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Summary 

Previous work has demonstrated remarkably reproducible and consistent hierarchies of neural 

timescales across cortical areas at rest. The question arises how such stable hierarchies give rise 

to adaptive behavior that requires flexible adjustment of temporal coding and integration 

demands. Potentially, this previously found lack of variability in the hierarchical organization of 

neural timescales could be a reflection of the structure of the laboratory contexts in which they 

were measured. Indeed, computational work demonstrates the existence of multiple temporal 

hierarchies within the same anatomical network when the input structure is altered. We posit that 

unconstrained behavioral environments where relatively little temporal demands are imposed 

from the experimenter are an ideal test bed to address the question of whether the hierarchical 

organization and the magnitude of neural timescales reflect ongoing behavioral demands. To 

tackle this question, we measured timescales of local field potential activity while rhesus 

macaques were foraging freely in a large open space. We find a hierarchy of neural timescales 

that is unique to this foraging environment. Importantly, although the magnitude of neural 

timescales generally expanded with task engagement, the brain areas’ relative position in the 

hierarchy was stable across the recording sessions. Notably, the magnitude of neural timescales 

monotonically expanded with task engagement across a relatively long temporal scale spanning 

the duration of the recording session. Over shorter temporal scales, the magnitude of neural 

timescales changed dynamically around foraging events. Moreover, the change in the magnitude 

of neural timescales contained functionally relevant information, differentiating between 

seemingly similar events in terms of motor demands and associated reward. That is, the patterns 

of change were associated with the cognitive and behavioral meaning of these events. Finally, 

we demonstrated that brain areas were differentially affected by these behavioral demands - i.e., 

the expansion of neural timescales was not the same across all areas. Together, these results 

demonstrate that the observed hierarchy of neural timescales is context-dependent and that 
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changes in the magnitude of neural timescales are closely related to overall task engagement 

and behavioral demands. 
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Introduction 

Behavioral coordination and adaptation across an ever-changing environment are a hallmark of 

cognition in biological systems. To function in our daily lives we simultaneously consider auditory, 

visual, and sensory input while achieving motor coordination, each of which spans a continuum 

of spatial and temporal scales. Consider one of the most studied systems in neuroscience, the 

visual cortex. It is well known that neurons along the visual pathway have increasingly larger 

receptive fields (Hubel & Wiesel, 1968) —higher-level visual areas respond to information from 

large portions of space by integrating input from neurons in the early visual cortex which possess 

smaller receptive fields. Events not only unfold over multiple spatial but also over a multitude of 

temporal scales (Kohn, 2007). In fact, spatial integration in the visual system would not be 

possible without temporal integration of information, and implicitly, neurons simultaneously 

processing input across multiple timescales (Cocchi et al., 2016; Zhou et al., 2018). Indeed, this 

hierarchical increase in representational complexity is closely followed by a hierarchy of longer 

temporal processing windows (Ogawa & Komatsu, 2010). Similarly, this hierarchy of neural 

processing across different scales of complexity is found in the prefrontal cortex (PFC), with 

progressively more abstract representations and higher-order control on a posterior-anterior and 

ventral-medial axes (Badre, 2008; Fuster, 2001; Koechlin et al., 2003). Moreover, 

electrophysiological, and functional Magnetic Resonance Imaging (fMRI) results in human and 

nonhuman primates at rest have demonstrated that the frontal lobe is organized along a 

hierarchical gradient of neural timescales that mirrors its functional architecture (Cavanagh et al., 

2016; Maisson et al., 2021; Manea et al., 2022; Murray et al., 2014; Raut et al., 2020). These 

parallel results suggest that neural timescales in the PFC might be functionally relevant, 

nevertheless, direct evidence to support this conclusion is limited. 

Generally, it is thought that areas operating at slower timescales have a wider temporal 

processing window to integrate information from other brain areas (Cocchi et al., 2016; Hasson 

et al., 2008; Honey et al., 2012; Ito et al., 2020; Soltani et al., 2021). Indeed, prefrontal brain areas 
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with more abstract representations that display relatively more information integration compared 

to other brain areas generally also display slower neural timescales (Maisson et al., 2021; Manea 

et al., 2022). Based on these findings, it could be argued that neural timescales merely reflect a 

relatively static property inherited from their place in the anatomical hierarchy that allows neurons 

within that area to integrate over a stable temporal scale. In this case, although neural timescales 

would facilitate function, the timescales themselves would not change in a functional manner. 

Alternatively, it could be argued that anatomy instead might impose a range of timescales that 

bounds the dynamics over which brain areas can operate. For example, it is conceivable that 

there are stable hierarchies of timescales that can expand and contract depending on functional 

demands.   

Findings on the dynamics of neural timescales in the context of behavior are scarce (see 

Cavanagh et al., 2020; Gao et al., 2020; Zeraati et al., 2021). There is currently conflicting 

evidence about the behavioral dependence of neural timescales, their hierarchical organization 

and general function. Some preliminary evidence suggests that neural timescales expand with 

task engagement and attention, and hence are potentially functionally relevant (Gao et al., 2020; 

Zeraati et al., 2021). In contrast, a plethora of previous findings have demonstrated remarkably 

reproducible and consistent neural timescales across cortical areas at rest (see Fig. 1A; 

Cavanagh et al., 2016, 2018; Cirillo et al., 2018; Fascianelli et al., 2019; Maisson et al., 2021; 

Murray et al., 2014; Nougaret et al., 2021; Wasmuht et al., 2018), with one study even concluding 

that the hierarchy of neural timescales appears invariant to task context and that neural 

timescales are not affected by behavioral demands (Rossi-Pool et al., 2021). The question that 

arises from these findings is how such apparently static temporal properties can accommodate 

adaptive and flexible behavior. After all, not all behavior follows the same exact temporal 

sequence with the same temporal scale. Indeed, a large-scale dynamical model of the macaque 

neocortex exhibits not one, but multiple temporal hierarchies, as indicated by unique responses 

to visual and somatosensory stimulation (Chaudhuri et al., 2015). The existence of multiple 
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concurrent neural timescales gradients that are dynamically expressed (Chaudhuri et al., 2015; 

Li & Wang, 2022; Spitmaan et al., 2020) might support behavioral changes at different temporal 

scales. This would not be surprising since even sheer neuronal variability is ubiquitous and 

functional not only across but also within brain areas, and it is well established that neural 

processing displays complex temporal dynamics (Churchland et al., 2010; Goris et al., 2014, 

2015). Indeed, although characteristic timescales have been assigned to brain areas as a whole, 

single neurons display heterogeneous neural timescales at rest  (Cavanagh et al., 2016; Cirillo et 

al., 2018; Fascianelli et al., 2019; Fontanier et al., 2022; Murray et al., 2014; Wasmuht et al., 

2018). The question arises whether this heterogeneity is purely anatomical or whether it is the 

result of both anatomy and contextual demands (Runyan et al., 2017). Together, while the 

majority of findings on neural timescales at rest have found a similar cortical hierarchy across 

studies, computational work and recent empirical findings suggest that neural timescales and their 

hierarchical organization may be context-dependent, varying with behavioral and environmental 

demands.  

