allocation of
attention and the other, the stored knowledge (priors) about
statistical regularities of natural environments — cooperate
in modulating responses in V1.
Here we performed parallel recordings of neuronal responses
in the primary visual cortex of two macaque monkeys en-
gaged in an attention task. We found that visual attention
significantly improved the encoding of natural scenes across
neuronal populations, both in the presence and absence of
population firing rate changes. We hypothesized that these
enhancements in natural scene encoding by attention took
place through refinements of the responses to the common
high-level features present in natural images, such as regular-
ities in spatial structure, contrast and intensity distributions or
texture properties. Given the hierarchical structure of the vi-
sual cortex, contextual information extracted and encoded at
higher levels of the processing hierarchy, can inform and con-
strain the activity at lower levels of processing through feed-
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back. In order to examine the possibility that attention acted
primarily on mechanisms sensitive to these high-level fea-
tures, we constructed synthetic stimuli that lacked the higher-
level features characteristic of natural scenes. For these stim-
uli, the attentional benefits in stimulus encoding vanished, but
could be recovered when the synthetic stimuli were modified
to contain structured contours.

Results
We obtained parallel multisite recordings of multi-unit ac-
tivity (MUA) (example trials in Figure 1A) and local field
potentials (LFP) (32 channels, chronically implanted micro-
drive, Figure 1B) from area V1 of two awake behaving
macaques (Macaca mulatta), while they performed a spatial
attention task. Trials were initiated by a lever press while
the monkey maintained fixation. After 500 ms two identical
stimuli were presented at symmetrical locations on either side
of the vertical meridian (distance from fixation spot 2.3-3.2°
of visual angle), one of which covered the receptive fields
(RFs) of the recorded units (example of RF centers in the two
monkeys in Figure 1C). The fixation spot changed color, 700
ms after stimulus onset, cueing the monkey towards the "tar-
get" stimulus. Monkeys were rewarded if they responded to
the rotation of the target stimulus. If they responded to the
rotation of the non-cued stimulus, the distractor, reward was
withheld and the trial was aborted. We performed analysis in
200 ms long sliding windows for the response interval from
stimulus onset to 1900 ms (stimulus-aligned data), and for
the 500 ms interval preceding the stimulus change (change-
aligned data, time of change (TC)), thus excluding any ac-
tivity evoked by the stimulus rotation or the motor response
(further details in Materials and Methods).
Our initial goal was to examine the impact of attention on the
stimulus specificity of the sustained population responses to
natural scenes. Few electrophysiology studies have focused
on the representation of natural stimuli in primary visual cor-
tex (10–12), and how attention affects the decodability of nat-
ural scenes in V1 is still unclear. We quantified the stimulus-
specificity of V1 neuronal population responses by measur-
ing the differences in spiking patterns evoked by different
stimuli compared to their variability across trials (population
d′, Materials and Methods). We found a significant increase
in population d′ with attention, i.e. responses evoked by dif-
ferent stimuli were more differentiable when the stimuli had
been cued (attention-in) than when they had not (attention-
out), particularly in the time windows preceding the stimu-
lus change (Figure 1C and D, Wilcoxon signed-rank test;
[1700-1900ms], P = 0.0012; [TC-200, TC], P = 0.00023; n
= 18 sessions in 2 monkeys). Importantly, a significant dif-
ference in stimulus discriminability, was not only elicited by
the cue, but also by intrinsic attention-related factors: when
the trials from the attention-in condition were sorted based
on the monkeys’ reaction times (RTs), we found that trials
with faster RTs had higher d′ values compared to those with
slower RTs, potentially indicating a graded improvement in
stimulus decodability that was proportionate to the intensity
of the attentional allocation (Figure S1, Wilcoxon signed-
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Fig. 2. Attentional modulation depends on stimulus content. (A) Stimulus discrim-
inability d′ for natural scenes (green) and synthetic images composed of indepen-
dent Gabor filters (blue), shown across recording sessions (200 ms spike-count
vectors before stimulus change) . (B) d′ along the trial, 200 ms spike-count vectors,
100 ms sliding resolution, colors as in (A). (C) Stimulus discriminability d′ for nat-
ural scenes (green) and phase-scrambled controls (blue), shown across recording
sessions. (D) d′ along the trial, colors as in (C).

