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Summary 1 

Cerebral cortex supports representations of the world in patterns of neural activity, used by the 2 
brain to make decisions and guide behavior. Past work has found diverse, or limited, changes in 3 
the primary sensory cortex in response to learning, suggesting the key computations might 4 
occur in downstream regions. Alternatively, sensory cortical changes may be central to learning. 5 
We studied cortical learning by using controlled inputs we insert: we trained mice to recognize 6 
entirely novel, non-sensory patterns of cortical activity in the primary visual cortex (V1) created 7 
by optogenetic stimulation. As animals learned to use these novel patterns, we found their 8 
detection abilities improved by an order of magnitude or more. The behavioral change was 9 
accompanied by large increases in V1 neural responses to fixed optogenetic input. Neural 10 
response amplification to novel optogenetic inputs had little effect on existing visual sensory 11 
responses. A recurrent cortical model shows that this amplification can be achieved by a small 12 
mean shift in recurrent network synaptic strength. Amplification would seem to be desirable to 13 
improve decision-making in a detection task, and therefore these results suggest that adult 14 
recurrent cortical plasticity plays a significant role in improving behavioral performance during 15 
learning.  16 
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Introduction 18 

Sensorimotor decision-making involves patterns of neural activity which propagate through the 19 
neural circuits of many brain areas and are changed by those circuits. The sets of neural 20 
computations involved in sensory decision-making have not been fully determined1–4, but some 21 
principles have been identified. One basic neural computation is representation, storing 22 
information about the sensory world in patterns of activity, as is observed in many cerebral 23 
cortical areas. Another is decision, or readout, in which representations are transformed or 24 
categorized by circuits into forms suitable for action5,6.  25 

There is substantial evidence that sensory cortical representations can be modified by activity7–26 
11, but it is less clear whether cortical response changes constitute the computational change 27 
that leads to improved behavior with learning. Studies in humans and animals have reported 28 
varied effects of learning on visual cortical responses, including increased activity after visual 29 
training12–15, selective suppression of activity16, decreased variability of visual selectivity 30 
response properties after training17–19, and activity changes that disappeared once early learning 31 
has ended20. Some learning studies have found improvement in primary sensory 32 
representations19,21–23, along with changes in anticipatory and other signals18,24. Other studies in 33 
primary visual cortex (area V1) have found little task-relevant change16,25,  but found changes in 34 
higher visual areas like V426,27. Thus, it has been unclear whether a major substrate of visual 35 
sensory learning is representational improvement in V1, such as increased gain or selectivity, or 36 
whether the principal changes are readout changes, perhaps in downstream areas. 37 

One reason it has been difficult to delineate the neural computations underlying sensory 38 
decisions is that neurons and brain areas are highly interconnected, and sensory stimuli change 39 
activity in many brain areas28–30. Thus, changes in neural activity that are observed in one 40 
cortical area may be inherited from input regions, and indeed cognitive factors like attention or 41 
arousal can modulate visual activity before it arrives at the cortex31. One way to isolate cortical 42 
representations from downstream readout computations is to use stimulation-based behavioral 43 
paradigms. Using electrical or optogenetic stimulation methods, entirely novel (non-sensory, or 44 
‘off-manifold’)32,33, activity patterns can be introduced in a chosen brain region. Using such novel 45 
patterns is a way to explore the limits of cortical plasticity, as they are dissimilar from normal 46 
sensory patterns.  47 

Here, to isolate representational changes that occur as animals improve on a task, we study V1 48 
neural changes as mice learn to use a new cortical representation induced with optogenetic 49 
stimulation. Animals show dramatic improvements in behavior as they learn, with detection 50 
thresholds improving at times over several orders of magnitude during weeks or months of 51 
learning. Alongside the behavioral improvements, cortical neurons produce larger responses to 52 
the same optogenetic input. Thus, learning enables a fixed input to produce an increasingly 53 
large response in the V1 network, presumably by some adjustment of local, recurrent circuitry34–54 
36. The results imply that this learning leads to local changes in representations by increasing 55 
recurrent amplification in V1.  56 

 57 
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Results 59 

We trained animals to detect neural activity evoked by optogenetic stimulation, and measured 60 
cortical responses during learning with 2-photon imaging. We implanted a 3 mm optical glass 61 
window over V1 and used multiple viral injections in layer II/III to express an opsin (soma-62 
targeted ChrimsonR; stChrimsonR; excitatory neurons, AAV9-FLIP/DIO in Emx1-Cre mouse 63 
line)37,38,39, and for 2-photon imaging, a calcium indicator (jGCaMP7s or 8s; all neurons; AAV9-64 
hSyn)40–42. 65 

We delivered optogenetic stimulation light through the objective (combined into the light path via 66 
a dichroic; Methods; Figure 1A) which robustly activates stChrimsonR-expressing neurons 67 
throughout layer II/III (~500 µm diameter light spot at cortical surface; Figure S5 and 68 
Methods;43). 69 

 70 
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Figure 1 - Mice gradually learn to report direct optogenetic stimulation of V1 excitatory neurons. (A, B) Task 71 
schematic. Animals release a lever when they detect the optogenetic stimulus (opsin: soma-targeted stChrimsonR in 72 
excitatory neurons). Only rapid lever releases (between 50-550 ms post-stim) were scored as correct (release before 73 
this window: false alarm, releases later: miss). (C) Example of long-term optogenetic learning. Blue circles, i-ii (7 74 
sessions): initial fast drop in stimulation power required to hold performance constant (green: hit rate roughly 75 
constant, >70%; Results), ii-iii: longer phase of behavioral improvement (80 sessions). (D) Psychometric curves 76 
showing stimulation power decrease (curves from days shown by i, ii, and iii in 1C. Small gray text, threshold power 77 
in mW. Leftward shift signifies improved performance: gray arrow). Power threshold of the final session was three 78 
orders of magnitude lower than threshold of first session (0.38, 0.0002 mW: i, iii). (E) Psychometric curves covering 79 
the initial phase of optogenetic learning (same animal from C,D, sessions 0 and 9). Red dotted line: common power 80 
across sessions used for reaction time analysis. (F, G) Reaction times in response to optogenetic stimulation get 81 
shorter with learning (first 10 sessions of optogenetic learning, F: N = 1 animal, errorbars: SEM over trials, G: N = 9 82 
animals, each point: regression slope for one animal, power shown by red line in E, Methods; errorbar: IQR = 18.6, p 83 
< 0.01). (H) Change in reaction time cannot merely be explained by change in false alarm rate, a proxy for response 84 
criterion44 (black line: linear regression, slope -3.98, p = 0.002, blue line: negative change in reaction time even at 85 
zero false alarm rate change, offset -15.6, p = 0.02.) Here and below, all errorbars: SEM unless otherwise specified. 86 

Optogenetic detection training (N = 16 animals) occurred in two phases (Figure S1A,B). First, 87 
we trained animals to perform a sensory detection task. This was so they first learned the task 88 
demands (waiting for stimulus, lever press, etc.), reducing behavioral changes due to those 89 
effects as optogenetic learning progressed. We trained animals to respond to a small visual 90 
stimulus (monocular Gabor; 14˚ FWHM) until they performed the task with a stable 91 
psychometric threshold for three sessions (e.g., for animals imaged during behavior: training 92 
time 15-29 days, 23.6 ± 6.2 days, mean ± SEM, N = 3 animals). Next, we added an optogenetic 93 
stimulus (Figure 1; Figure S1; 0.5 mW at 595 nm), delivered at the same time as the visual 94 
stimulus. Over the course of several sessions, we removed the visual stimulus gradually by 95 
manually reducing visual stimulus contrast45. This made it more difficult to perform the task 96 
using the visual stimulus, but kept performance at approximately the same level as animals 97 
began to rely on the optogenetic stimulus (Figure 1A,B; Figure S1A,B). When contrast of the 98 
visual stimulus was zero, animals relied entirely on the optogenetic stimulus (2.3 ± 0.9 days 99 
after first optogenetic stimulus, mean ± SEM, animals used for imaging, N = 3; “session 0”). We 100 
confirmed that animals responded only to the optogenetic-evoked neural activity by moving the 101 
optogenetic spot during behavior to non-training locations within V1, which resulted in no 102 
behavioral responses (Figure S2A,B). 103 

