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Abstract 10 

Aerosolized microbes surviving transport to and in the stratosphere endure extremes of 11 

low temperature, atmospheric pressure, and relative humidity, and high shortwave ultraviolet 12 

radiation flux. However, the genetic determinants for traits enabling resistance to the 13 

combination of stresses experienced by microbes in the high atmosphere have not been 14 

systematically investigated. In this study, we examined Proteobacteria and Actinobacteria 15 

isolated from the stratosphere (18 to 29 km ASL) and that demonstrated high tolerance to 16 

desiccation (15-25% RH) and UVC radiation (UVCR; λ= 254 nm). Closely related reference 17 

strains were more sensitive to UVCR than the stratospheric isolates, indicating that extreme 18 

resistance is not universally distributed in these phylogenetically related bacteria. Comparative 19 

genomic analyses revealed DNA repair and antioxidant defense genes in the isolates that are not 20 

possessed by the related reference strains, including genes encoding photolyase, DNA nucleases 21 

and helicases, and catalases. Directed evolution by repeated exposure to increasing doses of 22 

UVCR improved the LD90 in a sensitive reference strain by ~3.5-fold. The mutations acquired in 23 

Curtobacterium flaccumfaciens pv. flaccumfaciens strain DSM 20129 incrementally increased its 24 

UVCR resistance, with the accumulation of 20 point mutations in protein coding genes 25 

increasing tolerance to a level approaching that of stratospheric isolate Curtobacterium sp. L6-1. 26 

The genetic basis for the increased UVCR tolerance phenotypes observed is discussed, with a 27 

specific emphasis on the role of genes involved in DNA repair and detoxification of reactive 28 

oxygen species. 29 

Importance 30 

Ultraviolet radiation is omnipresent in sunlight and has important biological effects on 31 

organisms. The stratosphere is the only location on Earth where microbes receive natural 32 
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exposure to highly mutagenic wavelengths (<280 nm) of ultraviolet radiation. Genetic studies of 33 

bacteria from an environment that selects for extreme ultraviolet radiation resistant phenotypes 34 

has expanded what is known from studies of model species (e.g., E. coli) and identified 35 

potentially novel protection and repair strategies. In addition to deepening understanding of 36 

ultraviolet radiation photobiology in atmospheric microbes and bacteria in general, these 37 

advancements are also highly relevant to astrobiology and space biology. The cold, dry, 38 

hypobaric, and high radiation environment of the stratosphere provides an earthly analog for thin 39 

extraterrestrial atmospheres (e.g., Mars) and is ideal for bioprospecting extremophile phenotypes 40 

that enable engineering of genetic stability and functionality in bio-based space life-support 41 

systems or any application where long-term persistence is desirable (e.g., biocontrol).   42 
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Introduction 43 

The persistence of microbes during atmospheric transport and deposition has important 44 

implications to human health (1, 2), agriculture (3–5), meteorology (6–8), and astrobiology (9, 45 

10). Many studies have focused on microbial aerosols in the lowest layer of the troposphere, 46 

where the air is in contact with and affected by the surface (i.e., convective boundary layer, 47 

CBL). However, the composition of microbial assemblages in the CBL can be quite different 48 

from that of overlying air masses in the ‘free troposphere’ (11, 12). Importantly, environmental 49 

conditions in the CBL are unrepresentative of those at higher altitudes, where biological stresses 50 

(e.g., water loss and ultraviolet radiation, UVR) become increasingly intense. Given that 1023 to 51 

1024 microbes are estimated to disperse annually in the Earth-atmosphere system (13), new 52 

information is needed to determine the genetic basis and mechanisms enabling survival under the 53 

extreme conditions associated with atmospheric transport. 54 

The stratosphere is the atmospheric layer above the troposphere (~15 to 50 km above sea 55 

level, ASL) and is characterized by low temperature, atmospheric pressure, and relative humidity 56 

