Evolution of an alternative genetic code in the *Providencia* symbiont of the haematophagous leech *Haementeria acuecueyetzin*

Alejandro Manzano-Marín1,*, Sebastian Kvist2,3,4, and Alejandro Oceguera-Figueroa5,*,+

1Centre for Microbiology and Environmental Systems Science, University of Vienna. Djerassiplatez 1, 1030 Vienna, Austria
2Department of Natural History, Royal Ontario Museum. 100 Queen’s Park, M5S 2C6 Toronto, Ontario, Canada
3Department of Ecology and Evolutionary Biology, University of Toronto. 25 Willcocks Street, M5S 3B2 Toronto, Ontario, Canada
4Current address: Swedish Museum of Natural History, Frescativägen 40, 114 18 Stockholm, Sweden
5Departamento de Zoología, Instituto de Biología, Universidad Nacional Autonoma de México. Cto. Zona Deportiva S/N, 04510 Ciudad de México, México

*Authors contributed equally to this work.
*alejandro.manzano.marin@univie.ac.at, aoceguera@ib.unam.mx

ABSTRACT

Strict blood-feeding animals are confronted with a strong B vitamin deficiency. Leeches from the Glossiphoniidae family, notably species of *Placobdella, Placobdelloides*, and *Haementeria* are regarded as strict blood-feeders, and similarly to blood-feeding insects, have evolved specialised organs called bacteriomes to harbour symbiotic bacteria. Leeches of the *Haementeria* genus are found exclusively in the Americas, with most species being South-American and only three found in North America. In these leeches, two pairs of globular bacteriomes attached to the oesophagus harbour intracellularly *’Candidatus Providencia siddallii’* bacteria. Previous work analysing a draft genome of the *Providencia* symbiont of the Mexican leech *Haementeria officinalis* showed that, in this species, the bacteria hold a reduced genome with complete biosynthetic pathways for B vitamins. In this work, we aimed to expand our knowledge on the diversity and evolution of *Providencia* symbionts of *Haementeria* species. For this purpose, we sequenced the genomes of the *Providencia* symbionts of the Mexican leeches *Haementeria acuecueyetzin* and *Haementeria lopezi*, as well as re-sequenced and closed the symbiont genome of *H. officinalis*. We found that all genomes are highly syntenic, mirroring ancient insect endosymbionts and suggesting a conserved gene order at the start of the *Providencia-Haementeria* association. Additionally, we found B vitamin pathways to be conserved among these symbionts, pointing to a common biosynthetic machinery and low variation in this trait. Lastly and most notably, we found that the symbiont of *H. acuecueyetzin* has evolved an alternative genetic code, affecting a portion of its proteome and showing evidence of a rather recent and likely intermediate stage of genetic code reassignment.

Keywords: Hirudinida, leech symbiont, alternative genetic code, blood feeder, B vitamin, *Providencia*.
Introduction

Obligate nutritional symbioses are widespread in animals with a restricted diet, and have been most extensively studied in phloem-feeding arthropods. Another group of organisms with a restricted diet are strict blood-feeders, where their diet is distinguished by a strong B-vitamin deficiency (Lehane, 2005). In blood-feeding arthropods, bacteria housed in so-called bacteriomes (specialised organs evolved to house symbiotic bacteria) compensate for this deficiency, by producing and delivering these nutrients to the host (Duron et al., 2018; Kirkness et al., 2010; Nikoh et al., 2014; Nogge, 1981; Nogge and Gerresheim, 1982). Leeches (Annelida: Hirudinida) are a monophyletic group of annelids that are most famous for their widespread blood-feeding habit (Tessler et al., 2018). Within the family Glossiphoniidae, the ancestral evolution of a proboscis (Trontelj et al., 1999), a tubular mouthpart used to penetrate host tissues, results in members of this family being able to feed namely on a liquid or soft-tissue based diet, consisting of blood or invertebrate haemolymph (Sawyer, 1986). Similarly to strict blood-feeding arthropods, species of the Haementeria, Placobdella, and Placobdelloides genera possess distinctive organs attached to the oesophagus in which symbiotic bacteria reside (Kikuchi and Fukatsu, 2002; Perkins et al., 2005; Siddall et al., 2004). In the case of Haementeria leeches, two distinct pairs of globular sacs (or bacteriomes) are attached to the oesophagus by thin ducts (Oceguera-Figueroa, 2006, 2008), and microscopic investigations have corroborated the presence of such bacteria in the bacteriomes of species in this genus (Manzano-Marín et al., 2015; Perkins et al., 2005).

![Figure 1. Phylogenetic relationships of Haementeria species](https://example.com/image.png)

Figure 1. Phylogenetic relationships of Haementeria species

Dendrogram displaying the phylogenetic relationships among Haementeria species according to Oceguera-Figueroa (2012). Mexican species whose endosymbionts were sequenced in this study are highlighted in bold.