How similar are optogenetic responses to visual sensory responses? The optogenetic stimuli we 104 
use produce a different pattern of responses across the neural population than visual inputs, 105 
which activate cells based on their receptive field properties. However, in the temporal domain 106 
our optogenetic stimulation is more similar to visual responses, as optogenetic stimulation with 107 
the parameters we use modulates firing rates (measured with electrophysiology in46), and does 108 
not dramatically synchronize firing. This is consistent with the cortex operating as a recurrent 109 
network with reasonable strong excitatory-inhibitory coupling. In such a network, cortical 110 
neurons can fire irregularly, due to large amounts of recurrent input that lead to highly 111 
fluctuating membrane potentials47–49. Inputs then modulate the firing rate43,50,51 of the neurons 112 
— whose individual spike times are determined by the network-driven membrane potential 113 
fluctuations52. 114 
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Optogenetic learning in a detection task 115 
We found that animals dramatically increase their ability to detect the optogenetic stimulus – 116 
that is, the activation of V1 neurons — with practice. We collected psychometric curves during 117 
training sessions to track changes in animals’ perceptual sensitivity to the optogenetic stimulus 118 
(Figure 1C). Over the course of long-term training (~90 sessions), we found that with practice 119 
animals’ perceptual thresholds dropped dramatically (Figure 1C). That is, animals needed less-120 
strong stimulation over time to achieve the same level of performance. The observed rate of 121 
threshold change could be roughly separated into two phases, a phase that occurred within the 122 
initial ~10 sessions of training after acquisition of the optogenetic task (Figure 1C,D: i and ii) and 123 
a slower phase over many additional sessions (Figure 1C,D: ii and iii). Below, we focus on the 124 
first six days of this initial learning phase for our experiments examining neural activity changes. 125 
In this initial phase, the threshold changes were large (Figure 1E, Dthresh. pwr. =  -0.28 mW: 126 
0.35, 95% CI [0.31-0.37], to 0.058 [0.052 - 0.063]).  127 

The threshold changes were accompanied by decreases in reaction times. We compared 128 
reaction times for fixed stimulation powers across days (Figure 1F,G, median = -15.4 ms, IQR = 129 
18.6, p < 0.01, over a subset of animals, N = 9, with common stimulation powers). The reaction 130 
time changes could not be accounted for by changes in animals’ false alarm rates (Figure 1H). 131 
While reaction times did change with false alarm rates, as expected due to changes in 132 
underlying perceptual criterion, reaction time changes remained after regressing out false alarm 133 
rate (Figure 1H). 134 

Responses of V1 to optogenetic stimulation are amplified by learning 135 
We next imaged neural responses to stimulation during the process of learning. We measured 136 
neural responses in layer II/III during the first six optogenetic learning sessions, where learning 137 
is rapid (Figure 1C-F; Figure 2A). During this period, animals’ showed a greater than 50% drop 138 
in their optogenetic detection thresholds (Figure 2A, Δthresh. pwr. from session 0 to 5, -62 ± 139 
10%, N = 4 animals, different cohort than in Figure 1).  140 

To examine response changes with high signal-to-noise, we first averaged fluorescence 141 
responses over a large region of interest (Figure 2C). Imaging (Figure 2B) during optogenetic 142 
detection behavior then revealed clear stimulus-evoked responses that were strongly amplified 143 
over the course of training (Figure 2C-J).  144 

This amplification could not be explained by shifts in the imaging plane or by changes in virus 145 
expression over sessions (Figure S3). It also could not be explained by tissue growth under the 146 
window or other optical degradation, over time or as a result of stimulation, as the effect we 147 
measured was in the opposite direction: an increase in responses to stimulation. However, to 148 
verify that optical changes did not account for the effects, we measured the effects of 149 
stimulation within each preparation at the imaging plane while not imaging, and used it to adjust 150 
stimulation power, finding that the amplification effects remained with and without this 151 
adjustment (Figure S4). Finally, as another check to rule out effects of imaging properties or 152 
expression contributing to this effect, we stimulated in control animals using matched mock 153 
training sessions, with the same imaging, stimulation, reward, optical window, and injection 154 
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parameters as during training (Figure 2I,J; see also Figure S9 for similar control experiments 155 
using even higher powers). We found no amplification in this closely matched control (Figure 156 
2I,J), arguing that the amplification we saw was indeed an increase in neural responses as a 157 
function of learning.  158 

 159 
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Figure 2 - V1 responses to optogenetic stimulation are amplified by learning. (A) Animals improve optogenetic 160 
detection ability with practice (y-axis: threshold, stimulation power required for fixed detection performance; 161 
normalized to session 0, N = 4 animals imaged during learning, different cohort than Figure 1). (B) stChrimsonR, 162 
GCaMP7s expressed in layer II/III neurons (animal 1, shown over days in Figure S3). Orange circle: approx. 163 
stimulation beam waist (~200 µm, Figure S5). (C) Neural response amplification after optogenetic learning (mean 164 
ΔF/F, 0.04 mW stimulation power, near psychometric threshold, animal 1, analysis from same animal for panels D-H). 165 
Grey box: region of interest (ROI) used for trial-by-trial ΔF/F analysis. (D, E) ΔF/F time courses before and after 166 
learning, matched stimulation powers. (F) Deconvolved signal (spike rate proxy; OASIS53,54) shows spiking changes 167 
occur during stimulation (decay in D-E due to calcium dynamics, not spiking). (G) Average ΔF/F response across 168 
power levels (ROI shown in C). (H) Trial ΔF/F responses before and after learning (session 0 and 5: S0 and S5, ΔF/F 169 
in ROI, C; left: power near detection threshold, right: above threshold; each point one trial). (I) Normalized response 170 
change, all animals, with learning or control (change in ΔF/F, mean over trials ± SEM, at threshold power, ** p < 10-2, 171 
*** p < 10-3, **** p < 10-4, Mann-Whitney U test). (J) Same as G, for two additional animals plus an example control 172 
animal. (K) Left: cell masks (animal 2, session 5; found with suite2p55). Right: Mean cell responses before and after 173 
optogenetic learning. Orange box: optogenetic stim period (100 ms). (L) Example cell stimulation response (0.14 174 
mW; more timecourses in Figure S6). Dotted lines: single-exponential fits to fluorescence decay (100-350 ms, green 175 
box). (M) Mean stimulation response in cells and neuropil is positive (left), but suppression is seen after animals’ 176 
responses (lever releases: dashed black line), purple: post-reaction averaging window. (N) Neuron responses to 177 
stimulation (during stimulation period: yellow in L,M) before and after learning (animal 2, near-threshold power for 178 
session 5, 0.04 mW). (O) Cell responses show widespread amplification with learning (each point: one cell, **** p < 179 
10-4, unpaired t-test, session 0: N = 64, session 5: N = 142). N = 1 example animal in panels K-O. 180 

In principle it could have been that amplification was seen at some power levels but not others. 181 
We examined optogenetic-evoked responses and found that after learning, responses were 182 
amplified at all optogenetic power levels (Figure 2G-J), with strong effects both near the 183 
psychometric threshold (where behavior is tightly bound to stimulus perception) and also at 184 
above-threshold optogenetic stimulation powers (where trials are perceptually easy and 185 
performance is not stimulus-limited), where animals perform well. Though the magnitude of 186 
these changes varied somewhat across animals, we measured individually significant 187 
amplification in all learning animals and not in controls (Figure 2I; Figure S8).  188 

