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Abstract 

Amino acid auxotrophies are prevalent among bacteria. They can govern ecological 

dynamics in microbial communities and indicate metabolic cross-feeding interactions 

among coexisting genotypes. Despite the ecological importance of auxotrophies, their 

distribution and impact on the diversity and function of the human gut microbiome remain 

poorly understood. This study performed the first systematic analysis of the distribution of 

amino acid auxotrophies in the human gut microbiome using a combined metabolomic, 

metagenomic, and metabolic modeling approach. Results showed that amino acid 

auxotrophies are ubiquitous in the colon microbiome, with tryptophan auxotrophy being 

the most common. Auxotrophy frequencies were found to be higher for those amino acids, 

that are also essential to the human host. Moreover, a higher overall abundance of 

auxotrophies was associated with greater microbiome diversity and stability, and the 

distribution of auxotrophs was found to be related to the human host's metabolome, 

including trimethylamine oxide, small aromatic acids, and secondary bile acids. Thus, our 

results suggest that amino acid auxotrophies are important factors that contribute to 

microbiome ecology and host-microbiome metabolic interactions.  
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Background 

The metabolic processes performed by the human gut microbiota have a crucial impact on 

human metabolism and health(1–3). For instance, the short-chain fatty acid butyrate is 

produced by various human gut bacteria. Butyrate is a primary energy source for human 

colonocytes(1) and intersects with host-immunological processes by mediating anti-

inflammatory effects(4,5). Another notable metabolic interaction between the human host 

and its gastrointestinal microbiota is the microbial transformation of aromatic amino acids 

into various metabolites. Recent studies suggest that aromatic amino acid-derived 

metabolites such as the auxins indole-3-propionic acid and indole-3-acetic acid can 

modulate the host immune system(6,7). Thus, these and several further studies provide 

evidence that gut microbial metabolites are essential factors in the pathophysiology of 

inflammatory diseases and the efficacy of immunomodulatory therapies(7–10). 

 

The compounds synthesized by gut microbes are typically metabolic by-products that serve 

the dual purpose of energy metabolism and facilitating the biosynthesis of essential 

metabolites, necessary for cellular maintenance and proliferation. However, often not all 

metabolites required for growth and survival (i.e., nucleotides, vitamins, amino acids) can 

be de-novo synthesized by gut-dwelling microorganisms, rendering those organisms 

dependent (termed auxotrophic) on the uptake of the focal metabolite from the microbial 

cell’s nutritional environment. Several in-silico studies have applied genome-mining 

approaches, suggesting that most analyzed gut bacteria lack biosynthetic pathways for 

producing at least one proteinogenic amino acid(11,12) or a growth-essential 

vitamin(13,14). In addition, in-vitro growth experiments have confirmed specific amino acid 

and vitamin auxotrophies in common human gut bacteria(13,15,16). 

 

The prevalence of auxotrophs in the human gut microbiome raises the question of the 

source of the required metabolites in the gastrointestinal growth environment. In general, 

there are three potential sources of growth factors for microbial growth: (i) Required 

metabolites could be diet-derived. However, amino acids and vitamins are usually efficiently 

absorbed by the human host in the small intestine(17), limiting the accessibility of diet-

derived growth factors for the majority of the gut microbial community, which resides in the 
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colonic region(18). (ii) Metabolites required by auxotrophic microorganisms in the 

gastrointestinal tract might be host-derived, e.g., from proteins and peptides released by- or 

attached to the gut epithelium(15). (iii) Auxotrophic members of the gut microbial 

community might obtain the required growth factor via cross-feeding interactions with 

prototrophic organisms in their vicinity(19). 

 

While the exchange of electron donor metabolites (e.g., acetate- or lactate cross-feeding) 

between different microorganisms is well-documented for the human gut microbiome(20–

22), the extent of cross-feeding interactions via the exchange of growth factors such as 

amino acids and vitamins remains still unknown. However, in vitro-experiments of synthetic 

microbial communities suggest that co-cultured microorganisms, which are auxotrophic for 

different compounds, can support each other’s growth through the exchange of the focal 

metabolites(23). Furthermore, theoretical ecological models suggest that cross-feeding 

interactions between auxotrophic organisms within complex communities can increase 

community diversity through metabolic niche expansion(24) and community robustness to 

ecological perturbance(25) such as changes in the composition of the chemical 

environment. Thus, cross-feeding of amino acids and vitamins between different members 

of the human gut microbiota could be crucial determinants of microbiome dynamics, 

resilience, and the contribution of gut microbes to human metabolism and health. 