Haementeria is a strictly New World leech genus with two main lineages: A Central and South American clade (H. tuberculifera, H. lutzi, and H. paraguayensis), and a Mexican and South American clade made up of the species H. acuecueyetzin, H. officinalis, H. depressa, H. ghilianii, and H. lopezi (figure 1) (Oceguera-Figueroa, 2012). All species form the latter clade have been identified to carry and have co-diverged with the obligate symbiont *P. siddallii* (Manzano-Marín et al., 2015). Previous genomic sequencing of the bacteria housed in the bacteriomes of the Mexican leech *Haementeria officinalis* revealed a singular bacterial species ‘*Candidatus Providencia siddallii*’ (hereafter referred to as *P. siddallii*) inhabiting the cytoplasm of bacteriocytes (Manzano-Marín et al., 2015). Genome-based metabolic analysis revealed a large portion of its genetic repertoire is dedicated to fulfilling its symbiotic role: biosyn-
thesising B vitamins to supplement the host’s deficient blood-based diet. This study revealed a convergent retention of the B-vitamin biosynthetic pathways among endosymbionts of distantly related blood-feeding insect taxa and the leech H. officinalis. Mirroring what has been observed for many strict vertically-transmitted obligate nutritional endosymbionts in sap- and blood-feeding insects, the genome of P. siddallii evidenced a historical past involving large-scale gene loss and genomic deletions. This genomic reduction process is due to a combination of relaxed selection on dispensable genes and the strong bottlenecks resulting from the strict vertical transmission maternally-inherited endosymbionts go through in each generation, increasing the fixation of deleterious mutations through drift (Bennett and Moran, 2015; Moran, 1996). In its most advanced stages, this extreme evolutionary process can lead to an adapt-or-die scenario, where mutations arising in essential genes can lead to the breakdown of the symbiosis (resulting in the extinction of the host lineage or symbiont replacement) or to compensatory mutations in one or both partners (Bennett et al., 2016; Latorre and Manzano-Marín, 2017; McCutcheon and Moran, 2012; McCutcheon et al., 2019).

In this work, we aimed to gain deeper insights into the Haementeria-Providencia symbiosis. For this purpose, we sequenced the genome of the P. siddallii endosymbionts of the Mexican leeches H. acucueyetzin and H. lopezi. In addition, we have re-sequenced and produced a closed reference genome for the previously-sequenced P. siddallii endosymbiont of H. officinalis. It is worth noting that Mexican species of Haementeria do not form a monophyletic group. On the contrary, H. lopezi and H. officinalis are sister to their respective South American counterparts (H. ghilianii and H. gracilis), whereas H. acucueyetzin represents an independent lineage. Through comparative genomics, we have found P. siddallii symbionts display large-scale genome synteny, conservation of enzymes involved in B-vitamin provisioning, no mobile elements, and little variation in gene content. Most notably, we discovered a rare genetic code change from the traditional bacterial code 11 to the rarer genetic code 4. Finally, through thorough analysis of the protein-coding and tRNA-Trp (trnW) genes of the P. siddallii genomes, we conclude that the symbiont of H. acucueyetzin displays a recent, and likely intermediate, stage of the genetic code recoding process.

Results

Providencia siddallii genomes and biosynthesis of B vitamins

The genomes of the P. siddallii endosymbionts of H. acucueyetzin, H. officinalis, and H. lopezi (hereafter PSAC, PSOF and PSLP, respectively) share many general genomic characteristics (table 1). All hold a compact genome of under 0.9 Mega base-pairs, a low G+C content, and a reduced set of genes, when compared to the free-living Providencia rettgeri strain. All three P. siddallii genomes also show a reduced set of non-coding RNAs, including only one ribosomal rRNA gene set, with separate 16S and 23S+5S rRNA genes. PSOF retains the largest genome, around 100 kilo base-pairs (kbp) larger than those of PSAC and PSLP, while retaining a similar amount of genes. In light of the co-divergence of P. siddallii
symbionts and their hosts (figure 1; Manzano-Marín et al. 2015), *P. siddallii* has undergone at least two independent events of drastic genome reduction after the diversification of their hosts, which have almost exclusively impacted non-coding DNA. In addition, they all show a small number of pseudogenes as well as a complete lack of any detectable mobile elements.

