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Temporal rescaling of sequential neural activity has been observed in multiple
brain areas during behaviors involving time estimation and motor execution
at variable speeds. Temporally asymmetric Hebbian rules have been used in
network models to learn and retrieve sequential activity, with characteristics
that are qualitatively consistent with experimental observations. However, in
these models sequential activity is retrieved at a fixed speed. Here, we investi-
gate the effects of a heterogeneity of plasticity rules on network dynamics. In
a model in which neurons differ by the degree of temporal symmetry of their
plasticity rule, we find that retrieval speed can be controlled by varying exter-
nal inputs to the network. Neurons with temporally symmetric plasticity rules
act as brakes and tend to slow down the dynamics, while neurons with tempo-
rally asymmetric rules act as accelerators of the dynamics. We also find that
such networks can naturally generate separate ‘preparatory’ and ‘execution’
activity patterns with appropriate external inputs.

Introduction

Timing is a critical component in the proper planning and execution of tem-
porally extended motor behaviors. In behaviors consisting of a single motor
action, it may be desirable to control the duration of its execution. In behav-
iors composed of multiple actions, the precise time interval between actions
can be a key determinant in the success of the behavior. How can the duration
of these intervals be flexibly controlled in a network of neurons?

A simple mechanistic hypothesis for the regulation of motor related timing
intervals posits a specialized neural circuit with network dynamics that vary

1



2

in speed as a consequence of differing levels of constant external input. Several
network models utilizing external input as a means of speed control have been
proposed to account for cortical and striatal dynamics observed during motor
execution [1, 2]. To account for speed control in cortex, a recurrent neural net-
work model has been trained to achieve temporal rescaling of network activity
as a function of external input [2]. However, this model relies on supervised
learning rules that may not be biologically plausible, and cannot generalize
to other speeds from training on just one example timing interval. To explain
speed control of sequential activity in striatum, a recurrent inhibitory net-
work model has been proposed with a feedforward structure learned through
anti-Hebbian plasticity [1]. This model demonstrates transient winner-take-all
dynamics, with short term synaptic depression facilitating transitions in activ-
ity from one group of neurons to the next, and external input controlling the
duration of each group’s transient activation. While experimental evidence for
the necessary type of depressive adaptation mechanism exists in the striatum,
it may not be present in all cortical areas where rescaling of sequential activity
is observed. Whether speed can be controlled in network models constructed
using Hebbian learning without this mechanism remains unknown.

Network models with a connectivity generated by temporally asymmetric
synaptic plasticity provide a potential framework for explaining how sequen-
tial activity can arise from local biologically plausible learning rules [3, 4]. In
both rate and spiking networks, the temporal statistics of sequential activity
in networks using this type of rule qualitatively match experimental findings
made over both short and long timescales of observation in multiple tasks with
timing components [5]. However, the speed of sequential dynamics in these
models is constrained by the choice of temporal offset in the learning rule and
neuronal time constant, and cannot be modulated with external input.

The Hebbian rules explored in this work and previous studies are approx-
imations of various forms of spike-timing dependent plasticity (STDP). The
effects of STDP can be quantified through kernels that measure the change
in excitatory postsynaptic potential size at a synapse (as a proxy for synaptic
strength), as a function of the timing difference between pre and postsy-
naptic spikes. Experimentally, a large diversity of STDP kernels have been
characterized across cortical, subcortical, and cerebellar structures [6, 7]. Ker-
nels measured in cortex and hippocampus typically, but not always, exhibit a
temporal asymmetry, in which presynaptic activity must precede postsynap-
tic activity to elicit a positive change in synaptic strength [8, 9]. Theoretical
studies have shown that this temporal asymmetry can be used to store and
retrieve sequences of activity [1, 5, 10–20]. However, symmetric kernels, in
which coincident activity leads to strengthening regardless of the order of
pre and post-synaptic spikes, have also been observed in multiple contexts -
with high frequency plasticity induction protocols in cortex [21], in hippocam-
pal cultures in the presence of dopamine [22], and at excitatory-to-excitatory
synapses in hippocampal CA3 [23]. Hebbian learning rules that are tempo-
rally symmetric lead instead to the creation of fixed point attractors [24–28].
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It is not known to what degree temporal asymmetry varies across synapses at
the scale of local networks, but analysis of a calcium-based plasticity model
demonstrates that the degree of asymmetry can be controlled via adjustment
of biophysical parameters [29]. We hypothesize that variability in the tempo-
ral offset expressed at a synapse may be a key ingredient in permitting the
control of retrieval speed, suggesting a potential new role for the observed
heterogeneity in STDP kernels.