 

In this study, we applied genome-scale metabolic modeling to predict the distribution and 

diversity of amino acid auxotrophies in the human gut microbiome. The predictions were 

combined with stool metagenomics sequencing and targeted serum metabolomics from 

observational human cohort studies to estimate auxotrophy frequencies and their impact 

on the human metabolome. We found that amino acids that are essential to the human 

host are also the most common auxotrophies in the human gut microbiome. Intriguingly, a 

higher frequency of auxotrophies was associated with long-term stability of the microbiome 

community composition. Furthermore, a higher number of auxotrophies among gut bacteria 

were found to be associated with higher diversity of the gut bacteria and increased levels of 

aromatic compounds of putative microbial origin in the human serum metabolome. 
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Results 

Amino acid auxotrophies are common in the human gut 

microbiome 

In order to estimate the overall distribution of amino acid auxotrophies in the human gut 

microbiome, we predicted the amino acid production capacities using genome-metabolic 

modeling for all bacterial genomes (n=5,414) from the ‘Human Reference Gut Microbiome 

(HRGM)’ collection(26). A Spearman correlation showed a negative relationship between 

genome completeness and the number of auxotrophies per genome (Supplementary Figure 

S1, ρ=-0.35, p≤2.2e-16). To combat this, the genomes were filtered for a completeness ≥85% 

and contamination ≤2%. For the prediction of auxotrophies and ongoing analysis only the 

filtered metabolic models (n=3,687) were used. 

Auxotrophies for tryptophan were the most prevalent, at 64.1% of the genomes in the 

HRGM catalog, followed by histidine at 52.2% (Fig. 2). Isoleucine, leucine, and valine (BCAA, 

branched chain amino acids) auxotrophies were also detected with a high abundance 

(39.5%, 40.7%, 38.6%, respectively) in all genomes. No auxotrophies were detected for 

alanine, aspartate, and glutamate. Furthermore, to reveal auxotrophic co-occurrence, we 

studied the occurrence of paired auxotrophies in all genomes: auxotrophies for isoleucine, 

leucine, and valine occurred together with each other and with tryptophan at the highest 

frequencies (Fig. 3A). The Rasch sampler was used to test if the predicted co-occurrence of 

amino acid auxotrophies is significantly higher or lower than expected by chance. The 

auxotrophy pairs of tryptophan and BCAAs, as well as within the BCAA group were observed 

significantly more often than expected (re-sampling test, FDR-corrected p<0.05, Fig. 3B). We 

further analyzed the observed auxotrophies at the taxonomy level by comparing the 

proportion and number of auxotrophies on phylum and order level (Supplementary Figure 

S2). Actinobacteriota were shown to have a higher proportion of histidine and BCAA 

auxotrophies compared to prototrophies (Supplementary Figure S2). For tryptophan, a 

higher proportion of auxotrophic to prototrophic bacteria were observed in Firmicutes, 

Actinobacteriota, and Bacteroidota. Fusobacteriota have a higher auxotrophic to 

prototrophic ratio for almost all amino acids, whereas for Proteobacteria the opposite was 

predicted. This observation is further supported by the number of auxotrophies found per 

genome for Proteobacteria and Fusobacteriota (Supplementary Figure S3). Further, the 
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results suggest that auxotrophic genotypes have lost the genes for most of the enzymes that 

would be required for the biosynthesis of the focal amino acid (Supplementary Figure S4). 

A recent study has reported discrepancies between in silico predictions using metabolic 

models reconstructed with carveme (27) and in-vitro studies of amino acid auxotrophies in 

bacteria(13). In order to validate our gapseq-based auxotrophy predictions, we compared 

the predictions with in-vitro experimentally verified auxotrophies as reported in previous 

studies (Supplementary Table S2). In total, we found primary literature information for 

experimentally verified amino acid auxotrophies for six bacterial isolates from the human 

gut microbiome. Among those six isolates, 14 out of 18 (78%) auxotrophies were correctly 

predicted by our method. Out of 102 prototrophies, 97 (95%) were correctly predicted. In 

total, the agreement between predictions and experimental auxotrophy data was 

statistically significant (Fisher’s exact test for count data, p = 4.4e-11). In addition, we 

reconstructed genome-scale metabolic models for 124 bacterial genomes that are known to 

be prototrophic for all 20 proteinogenic amino acids to further validate our auxotrophy 

predictions (27). In total, 2413/2480 (97.3%) of all predictions coincided with the known 

amino acid prototrophies of the organisms. Among the 20 amino acids, 17 amino acids 

prototrophies were correctly predicted for ≥96% of the genomes (Supplementary Figure S5). 

Higher frequencies of false-positive auxotrophy predictions were only observed for 

methionine (18% false positive rate), leucine (10%), and histidine (10%). In general, the 

frequency of auxotrophy predictions among genomes from human gut bacteria is generally 

higher compared to the collection of 124 prototrophic genomes (Supplementary Figure S5), 

indicating that the high frequency of auxotrophies cannot be explained by a false-positive 

rate associated to potential pitfalls in the model reconstruction workflow. 

Taken together, the results indicate that amino acid auxotrophies are prevalent in the 

human gut microbiome. 

 

Amino acid auxotrophies are associated with the profile of 

fermentation products  

Amino acid biosynthesis pathways and fermentation by-product biosynthesis pathways 

share common precursors (Fig. 4B). For example, pyruvate is a central metabolite which is 
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utilized for the biosynthesis of the BCAA as well as lactate underlining the interconnection 

of the amino acid and fermentation by-product biosynthesis in the metabolic network.  