rank test; [1700-1900ms], P = 0.0043 ; [TC-200, TC], P =
0.0123; n = 18 sessions in 2 monkeys).
In comparison, grand average firing rates only increased sig-
nificantly with attention for the change-aligned and not the
stimulus aligned data (Figure S1, Wilcoxon signed-rank test;
[1700-1900ms], P = 0.1330 n.s.; [TC-200, TC], P = 0.0279; n
= 18 sessions in 2 monkeys) and no significant increase was
found in the comparison based on reaction times (Figure S1,
P > 0.05). The attentional benefits in natural scene encod-
ing were significant in individual animals and occurred both
in the presence (monkey A), and absence (monkey I) of av-
erage firing rate changes. In monkey A, with receptive field
locations closer to the fovea (Figure 1C left), attention in-
creased the mean firing rate only before the stimulus change,
in the interval corresponding to the enhanced stimulus encod-
ing (Figure S2). In monkey I, with receptive field locations
further from the fovea (Figure 1C right), attention supressed
the mean firing rate ≈ 400 ms after the cue, and made no dif-
ference in the 1700-1900 ms window, in spite of a significant
increase in stimulus encoding (Figure S2).
Contextual modulation of V1 responses conveys information
about high-level inferences which can inform low-level in-
ferences about the interpretation of local features (4). Given
that the response properties of neurons at higher levels of the
processing hierarchy capture the higher-order regularities of
natural scenes, contextual modulation is likely more effective
when such natural high-level features are present in stimuli.
We hypothesized that if contextual modulation and attention
share top-down pathways then the presence of high-level fea-
tures constitutes a prerequisite for attentional enhancements
in stimulus encoding across neuronal populations in V1.
To test this hypothesis we matched the natural scene stim-
uli, in every recording session, by an equal number of syn-
thetic control images. The synthetic images were constructed
in two ways: (1) by filter-scrambling and (2) by phase-
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Fig. 3. Effects of attention on stimulus encoding in principal component space. (A) Example session depicting population responses to two natural scene stimuli (red and
blue) for the two attentional conditions in the space described by the first 2 principal components (200 ms spike-count vectors, 1700-1900 ms from stimulus onset; each point
represents a trial). (B) Stimulus decoding performance in principal component space for natural scenes (green) was higher than for synthetic stimuli (blue) and was modulated
by attention (based on 1700-1900 ms spike count vectors; PCA was performed on pre-cue activity 500-700 ms window). Attentional differences in stimulus decoding are
apparent from a low number of PCs, suggesting an alignment between attentional and stimulus variance. (C) Impact of attention on performance scores in low-dimensional
projections (first 3 PCs) depends on stimulus type. Scatterplot shows performance scores for natural scenes (green) and synthetic controls (Gabors, blue squares; scrambled,
blue circles; markers represent stimulus pairs n = 71; 18 recording sessions, 2 monkeys). Differences in performance with attention are significant for natural stimuli (top
histogram, ** p-val < 0.01) but not controls (bottom histogram, n.s. p-val > 0.05). (D) Contour stimuli are compared to synthetic controls (n = 30 stimulus pairs from 5 recording
sessions in 1 monkey). Differences in performance with attention are significant for contour stimuli not controls.

scrambling the original natural scenes (Figure 2A and B,
more details in Materials and Methods). By construction, the
synthetic controls contained no high-level features, but re-
tained basic image properties: either the low-level structure
preferred by V1 cells or the spectral content of the original
natural scenes. We found that the response vectors evoked
by both types of synthetic stimuli were less discriminable
than those evoked by natural scenes and, in agreement with
our hypothesis, the discriminability of neither type of syn-
thetic stimuli was enhanced by attention (Figure 2, Wilcoxon
signed-rank test; [TC-200, TC]; natural images P = 0.0078,
Gabors P = 0.25 n.s.; n = 8 sessions in 2 monkeys; natural im-
ages P = 0.0039, scrambled P = 0.375 n.s.; n = 10 sessions in
2 monkeys). In contrast to the stimulus dependent differences
of attentional effects on decodability, the effects of attention
on grand average discharge rates were remarkably similar for
natural and synthetic stimuli across units, suggesting a dis-
sociation between the stimulus specificity of the population
vector and the average firing rate (Figure S3).

These findings raise the question why responses to natu-
ral scenes profit more from attentional refinement than re-
sponses to manipulated stimuli or, in other words, what is
special about natural scenes? Previous research has shown
that natural images are statistically redundant, since light-
intensities at neighboring locations are likely to be corre-
lated and consequently, they can be efficiently compressed
(13, 14). Structured compressible visual stimuli are well cap-
tured by neuronal population dynamics in low-dimensional

manifolds (12, 15–17), but see (18). How could such low-
dimensional collective representations of natural images in
V1 be further optimized by the allocation of top-down atten-
tion? Are the top-down attentional signals largely matching
the bottom-up evoked responses to natural stimuli?

Given that, in the current task, the stimuli precede the atten-
tional cue, we could directly enquire whether the variance
added by attention was orthogonal to, or belonged to the
same dimensions as the variance produced by the stimulus.
Specifically, in each recording session, we projected the ac-
tivity from the time window preceding the stimulus change
(1700-1900 ms) into the principal component space defined
by activity recorded after the stimulus onset but before the
presentation of the attentional cue (500-700 ms). We rea-
soned that if the attentional variance was largely aligned to
the stimulus variance, the attentional differences in stimulus
decodability would become apparent in the low-dimensional
space described by the first components. This is indeed what
we found (examples in Figures 3A and S4).

We quantified the attentional differences on natural-scene
representations in principal component space by applying a
decoding technique. Specifically, a cross-validated Bayesian
decoder was trained to predict stimulus identity based on data
projections (spike-count vectors over the 1700-1900 ms in-
terval) into the pre-cue PCA space described by the first k
principal components, and test performance was estimated
in this same space based on unseen trials (Figure 3B, 5-
fold validation, details in Materials and Methods). We found
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that natural scenes could be well distinguished in principal
component space (Figure 3B, decoding performance range
61.8 − 75.13% for k >=2) and importantly, the attentional
benefits in stimulus encoding were apparent already for a
small numbers of components (Figure 3B, Wilcoxon signed-
rank test; P < 0.015 for k >=2; Holm-Bonferroni correction
showed significance for all k >=2; n = 71 stimulus pairs, 18
sessions, 2 monkeys); scatterplot and histogram of attentional
effects for k = 3 are shown in Figure 3C and D). In com-
parison, the synthetic images performed more poorly (Figure
3B, decoding performance range 51.7 − 63.3% for k >=2)
and showed no attentional modulation (Figure 3B, Wilcoxon
signed-rank test P > 0.05 for all k; n = 71 stimulus pairs, 18
sessions, 2 monkeys), in spite of residing in principal com-
ponent spaces with similar levels of overall variance (Figure
S5C).