In this work, we explore a generalization of previously investigated tem-
porally asymmetric learning to multiple temporal offsets that captures this
heterogeneity. Specifically, we find that varying the temporally asymmetry of
the learning rule across synapses gives rise to network mechanisms that allow
for the control of speed as a function of external inputs to the network. We
start by considering a network with a bimodal distribution of heterogeneity in
the learning rule, resulting in two distinct populations: one with a symmetric
learning rule, and one with an asymmetric rule. We characterize the effect of
input strength on retrieval speed and quality in these networks with connec-
tivity generated using linear and nonlinear synaptic plasticity rules. We also
find that transitions between fixed-point attractor-like “preparatory” periods
and sequential “execution” phases can be realized in this model by rescaling
the magnitude of external input. Finally, we demonstrate that networks with
a uniform distribution of heterogeneity lead to qualitatively similar findings.

Degree of symmetry in learning rule
determines retrieval speed

We explore a network model in which the firing rate dynamics of each neuron
ri in a population of size N is described by the equation

τ
dri
dt

= −ri + φ

(
N∑
j=1

Jijrj + Iexti (t)

)
(1)

where τ is the time constant of firing rate dynamics, Jij is the connectivity
matrix, φ(x) is a sigmoidal neuronal transfer function (see Methods), and
Iexti (t) describes the external input provided to each neuron at time t.

We follow a similar learning procedure as in [5]. A sequence of P random
i.i.d standard Gaussian patterns ξµi is presented to the network and stored
in network connectivity. This sequence of patterns modifies the strength of
synaptic connections Jij from neuron j to i according to a Hebbian learning
rule that transforms pre and post synaptic inputs into synaptic weight changes.
The resulting connectivity matrix Jij is a generalization of previously studied
rules which combines both temporally symmetric and asymmetric learning
[5, 28],

Jij = A
cij
Nc

(
P∑
µ=1

zif(ξµi )g(ξµj ) +

P−1∑
µ=1

(1− zi)f(ξµ+1
i )g(ξµj )

)
(2)
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where cij is a matrix describing the structural connectivity, whose entries are
given by i.i.d. Bernoulli random variables, p(cij = 1) = c, p(cij = 0) = 1 − c,
where c is the connection probability; The functions g(x) and f(x) describe how
the synaptic plasticity rule depends on pre and postsynaptic input patterns
during learning, respectively; The parameter A controls the overall strength
of the recurrent connections. And zi ∈ [0, 1] describes the degree of temporal
symmetry at synapses of neuron i. A neuron with fully temporally symmetric
plasticity is described by zi = 1, while zi = 0 indicates a neuron with fully
temporally asymmetric plasticity. Note that we focus here to the case of a
single sequence stored in synaptic connectivity, but such networks can also
store multiple sequences [5].

We first explore the bilinear learning rule scenario (f(x) = g(x) = x)
with homogeneous synaptic plasticity, i.e. zi = z for all i = 1, . . . , N . At
the two extremes of this variable we can recover previously studied learning
rules. When z = 0, only the second term in Eq. 2 is present, resulting in a
purely temporally asymmetric rule. Networks with connectivity constructed
using such a rule can recall a sequence of stored patterns, and their sequen-
tial retrieval dynamics have been extensively characterized [5]. When z = 1,
synaptic plasticity is temporally symmetric, potentially leading to fixed point
attractor dynamics [28]. If z is instead fixed to a value between 0 and 1, then the
asymmetric component in the plasticity rule leads to the retrieval of the whole
sequence, but the speed at which the sequence is retrieved strongly depends on
z. For instance, in Fig. 1b we demonstrate retrieval for an intermediate value
of z = 0.5. Retrieval is quantified by plotting the Pearson correlation of the
instantaneous firing rate r(t) with each stored pattern ξµ as a function of time
(see Methods). During sequence retrieval, correlations with individual patterns
in the sequence increase, peak and decrease one after the other, indicating the
network transiently visit states close to each of the patterns in succession. We
find that in such a network, retrieval speed strongly depends on z. For the
parameters in Fig. 1b, retrieval proceeds nearly twice as slowly as compared
to a network with connectivity arising from a purely asymmetric learning rule,
where retrieval speed is fixed by the time constant of the firing rate dynamics
[5]. However, retrieval speed is fixed by the choice of z (see Fig. 1c showing
a linear dependence of speed on z), and cannot be dynamically modulated in
response to changes in the external input Iexti .