Here, we wanted to investigate whether bacteria, that are auxotrophic for specific amino 

acids, also display specific profiles of fermentation products. Therefore, we predicted the 

metabolic by-products of cell growth and compared those results with the auxotrophy 

predictions for the focal organisms (Fig. 4A). BCAA auxotrophic bacteria were more likely to 

produce lactate in comparison to prototrophic bacteria (Fisher’s exact test for count data, 

log2(Odds Ratio (OR)) = 2.2-2.6, FDR-corrected p-value<0.05). Propionate production was 

commonly predicted for glutamine auxotrophic gut bacteria (log2(OR)= 3.0, FDR-corrected 

p-value <0.05) and by cysteine auxotrophs (log2(OR)= 1.9, FDR-corrected p-value <0.05). 

Succinate is predominantly produced by asparagine auxotrophic gut bacteria (log2(OR)= 1.9, 

FDR corrected p-value <0.05). For butyrate, there was a higher association with glutamine 

auxotrophic bacteria (log2(OR)= 1.3, FDR-corrected p-value <0.05).  

The association of auxotrophic bacteria with the production of organic acids might be 

explained by in the distribution of reactions fluxes through the metabolic network. For 

instance, pyruvate is a metabolic precursor for the de novo biosynthesis pathways for BCAA 

but also for lactate formation (Fig. 4B). Pyruvate not used for BCAA biosynthesis in 

auxotrophic genotypes, might be redirected towards lactate production. Overall, our results 

indicate that pathways of energy metabolism and the formation of microbial fermentation 

products likely influence the evolution of amino acid auxotrophies in human gut bacteria. 

 

More diverse gut microbiomes are characterized by a higher 

auxotrophy frequency 

In order to estimate the frequency of auxotrophies in the gut microbiome of individual 

persons, we predicted auxotrophies of metagenome-assembled genomes (MAGs) from 185 

metagenomes from adults (termed discovery cohort in this study) and took the MAGs’ 

relative abundances into account. For this analysis, only high-quality MAGs with a 

completeness of ≥85% and contamination ≤2% were considered; which yielded in total 756 

MAGs. 

Strikingly, auxotrophies for amino acids that are essential to the human organism were 

more frequent than non-essential amino acids (Fig. 5A). The highest percentage of bacteria 
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were auxotrophic for tryptophan, followed by histidine and phenylalanine (Median: 50.8%, 

32.1%, 33.7%, respectively). Auxotrophies for chorismate, BCAA, and proline were found 

with a median frequency of >25% (Fig. 5A). The lowest frequency was detected for serine, 

lysine, asparagine, aspartate, alanine, and glutamate auxotrophies. 

Additionally, we were interested in the relationship between the proportion of auxotrophic 

bacteria in the human gut and the overall microbiome diversity calculated as the Shannon 

index (Fig. 5B-C). Overall, increasing frequencies of almost all amino acid auxotrophies are 

accompanied by increasing microbiome diversity (Spearman correlation, Fig. 5B). Further, 

we correlated the Shannon diversity with the abundance-weighted average of the number 

of auxotrophies per metagenome sample, which takes the relative abundance of each MAG 

and its total number of amino acid auxotrophies into account. With an increasing number of 

auxotrophies an increase in the diversity was observed (Fig. 5C, ρ= 0.60, p<2.2e-16). This 

result may point towards a positive influence of auxotrophic bacteria on the microbial 

diversity in the gut, presumably via a higher degree of amino acid cross-feeding interactions 

between genotypes that are auxotrophic for different amino acids. To test this, we 

calculated the pairwise dissimilarity (Hamming distance) between the binary auxotrophy 

profiles of MAGs and the means of those differences per metagenome sample as an 

indicator for potential cross-feeding in the respective gut microbial community. An 

increasing average Hamming distance was positively associated with an increase in gut 

diversity (Fig. 5D, ρ= 0.62, p<2.2e-16). 

Overall, a higher number of auxotrophies in the gut community are positively correlated 

with a higher diversity. Especially auxotrophies for essential amino acids can be found in the 

human gut microbiome. 

 

Associations of gut bacterial auxotrophies for amino acids with 

host health markers and the serum metabolome 

The involvement of microbial metabolism in host health has been examined in several other 

studies (28,29) but not yet for frequency of gut microbial amino acid auxotrophies. Our 

results showed that several amino acid auxotrophic bacteria are inversely associated with 

the stool donor’s BMI (Fig. 5B, partial Spearman correlation). No further statistically 

significant associations with health serum markers were found. Additionally, we correlated 
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targeted metabolomics data from serum samples with the frequencies of specific amino 

acid auxotrophies (Fig. 5E, partial Spearman correlation). Positive correlations were found 

between the tryptophan-derived 3-indolepropionic acid (3-IPA) as well as 3-indoleacetic 

acid (3-IAA) and tryptophan auxotrophic gut bacteria. Additionally, several other amino acid 

auxotrophies showed positive correlations with these metabolites. Serine and asparagine 

auxotrophic bacteria were positively associated with indoxyl sulfate (Ind-SO4). P-cresol 

sulfate was positively correlated with many amino acid auxotrophies. Further, several 

significant associations were detected with metabolites from bile acid metabolism. Negative 

correlations were observed for glycoursodeoxycholic acid (GUDCA), a conjugated secondary 

bile acid metabolite, and several amino acid auxotrophies. Further, correlations with the 

bile acid metabolites glycodeoxycholic acid (GDCA) and deoxycholic acid (DCA) were found 

for the frequencies of tyrosine and cysteine auxotrophies as well as glycolithocholic acid 

sulphate (GLCAS) and proline auxotrophy frequency. Strong positive associations were also 

observed for hippuric acid and TMAO with several amino acid auxotrophies. Interestingly, 

no significant associations were found for serum levels of amino acids and amino acid 

related compounds (Fig. 5E). 