P. siddalli

<table>
<thead>
<tr>
<th>Bacterial strain</th>
<th>P. rettgeri AR_0082</th>
<th>PSAC</th>
<th>PSOF</th>
<th>PSLP</th>
</tr>
</thead>
<tbody>
<tr>
<td>genome size</td>
<td>4,454 kbp</td>
<td>756 kbp</td>
<td>844 kbp</td>
<td>741 kbp</td>
</tr>
<tr>
<td>G+C content</td>
<td>40.3 %</td>
<td>22.0 %</td>
<td>23.9 %</td>
<td>23.3%</td>
</tr>
<tr>
<td>CDSs</td>
<td>4,071</td>
<td>610</td>
<td>628</td>
<td>612</td>
</tr>
<tr>
<td>rRNAs</td>
<td>22</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>tRNAs</td>
<td>77</td>
<td>33</td>
<td>33</td>
<td>34</td>
</tr>
<tr>
<td>ncRNAs</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>pseudogenes</td>
<td>74</td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>Mobile elements</td>
<td>16</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
</tbody>
</table>

Table 1. General genomic characteristics of *P. siddallii* endosymbionts and the closely related free-living *Providencia rettgeri* strain AR_0082. The newly sequenced organisms are highlighted with a grey background.

P. siddallii strains show large-scale genome synteny (supplementary figure S1) and share 96.27% of their protein-coding genes (figure 2: top left). The strain-specific gene content reflects mainly a differential retention of genes, mostly affecting cellular maintenance, regulation, and RNA modifications. Notably, PSOF and PSLP retain a slightly larger repertoire of proteases (*ptrB* and *pepQ* in both, *htpX* in PSOF), and genes involved in bacterial outer membrane biogenesis (*lpxL* and *hldD* in both, *mltB* and *gmhB* in PSOF) and cellular maintenance (*pcnB*, *holC*, *holD*, *ftsX*, and *ftsE* in both; and *rmuC* and *engB* in PSOF). All genomes contain a small number of protein-coding genes (CDSs) with frameshifts in poly(A/T) tracts (supplementary table S1) which are likely to be rescued by transcriptional slippage, as has previously been demonstrated for strains of *Buchnera aphidicola* and *Blochmannia pensilvanicus* endosymbionts (Tamas et al., 2008). From these, two genes containing such tracts have likely evolved these regions before the diversification of the symbiont lineage: *rlmE* and *znuA*, involved in 23S rRNA modification and zinc uptake, respectively.

As observed in other blood-feeder’s endosymbionts, PSAC and PSLP preserve intact and identical pathways to PSOF for the biosynthesis of B vitamins, putatively required to compensate for the host’s deficient diet (figure 2: bottom right; Manzano-Marín et al. 2015). All *Haementeria* symbionts have lost the *ilvD*, *ilvE*, and *panD* genes, rendering them able to synthesise pantothenate only from α-ketovaline and β-alanine. In addition, none retains a *nudB* gene, coding for a dihydroneopterin triphosphate diphosphatase. However, it has been shown that, in *Escherichia coli*, many phosphatases show wide-range substrate specificities (Haase et al., 2013; Kuznetsova et al., 2006), which suggests other phosphatase(s) encoded in the *P. siddallii* genomes might be fulfilling *nudB*’s role. For example, in *Lactococcus lactis*, the nudix
hydrolase superfamily protein YlgG has been shown to metabolise the same reaction as NudB in *E. coli* (Klaus *et al.*, 2005). In *P. siddallii* symbionts, the product of the *nudE* gene (ADP compounds hydrolase NudE) could potentially rescue the loss of *nudB*, as it is the only retained protein which belongs to the nudix hydrolase superfamily.

Figure 2. *P. siddallii* shared gene content and B vitamin biosynthesis. In the top left, Venn-like diagram displaying the results of OrthoMCL clustering of the predicted proteomes of PSAC, PSOF, and PSLP. In the rest of the figure, diagram of the B vitamin biosynthetic pathways. Arrows connect metabolites, and names on arrows indicate the gene name coding for the enzyme involved in the enzymatic step.