Heterogeneity in synaptic plasticity temporal
asymmetry gives rise to a speed control
mechanism

We next explored whether adding heterogeneity to this learning rule, allowing
zi to differ across synapses, can produce networks capable of both recalling
stored sequences of patterns and modulating the speed of recall. We initially
consider a bimodal distribution of degrees of temporal symmetry across the
network. For each neuron, zi was drawn randomly and independently as a
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Fig. 1 Network model and sequence retrieval. a. Schematic of network connectivity after
learning with a plasticity rule that combines temporally symmetric and asymmetric com-
ponents. The network stores a sequence of patterns that activate non-overlapping sets of
neurons (colored according to the pattern that activates them). Note connections both within
each set, and from one set to the next. b. Correlation of each stored pattern with network
activity following initialization to the first pattern. Retrieval speed is fixed by the balance
of symmetry/asymmetry at the synapse. c. Relative retrieval speed as a function of tempo-
ral symmetry (z), showing linear relationship. Solid line: 1 − z, the speed computed from
MFT (see Methods). Black dots: Network simulations. d. Connectivity of a network with
two types of neurons, asymmetric (left) and symmetric (right). Note that the connections
from left neurons project to neurons active in the next pattern in the sequence, while connec-
tions from right neurons project to neurons active in the same pattern as the pre-synaptic
neuron. The two types of neurons can be driven differentially by external inputs (Iexta and
Iexts , respectively) e. Correlations as in (a) for two distinct pairs of input strengths (in the
range [-1,0] for Iexta and Iexts ), demonstrating two different retrieval speeds. In the simula-
tions shown on the center and right panels, N = 80,000, c = 0.005, τ = 10ms, P = 16,
A = 2, θ = 0, and σ = 0.1. For simplicity, we depict only 3 of the 16 stored patterns in the
left schematics.

Bernoulli random variable with probability p(zi = 1) = 0.5, p(zi = 0) = 0.5.
As a result, the network of N neurons can be divided into two subpopulations
of approximately equal sizes Na = Ns = N

2 neurons, according to the learning
rule present at their synapses:

τ
drai
dt

= −rai + φ

(
Na∑
j=1

Jaaij r
a
j +

Ns∑
j=1

Jasij r
s
j + Iexta (t)

)
(3)



6

τ
drsi
dt

= −rsi + φ

(
Ns∑
j=1

Jssij r
s
j +

Na∑
j=1

Jsaij r
a
j + Iexts (t)

)
(4)

where the connectivity matrix is given by

JaXij =
caXij
Nac

P−1∑
µ

f(ξa,µ+1
i )g(ξX,µj ) (5)

JsXij =
csXij
Nsc

P∑
µ

f(ξs,µi )g(ξX,µj ) (6)

and where X = a, s denotes the presynaptic population. Note that the external
input IextX now depends on the population. To reduce the space of possible
learning rules, we have assumed that the type of learning at a synapse depends
only on the identity of the postsynaptic neuron. The bimodal distribution of
zi restricts synapses to only one of the two types of plasticity, but in the final
section entitled ”Retrieval with a broad distribution of learning rules” we relax
this constraint.

In Fig. 1e, we show an example of how the stored sequence can be retrieved
under different input conditions. In both the top and bottom panels of 1e,
network activity is initialized to the first pattern in the sequence, and a con-
stant external input is provided to each subpopulation (“asymmetric” input
Iexta , and “symmetric” input Iexts ). In the top panel, the symmetric population
is effectively silenced with strongly negative input, resulting in retrieval that
lasts approximately τP , consistent with the dynamics being driven purely by
the asymmetric component in the learning rule [5]. In the bottom panel, this
input is no longer strongly negative, causing retrieval time to more than dou-
ble, due to the effect of the symmetric population that tends to slow down the
dynamics.