We then examined single-neuron responses in an example animal (Figure 2K). We found that 189 
during the stimulation period, nearly all individual neurons (Figure 2K,N,O) as well as the 190 
surrounding neuropil (Figure 2L and Figure S6) showed positive responses. Thus, averaging 191 
neurons into large ROIs (Figure 2C-J) captures the effects seen in single cells, the positive 192 
responses across many neurons. The cell responses were amplified with learning (Figure 2O), 193 
and the amplification was seen across multiple powers (Figure 2N,O, mean change in DF/F = 194 
6.7, 14.0, 26.6%; at 0.014, 0.04, and 0.14 mW; 95% CI [3.0 - 10], [9.5 - 19.5], [17.2 - 36.0]%), 195 
also consistent with the data from the large-ROI population measurements (Figure 2B-J). We 196 
also examined whether neurons showed any signs of suppression after stimulation45. We did 197 
find evidence for suppression (Figure 2M). However, this suppression was not part of the 198 
behavioral response or decision, as it occurred only after the animal made its behavioral 199 
response (Figure 2M and Figure S7, average reaction time for optogenetic learning animals 225 200 
± 23 ms, mean ± SEM, N = 3). This suppression timecourse is consistent with 201 
electrophysiological measurements of V1 excitatory optogenetic responses46. Those 202 
measurements show an initial positive transient in almost all neurons, followed in some 203 
excitatory cells by a suppressed steady state, effects that can be explained by coupling within 204 
the cortical recurrent network. In any case, for our 100 ms optogenetic pulses, we found the 205 
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neural responses during the stimulation period were nearly entirely positive (Figure 2D-F,M-O), 206 
and further, these responses increased with learning. 207 

The changes we observed in neural activity were smaller than the improvements seen in 208 
perception. Animals’ perceptual detection performance improved, and thresholds decreased, by 209 
a factor of approximately 2.7x after 6 sessions (i.e., power threshold was 37 ± 11% of session 0 210 
levels; Figure 2A). In contrast, DF/F over the course of 6 sessions, measured at threshold 211 
stimulation power showed a 1.7x increase in DF/F over the large ROIs: session 0, 25.6 ± 7.4%, 212 
mean ± SEM across animals, session 5, 42.9 ± 10.9%, Figure 2I; and a 2.1x increase in mean 213 
cell peak DF/F, Figure 2O, 9.3% to 23.3%. Several caveats apply: the readout mechanism 214 
presumably sums across large numbers of neurons and thus may not be limited by the change 215 
in cortical responses we measure, and opsin saturation at high power may lead to greater 216 
changes in power than activity. However, the fact that behavior changes by a larger factor than 217 
cortical responses could potentially indicate that there is an improvement in the readout 218 
mechanism, occurring along with the amplification changes we see.  219 

The largest neural response changes happened from one day to the next, not within-220 
session 221 

While we observed significant increases in DF/F responses across experimental days, we found 222 
no evidence of increases within-session. In fact, we found a small decrease in responses to 223 
stimulation over the course of each experimental day (Figure S8, average DF/F change over 224 
100 trials: -1.2% DF/F, 95% CI [-0.9 to 1.6]% DF/F, coeff. less than zero at p < 10-13, via linear 225 
regression over trials within day, estimated across animals and sessions, N = 3; Methods). 226 
Thus, it appears that optogenetic learning-related changes do not happen within the behavioral 227 
day, i.e., from one trial to the next. Instead, these data support that the major changes to neural 228 
responses occur outside of training, and may be driven by consolidation: changes in the brain in 229 
the hours between the experimental sessions. 230 

No amplification occurs with stimulation outside of the behavioral learning context 231 
To determine if cortical amplification is dependent on learning, or might arise from repeated 232 
optogenetic stimulus alone, we performed a stimulation control in a mock behavioral context, 233 
and found no amplification (Figure 2I,J). That experiment was conducted with stimulation 234 
powers matched to those used during optogenetic learning (up to 0.5 mW, N = 3 animals). To 235 
determine if we could drive changes using stronger optogenetic stimulation, we increased 236 
stimulation power levels up to twice that used for behavior. We provided repeated optogenetic 237 
stimulation using a range of powers up to 1 mW (100 ms stimulation with ~6 s interpulse 238 
interval, 1200 and 1500 repetitions, N = 2 animals, thus N = 5 total non-behaving controls). 239 
Even with higher stimulation powers we observed no changes in the optogenetic sensitivity of 240 
cells in the stimulated regions (Figure S9A,B). This result shows that amplification in response 241 
to these novel non-sensory stimuli requires an associative (behavioral) context. 242 
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 9 

Statistics of visual responses are unchanged after optogenetic learning at both the 243 
training and control sites 244 
Previous studies suggest that learning in visual perceptual tasks can lead to changes in the 245 
tuning properties of responsive neurons in mouse V119,24. However, it remains unresolved if 246 
these perceptual learning changes arise from plasticity in the local cortical networks, or if 247 
changes may be inherited from thalamic input pathways that could in principle adjust input 248 
strength, state, or synchrony56–59 to change cortical responses. Since optogenetic stimulation 249 
bypasses feedforward input from the thalamus, we asked whether the visual response 250 
properties of V1 neurons would change with optogenetic learning.    251 

We imaged V1 neurons as mice were shown a series of visual stimuli before and after 252 
optogenetic learning (Figure 3A-D; Methods). We collected the responses of neurons at both 253 
the optogenetic training location (a V1 imaging site to which the visual stimulus was 254 
retinotopically matched), and an adjacent control location in V1 where stimuli were not delivered 255 
for optogenetic learning.  256 

 257 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 24, 2023. ; https://doi.org/10.1101/2022.07.10.499496doi: bioRxiv preprint 

https://doi.org/10.1101/2022.07.10.499496
http://creativecommons.org/licenses/by-nc/4.0/


 10 

Figure 3 - Visual response properties are unchanged after optogenetic learning. (A) Schematic of experiment 258 
(N = 3 animals, different animals than shown in Figure 2). Visual responses were measured before and after 259 
optogenetic learning (12-direction full-field drifting gratings or monocular Gabors, FWHM 12˚) (B) Example pixel-by-260 
pixel responses (gray: std. dev of DF/F over imaging frames.) (C) Tuning of two example cells (blue, green outlines in 261 
B). (D) Responses to visual stimulation across the 12 drifting grating directions, same cells in C. (E) Example (N = 1 262 
animal) distributions of unitless indices for direction selectivity (DSI), orientation selectivity (OSI), and global 263 
orientation selectivity (gOSI; Methods), full-field stimulus; * p< 0.05, Kolmogorov-Smirnoff 2-sample test: p-values: 264 
training location, DSI: 0.06, OSI: 0.90, gOSI: 0.21; control location, DSI: 0.27, OSI: 7.8 x 10-4, gOSI: 5.7 x 10-6).  (F) 265 
Summary of all visual response indices, both visual stimuli, pre- and post- optogenetic learning (mean ± SEM; n.s.: p 266 
> 0.05, N = 3 animals, unpaired t-test, pre- versus post- learning, also Figure S10).  267 

Though we found some changes in visual tuning indices (Figure 3E) at both the optogenetic 268 
training and control locations before and after learning, these changes were inconsistent across 269 
animals and comparable in size between the training and control locations (Figure S10A). 270 
Across the population of animals, we found no significant mean changes in the visual response 271 
metrics (Figure 3F), nor in the magnitude of neural responsivity to visual stimuli (Figure S10B). 272 
The per-animal changes might perhaps arise from representational drift over time60,61, 273 
potentially explaining why there was little mean change. The lack of mean change is consistent 274 
with the idea that recurrent network changes boost optogenetic responses, while leaving 275 
unchanged other dimensions of network response, as some overlap of responses must occur: 276 
many neurons respond to visual input (Figure 3E, Figure S10A), and with this viral expression 277 
approach, a majority of excitatory neurons express stChrimsonR46. Thus, while optogenetic 278 
learning leads to amplification of optogenetic responses, underlying visual response 279 
distributions and the overall structure of existing sensory representations remain intact. 280 