Evolution of an alternative genetic code in the symbiont of *H. acuecueyetzin*

During the annotation process of PSAC, an unusually large number of proteins (125 out of 610) were found to be truncated by an early in-frame UGA stop codon. Upon closer inspection, most of these cases corresponded to UGG > UGA mutations (Tryptophan > STOP), as judged by comparing PSOF, PSLP, and other *Providencia* to PSAC. These UGA-containing genes include many whose products are considered essential for cellular maintenance as well as its symbiotic nutrient-provisioning role (*figure 3A*). These include genes coding for enzymes of the NADH-quinone oxidoreductase (*nuoC, nuoE, nuoG, nuoK,* and *nuoM*), aminoacyl--tRNA ligases (*leuS, glnS, ileS, g1tX, cysS, glyQ, pheT,* and *valS*), biotin, thiamin, and folic acid biosynthesis (*bioA, thiE, thiF, thiH, pabC, folA, dxs, folP,* and *iscS*). This large quantity of putative UGA-containing genes suggested a genetic code change from 11 to 4, where the difference lies with the UGA codon coding for the amino acid tryptophan rather than for a stop codon recognised by the
prfB gene product (peptide chain release factor 2, or RF2). This “11-to-4” recoding has most famously occurred in Entomoplasmatales and Mycoplasmatales (Mollicutes), such as Mycoplasma spp. (Bové, 1993), and was first described in M. capricolum (Yamao, 1985). To our knowledge, only four other such cases have been reported for nutritional/digestive endosymbionts: once in the alphaproteobacterial endosymbiont of cicadas, Candidatus Hodgkinia cicadicola (McCutcheon et al., 2009) (hereafter Hodgkinia), twice in the betaproteobacterial symbionts of different Auchenorrhyncha (Insecta: Hemiptera), Candidatus Zinderia insecticola and Candidatus Nasuia deltocephalinicola (Bennett and Moran, 2013) (hereafter Zinderia and Nasuia, respectively), and once in the gammaproteobacterial symbionts of Cassidinae beetles, Candidatus Stammera capleta (Salem et al., 2017) (hereafter Stammera). Based on phylogenetic analyses, this alternative genetic code is suggested to have evolved three to four times, given that Candidatus Vidania fulgoroideae (hereafter Vidania), is recovered as sister taxon of Nasuia and does not show the alternative genetic code (Bennett and Mao, 2018).

Figure 3. Schematic representation of genetic re-coding in PSAC. (A) Excerpt of alignments displaying the translated UGA codons found in PSAC compared to PSOF, PSLP, and the free-living P. rettgeri strain AR_0082 and P. stuartii strain MRSN 2154. An “X” in the alignments represents a UGA codon. (B) Excerpt of alignment displaying the translated UGA codon in the same fashion as in A. At the bottom, detail of the nucleotide alignment displaying the UG>G mutation in prfB from PSAC compared to PSOF and PSLP. Under the sequence of each codon, the encoded amino acids are shown with the one-letter abbreviation code.

By comparing PSAC to these other endosymbiont lineages showing genetic re-coding, it becomes apparent that they all show differences in two key factors behind the evolution of the alternative genetic code: the presence/absence of the prfB gene and the trnW’s CCA/UCA anticodon, preferentially recognising the codons UGG and UGA, respectively (table 2). Both Hodgkinia and Nasuia show a loss of the prfB gene and the re-coding of the trnW anticodon from CCA>UCA, while Stammera and Zinderia do not display a change in the trnW’s anticodon. Despite this difference, all four endosymbionts have a large proportion of their genes carrying a tryptophan-coding UGA codon, from 50.37% in Nasuia up to 70.41%
for *Hodgkinia*. As for PSAC, it is the only re-coded endosymbiont that retains both a *trnW*-CCA and a *prfB* gene. However, the *prfB* gene of PSAC itself carries a UGA codon (*figure 3B*), which would render it a pseudogene under the genetic code 11 but not under genetic code 4. In addition, only 20.49% of its protein-coding genes carry a UGA stop codon, which is in sharp contrast to what is observed in *Stammera*, *Hodgkinia*, *Zinderia*, and *Nasuia*. Furthermore, PSAC retains at least nine genes that potentially still use a UGA stop codon: *rpsK*, *fabZ*, *map*, *tamA*, *purE*, *ispB*, *rnc*, *kdsA*, and *miaA*. Without a functioning UGA stop codon, the previously mentioned genes would produce rather large proteins towards their 3'-end, putatively rendering them non-functional. Lastly, by re-analysing the annotation of PSOF and PSLP, we also found nine genes in each genome that are predicted to be pseudogenised due to a nonsense mutation (UGG>UGA; *table 3*). Many of these genes are considered essential in *E. coli* and/or also preserved in other endosymbionts with highly reduced genomes. It is noteworthy the case of *rimM*, which despite conflicting evidence for its essentiality in *E. coli* (judged in EcoCyc (*Keseler et al.*, 2017) as "growth"/"no growth"), it is considered an essential gene, as different mutant-carrying strains exhibit growth defects and a slower rate of translation compared to the wild type. In PSOF and PSLP, *rimM* would be pseudogenised unless translational readthrough occurs to interpret the in-frame UGA codon as tryptophan. Lastly, while many of the UGA-containing genes in PSOF and PSLP also contain an UGA codon coding for tryptophan in PSAC; *apbE*, *lolA*, and *rimM* share the same tryptophan-encoding UGA codon, suggesting an ancestral state for this trait that has been conserved throughout evolutionary time.

Table 2. Characteristics accompanying genetic code changes in selected animal endosymbionts.