By comparing V1 neuronal responses to natural scenes and
synthetic low-level images we found that the effects that at-
tention has on the stimulus specificity of the population vec-
tor are influenced to a large extent by the stimulus content.
To distill these findings to the essential ingredients, we gener-
ated an additional set of synthetic stimuli that combined Ga-
bor functions into simple contour-like patterns, thus introduc-
ing the kind of higher-level structure expected to elicit differ-
ential responses at higher processing stages. In these addi-
tional datasets, both main effects described previously were
reproduced: the structured contour stimuli were well distin-
guished in principal component space, while the unstructured
controls were not (decoding performance range contour stim-
uli 66.4 − 74.7% and synthetic Gabors 54.9 − 60.4% for k
>=2, Figure S5) and the attentional effects were specific to
the contour stimuli and captured already by a low number of
components (contour stimuli Wilcoxon signed-rank test; P <
0.05 for all k >=2; n = 30 stimulus pairs, in 1 monkey; control
images P>0.05 for all k, Figure S5; scatterplot and histogram
of attentional effects for k = 3 Figure 3C). Interestingly, trial-
shuffling within stimulus condition reduced the attentional
differences in decoding performance for the contour stimuli
and the original natural scenes, suggesting that even in these
low-dimensional projections decoders benefitted from the in-
tact correlation structure present in the data (Figure S5).
Overall, by constructing synthetic images with controlled sta-
tistical structure, we confirmed that the attentional benefits in
stimulus encoding across collective neuronal responses in V1
were specific to images containing higher level structural reg-
ularities. Such images are more likely to engage structured
feedback from higher-levels of processing.

Finally, we investigated the impact of attention on the oscil-
latory network dynamics of V1 responses to natural stimuli.
Average LFP power spectra across all recording sessions with
natural scenes, when attention was directed towards the stim-
ulus, are shown in Figure 4A. Across trials, reaction times
in the attention-in condition were positively correlated with
the LFP power in the theta and beta bands and negatively
correlated with the LFP power in the gamma band (Spear-
man correlation; theta r = 0.18, p = 1e − 11 ; beta r = 0.08,
p = 0.002 ; gamma r = −0.12, p = 1e − 05). These cor-
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Fig. 4. Dynamics of LFP power spectra during the attention task with natural
scenes. (A) Within-trial time-frequency representations of log-transformed LFP
power to natural scenes in the attention-in condition (pre-stimulus baseline sub-
stracted, 18 sessions, 2 monkeys). Stimulus onset (0ms) and cue onset (700ms)
are marked by vertical lines. (B) LFP power and its attentional modulation for the
window preceding the stimulus change (1700-1900 ms). Natural scenes (continu-
ous) and synthetic stimuli (dotted) show similar attentional modulation, suggesting
that mostly task-related effects were captured by the LFPs. (C) Time-frequency
differences in LFP power with attention for natural stimuli exhibit a gradual shift in
power from lower to higher frequencies ≈ 300ms after the attentional cue (marked
by vertical line at 700ms). (D) Attention decreases the power of theta (3-6Hz, green)
and beta oscillations (10-20Hz, blue) and modestly increases the power of high-
frequency oscillations (60-100Hz, red).

relations were also significant for the synthetic stimuli, thus
presumably reflecting task-related effects (Spearman correla-
tion; theta r = 0.11, p = 3e − 5 ; beta r = 0.07, p = 0.008 ;
gamma r = −0.11, p = 3e−04). When trials were separated
based on cue information, we found that attention strongly re-
duced the low-frequency oscillations below 40Hz and weakly
amplified the high-frequency oscillations above 60Hz (Fig-
ure 4B). Along the trial, these attentional differences in LFP
power started ≈ 300ms after the attentional cue and increased
gradually with the expectancy of the stimulus change (Figure
4C, individual monkeys in S6).

Previous studies have implicated gamma oscillations in the
representation of natural images (12, 19). Here, we found,
in both animals, that the LFP power in the gamma band was
higher for the natural scenes compared to the low-level syn-
thetic images (Figure S6), consistent with previous sugges-
tions that visual stimuli with higher structural predictabil-
ity result in stronger gamma oscillations (12). Nonetheless,
attentional modulation of LFP power in the gamma band
showed a reduction in monkey A and a slight increase in
monkey I, and was therefore difficult to interpret (Figure S6).
Interestingly, the identity of natural scenes could also be well
decoded from the vector of the simultaneously recorded LFP
signals, if frequencies >40Hz were used for analysis (Figure
S7). However, no attentional improvements in stimulus de-
codability were detectable from LFPs, except at the highest
frequencies in one monkey (monkey I, >88Hz, Figure S7).
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Discussion