A network model shows amplification can be achieved by adjusting a minority of 281 
recurrent synapses 282 
To understand how recurrent synapses might change to support the amplification we observed, 283 
we trained a recurrent neural network (RNN; Figure 4A) to show amplification. We trained the 284 
network in two steps, first to produce a response that mirrored an optogenetic input delivered to 285 
a fraction of cells (30%; matching previous expression data46, and Figures S4 and S5), and then 286 
to produce a response that was twice the size (Figure 4B). We only allowed changes in the 287 
recurrent connections, but not in the input and output weights. During training to produce 288 
amplification, many synaptic weights were adjusted, with a small positive shift in the population 289 
mean weight (Figure 4C,D, Figure S11, mean 5.8% ± s.d. 88% change). The stimulated 290 
neurons tended to strengthen their synapses onto other neurons (mean change 31.8%), while 291 
neurons that did not receive optogenetic input showed a small negative synaptic change (mean 292 
change -5.4%). The amplification in this recurrent model shows that synaptic strength changes, 293 
even when restricted to the local recurrent connectivity, can in principle support the amplification 294 
we observed. 295 
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 296 

Figure 4 - Network amplification for fixed optogenetic input arising from recurrent weight changes. (A) Two-297 
step training of a rate-based RNN of 200 neurons with all-to-all connectivity (Gaussian distributed variance, g0 = 0.8; 298 
Figure S11; Methods). Fixed input (Win) and output (Wout) weights with 30% of neurons receiving optogenetic input 299 
(Iopto), a 100 ms pulse train with a variable rest interval up to 400 ms. Only recurrent weights were trained (Wrec(pre) 300 
and Wrec(post)). Initial training (red): target output profile was Zpre = Iopto. Amplification training (blue): profile was Zpost = 301 
2 * Iopto, a fixed gain of 2. (B) Profiles of target optogenetic output mimics pre- and post- learning amplification (Zpre 302 
and Zpost , respectively). (C) Resultant weight matrices for initial training (Wrec(pre)), and amplification training 303 
(Wrec(post)). (D) Difference weight matrix (Wrec(post) – Wrec(pre)) showing that amplification resulted in primarily positive 304 
weight changes across neurons receiving optogenetic stimulation. 305 

 306 

Discussion 307 

In this work we examine the capacity of adult mouse primary visual cortex (V1) to undergo 308 
plastic changes in response to novel optogenetic stimuli over a few days of learning. We found 309 
clear evidence that neural responses to novel stimuli — optogenetic inputs applied directly to 310 
many cells — are amplified in V1, but only if those stimuli are made behaviorally-relevant. The 311 
changes in neurons’ responses over learning sessions mirrored the animals’ perceptual 312 
improvements. Responses to visual stimuli, which were not relevant for learning, did not show 313 
systematic changes, suggesting that the layer II/III cortical network was able to selectively 314 
amplify the input pattern created by optogenetic stimulation. Taken together, our results provide 315 
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evidence for substantial plastic changes specifically in the primary visual cortex of the adult 316 
mouse brain that are linked to perceptual learning of a completely novel stimulus.  317 

Amplification is a desirable representational change for a perceptual detection task 318 
In an optogenetic detection task, the principal neural computation that must be performed is a 319 
comparison between the activity evoked by optogenetic stimulation and spontaneous, ongoing 320 
activity. Therefore, the amplification of the optogenetic signal we found, an increasingly large 321 
spiking response to fixed input, seems to be the optimal way (assuming no major changes in the 322 
noise or variability in the population62) for the V1 recurrent network to adjust to improve task 323 
performance. 324 

Other studies have found evidence for learning-related changes with optogenetic-stimulation 325 
tasks. Using a discrimination task and stimulating neurons in the somatosensory cortex (S1) 326 
with widefield (1-photon) optogenetics, Pancholi et al.63 found no evidence for amplification but 327 
did see other changes, including increases in response sparsity. Another study in S1 that used 328 
1-photon stimulation learning45 found behavioral improvement, but did not examine neural 329 
changes during that learning. In the visual cortex, Marshel et al.22 trained animals to report 330 
activation of specific neural ensembles activated with 2-photon holographic stimulation. They 331 
found evidence for amplification in two different subnetworks (defined by intrinsic visual 332 
responses), but less-consistent changes for random-ensemble stimulation. In contrast, our work 333 
uses stronger widefield (1-photon) stimulation, and shows robust behavioral changes after 334 
learning that are accompanied by unambiguous V1 neural amplification.  335 

The different effects seen in Pancholi et al. might be due to structural differences between V1 336 
and S1 cortical circuits, or may be related to differences in task-specific computations. Their 337 
subjects were asked to discriminate between total stimulation intensity (low versus high number 338 
of optogenetic pulses), rather than discriminate or detect a specific pattern of activity.  339 

Prior studies also disagree on interpretation, seemingly due to these differences in 340 
measurement of neural responses. For example, Dalgleish et al.45 hypothesize that the main 341 
neural changes relevant for behavior are happening downstream, outside the cortical area they 342 
stimulate (S1). Our work shows that there are clear changes occurring in V1 that support this 343 
optogenetic learning, and that those changes appear to be the optimal change to improve task 344 
performance.  345 

Readout changes and representational changes 346 

Our results appear to help resolve a contradiction in recent optogenetic stimulation studies. 347 
Some studies have found animals can detect the activation of approximately 40 neurons, in 348 
somatosensory cortex (S1)45, and the olfactory bulb64. However, other work has found that only 349 
a subset of animals reported activation of similarly-sized groups of randomly selected V1 350 
neurons22. While a possible explanation may be differences between brain areas, our data 351 
suggest a different explanation: that detection of randomly-selected small ensembles of neurons 352 
requires initial learning with stronger stimulation. The S1 and olfactory bulb studies initially 353 
trained animals using 1-photon (widefield) optogenetics, as we use here. Thus, these 354 
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optogenetic results, along with electrical stimulation studies65–70 imply that, in many brain areas, 355 
animals can use completely novel, randomly-chosen patterns of neural stimulation, but to do so, 356 
learning must first be induced by strong stimulation of hundreds of neurons or more. 357 

While we found significant changes in cortical representations during learning, it is possible that 358 
the readout mechanism improves as well. Our data might suggest there are changes in readout, 359 
beyond V1 changes in amplification, as we found larger improvements in behavioral 360 
performance than in cortical responses (percent changes in stimulation power needed to do the 361 
task vs. percent changes in neural responses; Figures 1 and 2), though interpretation is difficult 362 
due to potential opsin saturation and potential nonlinear or variability-dependent readout62,71. 363 
Dalgleish et al. also provide evidence that readout changes occur in optogenetic-learning tasks: 364 
they found that high detection performance generalized across different stimulated patterns of 365 
cortical neurons. That is, after learning, animals did well at detecting the activation of not just a 366 
single trained subset of up to 100 neurons, but many different sets of up to 100 neurons. On the 367 
other hand, Marshel et al., who also stimulated randomly selected groups of up to approximately 368 
100 neurons, found little generalization from one randomly-selected pattern to the next (their 369 
Figure 4I). Several differences might explain the divergent results: differences in cortical area, or 370 
difference in behavioral task: single-pattern detection vs. two-pattern discrimination. While our 371 
results show that cortical circuits can change with optogenetic learning, it is still possible that in 372 
some circumstances the decoding mechanism can also change during optogenetic learning. 373 

The learning that we observed here seems likely to be a change in optogenetic sensitivity and 374 
not related to changes in movements. Our animals were pre-trained on a visual detection task 375 
before introducing the optogenetic stimulus (Figure S1A,B). Thus, the task demands and motor 376 
responses were fixed, and the only learning step needed was for animals to gain the ability to 377 
perceive and report the novel optogenetic activity induced in the cortex. 378 