* Indicates the presence of a UGA stop codon in the *prfB* pseudogene. The newly sequenced organisms are highlighted in grey background. Accession for strain genomes used in this table are found in supplementary *table S2*. α=Alphaproteobacteria; β=Betaproteobacteria; γ=Gammaproteobacteria.

<table>
<thead>
<tr>
<th>class symbiont</th>
<th>γ</th>
<th>α</th>
<th>β</th>
</tr>
</thead>
<tbody>
<tr>
<td>PSAC</td>
<td>PSOF</td>
<td>PSLP</td>
<td></td>
</tr>
<tr>
<td>prfB</td>
<td>+(ψ)</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>trnW</td>
<td>UGG</td>
<td>UGG</td>
<td>UGG</td>
</tr>
<tr>
<td>% G+C content</td>
<td>22.0</td>
<td>23.9</td>
<td>23.3</td>
</tr>
<tr>
<td>CDSs</td>
<td>610</td>
<td>628</td>
<td>612</td>
</tr>
<tr>
<td>w/UGA</td>
<td>125</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>% w/UGA</td>
<td>20.49</td>
<td>1.27</td>
<td>1.47</td>
</tr>
<tr>
<td>Stammera</td>
<td>Hodgkinia</td>
<td>Zinderia</td>
<td>Nasuia</td>
</tr>
<tr>
<td>UGG</td>
<td>UGA</td>
<td>UGG</td>
<td>UGA</td>
</tr>
<tr>
<td>15.4</td>
<td>58.4</td>
<td>13.5</td>
<td>17.1</td>
</tr>
<tr>
<td>255</td>
<td>169</td>
<td>206</td>
<td>137</td>
</tr>
<tr>
<td>159</td>
<td>119</td>
<td>121</td>
<td>69</td>
</tr>
<tr>
<td>62.35</td>
<td>70.41</td>
<td>58.74</td>
<td>50.37</td>
</tr>
<tr>
<td>gene</td>
<td>Product</td>
<td>Function</td>
<td>Essentiality*</td>
</tr>
<tr>
<td>--------</td>
<td>---</td>
<td>---</td>
<td>---------------</td>
</tr>
<tr>
<td>apbE</td>
<td>FAD:protein FMN transferase</td>
<td>Flavin transferase</td>
<td>-/m/+</td>
</tr>
<tr>
<td>dnaG</td>
<td>DNA primase</td>
<td>Replication</td>
<td>+/-/+</td>
</tr>
<tr>
<td>epmB</td>
<td>L-lysine 2,3-aminomutase</td>
<td>Isomerase</td>
<td>-/m/+</td>
</tr>
<tr>
<td>folA</td>
<td>Dihydrofolate reductase</td>
<td>Folic acid biosynthesis</td>
<td>+/-/+</td>
</tr>
<tr>
<td>ispE</td>
<td>4-diphosphocytidyl-2-C-methyl-D-erythritol kinase</td>
<td>Isopentenyl diphosphate</td>
<td>+/-/+</td>
</tr>
<tr>
<td>lolA</td>
<td>Outer-membrane lipoprotein carrier protein</td>
<td>Lipoprotein translocation</td>
<td>m/m/+</td>
</tr>
<tr>
<td>menC</td>
<td>o-succinylbenzoate synthase</td>
<td>Menaquinone biosynthesis</td>
<td>-/-/+</td>
</tr>
<tr>
<td>mepS</td>
<td>Murein DD-endopeptidase</td>
<td>Cell wall biosynthesis</td>
<td>-/-/+</td>
</tr>
<tr>
<td>mepS</td>
<td>MepS/Murein LD-carboxypeptidase</td>
<td></td>
<td></td>
</tr>
<tr>
<td>pdxH</td>
<td>Pyridoxine/pyridoxamine 5'-phosphate oxidase</td>
<td>PLP biosynthesis</td>
<td>m/m/+</td>
</tr>
<tr>
<td>prmC</td>
<td>Release factor glutamine methyltransferase</td>
<td>Peptide chain release factor methyltransferase</td>
<td>+/-/+</td>
</tr>
<tr>
<td>rimM</td>
<td>Ribosome maturation factor</td>
<td>Ribosome assembly</td>
<td>m/+/+</td>
</tr>
<tr>
<td>sufS</td>
<td>Cysteine desulfurase</td>
<td>Iron-sulfur cluster assembly</td>
<td>-/+/+</td>
</tr>
<tr>
<td>tilS</td>
<td>tRNA(Ile)-lysidine synthase</td>
<td>TRNA modification</td>
<td>+/-/+</td>
</tr>
<tr>
<td>tsaC</td>
<td>Threonylcarbamoyl-AMP</td>
<td>TRNA modification</td>
<td>m/m/+</td>
</tr>
<tr>
<td>znuB</td>
<td>High-affinity zinc uptake system membrane protein</td>
<td>Zn$^{2+}$ uptake</td>
<td>-/m/+</td>
</tr>
</tbody>
</table>

Table 3. Genes in PSOF and PSLP predicted produce full-length proteins through translational readthrough of the UGA codon. * Essentiality is denoted in the table as + (yes), - (no), or m (mixed) in the format of +/-/+ (essentiality in *E. coli* as recorded in EcoCyc as "Growth" or "No Growth" Keseler et al. (2017)/retention in the genomes of *B. aphidicola*, 'Ca. Sulcia muelleri', and 'Ca. Blochmannia' strains/retention in the genome of PSAC).