We propose that the failure to find multiple hierarchies of neural timescales in previous 

experiments may be a by-product of the rigid structure of traditional experiments that enforce 

stationary temporal scales. In particular, investigating neural timescales in a constrained lab 

environment (i.e., chaired electrophysiology) with trialized tasks, imposes bounded temporal 

structure and limits the complexity of the input entering and the output leaving the brain. If these 

constraints were removed, neural and behavioral dynamics would become temporally 

unconstrained —except for the boundaries imposed by biophysics. Therefore, what we know 

about neural timescales might not be entirely intrinsic to the biological system, but rather a 

reflection of the conditions imposed by the structure of the experimental paradigm (Hastings, 

2010; Marom, 2010). While this approach has brought invaluable contributions to our 

understanding of the brain and behavior, it is nonetheless limited when it comes to studying the 

functional relevance of neural timescales. To understand and establish a neurobehavioral 
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timescale correspondence, it is imperative to approach the question from a more unconstrained 

perspective. Here, we thus investigated neural timescales in an unconstrained experimental 

paradigm with relatively minimal temporal structure. 

 We hypothesized that the observed hierarchy of neural timescales is dependent on the 

environment, as reflected by the temporal constraints, the complexity and nature of the input, and 

required motor output. Moreover, we hypothesized behaviorally-dependent shifts in the 

magnitude of neural timescales —and hence, dynamic coordination between neural timescales 

and the temporal scales over which behavior unfolds. To test these hypotheses, we investigated 

how the brain handles multi-scale signals to drive purposeful behavior while rhesus macaques 

were performing a foraging task. We were able to use detailed three-dimensional behavioral 

tracking while the monkeys were free to move and forage in a large open field environment (Bala 

et al., 2020). Our experimental paradigm imposed minimal temporal constraints and put emphasis 

on self-paced behavior rather than focusing on a particular cognitive or perceptual process in 

isolation. We simultaneously recorded brain activity in eight brain areas: orbitofrontal cortex 

(OFC), ventrolateral prefrontal cortex (VLPFC), dorsolateral prefrontal cortex (DLPFC), frontal 

eye fields (FEF), anterior cingulate cortex (ACC), premotor (PM) cortex, supplementary motor 

area (SMA), and dorsal striatum. We investigated neural timescales from a population perspective 

as reflected in the local field potential (LFP) activity —in particular, we estimated the aperiodic 

timescales which correspond to the exponential decay timescales measured in previous studies 

(Gao et al., 2020; Halgren et al., 2021). In contrast to previous studies investigating neural 

timescales, our environment not only involved the integration of highly complex multi-modal input 

but also required complex motor output. We found a hierarchy of neural timescales unique to this 

foraging environment. Next, we demonstrated that neural timescales expand with task 

engagement although the areas’ relative position in the hierarchy remains the same across the 

recording session. Finally, we showed that the change in neural timescales is dynamic and 

reflects the abstract meaning of foraging events. Together, this demonstrates that while anatomy 
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constrains the space of possible neural timescales, the observed hierarchical organization and 

magnitude of neural timescales is heavily dependent on behavioral demands. 
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Fig. 1 Overview of neural timescales and experimental design 

(A) Hierarchical organization of neural timescales at rest (𝜏) estimated from neuronal spiking data. Neural timescales 

were estimated in 14 cortical and 3 subcortical areas). Traditionally, neural timescales were estimated in the pre-trial 

period of various tasks (i.e., chaired electrophysiology) by fitting an exponential decay function to the autocorrelation 

function (i.e., time lagged correlation). Each circle represents the population-level 𝜏 for each cortical area and the stars 

represent population-level 𝜏 for each subcortical area reported in each study.  
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(B) Depiction of the cage and foraging task. The subjects were allowed to freely explore and interact with reward 

stations in an open space - i.e., 2.45 x 2.45 x 2.75 m cage with barrels.  

(C) Our recording system and recording sites: dorsal striatum, OFC, VLPFC, DLPFC, ACC, FEF, PM, SMA  

(D) Local field potential (LFP) power spectral densities (PSDs) from example channels in Subject W. (E) Top: Aperiodic 

component fit for the example PSDs. We applied spectral parameterization to infer timescales from the PSDs 

(Donoghue et al., 2020). The periodic oscillatory peaks were discarded and the ‘’knee frequency” (𝑓!vertical dashed 

lines) was extracted from the fit of the aperiodic component. Bottom: Neural timescales (𝜏) were inferred from 𝑓! via 

the embedded equation.  
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Results 

Two macaques performed a foraging task in a large open space that allowed for 

unconstrained movement (Fig. 1B and Methods). The environment contained four reward 

stations positioned at fixed locations. The reward stations dispensed 1.5 mL of liquid reward for 

each of the first four lever presses and became unavailable for 3 minutes after the fifth lever press 

(i.e., depleted reward station; see Methods for task details). The average daily recording session 

was 97.8 minutes (SD ± 5.2 minutes).  

We tracked the position of thirteen joints (key points) in our subjects with 

OpenMonkeyStudio (Bala et al., 2020). We recorded neural activity using a data logger 

(SpikeGadgets, San Francisco, USA) attached to a multi-electrode array (Gray Matter Research, 

Bozeman, USA) with 128 independently movable electrodes. We recorded both isolated neurons 

and LFPs from eight areas: orbitofrontal (OFC), ventrolateral prefrontal (PFC), anterior cingulate 

(ACC), dorsolateral prefrontal (DLPFC) cortices, frontal eye fields (FEF), supplementary motor 

area (SMA), premotor cortex (PM) and the dorsal striatum (Fig. 1C). To quantify neural 

timescales, we focused on the LFPs because of their spatial coverage (see Fig. 1D and 

Methods). 

 

Neural timescales are variable 

We demonstrated that the hierarchy of neural timescales is (1) is different from previous 

findings, and hence dependent on the experimental paradigm used and (2) stable within our 

environmental context across all sessions. We further found that (3) while areas in our 

unconstrained foraging task exhibited the same relative position in the neural timescales’ 

hierarchy throughout our recording sessions, the magnitude of the neural timescales changed 

depending on task demand. We demonstrated that the non-stationarity of neural timescales was 
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related to task engagement, and to a lesser extent to speed of movement－more engagement 

was accompanied by slower temporal dynamics in all areas.  