Amplification happens via consolidation, with the largest changes outside sessions 379 
Because we measured neural responses during task performance, we were able to determine 380 
whether amplification happened within the training sessions or developed from one day to the 381 
next. We found that within-session, there were small or negative changes in neural responses to 382 
a fixed stimulus (Figure S8), though there were consistent changes from one learning session to 383 
the next (Figure 2). While some decreases in response within-session could, in principle, be due 384 
to bleaching of opsin or indicator, the changes from one session to the next suggests that the 385 
major cortical network changes were happening outside sessions, perhaps as animals rested or 386 
slept. This is reminiscent of the consolidation that happens in motor learning, where a significant 387 
component of the motor improvement also appears to occur outside of the actual learning or 388 
practice repetitions72,73. 389 

Our physiological recordings found learning-related neural changes over the initial few days of 390 
optogenetic learning (5-6 days), consistent with previous reports22,45,63. However, we also 391 
measured continued improvement in optogenetic detection performance (without neural 392 
imaging) over many weeks to months of training (Figure 1). It seems possible that additional 393 
cortical amplification happens during this longer phase as well. This is supported by studies of 394 
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long-term deafferentation, which have demonstrated that cortical responses can change over 395 
months or years to accommodate input changes74,75. 396 

Pattern amplification in cortex due to recurrent connectivity 397 
We found that optogenetic learning produced little change in the visual response properties of 398 
targeted neurons (Figure 3). In principle, the observed increase in cortical responses to the 399 
optogenetic stimulus could have arisen from changes outside the local cortical network that 400 
would not be due to modification of recurrent connections. These outside sources might be 401 
changes in top-down, higher-order thalamic (e.g., from the lateral posterior nucleus, LP / 402 
pulvinar) or neuromodulatory input that change the gain of V1 neurons. In addition, individual 403 
cells might change their intrinsic excitability76. However, were top-down input changes, intrinsic 404 
excitability, or neuromodulatory effects the dominant players, we might expect effects on visual 405 
responses as well. Theoretical work also shows that response amplification to a fixed input can 406 
be created in recurrent networks by adjusting the synaptic connectivity within the network34,35,77. 407 
Pattern completion observations in cortex78 are also consistent with response amplification, as 408 
amplification of a particular input pattern is closely related to completion, where a partial input 409 
pattern, via the recurrent network, induces larger responses in the neurons that compose the 410 
activity pattern. Finally, spinogenesis in motor cortex accompanies motor learning79,80 and 411 
chronic optogenetic stimulation in vitro can also produce recurrent changes81. Together, along 412 
with the timecourse of the changes we saw, over the course of several days of practice, these 413 
observations suggest that changes in local recurrent cortical synapses are a likely mechanism 414 
for the learning-related neural changes we observed. 415 

What circuit mechanism might gate, or enable, cortical recurrent plasticity, to allow changes 416 
during behavior but not for inputs presented outside a behavioral context? There is substantial 417 
evidence that inhibitory modulation is involved when such cortical network changes occur9,82–88 418 
and alternation of perineuronal networks, which surround many inhibitory neurons, participate in 419 
these synaptic changes89–95. Since the response changes we observed are dependent on 420 
animals performing a rewarded behavioral task, a compelling possibility is that task context or 421 
reward prediction signals trigger activation of inhibitory neurons, which opens the gate for 422 
plasticity, enabling changes to begin. 423 

Conclusion 424 

How the cerebral cortex builds sensory representations for use in behavior is key to 425 
understanding brain function. Though the adult visual cortex is less plastic than the developing 426 
cortex96–98, our results – cortical amplification in response to completely novel artificial patterns 427 
of optogenetic input – provide key insights into how brains can adapt to behaviorally-relevant 428 
sensory information throughout our lifetimes.  429 

  430 
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STAR★Methods 431 

Key resources table 432 

Reagent type 
(species) or 
resource 

Designation Source or 
reference 

Identifiers Additional 
information 

Genetic reagent (M. 
musculus) 

Emx1-Cre  The Jackson 
Laboratory 

RRID:IMSR_JAX
:005628 

21 total 
animals 

Recombinant DNA reagent AAV9-hSyn-FLEX-GCaMP6f Addgene #100833  

Recombinant DNA reagent AAV9-hSyn-jGCaMP7s Addgene #104487  

Recombinant DNA reagent AAV9-hSyn-jGCaMP8s Addgene #162377  

Recombinant DNA reagent AAV1-hsyn-FLEX-
ChrimsonR-tdTomato 

Addgene #62723  

Recombinant DNA reagent AAV9-hSyn-DIO-
stChRimsonR-mRuby2 

Addgene  #105448 

 

 

 433 

  434 
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Resource availability 435 

Lead contact 436 
Further information and requests for the resources should be directed to and will be fulfilled by 437 
the lead contact, Mark H. Histed (mark.histed@nih.gov). 438 

Materials availability 439 

This study did not generate new unique reagents. 440 

Methods details 441 

Animals 442 
All experimental procedures were approved by the NIH Institutional Animal Care and Use 443 
Committee (IACUC) and complied with Public Health Service policy on the humane care and 444 
use of laboratory animals. Emx1-Cre mice (Cre-recombinase targeted at the Emx1 locus99, Jax 445 
stock no. 005628, N = 21) were used for all experiments. N = 9 animals were used for 446 
optogenetic behavior without imaging (Figure 1), N = 4 for optogenetic behavior plus 447 
simultaneous 2-photon imaging (Figure 2), N = 3 for mock behavior with optogenetic stimulation 448 
only (Figure 2), N = 2 for non-behavior optogenetic stimulation (Figure S9), and N = 3 for visual 449 
stimulation before and after optogenetic behavior (Figure 3). Animals were housed on a reverse 450 
light/dark cycle. 451 

Cranial window implantation and viral injection 452 

Mice were given intraperitoneal dexamethasone (3.2 mg/kg) and anesthetized with isoflurane 453 
(1–3% in 100% O2 at 1 L/min). Using aseptic technique, a titanium headpost was affixed using 454 
C & B Metabond (Parkell) and a 3 mm diameter craniotomy was made, centered over V1 (−3.1 455 
mm ML, +1.5 mm AP from lambda).  456 

Mice were injected with a pre-mixed combination of two adenovirus-mediated (AAV9) vectors 457 
for expression in the cortex, a functional calcium indicator (AAV9-hSyn-jGCaMP7s or -458 
jGCaMP8s, viral titers 3.0 x 1013 and 4.1 x 1013 GC/ml respectively, final dilution 1:10) construct 459 
and a photoactivatable soma-targeted opsin construct (AAV9-hSyn-stChrimsonR-mRuby2, viral 460 
titer 3.2 x 1013 GC/ml, final dilution 1:8). Injections were made 150-250 µm below the surface of 461 
the brain for expression in layer II/III neurons. Multiple 300 nL injections were done at 150 462 
nL/min to achieve widespread coverage across the 3 mm window. Animals were not reinjected.   463 

A 3 mm optical window was then cemented into the craniotomy, providing chronic access to the 464 
visual cortex. Post-surgery, mice were given subcutaneous 72 hr slow-release buprenorphine 465 
(0.5 mg/kg) and recovered on a heating pad. Virus expression was monitored over the course of 466 
3 weeks. We selected animals with good window clarity and high levels of virus co-expression 467 
(GCaMP and stChrimsonR) for behavior and imaging experiments.    468 
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Retinotopic mapping 469 
We determined the location of V1 in the cranial window prior to GCaMP or opsin expression 470 
using a hemodynamic intrinsic imaging protocol previously described in100. Briefly, we delivered 471 
small visual stimuli to head-fixed animals at different retinotopic positions and measured 472 
hemodynamic-related changes in absorption by measuring reflected 530 nm light. Imaging light 473 
was delivered with a 530 nm fiber-coupled LED (M350F2, Thorlabs). Images were collected 474 
through a green long-pass emission filter onto a Retiga R3 CCD camera (QImaging Inc., 475 
captured at 2 Hz with 4 × 4 binning). The hemodynamic response to each stimulus was 476 
calculated as the change in reflectance of the cortical surface between the baseline period and 477 
a response window starting 2–3 s after stimulus onset. We fit an average visual area map to the 478 
cortex based on the centroids of each stimulus’ V1 hemodynamic response.  479 