Discussion

When endosymbionts experience regular vertical transmission and become locked into the symbiotic association with their hosts, they undergo continuous bottlenecks every new host generation that results in many of the typical genomic characteristics observed in long-term strict vertically-transmitted endosymbionts (Latorre and Manzano-Marín, 2017; Moran et al., 2008). These changes typically include a large-scale genome reduction, biased nucleotide composition, a compact gene-dense genome, and
a lack of mobile elements. *P. siddallii*, the obligate bacterial endosymbionts of *Haementeria* leeches, display such genomic characteristics, suggesting a long-term association with their hosts coupled with strict vertical transmission. The perfect conservation of B-vitamin biosynthetic genes across *P. siddallii* strains, despite large-scale genome reduction, points towards this symbiotic machinery being key to the establishment and maintenance of this symbiont lineage in *Haementeria* leeches, and provides further evidence that this association is essential for the survival of the leeches. Together, the similarly-reduced genomes, the large shared gene fraction, and the perfect genome synteny across *P. siddallii* strains provide strong evidence for an evolutionary history marked by an early and rapid genome reduction followed by diversification with their leech hosts. This genome reduction followed by host-symbiont co-divergence mirrors well-known examples of "ancient" nutritional symbionts of aphids (Chong *et al.*, 2019; Tamas *et al.*, 2002), *Camponotus* ants (Williams and Wernegreen, 2015), cockroaches, and termites (Kinjo *et al.*, 2018), among many others.

As we have shown, the genome of PSAC, the obligate nutritional symbiont of the blood-feeding leech *H. acueceyetzin*, does not only show the "typical" genomic characteristics of a long-term vertically transmitted endosymbiont, but has also evolved an alternative genetic code, reflected in at least 20.49% of its encoded proteins. This alternative genetic code matches the so-called genetic code 4, which features a UGA codon reassignment from STOP to tryptophan (Suzuki and Nagao, 2021). There are two main players involved in this reassignment: the peptide release factor 2 (encoded by *prfB*) and the anticodon of the transfer RNA tryptophan (*trnW*). While the former is in charge of recognising the UGA codon and, as response, direct the termination of translation (Capecchi, 1967; Capecchi and Klein, 1970; Scolnick *et al.*, 1968), the *trnW*-(*CCA*) gene binds the UGG codon directing the addition of tryptophan to the nascent chain. The STOP>Tryptophan codon reassignment is known to have arisen in at least four distantly related endosymbiotic lineages: once in the gammaproteobacterial endosymbiont of tortoise beetles (*Stammera*) (Salem *et al.*, 2017), once in the alphaproteobacterial endosymbiont of cicadas (*Hodgkinia*) (McCutcheon *et al.*, 2009) and twice in the betaproteobacterial endosymbionts of Auchenorrhincha (*Zinderia* and *Nasuia*) (Bennett and Mao, 2018; Bennett and Moran, 2013). In these endosymbionts, the complete loss of the *prfB* gene is a constant, and this is accompanied by a large amount (>50%) of the protein-coding genes that include a tryptophan-encoding UGA codon. On the contrary, PSAC’s genome only has around 20% of such proteins, with many being predicted as essential to the symbiont. This is likely to be explained by both the retention of a *trnW*-(*CCA*) and a *prfB* gene, which is in contrast to the afore-mentioned endosymbionts. Despite the retention of a *prfB* gene, it itself has an in-frame UGA codon, a feature that likely leads to a situation where translation of *prfB* occurs suboptimally. This suboptimal translation might have historically been a trigger for the accumulation of in-frame UGA codons in essential proteins. In support of this hypothesis, we found that PSAC likely retains several genes that likely still use a UGA stop codon, including the gene encoding for the essential ribosomal protein S11 (*rpsK*). The retention of these likely essential genes and *prfB*, in addition to the comparatively low percentage of UGA-containing genes in PSAC, points to an early stage of genome recoding in this symbiont. Moreover, we found evidence suggesting that the related symbionts PSOF and PSLP likely depend on the read-trouch of in-frame UGA
stop codons for the correct translation of several likely essential proteins. This finding suggests PSOF and PSLP show features of an early on-set of STOP>Tryptophan re-coding, while preserving an intact prfB gene and a trnW-(CCA).