Taken together, the frequency of auxotrophic bacteria is related to serum levels of several 

metabolites. The gut microbial contribution to so serum metabolite levels were 

predominantly found for metabolites, that were previously reported to be of microbial 

origin (e.g., 3-IPA, 3-IAA) or are derived from gut microbially-produced compounds (e.g., 

TMAO). 

 

Analysis of longitudinal microbial composition data suggests a 

positive influence of auxotrophies on gut microbiome stability  

So far, our results suggest an involvement of auxotrophic bacteria on the gut microbial 

diversity. Furthermore, higher alpha diversity was positively correlated with increased 

dissimilarity of the auxotrophy profiles of co-existing genotypes. Based on the observation 

that a more diverse gut microbiome was associated with the distribution of auxotrophies, 

we further wanted to analyze whether the frequency of auxotrophies also has an impact on 

long-term stability of the microbiome using data from a longitudinal study. Therefore, we 

re-analyzed recently published metagenomic data from a human cohort study that involves 
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two stool metagenomes from 72 healthy individuals each, which where three years 

apart(30). Microbiome stability over this three-year period was assessed by calculating the 

Bray-Curtis distance for the microbial composition between the two time points for each 

participant. The dissimilarity value, which is an inverse proxy for microbiome stability, was 

then tested for statistical association with the MAG abundance-weighted average number 

of amino acid auxotrophies per genotype at baseline (Fig. 6A). The abundance-weighted 

average of auxotrophies per genotype was significantly and negatively correlated with the 

Bray-Curtis distance (Fig. 6A, Spearman rank sum correlation test, ρ=-0.24, p=0.0403). Thus, 

communities with increasing frequencies of auxotrophies were characterized by higher 

long-term stability. Next, the Bray-Curtis distance between paired samples were also tested 

for a statistical association with the average Hamming distance with samples, which 

represents a measure of the dissimilarity between the auxotrophy profile of co-existing 

genotypes and an indicator for the degree of amino acid cross-feeding in the focal 

community. A significant and negative correlation was observed for the average Hamming 

distance per sample with the Bray-Curtis-Distance (Fig. 6B, ρ=-0.30, p=0.01072), indicating a 

positive influence of amino acid cross-feeding between auxotrophy genotypes with long-

term stability of microbiome composition.  

Auxotrophic bacteria have a high dependence on their nutritional environment. Therefore, 

we wanted to see if a higher dietary intake of amino acids affects the frequency of amino 

acid auxotrophic bacteria in the gut. Therefore, we made use of the dietary intake data 

obtained from food frequency questionnaires from the longitudinal cohort. The intake of 

amino acids at the beginning of the study was tested for correlation with the frequency of 

amino acid auxotrophies in the microbiomes. No significant correlations between the 

frequency of auxotrophic bacteria and the dietary intake of amino acids were observed 

(Supplementary Figure S6). 

In sum, our results suggest a positive effect of auxotrophies on the gut microbiome stability. 

Further, the data suggests that amino acid cross-feeding may contribute to compositional 

stability of the gut microbiome. Surprisingly, we found no evidence for the effect of diet on 

auxotrophy frequencies as a higher dietary intake of amino acids was not significantly 

correlated with higher frequencies of auxotrophic bacteria.  
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Discussion 

Auxotrophies are widespread among microorganisms (11,31). The obligate nutritional 

requirements can have far-reaching consequences for the auxotrophic strains and the entire 

microbial community in the ecosystem (32). On the one hand, each auxotrophy for a specific 

growth factor (e.g., amino acids) increases the organism’s dependence on the nutritional 

environment, coupling the organism’s survival and proliferation to the availability of the 

specific compound (32). On the other hand, if the focal metabolite is available, auxotrophic 

genotypes might gain a selective advantage over prototrophic genotypes by saving 

metabolic costs (33). In microbial communities, auxotrophies can affect the interactions 

between microorganisms and their hosts, where auxotrophs could act as recyclers of 

metabolites that other community members release as by-products of their metabolism 

(34). In addition, organisms that are auxotrophic for different metabolites could engage in 

cooperative cross-feeding interactions (35–37). Despite the ecological relevance of 

auxotrophies, their role in the human gut microbiome is largely unknown. More specifically, 

several auxotrophies were confirmed by laboratory cultivation experiments of isolates from 

the human gut microbiota (13,15). Still, the overall distribution and variation of 

auxotrophies in the human gut microbiome remain elusive. Here, we performed a 

systematic analysis of the distribution of amino acid auxotrophies in the human gut 

microbiome using genome-scale metabolic modeling. Moreover, we statistically assessed 

the associations of auxotrophy frequencies with overall microbiome diversity, long-term 

stability, and microbial contribution to the human metabolome. 