These retinotopic maps were used during behavioral training to overlap the visual stimulus 480 
position in the right monocular hemifield with the imaging/optogenetic stimulation location in the 481 
V1. We found that the transition period between visual detection and optogenetic detection was 482 
facilitated by a strong overlap.      483 

For measuring visual response properties, we further refined the visual position by measuring 484 
cellular responses in layer II/III with 2-photon imaging. Small oriented noise visual stimuli (14˚ 485 
FWHM) were presented at 9 locations (spaced by ±15˚ azimuth and ±10˚ elevation) in the right 486 
visual hemifield. The visual stimulus position that evoked the greatest response in the FOV was 487 
chosen for characterizing visual responses. We found that the strongest response was typically 488 
the center location, selected using the widefield hemodynamic map above.   489 

Behavioral task 490 

Water-restricted mice (20-40 ml/kg/day) were head-fixed and trained first to hold a lever and 491 
release in response to a visual stimulus (Gabor patch; 14° FWHM, spatial frequency 0.1 492 
cycle/degree), that increased contrast relative to a gray screen100,101, and then to an optogenetic 493 
stimulus that directly activated layer II/III neurons in V1. Mice initiated behavioral trials by 494 
pressing and holding a lever for 400-4000 ms (according to a geometric distribution, to reduce 495 
variation in the stimulus appearance time hazard function, see100), and then the stimulus 496 
appeared for 100 ms in the animal’s right monocular hemifield. Animals had up to 550 ms to 497 
report the stimulus by releasing the lever. Because some minimum time is required to process 498 
the stimulus, we counted as false alarm trials those releases that occurred within 50-100 ms of 499 
the stimulus onset. Correct detection responses resulted in delivery of a 1-5 µL liquid reward (10 500 
mM saccharine). We varied the liquid reward during training101, increasing reward after up to 501 
three consecutive correct trials, to decrease incentive for guessing102. Once proficient, reward 502 
volume did not fluctuate significantly across sessions.   503 

All behavioral animals were first trained on a visual detection task (see task schematic, in Figure 504 
S1, and100). Once animals were performing well on the visual task and produced stable 505 
psychometric curves with low lapses for three consecutive sessions, we transitioned the animal 506 
to using the optogenetic stimulus by pairing each visual stimulus appearance with a fixed power 507 
(0.5 mW) optogenetic stimulation. During these transition sessions we lowered the contrast of 508 
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the visual stimulus until animals could perform the task without the visual stimulus. The session 509 
where animals started behaving exclusively on the optogenetic stimulus was denoted session 0. 510 
During session 0 we generated the first psychometric curve for optogenetic stimulation. Analysis 511 
of data from session 0 came only from the part of trials where the animal was exclusively on the 512 
optogenetic stimulus. Subsequent behavioral sessions were started and conducted with only 513 
optogenetic stimuli. Animals used in behavior were not exposed to any other 1-photon 514 
stimulation outside of behavior and the craniotomy was kept covered by an opaque cap 515 
between sessions.    516 

Optogenetic stimulation  517 
For optogenetic behavior experiments without simultaneous 2-photon imaging we delivered light 518 
through a fiber aimed at the cortical surface100. A fiber-coupled LED light source (M625F2, 519 
Thorlabs, peak wavelength 625 ± 15 nm, FWHM) was coupled via a fiber patch cable to a fiber 520 
optic cannula (400 µm core diameter, 0.39 NA, Thorlabs CFMLC14L02) cemented above V1. 521 
This method was used for long-term learning and control experiments with increased 522 
optogenetic stimulation outside of behavior (powers up to 1mW with 6.3 ± 1.7s between 523 
simulations, mean ± SD, N = 2).  524 

For optogenetic behavior experiments conducted with simultaneous 2-photon imaging we 525 
activated stChrimsonR expressing neurons by passing 595 nm light (CoolLED pE4000 526 
multispectral illuminator, 595 ±15 nm, FWHM) through the imaging objective to the surface of 527 
the brain. The illumination power was measured through the objective at the beginning of each 528 
session using a light meter (Newport 1918-C with a 918D-SL-OD3R detector) with a maximum 529 
of ~0.5 mW.  530 

Analysis of behavioral data 531 
Analyses were conducted in Matlab and Python. Optogenetic learning effects were 532 
characterized by analyzing data collected during animal behavior on the optogenetic stimulation 533 
detection task.  534 

Reaction times were averaged across trials for each laser power group and for each training 535 
session. Linear fits were calculated for these data points across the start and end sessions in 536 
which each laser power group was present during the task. The slope of the linear fit indicated 537 
the change in reaction time per session for each laser power group. A mean change in reaction 538 
time per training session was then calculated across all laser powers for each animal. Changes 539 
in optogenetic detection sensitivity were analyzed by fitting cumulative Weibull functions to data 540 
from individual training sessions to estimate detection performance (hit rate) as a function of 541 
laser power. Quantifying thresholds with d’ (sensitivity) produces similar results to using hit rate 542 
in this task, as false alarm rates are nearly constant over time (false alarm hazard rate is near 543 
constant, see100). Threshold was the 50% point of the Weibull functions.  544 
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2-photon calcium imaging  545 
2-photon calcium imaging was conducted using a custom microscope based on MIMMS 546 
(Modular In vivo Multiphoton Microscopy System, e.g.,103) components (Sutter Instruments, 547 
Novato, CA) with a Chameleon Discovery NX tunable femtosecond laser (Coherent, Inc.; Santa 548 
Clara, CA). Imaging was performed using a 16X water dipping objective (Nikon; Tokyo, Japan). 549 
A small volume of clear ultrasound gel (~1 mL) was used to immerse the lens. Images of 550 
calcium responses (~150-200 µm from the surface of the pia, layer II/III) were acquired at 30 Hz 551 
using ≤ 50 mW laser power for static imaging, and ≤ 15 mW for behavior at 920 nm. 552 

Analysis of imaging data 553 
Raw 2-photon image stacks were downsized (512 rows to 256 rows) to facilitate handling of 554 
large datasets. For each behavioral session, frames were motion corrected using CaImAn104. 555 
Each imaging data set was baseline corrected to an estimated minimum pixel intensity, 556 
calculated as the minimum value in the average projection image across all frames from all trials 557 
prior to stimulus presentation (Fmin, a scalar). The minimum pixel intensity was subtracted from 558 
all pixels and all resulting negative values were set to 0.  559 

For quantitative analyses we computed ΔF/F as (F-F0)/F0 at each pixel. F0 was taken over the 560 
10 frames before each stimulus onset, and F0 did not systematically change over days (see also 561 
Figure S3). For statistical analyses F was taken as the frame 120 ms after the stimulus onset 562 
(frame 3 post-stimulation, near the peak response). For visual display of responses in entire 563 
frames, as in Figure 2C, F was taken over 0-270 ms after stimulus onset (frames 0-9 post-564 
stimulation), and we computed ΔF/F as (F-F0)/Fdiv, where Fdiv is F0 smoothed with a gaussian 565 
filter (sigma = 20 pix). Using a smoothed divisor image averages overall intensity in small 566 
regions of the image, yielding a form of local contrast adaptation. Image ROI fluorescent (F) 567 
activity traces were measured by calculating the average pixel intensity within a user-defined 568 
ROI, prior to computing ΔF/F for an ROI. Deconvolved calcium responses to estimate spiking 569 
activity for an ROI were calculated using the OASIS method with an autoregressive constant of 570 
153.  571 

Segmented cell masks were identified using either Suite2p (for Figure 2)55 or CaImAn (for 572 
Figure 3)104 and their resulting calcium responses (F) were extracted. In order to quantify 573 
neuropil activity, we manually segregated cell bodies from their surrounding neuropil with non-574 
overlapping masks (for Figure 2, details in Figure S6). We fit the fluorescence decays of cell 575 
bodies neuropil by a single exponential in a post-stimulation window (300 ms, starting 1 frame 576 
after cessation of optogenetic stimulation). Suppression effects were characterized in a 1.5 s 577 
post-reaction time window (starting 350 ms after optogenetic stimulus presentation, well after 578 
the median reaction time (~250 ms) for the detection behavior).   579 