Contrary to what has been proposed for Hodgkinia (McCutcheon et al., 2009), the results of this study show that in P. siddallii a UGG>UGA mutation in the prfB gene, rather than a trnW CCA>UCA mutation, initiated the genetic recoding and likely occurred in a background that included translational readthrough of certain essential genes (figure 4). This pre-existence of UGA-containing genes could have facilitated the initial stages of re-coding and is likely the route that has been followed by at least Zinderia, where the trnW also keeps a CCA anticodon. In PSAC, some readthrough of the prfB likely occurs, albeit at a low level, to produce functional PrfB protein, which allows some UGA to be interpreted as stop codons while also keeping the presence of in-frame UGA tryptophan codons relatively low across the genome. The expected and subsequent loss of the prfB gene would be facilitated when no UGA stop codon is needed to preserve functional essential proteins. Lastly, the CCA>UCA mutation in the trnW anticodon would eventually arise, facilitating the maintenance and spread of the new genetic code across the protein-coding genes.

In conclusion, we found that P. siddallii followed a similar genome evolution route to that of Buchnera aphidicola and other "ancient" nutritional endosymbionts, which included a large genome reduction, genome stasis, and loss of mobile elements preceding a co-divergence with their leech hosts. We found conclusive evidence of the recent evolution of an alternative genetic code in PSAC, in addition to hints of the presence of translational readthrough of some UGA-containing genes in the related strains PSOF and PSLP. The findings presented in this study imply that the symbiotic taxon P. siddallii is likely one prone to alternative genetic code evolution, having members such as PSOF and PSLP already dependent on some level of translational readthrough to rescue translation of some genes due to the appearance of
nonsense mutations in essential genes to the bacteria or its symbiotic role. We expect further study of the transcriptomics and proteomics of *P. siddallii* strains across the *Haementeria* genus will shed light on the step-wise process of the evolution of an alternative genetic code.

Materials and Methods

Leech collection, DNA extraction, and genome sequencing

Haementeria acuecueyetzin

A total of 30 *H. acuecueyetzin* individuals were collected in Teapa, Tabasco, Mexico in 2018. From these, the 2 pairs of bacteriomes were dissected and DNA was extracted using the *DNEasy Blood & tissue Kit* (Qiagen). DNA library was constructed using the *NGS Nextera Flex DNA library preparation kit* (Illumina). DNA was multiplexed together with 11 other samples and sequenced on a single *HiSeqX* lane (150 base-pairs [bp] paired-end reads).

Haementeria officinalis

One single individual was collected in Coroneo, Guanajuato, Mexico in 2019. This is the same locality where previous individuals were collected to produce a draft genome of the *P. siddallii* symbiont of *H. officinalis* (Manzano-Marín et al., 2015). The bacteriomes were dissected and sorted in absolute ethanol and then used for DNA extraction following a modified CTAB method. Briefly, bacteriomes were frozen in liquid nitrogen and ground with a pestle. 500 µl of CTAB lysis buffer and 10 µl of Proteinase K (20 mg/ml; Promega) were added to the sample and incubated at 65°C for 90 minutes. Samples were then allowed to cool for 5 minutes and 5µl of RNase (DNase-free; Promega) was added and incubated at 37°C for 10 minutes. Afterwards, two phenol-chloroform isoamyl alcohol extractions were performed, followed by centrifugation for 10 min at 4°C after each extraction. Following extractions, 500µl of Chloroform:Isoamyl alcohol (24:1) were added to the resulting upper aqueous phase and centrifuged for 10 minutes at 4°C. After removing the resulting aqueous phase, 0.1 volumes of ammonium acetate were and 1 volume of isopropanol were added to the sample and incubated at -20°C overnight. Next, the sample was centrifuged at 14,100 rpm for 15 minutes at 4°C and supernatant was discarded. Lastly, the DNA pellet was washed twice in 700 µl of 70% ethanol and after drying, it was resuspended in 30 µl of TE 1X buffer. DNA library was constructed using the *Westburg NGS DNA Library Prep Kit* and sequenced in a single run of Illumina *iSeq 100* (150 bp paired-end reads).

Haementeria lopezi

One single individual was collected in Cerro colorado, Colima, Mexico in 2022. The bacteriomes were dissected and DNA was extracted using the *High Molecular Weight DNA extraction kit* (Promega) following the plant tissue protocol. DNA library was constructed using the *Westburg NGS DNA Library*
Prep Kit and sequenced in a single run of Illumina **MiSeq Micro** (150 bp paired-end reads).