 

Ubiquity of auxotrophies indicates high prevalence of cross-feeding 

Overall, high frequencies of auxotrophies were found in the human gut microbiome. For 

instance, we found that 50.8% (median) of organisms in the gut microbial communities of 

healthy adults are auxotrophic for tryptophan (Fig. 5A). Interestingly, the most frequent 

auxotrophies for amino acids in the human gut microbiome are also essential nutrients for 

the human host (Fig. 5A). While auxotrophies in human gut bacteria were reported before, 

the sources of amino acids for auxotrophic genotypes remain unknown. There are three 

potential sources of amino acids of auxotrophic members of the gut microbiome: 
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First, amino acids might be acquired from dietary proteins (38). However, most of the diet-

derived protein is broken down in the upper gastrointestinal tract and amino acids are 

absorbed by the human host, limiting protein and amino acid passage to the colon, where 

the majority of the gut microbiome resides (38). Our predictions are based on genomes 

from stool samples, which predominantly reflect the microbiome composition in the large 

intestine. Therefore, we argue that the high frequency of amino acid auxotrophies predicted 

for the colon microbiome in this study are unlikely to be explained by dietary sources of 

amino acids alone. Plus, we did not find any statistical associations of the dietary intake of 

amino acids of 75 adults and the frequency of auxotrophies in the microbiome 

(Supplementary Figure S6), which further indicates that auxotrophic genotypes acquire their 

amino acids also from other sources. 

Second, auxotrophs might obtain their essential amino acids by engaging in cross-feeding 

interactions with prototrophic genotypes. Cross-feeding between strains that are 

auxotrophic for different amino acids has been demonstrated in synthetic (37) and naturally 

occurring microbial communities (31). Thus, cross-feeding enables the growth of 

auxotrophic organisms even in environments where the focal nutrient is not available. Our 

results suggest a wide diversity of auxotrophic profiles between coexisting genotypes (Fig. 

5D), indicating metabolic complementarity and amino acid cross-feeding in gut microbial 

communities. 

The third potential source of amino acids for auxotrophic gut microbes are host-derived 

metabolites. Yet, evidence reported in scientific literature for gut microbial uptake of host-

derived amino acids is scarce(39,40). An interesting case where an auxotrophic gut 

bacterium covers its demand for the focal amino acid might be Akkermansia muciniphila. 

Our predictions show that this bacterium is auxotrophic for threonine, which is in 

agreement with previous cultivation experiments (15). A. muciniphila is a known degrader 

of host mucins and resides in the mucus layer. Besides glycans, mucin consists of a core 

protein scaffold that is rich in proline, threonine, and serine (41). Thus, the threonine 

auxotrophy of A. muciniphila may indicate that this species also utilizes host-derived 

threonine. 

 

Auxotrophies are associated with alpha diversity 
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A major result of our study is the positive associations between auxotrophies and diversity 

of the human gut microbiome (Fig. 5C). Earlier studies that used theoretical approaches 

suggested that auxotrophies can increase and maintain diversity in microbial communities 

by creating niches for different organisms to occupy through metabolite cross-feeding 

(24,34). Thus, we conclude that in communities with more auxotrophic members, more 

cross-feeding may take place, which could promote diversity. Our results further support 

this theory, since we observed a positive association between microbiome diversity and the 

dissimilarity in auxotrophic profiles among coexisting genotypes (Fig. 5D). 

 

Auxotrophies and microbiome stability 

Microbe-microbe interactions via metabolite exchanges may promote diversity and 

contribute to microbiome stability (42). Here, we tested if having more auxotrophies as an 

indicator for metabolite cross-feeding in the gut microbiome is linked to greater stability in 

healthy adults over three years. Indeed, our findings indicate that microbiomes with a 

higher average frequency of auxotrophies at the beginning of the study period remained 

more stable throughout the duration of the study (Fig. 6A). The association of auxotrophies 

with microbiome stability was even more pronounced when considering the dissimilarity of 

auxotrophy profiles of coexisting genotypes as a proxy for amino acid cross-feeding (Fig. 

6B). This result is in line with a theoretical study by Oña and Kost, which demonstrates that 

cross-feeding between auxotrophs can facilitate that the community structure returns to 

equilibrium after ecological perturbance (25). Moreover, Sharma et al. (2019) reported that 

B-vitamin auxotrophies in the human microbiome are prevalent and suggest that cross-

feeding B-vitamins between prototrophic and auxotrophic genotypes contribute to gut 

bacterial population dynamics. The authors also base their conclusion on experimental 

results, where gnotobiotic mice were colonized by a human fecal microbial community. In 

these experiments, varying dietary B vitamin intake in mice did not result in appreciable 

changes in gut microbial community structure, including the proportion of B vitamin-

auxotrophic subpopulations, which further suggests cross-feeding as a source of essential 

nutrients for auxotrophic bacteria in the gut environment and supports our hypothesis that 

a higher auxotrophy frequencies contribute to microbiome stability (Fig 6AB). 

Since a reduction in gut microbiome diversity has been reported for several chronic 

diseases(43–45), our results and the methodology to predict auxotrophy frequencies may 
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guide the development of novel personalized treatment strategies by targeting ecological 

interactions between coexisting gut microorganisms. For instance, oral administration of 

microencapsulated amino acids with delayed content release could be used to specifically 

promote the growth of beneficial subpopulations of the large intestine microbial 

community, which are auxotrophic for the focal compound (46). 