First, we examined session-wide neural timescales for individual recording sessions. For 

each recording site, we estimated neural timescales using a 10 sec moving window with 5 sec 

overlap (see Fig. 2A and Methods). To identify the neural timescales characteristic of each brain 

area, we computed the median neural timescales collapsing across sessions and subjects. We 

demonstrated that neural timescales estimated from LFPs are ~10 times faster than those 

estimated from neuronal spiking data 𑁋i.e., ~10-50 ms, which is consistent with previous findings 

(Gao et al., 2020). We further found that the magnitude of neural timescales decreased 

systematically across the duration of the recording session in all areas (p < 0.05, linear regression 

model, Fig.  2A). 

We observed that task engagement (i.e., lever presses) also decreased across the 

recording session in both animals (Fig. 2B). Hence, we asked whether neural timescales and 

task engagement were related across the recording session. We hypothesized that there is a 

monotonic relationship between the two, with more task engagement being accompanied by 

slower dynamics. Specifically, we divided each session into ten equally sized (~10 minute-long) 

segments. As a proxy for task engagement, we calculated the total number of lever presses in 

each bin. For every recording session, we computed the correlation between the magnitude of 

the neural timescales and our task engagement index. For all areas, we observed a strong 

positive relationship between task engagement and the magnitude of the neural timescales - the 

median Pearson correlation coefficient across sessions ranging between 0.23 in the OFC and 

0.65 in the VLPFC (Fig. 2C). To assess whether the median of the obtained distribution of 

Pearson correlation coefficients was significantly larger than 0, we performed a one-sample 

Wilcoxon signed rank for every area. In all areas, the median Pearson correlation coefficient was 

significantly larger than 0 (p < 0.05, with Bonferroni correction). 
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Next, we asked whether neural timescales were related to movement, to account for the 

possibility that changes in neural timescales could be driven by increased motor activity, during 

intervals of high displacement or motion in general. For every recording session, we computed 

the correlation between speed of displacement and neural timescales. We found that neural 

timescales were only weakly correlated with movement speed - the median Pearson correlation 

coefficient across sessions ranging from 0.05 in the PM cortex to 0.14 in the VLPFC (Fig. 2D). 

To assess whether the median of the obtained distribution of Pearson correlation coefficients was 

significantly larger than 0, we performed a one-sample Wilcoxon signed rank for every area. In all 

areas, the median Pearson correlation coefficient was significantly larger than 0 (p < 0.05, with 

Bonferroni correction). In combination, these results suggest that the gradual decrease in neural 

timescales throughout the recording session was primarily related to task engagement, an 

aggregate of behavioral state parameters in our task, and less so to movement parameters such 

as speed, a hypothesis we will further test next.  

 To test the unique relationship between speed, task engagement and neural timescales 

for the brain areas we recorded from, as well as to control for temporal autocorrelations, we next 

performed the following analysis. For each area, we randomly sampled without replacement n 

(i.e., equivalent to the number of sessions) observations out of the total number of data points 

(note: the total number of data points per area can be calculated as the number of sessions x 

number of bins). For each subsample, we fit a linear regression model (see Fig. 2 Supplement 

1 for the resulting distributions of standardized 𝛽 coefficients). We demonstrated that the effect of 

task engagement was gradually stronger in more dorsal areas - i.e., the regression coefficients 

are progressively larger (p < 0.05, pairwise independent sample t-test; Fig. 2E) displaying the 

following ventro-dorsal ordering: OFC < Striatum < VLPFC -DLPFC-SMA < FEF < ACC < PM. 

Conversely, the effect of speed was gradually stronger in ventral areas - i.e., the regression 

coefficients are progressively larger (p < 0.05, pairwise independent sample t-test; Fig. 2E) 

displaying the following dorso-ventral ordering: OFC > VLPFC > Striatum - SMA > DLPFC > FEF 
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- ACC > PM. Moreover, the effect of task engagement was larger than that of speed in more 

dorsal areas: SMA, PM, FEF, ACC, DLPFC (p < 0.05, two-sided paired t-test with Bonferroni 

correction). In contrast, there was no significant difference between the two predictors in VLPFC 

and the striatum and the relationship was reversed in the OFC (p < 0.05, two-sided paired t-test 

with Bonferroni correction).  

In summary, we found a ventro-dorsal hierarchy that partially overlapped but also deviated 

from previous findings in important ways. We demonstrated a monotonic relationship between 

brain areas and session-wide neural timescales (b = 2.29, 95% CI = [2.27 2.31]; monotonic 

Bayesian regression model) with the following hierarchical organization: OFC < Striatum < VLPFC 

< ACC < DLPFC < FEF < PM < SMA (Fig. 2A). Our observed neural timescales were faster in 

ventral areas and slower in more dorsal areas. To systematically assess the stability of this 

hierarchy across time, we additionally ranked the areas at each time point and compared their 

ordering to the session-wide hierarchy of neural timescales by using Spearman rank correlation 

(average Spearman rank correlation coefficient 0.99, SD 0.01). This analysis further supported 

the Bayesian regression results, demonstrating a monotonic relationship between areas, with the 

relative position in the hierarchy being stable across time.  
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Fig. 2. Session-wide timescale dynamics and correspondence to behavioral variables. (A) Right: Neural timescales 

(𝜏) estimated for individual recording sessions from Power Spectral Densities (PSDs) Left: Neural timescales across 

time, collapsed across recording sessions and subjects. The hierarchical ordering of the areas is conserved across the 

duration of the recording session. (B) Frequency of lever pressing, a putative index of task engagement, decreases 
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over time. Y-axis: average number of lever presses in each time bin. Bars indicate standard error of the mean across 

recording sessions. (C) The number of lever presses, a putative index of task engagement, is correlated with neural 

timescales in all areas. Y-axis: correlation coefficient between number of lever presses and neural timescales across 

time. Circles: brain areas, median ± s.e.m across recording sessions. (D) Speed of movement and neural timescales 

are weakly correlated. Circles represent brain areas, median ± s.e.m across sessions. (E) The effect of task 

engagement is gradually stronger and more separable from the effect of speed as we move from ventral to dorsal 

areas. Y-axis: average regression coefficients. Circles represent brain areas, mean ± s.e.m across iterations. Horizontal 

lines: Statistical significance at p < 0.05 between brain areas (Red: task engagement; Blue: speed). Asterisk: statistical 

significance between predictors within an area at p < 0.05. 