To characterize how retrieval time depends on these two sources of exter-
nal input, we explored the space of the parameters defining the inputs to the
network, Ia and Is. In Fig. 2, we show the dependence of retrieval quality and
speed on these variables. Retrieval quality is quantified by measuring the max-
imal correlation of the final pattern in the retrieved sequence. Retrieval speed
is measured in units of the inverse of the neural time constant, τ−1. It is com-
puted by measuring the average inverse time between the peaks of consecutive
correlations of the network state with consecutive patterns in the sequence.
For example, a speed of 0.5 corresponds to an average time difference of 2τ
between the peaks of the correlations of two consecutive retrieved patterns
with network state. In the upper left quadrant of Fig. 2b, speed depends pri-
marily on the strength of input to the symmetric population. Moving away
from this region in the direction of increasing symmetric input, retrieval speed
slows down to approximately 0.5. In the lower right quadrant, retrieval speed
instead depends primarily on the strength of external input provided to the
asymmetric population. As this negative input grows, retrieval speed becomes
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Fig. 2 Retrieval properties depend on external inputs. a. Retrieval quality, defined as the
peak correlation mP of the final pattern in the sequence, as a function of external inputs
to asymmetric population Iexta , and to symmetric population Iexts . The white line bounds
the region of successful retrieval. Below this line (black region), retrieval is not possible,
regardless of initial condition (see Methods). b. Retrieval speed, measured by averaging the
inverse time between consecutive pattern correlation peaks (see Methods). c. Firing rates of
three randomly selected neurons during retrieval for parameters corresponding to the circle
(left) and diamond (right) in panels (a-b). Note the approximate (but not exact) temporal
scaling by a factor ∼ 3 between these two sets of external inputs. d. Activity of 125 units
(from a total of 80,000), sorted by peak firing rate time, for parameters corresponding to
the circle (left) and diamond (right) in panels (a-b). All other parameters are as in Fig. 1b.

approximately four times slower than the speed of the purely asymmetric net-
work. While we have focused on negative input in Fig. 2, retrieval speed is
also modulated by positive input. Interestingly, it is the magnitude, not sign,
of the input that determines retrieval speed. Expanding the phase diagram in
panel (b) to positive input shows that the same dependence holds: values for
retrieval speed are approximately symmetric about the Iexta and Iexts axes (not
shown).

Flexible retrieval with a non-linear plasticity
rule

We next considered the consequences of a nonlinear learning rule implemented
by the following presynaptic and postsynaptic functions in Eq. 2:

f(x) = qf − 1 + Θ(x− xf ) (7)

g(x) = qg − 1 + Θ(x− xg) (8)

where Θ(x) is the Heaviside function. This rule binarizes the activity patterns
ξ according to a threshold, and its effects on persistent and sequential network
activity have been studied extensively [5, 28, 30]. The parameter qg is chosen
such that

∫
Dzg(z) = 0, which keeps the mean connection strength at zero. The

general dependency of retrieval speed on asymmetric and symmetric inputs in
a network utilizing this rule is similar to that of the bilinear rule (see Fig. 2).
One key difference is that a much wider range of speeds can be achieved using
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Fig. 3 Retrieval properties in networks with nonlinear learning rules. a. Correlations
between stored patterns and network states in asymmetric (left) and symmetric (right pop-
ulations, for three different external input combinations (denoted by the inset symbol, see
right panel). b. Retrieval speed as a function of parameters describing external inputs, simi-
larly as in Fig. 2. White dots indicate the region in which stable persistent activity of the first
pattern is present. Hatched diagonal lines indicate the region in which incomplete sequen-
tial activity terminates in stable persistent activity. All parameters are as in Fig. 2, except
A = 20 and σ = 0.05. The parameters of the learning rule are xf = 1.5, xg = 1.5, qf = 0.8,
and qg = 0.933.

a nonlinear rule within the same retrieval quality bounds (see Methods). In
fact, retrieval speed can now be arbitrarily slowed down, and even completely
stopped when the input to the asymmetric population is sufficiently negative
(see white dots in Fig. 3b). In this region, persistent activity is stable, and
there exists a fixed point attractor correlated with any of the patterns in any
stored sequence. There also exists a region in which sequential activity stops in
the middle of retrieval and switches to stable persistent activity (see hatched
diagonal lines in Fig. 3b).

Temporally varying external inputs can lead to
transitions between persistent and sequential
activity