 

Auxotrophy associations with the human metabolome 

Pathways of amino acid biosynthesis and fermentation by-product biosynthesis share 

common precursors (Fig. 4B). Therefore, the loss of biosynthetic genes for amino acids 

might affect the flux distribution in the metabolic network (33). Fermentation by-products 

such as the organic acids butyrate, acetate, and propionate have implications for human 

physiology (1). Hence, we wanted to investigate whether specific amino acid auxotrophies 

are associated with the profile of fermentation products released by gut bacteria. 

Comparison of the fermentation by-product profile of auxotrophic and prototrophic 

bacteria revealed statistically significant associations (Fig. 4A), which may be due to the 

structure of the metabolic network (Fig. 4B). For example, BCAA auxotrophic bacteria are 

more likely to be lactate producers, which might be attributed to the fact that the common 

precursor of BCAA synthesis and lactate synthesis, pyruvate, is no longer used for BCAA 

synthesis in BCAA auxotrophic bacteria but can be used for lactate formation. The altered 

fermentation profile in auxotrophic bacteria may therefore indicate the importance of the 

nutritional requirements of gut bacteria for the microbiome’s contribution to the human 

metabolome. 

Indeed, when we tested for associations of the relative abundance of amino acid 

auxotrophs with compounds of the human metabolome, we found several significant 

correlations (Fig. 5E). In particular, the frequencies of several auxotrophies were correlated 

with phenylic and indolic metabolites, namely hippuric acid, p-cresol sulfate, indoxyl sulfate, 

3-indole acetic acid (IAA), and 3-indole propionic acid (IPA). These compounds were 

previously reported to be of microbial origin or are derived from gut microbially-produced 

metabolites (47). For instance, hippuric acid and p-cresol sulfate levels were reported to 

strongly correlate with the microbiome alpha diversity in a large human cohort study (48). 

Moreover, the tryptophan-derived IAA is a known agonist of the epithelial human aryl 

hydrocarbon receptor, an important regulator of intestinal immunity(49). p-cresol is known 
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to be produced by gut bacteria that metabolize tyrosine (50). In summary, our results 

suggest that the contribution of phenylic and indolic compounds to the human metabolome 

is linked to metabolic processes performed by amino acid auxotrophic gut bacteria. 

 

Limitations 

The method of our study is subject to certain limitations. In our study, auxotrophies were 

predicted with reconstructed genome-scale metabolic models. Discrepancies between 

metabolic modelling-based predictions and results from vitro assessments have been 

reported and discussed previously (13,27,51). Thus, it is crucial to validate in silico prediction 

with in vitro results of auxotrophies. Here we compared our in-silico results with in vitro 

results for gut bacterial strains and found a significant agreement of auxotrophy predictions 

and experimental data (Fisher’s exact test for count data, p= 4.4e-11). However, it should be 

considered that it is still often difficult to cultivate human gut bacteria. Here, we were able 

to find data for experimentally determined auxotrophs for only six bacterial isolates from 

the human gut microbiome with a total of 19 amino acid auxotrophies (Supplementary 

Table S2). In addition, we performed auxotrophy prediction for 124 genomes from strains, 

that are not human gut bacteria but known from cultivation experiments to be prototrophic 

for all 20 proteinogenic amino acids. This test showed that 97% of our prototrophy 

predictions are in line with experimental data, suggesting that the high prevalence of 

predicted auxotrophies among the human gut bacterial genomes is indeed realistic and not 

due to a potential technical bias in the in-silico approach. 

 

Conclusion 

In conclusion, amino acid auxotrophies are common in the human gut microbiome. An 

increasing abundance of auxotrophic members is positively correlated with a higher 

diversity and a more stable gut community. In sum, the results indicate a potential impact of 

auxotrophic bacteria on the microbial ecology in the gut and may guide the development of 

novel intervention strategies to restore microbiome diversity.  
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Material and Methods 

Cohorts 

Data from two human population cohorts were analyzed for the present study. The first 

cohort, here named ‘discovery cohort’, comprised paired stool metagenomes and serum 

metabolomes from 185 participants. This cohort was recruited at the University Hospital 

Schleswig Holstein, Campus Kiel 2016 and comprised detailed phenotypic, disease related 

and dietary information. The study was approved by the local ethic committee in Kiel 

(D441). None of the participants had received any antibiotics or other medication 2 months 

prior to inclusion.  

The second cohort comprised longitudinal stool metagenomes from 72 study participants. 

Data from this cohort were already part of a previous study (30), which were reanalyzed in 

the present study. For each participant from the longitudinal cohort, two metagenomes 

were sequenced from stool samples that were 3 years apart. In addition, for each sampling 

time point data from food frequency questionnaires were available. Detailed information 

about the sampling method, study design and sequencing method can be found in the 

publication of Troci et al., 2022 (30). 

 

Metagenome sequencing 

DNA of stool samples was extracted using the QIAamp DNA fast stool mini kit automated on 

the QIAcube (Qiagen, Hilden, Germany) with a prior bead-beating step as has been 

described in detail earlier (52). DNA extracts were used for metagenomic library preparation 

as described previously (30) using Illumina Nextera DNA Library Preparation Kit (Illumina, 

San Diego, CA) and sequenced with 2x150 bp paired-end reads on a NovaSeq platform 

(Illumina). 