 

 

Fig. 2 Supplement 1 The distribution of standardized 𝛽 coefficients for task engagement and speed 
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The hierarchy of neural timescales at rest is dependent on behavioral demands 

Next, we showed that neural timescales are task-dependent in general. Notably, we found 

that the baseline itself is not “intrinsic” but rather a reflection of the contextual cognitive and 

perceptual demands imposed on the brain. To test if resting-baseline neural timescales (i.e., 

neural timescales at rest) that are supposed to reflect a neuron and brain area’s innate temporal 

integration characteristics, are also reflective of the behavioral demand dependency described in 

the previous section, we estimated neural timescales during task-free periods of time. We did not 

impose any task demands on our animals, and there was hence no predefined resting-baseline 

before a trial (i.e., the intertrial interval was self-imposed). As a result, there was a wide repertoire 

of behaviors in the moments before a lever press (e.g., sitting, walking, etc.). To capture moments 

when the animal was at “rest”, we operationalized task-free trials as periods of 5 s (or longer) 

during which displacement of the 3D center-of-mass was less than 40 cm, excluding task 

engagement (see Fig. 3A and Methods). The average task-free period length was 6.5 s (SD = 

0.4 s). 

Using this approach, we showed that the hierarchy of task-free neural timescales was 

consistent with our session-wide results. We found the following hierarchy when the animal was 

at “rest”: OFC < Striatum - VLPFC < DLPFC < ACC < FEF < PM - SMA (Fig. 3B). The magnitude 

of the neural timescales differed significantly between areas, except for the following pairs: PM-

SMA, ACC-FEF, VLPFC-striatum (p < 0.05, pairwise two-sided Mann-Whitney U-test computed 

across sessions with Bonferroni correction).  

 

Neural timescales changes are dependent on the behavioral context 

Given the variability in neural timescales described above, we hypothesized that changes 

in neural timescales could depend on the behavioral context. In our experiment, the primary 

behavioral demands on the monkeys resulted from the pattern of engagement with the reward 

stations, i.e., the decisions to engage or disengage with a particular reward station location. We 
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therefore divided events with lever presses into three categories: (1) first press on a feeder, (2) 

intermediate presses and (3) final lever presses. We hypothesized that these three types of lever 

presses could be associated with different neural timescales signatures because, even though 

they have identical actions, they have inherently different cognitive meanings and behavioral 

contextual demands. The first lever press reflects the decision to forage at a given reward station 

while the final lever press ends that goal sequence and requires an animal to decide on what to 

do next. Intermediate lever presses are more heterogeneous in terms of their position in the goal 

sequence and were therefore not considered for this analysis.  

By estimating neural timescales before and after the first and last lever presses (Fig. 3A), 

we found an expansion in the magnitude of timescales during task engagement without an 

associated change in the relative position of an area in the overall hierarchy - i.e., all areas showed 

significant 𝜏 increase compared to resting-baseline (defined as the median task-free timescales 

at rest) at any time point before and after the event (p < 0.01, one-sided Wilcoxon signed-rank 

test with Bonferroni correction).  

Interestingly, a clear and unique temporal dynamic profile separated the two categories of 

lever presses. For the first lever presses, we found that neural timescales gradually increased in 

the seconds leading up to the interaction with the reward station and sharply decreased in the 

seconds after (Fig. 3C and Fig. 5B). To assess the significance of this linear increase for 

individual areas, we conducted a linear regression model for each event with time as the predictor 

and neural timescales as the dependent variable. For all areas across events, the resulting 

regressions coefficients were significantly larger than 0 (p < 0.05, Wilcoxon signed rank test). 

After the first lever press, in some areas such as SMA, FEF, ACC, VLPFC and striatum neural 

timescales started increasing again while for the others, there was no significant trend across time 

(p < 0.05, Wilcoxon signed rank test). For the final lever presses, neural timescales gradually 

increased in the seconds leading up to and continued to increase after the interaction with the 

reward station (Fig. 3D and Fig. 5C). Similar to the first lever presses, we found that for all areas 
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across events, the resulting regressions coefficients were significantly larger than 0 before the 

event (p < 0.05, Wilcoxon signed rank test). In contrast, in all areas we found that regression 

coefficients are significantly smaller than 0 after the event (p < 0.05, Wilcoxon signed rank test).  

So far, we have therefore demonstrated a nested correspondence between neural 

timescales and the temporal scales over which behavior unfolds. At long (session-wide) temporal 

scales, neural timescales corresponded with overall task engagement as shown above, while at 

short temporal scales, neural timescales exhibited variability corresponding to ongoing behavioral 

demands from our task. 
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Fig. 3 Neural timescales for events with different behavioral contexts 

(A) Neural timescales (𝜏) estimation for task-free periods and lever presses. (B) Task-free neural timescales are 

hierarchically organized.  (C) Neural timescales surrounding the first lever press. Vertical dotted line: time of lever press.  

(D) Neural timescales surrounding the final lever press. Vertical dotted line: time of lever press. 
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The temporal adaptation of neural timescales varies by area 

In the previous section, we demonstrated a correspondence between neural timescales 

and behavioral contextual demands. Although we showed that the hierarchy expands in the 

seconds leading up to the lever presses, we did not assess whether this magnitude change 

differed by area. Here, we hypothesized that this magnitude expansion of neural timescales might 

indeed be differentially modulated by differing behavioral demands per area. To that end, we 

examined the pairwise differences between areas (two-sided Mann-Whitney U-test) for the 

change from resting-baseline for each time point before and after the first and final lever presses 

(Fig. 4). Note that we chose this statistical approach for the sake of robustness and to avoid 

overfitting. We obtained the change in neural timescales per area by subtracting the respective 

area-specific resting-baseline (𝛥𝜏) for each time point. We found that this normalized adaptation 

differed in magnitude by area, such that while the change was undifferentiated several time points 

before the event, a differentiated hierarchy emerged just before the events of interest.  