All leech specimens were collected under the permit number 03184 issued by the **Secretaría del Medio Ambiente y Recursos Naturales** (SEMARNAT), to A.O.F.

Symbiont genome assembly, annotation, and comparative genomics

Reads generated from the Illumina sequencing were right-tail clipped (quality threshold of 20) using FASTX-Toolkit v0.0.13 (http://hannon-lab.cshl.edu/fastx_toolkit/, last accessed March 3, 2023). Then, PRINSEQ v0.20.4 (Schmieder and Edwards, 2011) was used to remove reads containing undefined nucleotides ("N"), shorter than 75 bp, and those left without a mate after the trimming and filtering process. The surviving reads were assembled using SPAdes v3.10.1 (Bankevich et al., 2012) with the --only-assembler option and kmers of 77, 99, and 127. The resulting contigs larger than 200 bp were binned using results from a BlastX (Altschul et al., 1997) search (best hit per contig) against a database consisting of the proteome of *Hellobdella robusta* as well as that of a selection of *Providencia* strains (supplementary **table S2**). In all cases, this resulted in one or two large contigs with coverage $\geq 20X$ being assigned to the *Providencia* bin. These contigs were used for mapping back the reads from each *Haementeria* species followed by re-assembly of mapped reads using SPAdes as described above. This assembly resulted in a single circular contig for each leech species.

For creating a draft annotation of the circular chromosomes using Prokka v1.14.16 (Seemann, 2014), a custom protein database was built using the predicted proteome of a previously reported draft genome for the *P. siddallii* symbiont of *H. officinalis* (Manzano-Marín et al., 2015). This draft annotation was followed by manual curation of the gene coordinates as well as an update to the product naming using UniProtKB (Bateman et al., 2021), Pfam v34 (Mistry et al., 2021), and InterProScan (Jones et al., 2014). Annotations for non-coding RNAs was refined using Infernal v1.1.4 (Nawrocki and Eddy, 2013), with the Rfam database v14.1 (Kalvari et al., 2021), tRNAScan-SE v2.0.9 (Chan et al., 2021) and ARAGORN v1.2.41 (Laslett, 2004). Pseudogenes were manually identified through on-line BlastX searches of the intergenic regions as well as through BlastP, DELTA-BLAST (Boratyn et al., 2012), and domain searches of the predicted open reading frames. Proteins were considered to be putatively functional if all essential domains for the function were found, if a literature search supported the truncated version of the protein as functional in a related organism, or if the predicted protein displayed truncations but retained identifiable domains. Details of the results of these searches are captured in the annotation files. All manual curation was done using UGENE v1.34.0 (Okonechnikov et al., 2012). The predicted proteomes for *P. siddallii* symbionts were clustered into orthologous groups using OrthoMCLv2.0.9 (Chen et al., 2007; Li, 2003) followed by a manual check for the split of distant orthologous proteins. These results were used to plot rearrangements using circos v0.69-9 (Krzywinski et al., 2009). Single-gene alignments were done using MAFFT v7.453 (Katoh and Standley, 2013) and B vitamin metabolic pathways were plotted following EcoCyc (Keseler et al., 2017) using Inkscape v1.1.2 (https://inkscape.org, last accessed March 3, 2023).
All files relating to orthologous protein grouping can be found at https://doi.org/10.5281/zenodo.6539517.

Supplementary Material & Data Availability

Supplementary figure S1 and tables S1-2 have been included in this submission. All auxiliary files for other analyses as well as the genomes of *P. siddallii* endosymbionts are available online at https://doi.org/10.5281/zenodo.6539517. Newly sequenced and annotated genomes are in the process of being accessioned at the European Nucleotide Archive (ENA).

Acknowledgements

A.M.M. has received funding from European Union’s Horizon 2020 Research and Innovation Programme under the Marie Skłodowska-Curie Grant Agreement No. [840270] (LEECHSYMBIO). S.K. was a supported by an NSERC Discovery Grant. A.O.F has received funding from the Programa de Apoyo a Proyectos de Investigación e Innovación Tecnológica-Universidad Nacional Autónoma de México No. [IN215722]. The authors thank Prof. Dr. Thomas Rattei and his team for maintaining the Life Science Compute Cluster (LiSC; https://cube.univie.ac.at/lisc) that was used for computational analyses. The authors would also like to thank SickKids (Toronto, Canada) and the Vienna BioCenter Core Facilities (https://www.viennabiocenter.org/vbcf/; Vienna, Austria) for their sequencing service. The authors would also like to thank Víctor Sosa Jiménez for assisting in the collection of leech specimens in México. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

References

URL

Siddall M. E, Perkins S. L, and Desser S. S. 2004. Leech mycetome endosymbionts are a new lineage of Alphaproteobacteria related to the...