We next explored how this heterogeneity might be used not only to control
the speed of dynamics, but also to trigger transitions between qualitatively
different dynamics. In Fig. 4 we use the same nonlinear model as in the previ-
ous section, and present discrete, time-dependent inputs intended to achieve
persistent retrieval of a single pattern, followed by sequential retrieval of the
remaining patterns at a specified time. To initiate persistent activity, we briefly
present the first pattern as an input to the symmetric population. This elic-
its persistent activity in this population, as reflected by the sustained positive
correlation of the symmetric population with the first pattern during the first
200ms (Fig. 4b). This activity does not recruit sequential activity in either
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Fig. 4 Transition from persistent activity (‘preparatory’ period) to sequence retrieval
(‘execution’ period) mediated by external input a. Inputs provided to the asymmetric (black)
and symmetric population (orange) consist of a “preparatory period” input lasting 200ms,
followed by an “execution period” input that is fixed for the rest of the interval. During a
200ms preparatory period, a brief input is presented to the symmetric population for the first
10ms, which drives the network to a state which is strongly correlated with the first pattern
in a sequence. This input is removed after 10ms, but the network remains in a persistent
activity state corresponding the the first pattern, because a strong negative input is presented
to the asymmetric population throughout the entire 200ms, which prevents the network from
retrieving the sequence. At the end of this period, the input to the symmetric population
is decreased, while the asymmetric population is increased, which leads to retrieval of the
sequence (‘execution period’). Sequence retrieval can happen at different speeds, depending
on the inputs to the asymmetric and symmetric populations. b. Correlations with stored
patterns in the sequence in each population, in each input scenario. Note correlations in the
slow retrieval case are temporally scaled by a factor ∼ 2.5 compared to the fast retrieval
case. c. Example single unit firing rates in each population. Note that for some neurons
firing rates do not follow a simple temporal rescaling - for instance the purple neuron in the
symmetric population is active at around t = 0.45 in the slow retrieval case, but is not active
in the fast retrieval case. All parameters are as in Fig. 3, except θ = 0.07 and σ = 0.05.

population, however, as the asymmetric population responsible for that transi-
tion is presented with sufficiently strong negative input during this period. To
initiate sequential activity, inhibition to the asymmetric population is released
after t = 0.2s, prompting the network to retrieve the stored sequence in both
populations.
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Fig. 5 Retrieval of sequences in networks with heterogeneous learning rules described by
a continuum of degrees of symmetry. a. Firing rate dynamics of five representative neurons
during retrieval for each external input configuration (see inset symbols in panel c). b.
Correlation of network activity with each stored pattern during retrieval for each external
input configuration. c. Retrieval speed as described in Fig. 2. All parameters are as in Fig. 3
except A = 10.

Note that in this scenario also, a sequence can be retrieved at various
speeds, using the same inputs during the persistent period, but changing the
level of constant stimulation provided during retrieval (compare left and right
panels in Fig. 4b). As in a network with only a single asymmetric population,
single neuron activity in this network is temporally sparse, with many neurons
being active only at specific time intervals (Fig. 4c).

In our network, stability of persistent activity requires the dependence of
the plasticity rule on pre and/or post synaptic firing rates to be non-linear.
With a bilinear learning rule and Gaussian patterns, the network dynamics
does not converge to fixed-point attractors that are correlated with a single
pattern, but rather to mixed states correlated with multiple patterns [31].

The dynamics shown in Fig. 4 reproduces some of the landmark features
observed in electrophysiological recordings during delayed motor tasks. In such
tasks, a preparatory period follows presentation of a cue (e.g. instructing a tar-
get direction or a desired response speed), during which the animal can prepare
the motor response, but not execute it [32]. This period is typically character-
ized by persistent activity of specific groups of neurons, whereas during motor
execution those same neurons instead display transient activity [33].

Flexible sequence retrieval in networks with a
continuous distribution of degrees of temporal
symmetry

Up to this point, we have analyzed a network model in which neurons are sepa-
rated in two discrete classes distinguished by their plasticity rule (symmetric or
asymmetric). For a given postsynaptic neuron, the learning rule present at all
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presynaptic synapses was chosen to be either temporally symmetric or asym-
metric with equal probability, defining two distinct subpopulations of neurons.
Can retrieval speed still be modulated by external input when synapses do
not fall into such a binary classification, but have more heterogeneous proper-
ties? To model this heterogeneity, we chose to embed a continuum of learning
rules. Instead of a bimodal distribution for zi in Eq. 2, we choose a uniform
distribution on the interval [0, 1]. The input Iexti provided to each neuron i
in Eq. 1 is a linear combination of symmetric and asymmetric input compo-
nents: Iexti = ziI

ext
s + (1 − zi)Iexta . We also choose to investigate a network

with the previously described non-linear plasticity rule. Fig. 5 shows that a
network with these modifications also exhibits flexible sequence retrieval, and
that speed decreases as the asymmetric input component becomes more nega-
tive. However, as shown in Fig. 5c, to reach slower speeds a positive Iexts is now
required. Note that a region of stable persistent activity is no longer present
in this scenario, as stable persistent activity requires that a finite fraction of
neurons in the network have a symmetric plasticity rule.

Discussion

In this paper, we have introduced a new mechanism for flexible control of
retrieval speed in networks storing sequences. This mechanism relies on het-
erogeneity of synaptic plasticity rules across neurons in the network, with
different degrees of temporal asymmetry. Neurons with temporally symmet-
ric plasticity act as brakes of the dynamics, as they stabilize network activity
in its current state, while neurons with temporally asymmetric plasticity act
instead as accelerators, as they push the network towards the next pattern in
the sequence. The speed of retrieval can then be modified in a flexible way by
changing external inputs driving these two types of neurons. Furthermore, we
found that this mechanism can be used to gate transitions between persistent
and sequential activity.