Notably, we found that a ventral to dorsal grouping of the areas emerged before each 

event: (1) the striatum and OFC displayed the smallest magnitude change in neural timescales; 

(2) the VLPFC, DLPFC and ACC displayed an intermediate level of magnitude change that was 

significantly higher than in the striatum and OFC; (3) and the FEF, PM and SMA displayed the 

significantly highest level of magnitude change —hence, these areas were placed at the top of 

the hierarchy of change (see table inserts in Fig. 4 for statistics). We found this grouping before 

both first and final lever presses. However, each category of events exhibited unique temporal 

profiles after the event. Notably, for the first lever presses, the areas clustered right before the 

event and became undifferentiated immediately after (see table inserts in Fig. 4 for statistics). For 

the final lever presses, similar clusters to those observed for the first lever presses emerged 

before the event, but they persisted after the event. In summary, while task engagement generally 

expands the magnitude of neural timescales, this expansion was differentially modulated by the 

behavioral task demands - i.e., it depended on the type of event and the brain area. Finally, we 
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demonstrated that not only neural timescales, but also their area-specific magnitude changes 

were hierarchically organized along a ventral to dorsal axis.  
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Fig. 4 The normalized area-specific adaptation of neural timescales  

(A) We examined pairwise differences between areas’ change from the area-specific resting-baseline (𝛥𝜏) for each 

time point before and after the event of interest. Left: example statistical table with the shaded areas representing 
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statistical significance at p < 0.05 after Bonferroni correction. Right: color scheme of the individual areas and the color 

scheme of different time points (Note: used for indicating the associated statistical table). 

(B) The change from the area-specific resting-baseline for the time points before and after the first lever press.  

(C) The change from area-specific resting-baseline for the time points before and after the final lever press.   
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The dynamics of neural timescales reflect key foraging events 

Finally, we looked into whether timescale adaptations differed between events with lever 

presses that have the same position in the sequence but are followed by a different outcome. 

This way we aimed to further dissect behavior with respect to its cognitive meaning and behavioral 

demands. To operationalize this, we looked at the fourth lever press which can indicate different 

behavioral motifs depending on the sequence of foraging bouts. For example, a monkey can leave 

a feeder after four lever presses without performing the fifth press to time out the system to for 

example go to the next feeder or engage in different behavior. From the perspective of an action, 

there is no difference between timing the system out versus choosing to disengage early. We thus 

hypothesized that neural timescales could exhibit differentiable temporal profiles also to these 

more intricate behavioral sequence differences. Practically, we compared neural timescales on 

the fourth lever press when the monkey decided to leave versus when they decided to stay for a 

fifth lever press (see Fig. 5A). Hence, we hypothesized that the “leave” before-after dynamics 

would be similar to that of the final lever press. In contrast, we hypothesized that there would be 

no significant before-after differences for the “stay” lever presses. For each event and area, we 

therefore computed the pairwise differences between before and after changes in the magnitude 

of neural timescales from resting-baseline. In other words, this analysis compared the timepoint 

proceeding and following a lever press event in terms of their magnitude change from resting-

baseline. We found that for all areas, the before-after change from resting-baseline to the first 

lever press was characterized by a significant attenuation, with slower neural timescales before 

and faster neural timescales after the event (p < 0.05, one-sided Wilcoxon signed-rank test; Fig. 

5B). The final lever press displayed the opposite pattern, with a significant increase in the change 

from resting-baseline, and ultimately slower neural timescales after the event (p < 0.05, one-sided 

Wilcoxon signed-rank test; Fig. 5C). As hypothesized, “stay” lever presses did not elicit significant 

changes in before-after dynamics - i.e., the event was not accompanied by a unique neural 

timescales signature (p < 0.05, two-sided Wilcoxon signed-rank test; Fig. 5D). In contrast, leave 
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lever presses were accompanied by a significant before-after expansion of the magnitude of 

neural timescales which mimicked that of the final lever presses (p < 0.05, one-sided Wilcoxon 

signed-rank test; Fig. 5E). 

 

Fig. 5 Neural timescales dynamics reflect fine grained abstract meaning 

(A) Neural timescales (𝜏) estimation for three categories of lever presses: first lever press, intermediate (“stay”) lever 

press, final lever press. 

(B)  The change in neural timescales from resting-baseline before and after the first lever presses. Asterisk: statistical 

significance at p < 0.05 after Bonferroni correction. Y-axis: change in neural timescales from resting-baseline (𝛥𝜏). 

(C) The change in neural timescales from resting-baseline before and after the final lever presses. Asterisk: statistical 

significance at p < 0.05 after Bonferroni correction. Y-axis: change in neural timescales from resting-baseline (𝛥𝜏). 
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(D) The change in neural timescales from resting-baseline before and after the stay lever presses. Asterisk: statistical 

significance at p < 0.05  after Bonferroni correction. Y-axis: change in neural timescales from resting-baseline (𝛥𝜏). 

(E) The change in neural timescales from resting-baseline before and after the leave lever presses. Asterisk: statistical 

significance at p < 0.05  after Bonferroni correction. Y-axis: change in neural timescales from resting-baseline (𝛥𝜏). 
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Discussion 

The brain is characterized by a hierarchical gradient of neural timescales in both human and 

nonhuman primates (Ito et al., 2020; Manea et al., 2022; Raut et al., 2020), which is assumed to 

arise from macroscale and microcircuit anatomical and functional connectivity, as well as variation 

in cytoarchitecture (Murray et al., 2014; Chaudhuri et al., 2015). The question arises how these 

temporal properties of the brain give rise to adaptive behavior that requires flexible adjustment of 

temporal coding and integration demands. Here we found a ventro-dorsal hierarchy of neural 

timescales that is unique to this foraging environment. Importantly, we showed that this hierarchy 

is preserved even in the context of flexible task demands. However, the magnitude of neural 

timescales dynamically expanded depending on overall task engagement over long temporal 

scales, but also varied with the cognitive demands of our task over shorter temporal scales. 

Notably, we observed systematic changes in the magnitude of neural timescales that span the 

duration of a recording session —in both animals and during every recording session, both the 

magnitude of neural timescales and task engagement gradually and reliably decreased over time. 

Importantly, these results were not driven by variability in motor-related activity. Within these 

global session-wide changes, we found variability in the magnitude of neural timescales that is 

associated with the abstract cognitive meaning of the different foraging events. Hence, the neural 

timescales change patterns differentiated between fine-grained behavioral states. Our results are 

evidence that the multitude of external temporal scales over which behavior unfolds is mirrored 

by changes in neural timescales that occur at multiple scales, with local foraging-related changes 

nested within general engagement-related changes that span longer temporal scales. 