 

Metagenome data processing 

Metagenomic reads were processed using the metagenome-atlas workflow v2.9.0(53) with 

default parametrization if not stated otherwise in the following description. In brief, the 

applied workflow consisted of four main steps: (1) Quality control and filtering, (2) read 

assembly, (3) binning of contigs, and (4) bin clustering to sub-species level metagenome-
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assembled genomes and quantification. Further details for each step are provided in the 

Supplementary Information. 

 

Reconstruction of genome-scale metabolic models 

Genome-scale metabolic models were reconstructed for bacterial genomes from the Human 

Reference Gut Microbiome (HRGM) genome collection(26,54). The HRGM collection 

combines isolate and metagenome-assembled genomes (MAGs) from several data sources 

to summarize genome sequences obtained from human fecal samples. Metabolic models 

were reconstructed using gapseq version 1.2(55). The model files as well as the 

documentation of the reconstruction workflow are publicly available at Zenodo(56). A 

detailed description for the genome-scale metabolic model reconstruction workflow can be 

found in the Supplementary Information. 

 

Prediction of amino acid auxotrophies 

Amino acid auxotrophies were predicted with flux balance analysis(57), where the objective 

function was set to the flux through the biomass formation reaction. In detail, each model 

was tested for its ability to form biomass under two different environmental conditions: 

First with the growth medium that was predicted with gapseq (see above) and, second, with 

the same medium but without the focal amino acid. An organism was defined as 

auxotrophic for a specific amino acid, if the predicted growth rate without the focal amino 

acid was less than 5% of the growth rate with the original medium. Flux balance analysis 

was performed in R (version 4.1.2) and R package sybil version 2.2.0 (58). We validated our 

auxotrophy predictions for 130 organisms, for which experimental data for amino acid 

auxotrophies and prototrophies were available in scientific literature (see Supplementary 

Information for details). 

 

Prediction of metabolic by-products 

For comparison of auxotrophic to prototrophic bacteria the production rates of 

fermentation by-product formation were predicted. Metabolic by-products were predicted 

with flux-balance-analysis(57) using the flux through the biomass reaction as objective 

function (i.e. maximization). Rates of metabolite production (mmol*gDW-1*hr-1) were 
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normalized by growth rates (hr-1), which results in the unit mmol/gDW. Production rates > 1 

mmol/gDW were considered as microbial production. The production of the two 

enantiomers D- and L-lactate were combined since their production rates were 

interchangeable in the FBA solution. Flux balance analysis was performed in R (version 

4.1.2) and R package sybil (58) (2.2.0). 

 

Targeted metabolomics of blood samples 

Metabolite quantification for serum was performed by liquid chromatography tandem mass 

spectrometry (LC-MS-MS) using the MxP Quant 500 kit (Biocrates Life Sciences AG, 

Innsbruck, Austria) according to the manufacturer's instructions. Please refer to the 

Supplementary Information document for details on blood sample preparation and 

metabolite quantification. 

 

Statistical data analysis 

All data analysis steps and statistical tests were performed using R (version 4.1.2). Flow 

charts (Fig 1 and 3A) were created and rendered using Flowchart Designer 3. 

The Spearman correlation analysis was used for the completeness of the genomes and 

number of auxotrophies. p-values were corrected for multiple testing using the Benjamini 

and Hochberg method (59). In all statistical tests, a p-value of <0.05 was considered as 

significance threshold. Bray-Curtis distances were calculated using relative abundances of 

MAGs using the R-package vegan, version 2.6-2 (60). 

In order to address if specific auxotrophies occur more often or less often together, than 

expected by chance we employed a re-sampling approach using the Rasch Sampler version 

0.8-8 (61) (see Supplementary Information for details).  

Alpha diversity was calculate using the Shannon index as implemented in the R-package 

‘vegan’ (60). To study the effect of the metabolic dissimilarity on diversity, the average 

pairwise Hamming distance between auxotrophic profiles of co-occurring MAGs was 

calculated per sample. In other words, the Hamming distance is the number of amino acids 

for which the two genotypes had different auxotrophy predictions. In addition to the 

Hamming distance, we also calculated the abundance-weighted average of auxotrophies per 

genome �� for each sample � using the equation: 
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�� � � �����

� � �

 

 

Where M is the set of all MAGs, ��  the number of auxotrophies in MAG �, and ���  the 

relative abundance of MAG � in sample �. 
For the longitudinal cohort, the Bray-Curtis distance was correlated with the abundance-

weighted average of auxotrophies per genome at the first time point using the spearman 

correlation. Further, the Spearman correlation was used for determining the association 

between the Bray-Curtis distance and the hamming distance. With the food frequency 

questionnaires, the total dietary intake of amino acids per day was summed up for every 

individual and the energy percentage was then calculated based on the total energy intake 

per day. For studying an association between the total dietary intake of amino acids relative 

the total consumed energy (E%) and the frequency of amino acid auxotrophic bacteria, the 

Spearman correlation was used. The correlation between the intake of amino acids and 

frequencies of amino acid auxotrophic bacteria was studied separately for both time points 

(Supplementary Figure S6).  
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Data availability 

The reconstructed genome-scale metabolic models from the HRGM catalogue are available 

via Zenodo (56). MAGs and their metabolic model reconstructions for the discovery- and the 

longitudinal cohort are also available via Zenodo (62). Metabolic model reconstructions for 

124 prototrophic genotypes are available via Zenodo (63). Metagenome sequencing data 

are provided with open access via the European Nucleotide Archive ‘ENA’ for both cohorts 

(discovery cohort accession: PRJEB60573, longitudinal cohort accession: PRJEB48605). 