Heterogeneity of synaptic plasticity

Our findings suggest a potential functional role for the experimentally observed
diversity in synaptic plasticity rules [6–8, 21, 23]. In particular, a wide diver-
sity of spike-timing dependent plasticity (STDP) curves have been reported
in various brain structures, and sometimes in the same structure. In the hip-
pocampus, temporally asymmetric STDP is typically observed in cultures [8]
and at CA3 to CA1 connections in slices [34, 35], but temporally symmetric
STDP is observed in area CA3 [23]. In the cerebellum, synaptic plasticity rules
with diverse temporal requirements on the time difference between parallel
fiber and climbing fiber inputs have been found in Purkinje cells in differ-
ent zones of this structure [7]. While this heterogeneity has been found so far
across structures or across different regions in the same structure, this hetero-
geneity could also be present within local networks, as current experimental
methods for probing plasticity only have access to a single delay between pre
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Fig. 6 Desired target speeds can be reached by adjusting external inputs using a reward-
based learning rule. The black and grey lines denote the trajectories for two learning trials
targeting different speeds. External inputs start at −0.2 (marked with a circle) and terminate
at values implementing desired target speeds of 0.8 and 0.3 (marked with crosses). All
parameters are as in Fig. 2.

and post-synaptic spikes in each recorded neuron, and would therefore miss
this heterogeneity.

For simplicity, the degree of temporal asymmetry was chosen in our model
to depend only on the identity of the postsynaptic neuron. This is consis-
tent with the observation that a model of synaptic plasticity that depends
only on the postsynaptic concentration of calcium can account for a range of
experimentally observed STDP curves [29]. This suggests that heterogeneities
in temporal asymmetry could arise due to heterogeneities in biophysical
parameters that control calcium dynamics in post-synaptic spines.

Comparison with other mechanisms of speed control

The mechanism investigated here has major differences with previously
described models of input-driven speed control. It does not require adaptation
mechanisms or delays to slow down retrieval of subsequent patterns [1, 3]. It
also does not require presentation of multiple exemplars spanning the desired
range of retrieval speeds in order to find the appropriate network structure
[2]. However, the mapping between external input strength and retrieval speed
must be learned in order for the network to be able to perform retrieval at
desired speeds. Unlike the model explored in [2], however, once this mapping
is learned, it can be used to control the speed of other stored sequences.

Another recent study [36] has investigated how a recurrent network could
flexibly control its temporal dynamics using a different approach. They trained
a low-rank recurrent network using back-propagation through time to produce
specific dynamics with flexible timing, and showed that the resulting network
can then be flexibly controlled by a one-dimensional input. It would be inter-
esting to investigate whether the low-rank structure found in such a manner
exhibits similarities with the synaptic connectivity structure in our model.
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The low-dimensional external inputs used to regulate speed are unrelated
to the stored sequential input patterns, and suggest that a mapping to retrieval
speed can be learned independently from a particular set of sequential patterns.
We demonstrated that a reinforcement learning rule can be used to arrive
at external input values implementing a desired speed (Fig. 6). By using a
reward signal measuring how similar retrieval is to the desired speed, the rule
adjusts initially random external inputs to the appropriate values over the
course of multiple trial repetitions. Critically, once these external input values
are learned, they can be used to modulate the retrieval speed of other stored
sequences without having to relearn this mapping. Future experimental work
could analyze the evolution of neural activity across the training of interval
timing tasks, and evaluate whether it is consistent with such a reinforcement-
based rule.

Experimental predictions

This mechanism presented here makes several predictions regarding the rela-
tionship between plasticity rules, external input, and the speed of network
dynamics. One prediction is that retrieval speed could be modified by providing
different external inputs to each population (asymmetric and symmetric). In
vivo, these populations could be identified using the dependence of mean firing
rates on speed of retrieval - neurons who increase their rates with slower/faster
retrieval speeds would be predicted to be the symmetric/asymmetric neurons,
respectively. Targeting one class of neurons or the other, using holographic
techniques (see e.g. [37]) would then be expected to increase or decrease the
speed of retrieval. Another prediction is that these cells have distinct profiles
of temporal asymmetry in their synaptic plasticity. The model presented here
also predicts the existence of “null” input directions, for which no change in
retrieval speed is expected as external input is changed. When moving along
these “null” directions, single neurons would only be expected to change their
temporal firing patterns, but without affecting the speed of retrieval.