In this study, we found that attention improves the represen-
tation of natural scenes across neuronal population vectors in
area V1. By constructing synthetic stimuli with controlled
statistical structure, we could link the attentional benefits in
stimulus encoding to the presence of higher-order regularities
that are known to be abundant in natural images.
In our experiments, animals were trained to respond swiftly
to the rotation of the cued stimulus, not to recognize particu-
lar features in the image. Thus our task was a classical spatial
attention task. In agreement with previous studies allocating
spatial attention caused moderate increases in discharge rate,
reduced power of low frequency oscillations and enhanced
power in the high frequency bands of local field potentials.
As expected, these effects did not depend on stimulus struc-
ture. In agreement with psychophysical and previous electro-
physiological investigations this indicates that spatial atten-
tion enhances the salience of responses (20). However, allo-
cating spatial attention had the additional effect of enhancing
selectively the decodability of population responses of V1 to
the attended stimulus, provided that the stimulus contained
higher order statistical regularities characteristic of natural
scenes. These effects on decodability could not be attributed
to a global increase of excitability because they occurred also
in the absence of rate changes. Evidence indicates that the
structural features characteristic of natural scenes are pro-
cessed only at higher levels of the visual processing hierarchy
(21, 22). This implies that allocation of spatial attention must
have interfered with feature sensitive top-down mechanisms,
raising the question how these two processes interact.
Visual scenes are evaluated by comparing sensory evidence
with previously acquired priors about the statistical structure
of natural environments (1). These internal priors are stored
in the functional architecture of cortical circuits at all levels
of the visual processing hierarchy and some of these circuits
get refined by experience to capture characteristic properties
of the visual environment (2, 3, 23). Recombination of feed-
forward connections renders neurons selective for increas-
ingly complex constellations of features (22, 24, 25), and the
abundant horizontal intra-areal and feed-back connections
between processing levels allow for contextual modulation
of these feature selective responses (26, 27). These modula-
tions impact stimulus saliency (28) and perceived brightness
(29, 30), support perceptual grouping (31), and figure-ground
segregation (32–35). The electrophysiological correlates of
these interactions consist of changes in discharge rate and/or
synchrony and these effects tend to have longer latencies than
the initial phasic responses. Therefore it has been concluded
that the context sensitive processes are mediated by recur-
rent interactions within cortical areas and top down signaling
across processing stages. In the following we discuss how
allocation of spatial attention that is also supposed to be me-
diated by top-down connections interacts with these feature
sensitive mechanisms.
Attentional influences on visual processing have traditionally
been divided into spatial (36–38) and object/feature-based
attention (39, 40) and it has been proposed that both con-

tribute in complementary ways to the parsing of image con-
tent (41, 42). Our results support this notion and provide
some indications as to the mechanisms underlying these com-
plex interactions, in the context of natural stimulation. In the
present task, the allocation of spatial attention contributed
additional variance in the first principal components of re-
sponses to natural but not to manipulated images and thereby
enhanced decodability of the former. The finding that spatial
attention had no effect on decodability of manipulated stimuli
indicates that spatial attention has per se no refining effect on
distributed stimulus representations in V1, but selectively im-
proves representations of stimuli characterized by the higher
order regularities of natural scenes. Abundant evidence indi-
cates (21) that these higher order regularities are evaluated by
downstream areas of the visual processing hierarchy. There-
fore, the enhanced decodabilty of responses to natural images
is likely to have been mediated by top-down signals from
these areas. This raises the question, why these high-level
processes were more involved when spatial attention was al-
located to the stimulus. One possibility is that higher level
processes do not engage by default even when stimuli match
high-order priors but get involved only for stimuli to which
spatial attention is allocated. In this case spatial attention
would be a prerequisite for the engagement of mechanisms
that provide top-down signals commonly attributed to fea-
ture or object specific attention, suggesting some hierarchy
in the interactions between spatial and object centered or fea-
ture specific attention. An alternative possibility is that higher
level processes engage by default when stimuli match high-
order priors and work cooperatively alongside spatial atten-
tion. In this case, the visual system performs a search that
attempts to infer task-relevant features of an image based on
both the spatial aspects of the visual scene and the low-level
and high-level structural regularities. Thus spatial and object-
based attention act in unison and share an internal represen-
tation of features, with the inference slowly unfolding over
reciprocal interactions across multiple hierarchical levels of
processing.

The latter interpretation is supported by the observation that
the natural scenes could be discriminated surprisingly well,
given the relatively low number of units and their location
in area V1 (Figures 2 and 3), regardless of the attentional
cue. The fact that the discriminability of natural stimuli was
high also when attention was directed away from the stimu-
lus implies that the natural scenes were efficiently encoded,
irrespective of the attentional state. Previous studies found
that an efficient encoding of global scene statistics remained
possible in situations associated with reduced visual attention
(43). In such cases, the visual cortex is thought to extract a
compressed "summary" code that does not capture the full
distribution of local details, yet provides a good representa-
tion of group features. Since natural scenes are structured,
redundant, low-dimensional images, they are compressible.
In comparison, the low-level synthetic images are difficult
to compress and must be represented exhaustively, without
the help of internally generated or previously acquired pri-
ors on summary statistics. Thus the resulting neuronal activ-
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ity vectors to synthetic stimuli are likely to inhabit higher-
dimensional or more variable substates, potentially account-
ing for the overall poorer performance of the classifier.