Linear regression model for testing for effects of change between experimental days was OLS 580 
regression, using all trials on which the stimulus was successfully detected. Data was from N = 581 
3 animals, N = 6 sessions for each animal, and 2633 total number of stimulation trials (all 582 
animals and sessions are shown in Figure S8, including the same analysis of N = 3 mock 583 
behavior control animals). Regression model equation:  ΔF/F ~ C(animal) * C(session) + 584 
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stimulation_power_mw + trial_number + constant, where C(x) signifies a categorical or dummy 585 
variable. Full details of the model definition are in https://patsy.readthedocs.io/en/latest/.  586 

We also tested for significant change in ΔF/F within-session by running the same model over 587 
each animals' data, and found all three animals showed a negative change (trial number 588 
coefficient: -1.5, -1.1, -0.2% ΔF/F) though only two were significantly different from zero (p < 1 x 589 
10-12, < 1 x 10-6, = 0.6, respectively). 590 

Linear regression model for testing effects of optogenetic stimulation outside of behavior (results 591 
in Figure S9) was OLS regression from N = 2 animals, session 0 (S0) vs. session 6 (S6) via 592 
ANOVA. Regression model equation: ΔF/F ~ C(power) + C(S0 v. S6), where C(x) indicates a 593 
categorical or dummy variable.    594 

Confirming optogenetic stimulation power between sessions 595 
We measured the power of the stimulation LED light path immediately before each behavioral 596 
session. We also measured relative laser excitation power across days by measuring light 597 
collected by the PMTs during stimulation. The optogenetic blanking circuit operates the LED 598 
illuminator during the flyback phase of scanning image acquisition, and the refractory time of the 599 
blanking circuit leaves an up to ~20 pixel artifact at the edges of the raw image stacks that 600 
scales with stimulation intensity. We used the mean pixel intensity change for this artifact to 601 
scale attenuated sessions and normalize stimulation powers across days (Figure S4), and our 602 
results were unchanged with and without this scaling, confirming we accurately measured 603 
stimulation power.  604 

Analysis of visual response properties 605 
2-photon calcium imaging was performed directly before and after optogenetic learning to 606 
assess V1 neural responses at both training and control locations (an area with stable 607 
expression at least 200 µm away from training location). Visual stimuli were presented on a 608 
monitor positioned in front of the head-fixed animal at a 45˚ angle on the animal’s right side. The 609 
visual stimulus was either a full-field or Gabor patch (12˚ FWHM) drifting grating stimulus at 610 
100% contrast presented in 12 different directions (30˚ increments). Stimuli were presented for 611 
3 second durations (with 4 seconds between presentations) and were delivered in random order 612 
for a total of 25 repetitions of each stimulus direction. Gabor patch stimuli were displayed on the 613 
monitor at the visual field location corresponding to the retinotopic map at the training and 614 
control locations. 615 

To assess potential changes in visual response selectivity, direction and orientation selectivity 616 
indices were calculated for each identified cell105,106. First, tuning curves for each cell were 617 
calculated by averaging ΔF/F responses across the 3 second stimulus period across all 618 
repetitions for each of the 12 drifting grating directions. Direction selectivity indices (DSI) were 619 
measured as (Rpref - Roppo)/(Rpref + Roppo), where Rpref is the peak average response across the 620 
12 directions and Roppo is the average response at the opposite direction 180˚ away from the 621 
preferred direction. Orientation selectivity indices (OSI) were measured by first averaging 622 
responses from opposite pairs of directions (e.g., 0˚ and 180˚, 45˚ and 225˚) and calculating 623 
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(Rpref - Rortho)/(Rpref + Rortho), where Rpref is the peak average response across the 6 orientations, 624 
and Rortho is the average response of the orthogonal orientation 90˚ away from the preferred 625 
orientation. Last, a global OSI (gOSI) metric was calculated as 1 - CV (tuning curve) for each 626 
cell, where CV is the circular variance. 627 

Modeling 628 

We trained a recurrent neural network (RNN) consisting of N = 200 units, whose input dynamics 629 
for the -th neuron are given by: 630 
 631 

 . 632 
 633 
The readout of the network is defined as: 634 
 635 

  . 636 
 637 
The transfer function of single units is . The weights of the input pattern  638 
are positive and exponentially distributed for a fraction  of units, and zero otherwise. 639 
The readout weights are homogeneous and constant: . The initial recurrent 640 
weights , before any training, are independentlyis sampled from a random Gaussian 641 

distribution with mean zero and standard deviation  107. The noise term  is randomly 642 
sampled from a zero mean distribution with standard deviation 0.0005 at every time step. 643 
  644 
We trained the recurrent weights  of the RNN using backpropagation-through-time (ADAM 645 
optimizer 108 in pytorch 109 such that the network readout  matches a scaled version of the 646 
time-varying input . The input and output weights remained fixed. In a first phase, 647 
mimicking the pre-learning response, we trained the network for 100 epochs such that 648 

, obtaining recurrent weights . In a second phase, we trained the pre-649 
learning network on 100 epochs to produce an amplified response, , with 650 

recurrent weights . Parameters:  ms, , Euler integration timestep 651 
 ms, learning rate 0.01. 652 

 653 
To compute the normalized synaptic weight change in percent, we took the mean of the 654 
absolute value of weight across all synapses during the pre-training period, yielding a scalar 655 
value, and divided each synaptic weight by this scalar and multiplied by 100. 656 
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Supplemental Figures 675 

 676 

Figure S1 - Training timeline for the optogenetic detection task, Related to Figures 1 and 2. (A) Schematic of 2-677 
step protocol for behavioral training first on visual stimulus (step 1) then on optogenetic stimulation (step 2). The 678 
optogenetic stimulation location was aligned to the retinotopic location of the visual stimulation in V1. (B) Typical 679 
behavioral training schedule outlining the length of time for visual detection task proficiency and the steps to transition 680 
animals from the visual to the optogenetic stimulus (other statistics in Results). Visual detection proficiency was 681 
determined by animals achieving a stable psychometric threshold for three consecutive sessions (†). 2-photon 682 
imaging was conducted during the transition and step 2 sessions (*).  683 
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 685 

 686 

Figure S2 - Animals detect and use the optogenetic-induced cortical activity; they do not detect stray light 687 
with their retinas, Related to Figure 1 and 2. (A) Schematic of experiment where we moved the stimulation light 688 
spot a small amount and found dramatic changes in behavior. This implies that animals’ behavior depends on cortical 689 
neural optogenetic activation. Black circle indicates optogenetic training location in V1 (yellow outline). After collecting 690 
a psychometric curve at the training location we moved the optogenetic stimulation ~500 µm along the cortex, both in 691 
the visual-map-defined azimuth and elevation meridians (red dotted lines). At each of the shifted locations, blue and 692 
magenta circles, behavioral performance dropped and was recovered when we moved the stimulation back to the 693 
training location. (B) Detection hit rates in a trained animal during a session where the optogenetic stimulation 694 
location was sequentially moved for 30 trials each to and from non-trained locations in V1 (black, training A: 90.0 CI 695 
[82.4 - 95.1]%, training B: 73.3 [63.5 - 81.65]%, training C: 83.3 CI [74.5 - 90.1]%, blue, non-training azimuth change, 696 
6.7 CI [2.7 - 13.4]%, magenta, non-training elevation change, 3.3 CI [0.7 - 9.0]%, hit rate ± Wald CI, N = 1).  697 

 698 

 699 
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 701 

Figure S3 - Imaging plane over sessions for optogenetic learning animals and mock behavioral control, 702 
Related to Figure 2. Genotypes and viral injections are listed for each animal tested. Imaging planes were aligned to 703 
reference GCaMP expressing cells (examples, white arrows) and vasculature patterns (examples, blue arrows) 704 
between sessions. All Red/Green images shown are 300 frame averages acquired with the same amplifier gain 705 
settings at 1000 nm excitation (~35-45 mW).  While some neurons differ from day to day, many of the same neurons 706 
were imaged across days. 707 