Transitions between persistent and sequential activity

Heterogeneity in the learning rule also provides a mechanism that enables input
changes to drive transitions in activity states. An example of such a transition
is frequently reported in primary motor cortex (M1) during delayed reaching
tasks, where a preparatory period with persistent activity or ramping dynamics
is followed by an execution period with transient, sequential dynamics [38, 39].
We demonstrated how an input change can gate such a transition in a simple
network model composed of neurons with two distinct plasticity rules, the first
temporally symmetric, and the second temporally asymmetric. At the start
of the preparatory period, asymmetric neurons are inhibited, and a transient
specific input elicits persistent activity in symmetric neurons. When inhibition
is removed, asymmetric neurons become activated and drive a transition to
sequential activity in both types of neurons.
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Inhibitory gating has been previously hypothesized as a mechanism to con-
trol the initiation of execution period activity. Analysis of M1 activity suggests
that local inhibitory interneurons do not engage in this gating, as putative
inhibitory neurons do not appear to be preferentially active during the prepara-
tory period compared to the execution period [40]. However, this does not
rule out the possibility that the necessary inhibition could arise from other
external inputs to M1. It is also possible that inhibition may not be required
at all. Effective silencing of the asymmetric neurons could occur by a reduc-
tion of excitatory input during the preparatory period. Recent work in mice
suggests that thalamocortical interactions may be a potential candidate for
driving the required transition. Recorded activity in motor thalamus during a
reaching task shows that at movement onset, thalamus activity is negatively
correlated with premotor activity, but positively correlated with activity in M1
[41]. In a separate directional licking task, thalamus projections were shown
to be required for initiating cued movement, and mimicked presentation of
the cue when optogenetically stimulated [42]. An alternative model for transi-
tions between preparatory and execution activity has recently been proposed
[43], in which external inputs trigger a switch between a preparatory state and
a nearly orthogonal execution state. However, in the model of ref. [43], the
execution epoch is described by a single pattern, and any temporal dynamics
within this epoch is inherited from external inputs.

Methods

Neuronal transfer function

The neuronal transfer function is given by the sigmoidal function

φ(h) =
rmax

2

(
1 + erf

(h− θ√
2σ

))
, (9)

where θ determines the input at which the neuron fires at half the maximal
value rmax, and σ is inversely proportional to the gain. This function was
chosen for continuity with previous work [5]. We expect that using qualitatively
similar functions should not alter the results of this paper.

Measuring pattern correlations

To compute the Pearson pattern correlation mµ(t), we compute the overlap
of each of the stored patterns ξµ with the instantaneous firing rates for the
entire population and divide by the standard deviation of firing rate activity:
mµ(t) = 1

N

∑N
i=1 riξ

µ
i /σr(t). In Figs. 3 and 4, we compute the correlations

separately for each subpopulation.
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Measuring retrieval speed

To measure retrieval speed v in Figs. 2, 3, and 5, we recorded the times at which
each pattern correlation attained its peak value, and computed the average
time difference between the peaks of successive patterns in a sequence. We
then divided the time constant of the rate dynamics by this averaged value in
order to convert speed into units of τ−1:

v =
τ

1
P−1

∑P
l=2 argmaxt

(
ml(t)

)
− argmaxt

(
ml−1(t)

) (10)

To account for simulations with dynamics that did not have well-defined cor-
relation peaks (typically observed at extreme storage loads or with persistent
activity), we excluded peak time differences that exceeded two standard devi-
ations of the average difference value. If no peak time difference passed this
criteria, the sequence was considered not retrieved (black regions in Figs. 2, 3,
and 5).

Mean-field theory of single-population network with
variable degree of temporal asymmetry

In this section we derive a mean-field theory for the single population net-
work with homogeneous synaptic plasticity. This is a generalization of the
theory derived for a purely temporally asymmetric network [5]. We define
order parameters qµ(t) = E

(
r(t)ξµ

)
and M = E

(
(r)2(t)

)
, describing the aver-

age overlap of network activity with pattern ξµ and the average squared firing
rate, respectively.