A cross-validated principal component analysis captured the
efficient encoding of natural scenes across neuronal popu-
lations in V1. In principal component space, the response
vectors to natural stimuli reflected their low-dimensionality
and could be well described by few principal components.
The higher-order stimulus structure, characteristic of natu-
ral scenes, was thus well-separated by low-dimensional sub-
spaces. In a sense, these subspaces reflect some of the higher-
order selectivity normally associated with responses of indi-
vidual neurons at higher levels of processing (44, 45). The
finding that spatial attention enhanced the encoding of natural
scenes along the dominant representational dimensions, sug-
gests refined, cooperative interactions across multiple levels
of the visual hierarchy. The match between representational
and attentional signals in V1 shows a remarkable alignment,
likely advantageous for efficient processing. This match ap-
pears compatible with previous results highlighting similar-
ities between the effects of representational learning and at-
tention in downstream area V4 (46).

In agreement with previous studies, spatial attention modu-
lated the dynamics of responses as reflected by changes in
the frequency distribution of LFP power. After the arrival
of the attentional cue, the responses to the attended stimulus
showed a strong reduction in spectral power for lower fre-
quencies and a modest enhancement for higher frequencies,
for both natural and manipulated stimuli. This shift in LFP
power from low to high frequencies built up gradually from
the onset of the cue to the temporal window preceding the
stimulus change (Figures 4 and S6). This kinetics resem-
bled a hazard function reflecting the increasing probability
of having to execute a response, suggesting that the reduced
power of the low frequency oscillations is probably related
to the increased readiness to act. In agreement with this in-
terpretation the oscillatory power in the theta and beta bands
of responses to the target stimulus was positively correlated
with reaction times in the attention-in condition. These re-
sults are consistent with previous reports. Beta oscillations
have been shown to decrease during the preparation of a mo-
tor response (47) and theta band power has been shown to
decrease with attention (48).

In addition to these attention dependent effects on dynamics,
we observed an interesting build up of gamma oscillations
for natural, but not for synthetic stimuli, over the course of
the trial (Figure S6). Gamma oscillations are thought to re-
sult from a feedback loop between pyramidal cells and fast-
spiking interneurons (49, 50) . Recent evidence indicates that
the associated synchronization of discharges acts as an inter-
nal resonance filter of stimulus content (12, 51). Synchroni-
sation of discharges in the gamma frequency range increases
for responses to features that are well predicted by the embed-
ding context. This is the case for regular gratings, but also for
homogeneous colour stimuli (52) and redundant, compress-
ible natural scenes (12). Our present findings are in line with
this evidence. Natural scenes induced more gamma oscilla-

tions than the synthetic stimuli, likely because they contain
more compressible features and better match the priors resi-
dent in the synaptic weight distribution of cortical networks.
In our study the strength of gamma band oscillations was neg-
atively correlated with reaction times in trials corresponding
to the attention-in condition. This agrees with previous find-
ings from area V4 (53) and also with our observation that the
gradual shift in power from low to high frequency oscilla-
tions is related to the readiness to act (see above). In agree-
ment with previous studies is also the finding that attention
enhances the power of the broad band high frequency activ-
ity that likely reflects increases spiking and synaptic activity
(54). However, previous studies on the attentional modula-
tion of gamma oscillations in V1 have reported mixed results
(55) and this heterogeneity is reflected also by our results.
The attentional cue caused an increase in gamma power in
one animal and a decrease in the other. We speculate that the
manner in which top-down attentional signals engage the lo-
cal excitatory-inhibitory subnetworks in V1 may differ as a
function of the neurons’ receptive fields sizes and locations,
which in this work was not explored.
One puzzling aspect of our findings is the confinement of the
attentional benefits on stimulus encoding to the temporal in-
terval preceding a change in the cued stimulus. Since the
task requires only a suppression of reflexive responses to dis-
tractor change, no enhancements in encoding for the natural
scenes are necessary or even expected. Yet these enhance-
ments in stimulus discriminability occurred close to the an-
ticipated stimulus change and were more pronounced in trials
with short reaction times (Figure S1B). It is conceivable that
these states are particularly favorable to permit refinement of
stimulus representations by structured top-down signals, sug-
gesting that in a different task context they may carry behav-
ioral relevance.
In summary, we showed that the spatial allocation of atten-
tion towards a natural stimulus can engage mechanisms that
exploit the higher order statistical regularities of natural im-
ages, resulting in enhanced decodability of neuronal popu-
lation responses in area V1. The alignment between the at-
tentional and natural stimulus variance in low-dimensional
projections of V1 activity vectors, which was absent for syn-
thetic low-level stimuli, suggests that attention can involve
mechanisms optimized for the processing of natural images
in order to refine stimulus representation in V1. These re-
sults highlight the importance of using natural stimuli when
studying sensory processing and provide important insights
into how such factors as natural image statistics and the ani-
mals’ internal models of the visual world are central to visual
processing even at early levels.

Materials and Methods
Electrophysiological Recordings. The data was obtained from
two adult rhesus macaque monkeys, one male (monkey A) and
one female (monkey I), aged 8 and 12 years, respectively, during
the time of the study. All experimental procedures were approved
by the local authorities (Regierungspräsidium, Hessen, Darmstadt,
Germany) and were in accordance with the animal welfare guide-
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lines of the European Union’s Directive 2010/63/EU. Animals were
housed in rooms with outdoor access to a play area and had regular
veterinary care and balanced nutrition. The recording chamber was
implanted under general anesthesia over the primary visual cortex,
the exact location was determined based on stereotactic coordinates
derived from MRI and CT scans.
Signals were recorded using a chronically implanted microdrive
containing 32 independently movable glass-coated tungsten elec-
trodes with impedance between 0.7 and 1.5 MΩ and 1.5 mm inter-
electrode distance (SC32; Gray Matter Research (56)), amplified
(TDT, PZ2 pre-amplifier) and digitized at a rate of 24.4 kHz. The
signals were filtered between 300 and 4,000 Hz and a threshold was
set at 4SD above noise level to extract multi-unit activity. LFP sig-
nals were obtained by low-pass filtering at 300 Hz and downsam-
pling to 1.5 kHz.