 

Code availability 

The code for analysis of the data can be found in the github repository: 

https://github.com/SvBusche/Auxo_manuscript_2023 
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Figures 

 

Figure 1: Workflow for the prediction of auxotrophies with genome-scale metabolic modeling 

Gapseq was used to reconstruct genome-scale metabolic models from MAGs for genomes from the 

Human Reference Gut Microbiome (HRGM) catalogue(26) and metagenome-assembly genomes (MAGs) 

from the discovery cohort and longitudinal cohort. The workflow of gapseq to reconstruct metabolic 

models consists of five steps: transporter/metabolic pathway prediction, draft metabolic network 

construction, growth medium prediction, gap filling, final model reconstruction(55). Auxotrophy 

prediction was performed using flux-balance analysis(57). Free available icons were taken from 

www.flaticon.com (creators: photo3idea_studio, Freepik, surang, Eucalyp, Voysla, juicy_fish, 

smashingstocks, SBTS2018, creative_designer). 
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Figure 2: Abundances of auxotrophies in 3,687 genomes 

The predicted amino acid auxotrophies in HRGM genomes were categorized into human essential and 

nonessential amino acids. 
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Figure 3: Co-occurrence of amino acid auxotrophies in bacterial genomes 

(A) For 3,687 HRGM genomes, the frequencies of pairwise auxotrophy co-occurrence were calculated. (B) 

The figure represents the statistical assessment of whether the observed co-occurrence of auxotrophies 

is more frequent than expected by chance. For this purpose, the fold change for each co-auxotrophy was 

calculated by forming the quotient of the observed frequency and the median of the frequency 

determined by chance (resampling test (Rasch sampler) with 1,000 iterations). Asterisks indicate 

statistical significance (FDR-corrected p<0.05).  
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Figure 4: Associations of auxotrophies and fermentation products 

(A) Comparison of fermentation product production rates in auxotrophic and prototrophic bacteria. 

Production rates of fermentation by-products were predicted with flux-balance analysis (cutoff-value > 1 

mmol/gDW) in 3,687 HRGM genomes. The association with the auxotrophic or prototrophic phenotype 

was statistically evaluated with the Fisher test for exact count data by calculating odds ratios. Asterisk 

denote FDR-corrected p-values <0.05. (B) Interconnection between the pathways of formation of 

fermentation products and amino acids, based on Metacyc pathways (64).  
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Figure 5: Distribution of auxotrophies in human gut microbiome from the discovery cohort, their 

association with diversity and serum metabolite levels. 

(A) Boxplots displaying the abundance of amino acid auxotrophies in the human gut microbiome (n=185 

samples). (B) Partial Spearman correlation between the frequency of auxotrophic gut bacteria and serum 

levels of health markers and microbiome Shannon diversity. Dots indicate significant associations (FDR-

corrected p-values < 0.05, adjusted for the potential confounders age, sex, and BMI). (C) Abundance-
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weighted average of auxotrophies per MAG was calculated and correlated with the Shannon microbiome 

diversity (Spearman correlation, ρ =0.60, p<2.2e-16). (D) Average hamming distance was calculated to 

study the metabolic dissimilarity of auxotrophy profiles of coexisting genotypes and therefore potential 

cross-feeding interactions within the microbial communities. With the Spearman correlation, the 

association between the calculated average hamming distance and the Shannon diversity in the gut was 

estimated (ρ =0.62, p<2.2e-16). (E) Partial Spearman correlations between the serum levels of 

metabolites and the frequency of auxotrophic bacteria in the gut microbiome. Abbreviations for the 

serum metabolite levels can be found in Supplementary Table S1. Dots indicate significant associations 

(FDR-corrected p-values < 0.05, adjusted for confounders age, sex, and BMI). 
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Figure 6: Influence of auxotrophies on long-term (3 years) stability of the human gut microbiome 

(A) The stability of the human gut microbiome was calculated with the Bray-Curtis distance between the 

two time-points in the longitudinal study and correlated with the abundance-weighted average of 

auxotrophies per MAG at the first time-point to study a potential influence of auxotrophies on the long-

term stability of the human gut microbiome (ρ =-0.24, p=0.0403, n =72), (B) The average Hamming 

distance was calculated for the first time-point and then correlated with the Bray Curtis distance to 

investigate the influence of potential cross-feeding on the long-term-stability (Spearman correlation, ρ =-

0.30, p=0.01072, n =72), the blue lines display linear regression results. 
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Table 1: Cohort characteristics with median ± standard deviation 

 Discovery cohort Longitudinal cohort  

Age 47 ± 8.3 49.9 ± 7.3 

BMI 24.5 ± 3.9 25.6 ± 6 

Female (%) 44.2 40 

Stool samples with 

metagenomes 

185 144 

Participants with two 

metagenomes 

– 72 
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