Using equations (1,2), we derive equations describing the temporal evolu-
tion of the overlaps (for l ∈ {2, .., P}),

τ
dql
dt

= −ql +

∫
DξlDxξlφ

(
(1− z)ξlql−1 + zξlql +Rlx+ Iext

)
(11)

where Rl is a ‘noise’ term due to patterns µ 6= l in the sequence (see [5] for
details) By making the following change of variables:

v =
qzl ξl + xRl√
(qzl )2 +R2

l

(12)

u =
ξlRl − qzl x√
(qzl )2 +R2

l

(13)

in which we have defined qzl = (1− z)ql−1 + zql, we obtain

τ
dql
dt

= −ql + qzl G
(

(qzl )2 +R2
l

)
, (14)
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where

G(x) =

∫
DuDvφ

(
v
√
x+ Iext

)
√
x

. (15)

Assuming that G(x) ≈ 1, which is the case during successful retrieval (see
also [5]), then we can simplify to:

τ

1− z
dql
dt

= −ql + ql−1 (16)

This equation makes it clear that retrieval speed depends linearly on z, i.e. on
the balance between the symmetric and asymmetric components of synaptic
plasticity.

Mean-field theory of heterogeneous network and
conditions for retrieval

Mean-field theory can be used to further analyze retrieval speed dynamics,
along the lines of [5]. We define order parameters qXµ (t) = E

(
rX(t)ξX,µ

)
and

MX = E
(
(rX)2(t)

)
, describing the average overlap of network activity in

subpopulation X with pattern ξX,µ and the average squared firing rate in
subpopulation X, respectively. The equations for the overlaps are given by:

τ
dqal
dt

= −qal +
(
qal−1 + qsl−1

)
·Ga

(
(qal−1 + qsl−1)2 + (Ral )2

)
(17)

τ
dqsl
dt

= −qsl +
(
qsl + qal

)
·Gs

(
(qal + qsl )

2 + (Rsl )
2
)

(18)

where G is given, for arbitrary transfer functions φ by:

GX(x) =

∫
DuDvφ

(
v
√
x+ IextX

)
√
x

. (19)

For the transfer function used in this paper, Eq. (9), the expression simplifies,

GX(x) ≡ 1√
2π(σ2 + x)

exp

(
− (θ + IextX )2

2(σ2 + x)

)
. (20)

As in the previous section, Ral and Rsl are ‘noise’ terms due to patterns
µ 6= l in the sequence, which also depends on the average squared firing rates
Ma and Ms. Using Eqs. 17-18, we can derive the dynamics of the combined
population overlap ql(t) = qal (t) + qsl (t):

τ
dql

dt
= −ql + ql−1Ga

(
(ql−1)2 + (Ral )2

)
+ qlGs

(
(ql)

2 + (Rsl )
2
)

(21)
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To compute the boundary for successful retrieval given by the white line
in Fig. 2, we analyze this equation when the gains are constant: Gx(t) = Gx.
Plugging in and rearranging, we find:

τ

1−Gs
dql
dt

= −ql +
Ga

1−Gs
ql−1 (22)

This equation shows that the sequence can only be retrieved if Ga/(1−Gs) >
1, otherwise the peak of the overlaps decay to zero with increasing l. Thus
retrieval of an asymptotically long sequence is successful if the gain converges
to a value greater or equal to one during retrieval. This condition can only be
satisfied if

max
x

[
Ga(x; θ, σ, Iaext) +Gs(x; θ, σ, Isext)

]
≥ 1 (23)

To test for successful sequence retrieval in Fig. 2, we computed the maximal
correlation value of the final pattern mP (t), and compared this value to a
threshold θP = 0.05. If the value fell below this threshold, then retrieval was
considered unsuccessful, and was denoted by a black square. This threshold
criterion was also used in Figures 3 and 5.

Reward-driven learning

A simple perturbation-based reinforcement learning rule is used to demon-
strate that external inputs can be generated that produce network dynamics
at a desired target speed over the course of multiple trial repetitions. We sim-
ulate a series of trials with stochastically varying external inputs. At each trial
n, the external inputs used in the previous trial are perturbed randomly,

Iext,apert = Iext,an−1 + λ∆xan (24)

Iext,spert = Iext,sn−1 + λ∆xsn (25)

where λ is the strength of the perturbation, and ∆xpn are uniformly distributed
random variables over the interval [−1, 1], drawn independently for each popu-
lation p ∈ {a, s} at each trial n. If these external inputs lead to an improvement
in speed compared to previous trials, then

Iext,an = Iext,apert (26)

Iext,sn = Iext,spert ; (27)

else,

Iext,an = Iext,an−1 (28)

Iext,sn = Iext,sn−1 . (29)
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In Fig. 6, the correlation threshold θm = 0.05, the target speed vtarget =
{0.3, 0.8}, and λ = 0.1. On the first trial (n = 0), the external inputs are taken
to be Iext,a0 = −0.2 and Iext,s0 = −0.2 (see open circle).
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