Behavioral Paradigm. Animals were seated in a custom primate
chair at a distance of 64 cm in front of a 477 × 298 mm monitor
(Samsung SyncMaster 2233RZ; 120 Hz refresh rate). At the start of
each recording week, the receptive fields and orientation preferences
of the recorded units were mapped with a moving light bar drifting
in a randomized sequence in eight different directions.
The two monkeys performed an attention-modulated change detec-
tion task. During the task, eye tracking was performed using an
infrared-camera eye-control system (ET-49; Thomas Recording).
To initiate a trial, the monkey maintained fixation on a white spot
(0.1° visual angle) presented in the center of a black screen and
pressed a lever. After 500 ms, two identical visual stimuli appeared
in an aperture of 2.8–5.1° at a distance of 2.3–3.2° from the fixation
point. One of the stimuli covered the receptive fields of the recorded
units, which were situated in the right hemifield, the other stimu-
lus was placed at the mirror symmetric site in the left hemifield.
After an additional 700 ms, the fixation spot changed color, cuing
the monkey to covertly direct its attention to one of the two stim-
uli. When the cued image was rotated (20°), the monkey released
a lever in a fixed time window (600 ms for monkey A; 900 ms for
monkey I) to receive a reward. A break in fixation (fixation window,
1.5° diameter) or an early lever release resulted in the abortion of
the trial, which was announced by a tone signal. Breaks in fixation
occurred less frequently in the time interval preceding an image ro-
tation compared to the baseline (Figure S8A), and occurred with
similar frequency irrespective of stimulus content (natural or con-
trol) or attentional condition (Figure S8B). Data analysis was based
on completed correct trials (mean number per session 967 trials for
monkey A; 720 trials for monkey I).

Visual Stimulus Design. Stimuli were static, black and white im-
ages, presented in a square or circular aperture. Within each record-
ing session, all natural scenes and control images had equal lumi-
nance and contrast.
Control images were generated in two ways.
(1) Filter-scrambling: synthetic stimuli generated from an image
model. Filter scrambling was realized by permuting Gabor filter
activations elicited by a natural image across the elements of the
complete filter bank. The filter bank was composed of a large set of
Gabor functions, fitted to the receptive field (RF) characteristics of
the recorded neurons. The positions and orientations of the Gabor
functions covered the image uniformly, while their size was matched
to the RFs of visual cortical neurons recorded at the same eccentric-
ity. An activation variable determined the level of contribution of
each particular Gabor function to the image. The synthetic images
were generated by linearly combining the activation-scaled Gabor
functions. For each synthetic image, the activations of 500–3,000

Gabor functions were sampled from the empirical distribution of
Gabor filter responses to a particular natural image. The resulting
control images lacked the higher-order structure of natural scenes
but matched their low-level statistical properties.
(2) Phase-scrambled images. The 2D fast Fourier transform (FFT)
of each natural image was computed to obtain a complex magnitude-
phase map. The phase values were scrambled by assigning a random
value to each element taken from a uniform distribution across the
range (−π, π ). An inverse FFT was then applied to the resulting
magnitude-phase maps to produce scrambled versions of the orig-
inal natural images. These control images lacked the higher-order
structure of natural scenes but matched their frequency spectrum.
In a second experiment, recorded in one monkey (monkey I), we
contrasted synthetic stimuli with and without higher-order structure.
These synthetic images were generated similarly to the control im-
ages described in (1) and matched the low-level statistical properties
of natural scenes. To add higher-order structure, a subset of Gabor
functions were arranged in a manner that produced simple contour-
like patterns (example of contour synthetic image in Figure 3D).

Data analysis. Data analysis was performed using custom code in
MATLAB (MathWorks) and the Fieldtrip toolbox (57).
We applied non-parametric statistical tests to avoid assumptions
about the distributions of the empirical data. Information about sam-
ple variables and size is reported in the results section. Critical re-
sults and statistics are reported separately for individual animals in
the supplementary materials.

Discriminability index. The unit d’, also known as Cohen’s effect
size (58), for a pair of stimuli, was calculated as:

d′i = (m1−m2)/σ (1)

wherem1 andm2 are the mean spike-counts across trials of unit i to
the two stimuli and σ= (σ1 +σ2)/2 is the mean standard deviation.
The population d’ was calculated similarly, except in this case m1,
m2 and σ are n-dimensional vectors of spike-counts, where n is the
number of simultaneously recorded units in a session. Distances in
vector space were calculated using the Euclidean distance.