 Contrary to previous work on timescales, which was usually done in the context of 

memory-related or value-encoding tasks (for an overview, see Cavanagh et al., 2020; Wolff et al., 

2022), we examined self-paced unconstrained behavior that was not focused on an isolated 

cognitive component. We consistently found a stable ventral to dorsal hierarchy of neural 

timescales that extended from OFC to motor-related areas. This was the case across all our 
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analyses - i.e., for neural timescales estimated during unconstrained movement, around foraging 

events and even in the absence of task engagement. Our observed hierarchy partially overlapped 

but also deviated from previous work (see Fig. 1A for an overview of previous findings). The first 

major discrepancy was that the ACC, usually displaying the slowest timescales (Maisson et al., 

2021; Murray et al., 2014), was not at the top of our observed hierarchy, but rather exhibited 

intermediate timescales. Moreover, motor–related areas, which usually display fast timescales in 

nonhuman primates (Cirillo et al., 2018), exhibited the slowest temporal dynamics in our foraging 

environment. This was actually in full agreement with results from a rodent paradigm that allows 

for whole-body movement (Pinto et al., 2022). We believe these results originate from our 

experimental paradigm that allowed for unconstrained movement in a large open space. This 

contrasted with studies using chaired paradigms that require head fixation and restrained body 

movement. In line with our initial hypothesis, our results supported the idea that environmental 

demands shape the observed hierarchy of neural timescales. This is not surprising since 

behaviorally-relevant neural timescales imply a certain amount of dynamic range. It is important 

to note that our results are not incompatible with the previous literature on hierarchies of neural 

timescales at rest but are rather complementary by investigating neural timescales in a new 

context, that of unconstrained behavior. Our results further expanded previous work as we 

simultaneously estimated neural timescales in the dorsal striatum and prefrontal cortical 

structures, giving us the opportunity to directly place the dorsal striatum in the context of the 

broader extensively studied cortical hierarchy. The striatal neural timescales reported here place 

the striatum on a comparable level to ventral prefrontal areas, which is in agreement with previous 

reports of neural timescales in this subcortical structure (Nougaret et al., 2021). Overall, we 

confirmed our hypothesis that the observed hierarchy of neural timescales emerges from the 

particular input-output demands imposed on the brain within the bounds of what the anatomical 

network permits. 
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 Matching previous work on neural timescales at rest, i.e., estimated during the baseline 

or pre-trial period (for an overview, see Fig. 1A), we estimated neural timescales during immobility 

periods. Since the animals were free to decide when or even if, to engage in the task, the current 

paradigm did not have a traditional pre-trial period comparable to previous work —i.e., the 

repertoire of behaviors before engaging with a reward station is highly heterogeneous. Immobility 

periods, when the animal is disengaged from the task, were the closest match to capturing the 

animal at rest. It is important to note that rest or baseline is generally difficult to define —the 

traditional fixation period used to define neural timescales at rest is assumed to include little task-

relevant signals. However, lack of outward behavior does not imply a lack of cognitive processing. 

Indeed, previous findings on the relationship between neural timescales at rest, estimated during 

the intertrial period, and strength of neural encoding during a task did not always replicate 

(Spitmaan et al., 2020). This might be a result of task-relevant cortical activity emerging or 

remaining during the fixation period. To estimate neural timescales at “rest”, work in anesthetized 

subjects or during sleep might be a viable alternative (for example, see Cushnie et al., 2023; 

Manea et al., 2022; Zilio et al., 2021), although these approaches come with their own 

disadvantages and confounds. We have previously shown that neural timescales estimated from 

fMRI data in anesthetized nonhuman primates replicated hierarchies derived from neuronal 

spiking data, although they did not perfectly match (Manea et al., 2022). Amongst many potential 

reasons for the observed deviations, one could be that anesthesia provides a special controlled 

state. Alternatively, electrophysiological recordings during dedicated rest periods, in the absence 

of any task, similar to the human resting-state fMRI literature, could shed light on this issue. We 

speculate that while anatomy constrains the space of possible neural timescales, contextual 

behavioral demands modulate the observed hierarchy even at rest. Interestingly, the hierarchy of 

neural timescales we observed mirrored functional hierarchies that we found in this dataset with 

respect to action (see Voloh et al., 2022) and spatial navigation encoding (see Maisson et al., 

2022). In these studies, encoding of spatial navigation and action-related variables was 
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progressively stronger from ventral to dorsal areas (Maisson et al., 2022; Voloh et al., 2022), and 

hence potentially facilitated by longer temporal processing or integration windows as reflected by 

slower neural timescales. Our current timescale findings and the previous task variable encoding 

findings, match our previous work demonstrating that the hierarchy of neural timescales at rest in 

the medial PFC closely follows a ventro-dorsal functional hierarchy of the decodability of choice-

relevant task variables - i.e., encoding of task related variables is stronger in areas with longer 

neural timescales (Maisson et al., 2021). 

 We found that neural timescales expanded during task engagement, in agreement with 

previous studies (Gao et al., 2020; Zeraati et al., 2021). Interestingly, we found a monotonic 

relationship between the extent of task engagement and the overall magnitude of neural 

timescales over a long temporal scale which spans the recording session. More task engagement 

was accompanied by an expanded hierarchy of overall slower neural timescales throughout the 

recording session. Within this session-wide change with behavioral engagement, we 

demonstrated local event-related changes in the magnitude of neural timescales. Although the 

action of pressing a lever was similar irrespective of its location in the broader foraging context, 

unique temporal dynamics of neural timescales were associated with differences in cognitive 

meaning. We speculate that this is a result of differences in the underlying computations 

associated with these lever presses. Neural timescales thus seemed to track the temporal 

persistence of information relevant during the ongoing decision process in a behaviorally-relevant 

manner. For example, while the first lever press reflects the decision to forage at a particular 

reward station, the action per se can be seen as the end goal. Interestingly, this is accompanied 

by a significant drop in the magnitude of neural timescales. We speculate that accomplishing this 

goal could act as a stop signal for integration. In contrast, the last lever press seemed to reflect 

ongoing integration related to the animal needing to decide what to do next, with neural timescales 

continuing to expand after the event. Nevertheless, the specific meaning of these time-locked 

local changes in the magnitude of neural timescales remains an outstanding question. Although 
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ecologically valid, unconstrained behavior automatically introduces variability that cannot be 

controlled for, nor is easily modeled. Our results therefore could be extended by directly 

manipulating the information integration across multiple temporal scales, while introducing clear 

task endpoints.  

 Despite widespread modulation by general task demands, we also found that the temporal 

dynamics of neural timescales showed time-locked changes to certain foraging events that 

differed by area. We found a significant differentiation across areas in the time-locked expansion 

of hierarchies linked to certain foraging events. Notably, however, the ventral to dorsal grouping 

of areas was preserved during this expansion - i.e., the dorsal striatum and OFC exhibited the 

lowest level of change from resting-baseline; VLPFC, DLPFC and ACC, exhibited intermediate 

levels; and FEF, PM and SMA were at the top of the hierarchy, displaying the highest level of 

change from resting-baseline. Importantly, although this ventro-dorsal hierarchy of change was 

present for all lever presses, its emergence and persistence depended on the cognitive meaning 

mentioned above. Changes in the real world happen on different timescales and these results 

suggest that individual brain areas may contribute distinctly to behavioral adjustments on different 

temporal scales. It is not trivial to quantify unconstrained behavior, and it is even more challenging 

to infer the cognitive state of the animal in this setting. As a result, it remains an open question as 

to what particular task variables are associated with the observed variability. 