 708 

709 
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 710 

Figure S4 - Optogenetic stimulation blanking artifact allows normalization of optogenetic power at the 711 
imaging plane between sessions, Related to Figure 2. (A) Optogenetic stimulation produces an ~20 pixel edge 712 
artifact that is visible during imaging, as the optogenetic light source offset lasts a few microseconds into each 713 
imaging line after horizontal flyback. (B) Intensity of the edge artifact scales with applied optogenetic stimulation 714 
power. (C) Plots of attenuation based on initial measurement of power out of the objective and normalized scaling for 715 
all animals and control. (D,E) Normalized scaling refines the position of psychometric curves but does not change the 716 
order. Normalized scaling does not alter the relationship between threshold powers (insets). (F,G) Normalized scaling 717 
does not alter the relationship between ΔF/F and power over sessions.  718 
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 719 

Figure S5 - Spatial extent of 1-photon stimulation is confined in lateral and depth axes, Related to Figure 2. 720 
(A) Schematic of head-fixed 2-photon imaging, with 1-photon optogenetic stimulation delivered through the objective. 721 
(B) Widefield fluorescence through craniotomy. AAV9-GCaMP8s (green), stChrimsonR (red), and coexpression 722 
(yellow) in enlarged field-of-view (FOV). White, red, and blue boxes indicate FOVs for 2-photon imaging. Smallest 723 
FOV (white box) shown in the right panel, FOV for spatial measurement (red box) D, and FOV used for imaging (blue 724 
box) during behavior in E. (C) In vitro measurement of 1-photon stimulation beam profile in fluorescein solution. White 725 
dotted box shows the area zoomed on the right. White arrow shows the approximate imaging plane. Approximate 726 
beam waist is shown in red. (D) GCaMP and stChrimsonR expression in a wide 2-photon FOV. Right panels show 727 
mean ΔF/F response to 1-photon stimulation at two powers (0.36 and 0.1 mW). 50% activation contour is shown by 728 
the yellow outline.  (E) Mean ΔF/F response (2-photon imaging with 1-photon optogenetic stimulation) at different 729 
depths in V1.  Left panels show the responses of layer II/III neurons, center labeled panel (Z = 0, 150 µm below the 730 
cortical surface). Right panels show smaller neural responses in deeper cortical layers (+150 and +350 µm) labeled 731 
‘likely layer IV’.      732 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 24, 2023. ; https://doi.org/10.1101/2022.07.10.499496doi: bioRxiv preprint 

https://doi.org/10.1101/2022.07.10.499496
http://creativecommons.org/licenses/by-nc/4.0/


 28 

 733 

Figure S6 - Cell soma and neuropil show distinct decay kinetics, Related to Figure 2. (A)  Field-of-view image 734 
of 2-photon data collection from the first session in 1 animal. Nine relatively isolated cells were selected. An inner cell 735 
body mask was drawn (blue), and an annulus in the surrounding neuropil was drawn (orange), avoiding any nearby 736 
cell bodies. (B) Zoomed in view of cell 1, showing the cell body mask in blue and the neuropil annulus in orange. (C) 737 
Each mask was centered and averaged to produce mask probabilities for each compartment, cell in blue, and 738 
neuropil in orange. (D) Average response to 1-photon stimulation for an example cell for its surrounding neuropil (red) 739 
and the cell body (blue). Left: response zoomed in to the first 500 ms after stimulation onset. A single exponential 740 
decay was fit to each compartment and is depicted by the dotted lines, red and blue for neuropil and cell body 741 
respectively. Tau values represent the half decay times of the exponential decay fits. (E) Population average (N = 9) 742 
responses at 0.04 mW stimulation power, displayed analogously to D. (F) Same as E but for 0.2 mW stimulation 743 
power. 744 

  745 
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 746 

Figure S7 - Behaviorally-relevant cell responses show elevated firing rates while post-decision responses 747 
show suppression, Related to Figure 2. (A) Population timecourses of response for cells that show a positive or 748 
negative response during the post-react period (sustained and suppressed, respectively). Analysis periods are 749 
highlighted: stimulation, orange; post-stimulation, green; and post-reaction, purple (see Methods). (B) Spatial 750 
distribution of average responses during the post-stim. period shows uniformly positive responses, while (C) 751 
distribution of responses during the post-react. period show salt-and-pepper sustained and suppressed responses. 752 
(D) Cumulative distributions of responses during the post-stim. period (left) and post-react. Period (right).  753 

 754 

 755 
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Figure S8 - V1 amplification effect, all sessions, all animals, Related to Figure 2. (A) Linear regression model for 757 
testing for amplification effects between behavioral sessions (ROI-based population analysis shown in Figure 2C-J). 758 
OLS regression using all trials the stimulus was successfully detected (optogenetic learning animals: p = 1.73 x 10-12, 759 
N = 3 animals, 2633 trials; mock behavioral control animals: p = 0.26, N = 3, 1731 trials model: ΔF/F ~ C(animal) * 760 
C(session) + stimulation_power_mw + trial_number + constant, where C(x) signifies a categorical or dummy 761 
variable). Treating power as a continuous variable did not change the results. In the three training animals, lines fit on 762 
each session (colors) moved leftward as learning progressed, signifying amplification. Within each session we found 763 
a small decrease in responses to stimulation (average DF/F change over 100 trials: -1.2% DF/F, 95% CI [-0.9 to 764 
1.6]% DF/F, coeff. less than zero at p < 10-13, via linear regression over trials within day, estimated across animals 765 
and sessions, N = 3; Methods) (B) Comparison of amplification at each power across all behavioral sessions. Here, 766 
at many powers common across sessions (colors, lines), the slope of the corresponding line was positive, signifying 767 
amplification. We found a small decrease in responses to stimulation over the course of each experimental day.  768 
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 769 

 770 

Figure S9 - No amplification occurs for optogenetic stimulation delivered to V1 outside the learning context, 771 
Related to Figure 2. (A) Mean ΔF/F responses in an example animal to 0.05 and 1 mW of optogenetic stimulation 772 
delivered outside the behavioral context; animal was awake and alert but any motor responses were not reinforced 773 
(see Methods). 0.05 mW is near the average post-learning threshold power for optogenetic learning animals. 1 mW is 774 
a power level three times higher than the maximum used in training optogenetic learning animals. (B) No 775 
amplification occurs at any power level over seven sessions of optogenetic stimulation (example animal, session 0, 776 
blue, to session 6, orange, mean ± SEM). There was no significant change in response across N = 2 animals 777 
(session 0 vs. 6, via ANOVA/linear regression; t = 1.1, p = 0.27, also neither animal reaches significance alone, and 778 
treating power as a continuous or log-continuous variable did not change the results; see Methods for regression 779 
details). 780 
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 782 

 783 

Figure S10 - Visual response changes and neural responsivity before and after optogenetic learning, Related 784 
to Figure 3. (A) Visual response changes, pre- and post-learning, for individual animals. Cohort means shown by 785 
blue diamonds (mean ± SEM, N = 3). (B) Mean neural responsivity reveals no significant pre- versus post-learning 786 
changes at either the optogenetic training or control locations (mean ± SEM, N = 3).    787 
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 788 

 789 

Figure S11 - Synaptic weight matrix for initial configuration, and overall distributions of synaptic weights 790 
before and after training, Related to Figure 4. (A) Initial weight matrix before any training. Sampled from a random 791 
Gaussian distribution with mean zero (see Methods). (B) Distributions of synaptic weights, initial (gray), pre-opto. 792 
learning (red), and after training to amplify outputs (post-opto. learning, blue).  (C) Distribution of synaptic weight 793 
changes (pre-opto. versus post-opto. learning), across all synapses, normalized to the mean pre-training weight.    794 
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