Cross-validated PCA and stimulus decoding. PCA was ap-
plied on population spike-count vectors calculated over a 200 ms
time window in the trial, 1700− 1900 ms after stimulus onset.
We performed cross-validation by randomly subsampling the data
(k−1 data partitions used for training, 1 used for test, k repetitions;
k = 5). This meant that, for each recording session and each pair
of natural stimuli, we ran PCA k = 5 times, on each iteration ran-
domly sampling the population response to the two stimuli. Trials
for both attentional conditions were included in the construction of
the PCA space. For stimulus classification, trials belonging to the
attention in/out conditions were separated. For each attentional con-
dition, separately, 16 Naïve Bayes classifiers were trained to decode
the stimulus identity based on data points mapped in the space de-
scribed by the first k principal components, with k = 1 to 16. The
unseen trials were then projected in the same space to assess test per-
formance. The performance values reported in Figure 3B are mean
validation scores pulled across all stimulus pairs and all recording
sessions. Chance level was 50 %.
The control stimuli and contour stimuli were analyzed separately,
in a similar manner. Thus, the projection space obtained via PCA
was different for natural scenes and control stimuli. A comparison
of the percentage of variance explained by an increasing number of
principal components, for natural scenes and controls recorded in
the same sessions, can be found in Figure S5.
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To enquire whether stimulus decoders benefit from knowledge on
correlated variability across trials, stimulus classification for vari-
able numbers of PCs was compared for shuffled and unshuffled data
in Figure S5. In this case, shuffling was performed across trials,
within each stimulus condition (i.e. signal correlations were not af-
fected), after the construction of the PCA projection space, but be-
fore the training of the Bayesian classifier. Test data was unshuffled,
so that the distribution of original spike-counts was not affected.