 Here we use LFP rather than single-unit activity to infer timescales for two reasons. First, 

LFP activity, in our dataset, offered much broader spatial coverage and provided us with the ability 

to record a large number of areas simultaneously. That is, we were able to leverage the nature of 

this signal to infer neural timescales in all areas across time throughout the recording session. 

Second, the neuronal firing rates in this dataset are sparse and hence, it would have been difficult 

if not impossible to calculate the autocorrelation function across time for many cells. Although 

LFP and single-unit activity are fundamentally different signals, it has been shown that they have 

related neural timescales at rest, and that they are both hierarchically organized in the nonhuman 
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primate cortex (Gao et al., 2020). This is also the case for neural timescales estimated from 

neuronal spiking and fMRI data (Manea et al., 2022). Nevertheless, the exact correspondence 

between neuronal spiking, LFP and BOLD timescales and the extent of their overlap remains 

unclear. 

In conclusion, we demonstrated that neural timescales vary with different indices of task 

engagement that are an aggregate of behavioral state parameters broadly encompassing 

foraging-related behaviors, action and spatial navigation encoding. Despite the magnitude of 

neural timescales expanding with task demands and engagement, we found a stable hierarchical 

ordering of the areas’ neural timescales. We not only provided evidence for the context-

dependence of neural timescales, but we also demonstrated that these temporal dynamics were 

complex and behaviorally relevant. Further investigations and careful experimentation that 

manipulate the temporal scales over which an animal has to integrate information are needed to 

better understand the link between neural timescales and the temporal scales over which 

behavior unfolds.  
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Methods 

Surgical procedures 

Animal procedures were designed and conducted in compliance with the Public Health Service’s 

Guide for the Care and Use of Animals and approved by the Institutional Animal Care and Use 

Committee of the University of Minnesota. Two male rhesus macaques (Macaca mulatta) served 

as subjects. Animals were habituated to laboratory conditions, trained to enter and exit the open 

arena, and then trained to operate the water dispensers. We placed a cranial form-fitted Gray 

Matter (Gray Matter Research) recording chamber and a 128-channel microdrive recording 

system (SpikeGadgets) over the area of interest. We verified positioning by reconciling 

preoperative MRI as well as naive skull computed tomography images (CT) with postoperative 

CTs. Animals received appropriate analgesics and antibiotics after all procedures. The planning 

of the chamber and subsequent image alignment was performed in 3D slicer. Brain area 

segmentation followed the macaque D99 parcellation in NMT space (Saleem et al., 2021) 

Electrophysiological recordings 

We recorded with a 128-channel microdrive system (Gray Matter Research), targeting a wide 

swath of the prefrontal cortex ranging from OFC to PM, and the striatum. Each electrode was 

independently moveable along the depth dimension. Neural recordings were acquired with a 

wireless data logger (HH128; SpikeGadgets). The data logger was triggered to start recording 

with a wireless RF transceiver and periodically received synchronization pulses. Data were 

recorded at 30 kHz, stored on a memory card for the duration of the experiment, and then 

offloaded after completion of the session. Each reward station had local code running the 

experiment. Task events triggered a TTL pulse, as well as a wireless event code. A dedicated PC 

running custom code controlled all reward stations, and aggregated event codes. Syncing of all 

data sources was accomplished via the Main Control Unit (MCU; Spikegadgets), which received 

dedicated inputs from the pose acquisition system (see below), and reward stations. Recording 

sessions were initiated and controlled by Trodes software (Spikegadgets). After neural recordings 
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were offloaded, they were synced with other sources of data via the DataLogger GUI 

(Spikegadgets). 

We recorded for 4-6 days weekly for a period of 4-6 months. For an initial period of 2-4 

weeks, we lowered up to 10 electrodes in each session until each had punctured the dura and 

their position was well-within cortex as confirmed from the MRI reconstruction. Subjects still 

performed experiments, but as the signal was noisy, no recordings were performed during this 

time. A typical recording day consisted of multiple stages, including electrode adjustment, an 

experimental session, and extraction of the recorded signal. For the duration of the experiment, 

on each day, we tracked yields on each electrode and visually assessed the quality of the signal. 

If an electrode had poor yields for up to 5 days in a row, we would lower it up to 1 mm (or more if 

it was intended to move to a new area). 

To obtain local field potentials (LFP), we bandpass filtered the raw signal with a second 

order, two-pass Butterworth filter and Hand taper in the range [0.1 300] Hz. Only recordings that 

showed evidence of neural unit activity (confirmed with separate modified spike sorting analysis) 

were used for further analysis. Subdivisions of the brain were collapsed to anatomical areas, listed 

below as defined in the D99 parcellation of the NMT atlas (Saleem et al., 2021): ACC: 24a', 24a, 

24b, 24b', 24c, 24c'; VLPFC: 45a, 45b, 46d, 46v, 46f, 12r; DLPFC: 8bd, 8bs, 9d, 8bm, 9m; FEF: 

8ad, 8av; SMA: F3, F6;  PM: F1, F2, F5, F7, F4; OFC: 13b, 13m, 13l, 12l, 12m, 12o, 11l, 11m; 

Striatum.  

Behavioral tracking 

We developed a system that can perform detailed three-dimensional behavioral tracking in rhesus 

macaques with high spatial and temporal precision (Bala et al., 2020). The system uses 62 

cameras positioned around a specially designed open field environment (2.45 × 2.45 × 2.75 m) 

with barrels (4 barrels located in the corners; height: 78.8 cm; diameter 46.5 cm) in which 

macaque subjects can move freely in three dimensions and interact with computerized reward 

stations.  
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Pose acquisition and reconstruction 

A detailed protocol of the pose acquisition, reconstruction preprocessing can be found in Voloh 

et al. (2022) and Maisson et al., (2022). 

Behavioral task. The environment contained four reward stations (“patches”) that dispensed 

water with a programmed delivery schedule. The reward stations were rectangular white boxes 

with a display monitor placed in the middle, a lever to the left and a waterspout to the right. The 

display monitor indicated the availability of the station for foraging (solid blue), reward delivery 

(solid white background with a solid green cross) or unavailability of the station (i.e., the timeout 

period; solid white). Each station delivered a fixed amount of water (1.5 ml) per lever press. At 

any given time, each of the first four lever presses were rewarded and the fifth lever press led to 

a 3-minute timeout period (i.e., depleted station). The subjects could freely decide when and how 

to interact with the reward stations. No reset or deactivation was applied if the animal left the 

patch. The timeout could only be triggered after four rewarded and one unrewarded lever press. 

Each rewarded lever press followed the same programmed sequence. The availability of the 

reward station was indicated by a solid blue display. A lever press changed the display to white 

with a green cross in the center, the auditory cue was played, and the solenoid opened to 

dispense reward. After dispensing, the solenoid closed, the auditory cue ended, and the green 

cross disappeared. The display remained white for two additional seconds before it turned blue 

again. The fifth lever press was instead followed by the screen immediately turning white, with no 

visual or auditory reward cue and no reward delivery. Other than the interaction with the reward 

stations, the measured behavior was the subject’s unconstrained movement. 

Behavioral variables 

Speed of movement. For this analysis we used the 3D center-of-mass (defined as the midpoint 

between the hip and neck joint) trajectories. We calculated speed as the magnitude of the numerical 

derivative of the 3D center-of-mass of the subject. 
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Task-free trials. Task-free trials were operationalized as windows longer than 5 seconds when 

the animal was relatively immobile (i.e., the 3D center-of-mass displacement was less than 40 

cm). Task engagement (i.e., continuous interaction with a reward station) was excluded. 

Lever presses. We divided lever presses into three categories: first, intermediate and final lever 

presses. The first lever press was operationalized as the first interaction with a reward station 

after the animal changed stations. The final lever press was operationalized as any interaction 

with a reward station before changing stations. We took advantage of the fact that at times 

subjects prematurely abandoned the reward station after the fourth lever press. Specifically, we 

compared responses on the fourth lever press when the subject decided to leave versus when 

they decided to stay for a fifth lever press. The stay lever presses fit within the intermediate 

category. 

Timescales estimation 

PSD 

PSDs were estimated using the conventional Welch’s method, where short-time windowed 

Fourier transforms are computed from time series and the mean is taken across time. We used 1 

s long Hamming windows with 500ms overlap. 

Spectral parametrization  

Spectral parameterization (Donoghue et al., 2020)was applied to extract timescales from PSDs. 

Briefly, the log-power spectra were decomposed into a summation of narrowband periodic 

(modeled as Gaussians) and aperiodic (modeled as a Lorentzian function centered at 0 Hz) 

components. To infer timescales, the periodic components are discarded, and timescales were 

inferred from the aperiodic component of the PSD. Specifically, 𝛕 can be estimated from the 

parameter k as 𝜏	 = !
"#$ "

, where 𝑓 % 	≈ 	𝑘 !/'  is approximated to be the knee frequency, at 

which a “knee” in the power spectrum occurs. For a detailed mathematical description of the 

model and the timescale inference technique, see Donoghue et al., 2020 and Gao et al., 2020.  
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Neural timescales 

Timescales were inferred for each channel individually and then collapsed across channels within 

an area by taking the median in order to limit the impact of outliers. We excluded windows for 

which the PSD parameterization failed or for which the model fit (i.e., R squared) was lower than 

0.8. Channels with a failure rate higher than 20% were excluded from further analyses. 

Session-wide. Timescales were inferred by applying spectral parameterization (see 

above) to the entire session, using a 10 s moving window with 5 s overlap.  

Event-related. Timescales were inferred 15 s before and after the interaction with a reward 

station. We inferred timescales by using a 5 s moving window with 2.5 s overlap. We excluded 

windows for which the PSD parameterization failed or for which the model fit (i.e., 𝑅") was lower 

than 0.8. 

Task-free. Timescales were estimated across time over the length of the task-free 

windows by using a 5 s moving window with 2.5 s overlap over the length of the trial. We excluded 

windows for which the PSD parameterization failed or for which the model fit (i.e., 𝑅") was lower 

than 0.8. To obtain one value per trial, we subsequently averaged the neural timescales estimated 

for any given task-free trial. For each session, the median task-free neural timescales at rest were 

used as the baseline for further analyses.  

Statistical analysis 

We used Pearson correlation coefficient to estimate the relationship between number of lever 

presses, speed and neural timescales across individual recording sessions. 

Given that neural timescales were not normally distributed, we opted for nonparametric tests to 

assess statistical significance. We used Wilcoxon signed-rank tests to assess the statistical 

significance within individual areas - i.e., the change from resting-baseline and the change in 

neural timescales between neighboring time points. We used Mann-Whitney U-test to assess the 

statistical significance between brain areas - i.e., the difference in resting-baseline (or task-free 
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timescales) and the difference in change from resting-baseline around the events of interest. To 

correct for multiple comparisons, we applied Bonferroni correction. 

Multiple regression analysis and subsampling 

To perform this analysis, we only included sessions for which the lever press events, behavioral 

tracking, and neural timescales were available. The total number of data points per area can be 

calculated as the number of sessions x number of segments (i.e., 10). To quantify the effect of 

task engagement (i.e., the number of lever presses in any given segment) and movement of 

speed on neural timescales, we used a subsampling procedure to estimate the average effect 

and the confidence interval of these predictors. For each area, we randomly sampled without 

replacement n (i.e., equivalent to the number of sessions) observations out of the total number of 

data points. For each subsample, a linear regression model was fitted, with the number of lever 

presses and speed as regressors, and neural timescales as the response variable. For each area, 

we repeated the procedure 1000 times. For each predictor, we assessed the difference between 

areas using an independent sample t-test. For each area, we assessed the difference between 

predictors using a paired t-test. To correct for multiple comparisons, we applied Bonferroni 

correction. 

Bayesian regression model 

To assess the relationship between brain areas and session-wide neural timescales, we modeled 

the predictor (i.e., brain area) as a monotonic effect (Bürkner & Charpentier, 2020). This approach 

is advantageous for ordinal predictors, in this case the hierarchical organization of brain areas, 

without falsely treating them as continuous, unordered categorical variables or ordered 

categorical variables with equidistant levels. In this approach, one estimates one parameter (b) 

which captures the direction and size of the effect - i.e., average increase/decrease in the 

dependent variable associated with the variable. Additionally, one estimates the percentages of 

the overall increase/decrease that is associated with each of the differences between neighboring 

variable levels - and hence, these parameters determine the shape of the monotonic effect. For 
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a more detailed explanation, see Bürkner et al., 2020. Brain area was modeled as a monotonic 

effect and session-wide neural timescales served as the dependent variable. 
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