LFP analysis. Power spectra were computed using a frequency-
dependent window length (5 cycles per time window). This ap-
proach decreases the temporal smoothing at higher frequencies and
increases the sensitivity to brief effects. The time-windows were
moved in steps of 10 ms and Hann-tapered to avoid spectral leak-
age.
Data presented in Figure 4A shows LFP power after the substraction
of the prestimulus baseline.
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Fig. S1. Attentional changes in neuronal population responses. A) Population discriminability index d’ (left) and population firing rates (right) shown as percentage increase
between the attention-in and attention-out conditions. Circles represent independent recording sessions. The box-plots correspond to two time windows in the trial (1700-
1900 ms and the 200 ms window before the stimulus change). Changes in population d’ with attention were strongly significant in both windows (Wilcoxon signed-rank test;
1700-1900 ms: P = 0.0012; change-aligned: P = 0.00023; n = 18 sessions). Firing rates increased significantly for the change-aligned data (Wilcoxon signed-rank test;
1700-1900 ms: P = 0.1330 n.s.; change-aligned: P = 0.0279; n = 18 sessions). B) Comparison of population d’ and population firing rates as a function of reaction time (RT)
to the stimulus change. Trials corresponding to the attention-in condition, were sorted based on RT, separately for each stimulus condition, and split in two halves referred
to as fast-RT and slow-RT. We found that the population discriminability index was higher for fast RT compared to slow RT (Wilcoxon signed-rank test; 1700-1900 ms: P =
0.0043 ; change-aligned: P = 0.0123; n = 18 sessions). Population firing rates were significantly lower for the change-aligned data (Wilcoxon signed-rank test; 1700-1900 ms:
P = 0.6791 n.s.. ; change-aligned: P = 0.0347; n = 18 sessions). Note that the results from the subplots in B were based on approximately half the number of trials from the
subplots in A.
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Fig. S2. Firing rate responses and discriminability index d’ in individual animals. Responses are shown over the course of the trial: spike-counts were calculated over
200 ms windows with 100 ms sliding resolution. Population firing rates (blue) increased significantly with attention, before the target event, in one monkey (right panels, blue;
Wilcoxon signed-rank test; 1700-1900 ms: P = 0.46 n.s.; target-aligned: P = 0.64 n.s.; n = 8 sessions Monkey I; 1700-1900 ms: P = 0.009; target-aligned: P = 0.0039; n =
10 sessions Monkey A). Population d′ (green) increased significantly with attention, before the target event, in both monkeys (right panels, green; Wilcoxon signed-rank test;
1700-1900 ms: P = 0.0078; target-aligned: P = 0.0156; n = 8 sessions Monkey I; 1700-1900 ms: P = 0.04; target-aligned: P = 0.002; n = 10 sessions Monkey A). Shading
marks standard error from the mean. Right panels show changes with attention in all individual recording sessions for data aligned on both stimulus onset and target.
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Fig. S3. Firing rate responses are modulated by attention similarly for natural scenes and synthetic controls (A) Firing rate responses for both natural scenes and synthetic
gabors increase modestly with attention, however the increase is not significant (Wilcoxon signed-rank test; change-aligned; natural-scenes P = 0.1484; gabors P = 0.0781;
n = 8 sessions, 2 monkeys). (B) Firing rate responses for natural scenes and scrambled controls increase modestly with attention. The increase is only significant for the
controls (Wilcoxon signed-rank test; change-aligned; natural-scenes P = 0.084 n.s.; scrambled P = 0.0039; n = 10 sessions, 2 monkeys). C) Firing rate changes with attention
for natural scenes and synthetic gabors are positively correlated across units (values are z-scored per session); changes in d′ are not (Spearman’s rank correlation; firing rate
r= 0.58, p = 2.4e-24; d′ r= -0.16, p = 0.009). D) As in C, firing rate changes with attention for natural scenes and scrambled scenes are positively correlated across units;
changes in d′ are not (Spearman’s rank correlation; firing rate r= 0.35, p = 1.1e-10; d′ r= 0.009, p = 0.87). Bottom panels: change in d′ as a function of change in firing rate
with attention. Units are sorted by amplitude of rate change and grouped into quartiles (marked on x-axis). d′ values on y-axis are z-scored per session. Large increases in
firing rates with attention (4th quartile) result in a larger positive changes in d′ for natural stimuli (green), compared to controls (blue). Error bars indicate standard errors from
the mean.
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Fig. S4. Effects of attention on stimulus encoding in principal component space Three example sessions (A, B and C), contrasting pairs of natural stimuli and contour stimuli
(upper panels), to synthetic controls (bottom panels). Individual points represent trials, each point is a spike-count vector over the 1700-1900 ms interval projected in PCA
space. As in Figure 3, the PCA space was constructed based on pre-cue activity (500-700 ms). Ellipses were fit to encompass responses within one standard deviation from
the mean. Gray lines show boundaries of Bayesian decoders. For natural scenes and contour stimuli, overlap between the population responses is lower in the attention-in
condition. Thus the attentional effects can be observed already from a low number of principal components, suggesting an alignment between attentional and stimulus
variance.
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Fig. S5. Effect of trial-shuffling on stimulus decoding in PCA space (A) Decoding performance of natural scenes (green) and control stimuli (blue) based on spike-count
vectors over the 1700-1900 ms interval in principal component space, for a variable number of PCs (x-axis). As in Figure 3, the PCA space was constructed separately
for natural scenes and controls, based on pre-cue activity (500-700 ms, see more details in Methods). Original data (left; n = 71 stimulus pairs; 18 recording sessions) is
contrasted to trial-shuffled data (right). Shuffling removes correlations across trials, i.e. the so called noise correlations or spike-count correlations. Shuffling affected the fit
of the Bayesian classifier, not the construction of the PCA space, and was performed only on training data, not on test data. Shaded areas indicate standard error of the
mean. (B) Variance explained by an increasing number of principal components is similar for PCA spaces constructed separately for natural scenes and controls. These PCA
spaces are identical for shuffled data, since shuffling was only applied before training the classifier. (C) Similar to A for contour stimuli and gabor controls (example stimuli in
Figure 3) (D) similar to B for contour stimuli and gabor controls (n = 30 stimulus pairs; 5 recording sessions). In A and C, attentional effects can be observed already from a
low number of principal components, for natural scenes (green) and contour stimuli (red), but are absent for the synthetic controls (blue) and are reduced by shuffling (right
panels). In B and D, variance explained is almost identical for PCA spaces constructed for natural stimuli/contour stimuli and their respective control counterparts
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Fig. S6. Trial dynamics of LFP power spectra in two monkeys (upper and lower panels) (A) Attentional differences in time-frequency log-transformed LFP power in monkey
I (top-panel, 8 recording sessions). The arrival of the attentional cue at 700 ms is marked by vertical line. Right-side projection shows attentional modulation of LFP power
for the 1700-1900 ms time window. Attentional differences in LFP power in 4 frequency bands for natural stimuli (bottom panel, 500 ms pre-cue baseline was substracted).
In this monkey, the LFP power at frequencies >38Hz increased with attention, while the LFP power at frequencies <38Hz decreased with attention. (B) Differences in LFP
power between natural scenes and synthetic images. 500 ms pre-cue baseline was substracted to emphasize post-cue effects. LFP power in the gamma (38-50Hz) and theta
(3-6Hz) ranges was stronger for natural stimuli compared to their synthetic counterparts. (C) Attentional differences in LFP power for monkey A (top, time-frequency plot;
bottom, power in 4 bands; 8 recording sessions). In this monkey, the LFP power at frequencies >50Hz increased with attention, while the LFP power at frequencies <50Hz
decreased with attention. (D) Differences in LFP power between natural and synthetic stimuli for monkey A (top, time-frequency plot; bottom, power in 4 bands; 8 recording
sessions). Similarly to the plots in (B) for monkey I, natural stimuli produced more gamma and more theta compared to the synthetic controls in monkey A.
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Fig. S7. Decoding of stimulus identity based on LFP responses in individual animals. Bayesian classifiers were used to decode the identity of a stimulus based on single trial
LFP data (monkey I left, n = 8 sessions, monkey A right, n = 10 sessions; 1700-1900ms time-window). In each recording session the LFP power of all channels (maximum
32) for 4 consecutive frequencies (1-4Hz, 5-8Hz.. 96-100Hz) were concatenated, resulting in data vectors of length < 4x32. Performance is shown separately for natural
scenes (green) and control images (blue), for all 25 frequency intervals (x-axis). In both monkeys, classification of natural scenes was significantly above chance level and
above the classification performance of control images, for frequencies higher than 40Hz (10-fold validation, chance level 50%). There was no attentional effect on stimulus
decoding based on LFP power, except at the highest frequencies in monkey I (88-91Hz ,92-95Hz, 96-100Hz, significant intervals marked by green bar).
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Fig. S8. Eye movements during the task (A) Frequency of saccadic eye movements along the trial. The time window preceding the stimulus change (1700-1900ms), in which
the effects of visual attention were strong, corresponds to a period with reduced eye movements compared to the baseline (statistics in inset panel: Wilcoxon signed-rank test,
1700-1900 ms, P = 0.00019, n = 18 sessions in 2 monkeys). (B) Saccades towards natural stimuli and controls occurred in similar numbers (left panel; Wilcoxon signed-rank
test, post-cue time interval 500-1900ms, P = 0.171 n.s.). Saccades towards attended and unattended stimuli occurred in similar numbers (right panel; Wilcoxon signed-rank
test; 500-1900ms; P = 0.522 n.s.).
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