(RH) and high UVR flux (9, 12–16). This combination of conditions is unique to any other 57 

location on Earth and similar to conditions on the surface of Mars (14, 15), making the 58 

stratosphere a relevant astrobiological analog to examine microbial survival potential on alien 59 

worlds (16–19). Microbes that survive conditions in the stratosphere are limited to those tolerant 60 

of water loss and exposure to high levels of UVR (20). The UVR spectrum consists of three 61 

types: UVAR (320-400 nm), UVBR (280-320 nm), and UVCR (100-280 nm). Oxygen and 62 

ozone in the lower stratosphere strongly absorb short wavelength UVR, and consequently, 63 

UVCR is not observed at lower altitudes in the troposphere (21). As such, the stratosphere is the 64 
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only natural laboratory on Earth to examine the biological effects of high energy UVR 65 

wavelengths.  66 

UVR damages cells via direct and indirect effects. Direct absorption of UVR by DNA forms 67 

pyrimidine dimers that inhibit transcription and replication and can lead to single-stranded breaks 68 

in the sugar-phosphate backbone (22). Indirect effects of UVR occur through the generation of 69 

reactive oxygen species (ROS), which can induce single- and double- strand breaks, apurinic 70 

sites, and base damage in DNA, as well as the oxidation and chemical modification of proteins 71 

and lipids (23). Bacterial tolerance to UV is conferred by a complex network of genetic and 72 

physiological systems termed the “UV-resistome”, which has five basic functions: sense, shield, 73 

detoxify, repair, and tolerate (24). Photoreceptors and other stress sensors sense specific UV 74 

wavelengths and DNA damage, triggering a regulatory cascade that elicits specific cellular 75 

responses (25, 26). Specialized membrane proteins and UV-absorbing pigments shield 76 

intracellular components from irradiation (27). ROS-scavengers detoxify reactive species to 77 

prevent oxidative damage and maintain cellular redox homeostasis (28). Efficient DNA repair 78 

proteins repair genetic damages (29). And finally, error-prone polymerases tolerate and bypass 79 

unrepaired lesions to ensure survival of the cell at the cost of introducing mutations to the 80 

genome (30). The general response of bacteria to UVR and the DNA repair strategies utilized 81 

have been well-studied in organisms such as E. coli (22, 29, 31). However, model species are not 82 

representative of natural bacterial populations, and in particular, those that disseminate widely in 83 

the atmosphere. 84 

Previously, we sampled aerosols to altitudes of 38 km ASL using a specialized payload 85 

attached to a helium balloon (32), isolated a variety of bacteria from the samples, and 86 

demonstrated their high tolerance to desiccation (15-25% RH) and UVCR (λ= 254 nm) (20). 87 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted March 28, 2023. ; https://doi.org/10.1101/2023.03.27.534493doi: bioRxiv preprint 

https://doi.org/10.1101/2023.03.27.534493


   

 

6 

 

Several of the isolates displayed levels of resistance rivaling that of the highly radio- and xero-88 

tolerant bacterium Deinococcus radiodurans. In this study, we sequenced the genomes of two 89 

highly tolerant isolates (Curtobacterium sp. L6-1 and Noviherbaspirillum sp. L7-7A) and used 90 

comparative genomic analyses with closely related, UV-sensitive reference strains to identify 91 

genetic features likely contributing to UVCR tolerance. We also used directed evolution of the 92 

UV-sensitive Curtobacterium flaccumfaciens pv. flaccumfaciens strain DSM 20129 (referred to 93 

hereafter as DSM 20129) to improve its UVCR tolerance and identified the mutations 94 

responsible for enhanced resistance. Additionally, we examined cellular ROS levels in the strains 95 

after UVCR exposure and assessed photolyase activities via an in vivo photorepair assay. Our 96 

results improve understanding of the mechanisms enabling bacterial survival during atmospheric 97 

transport and genetic determinants of UVR tolerance in taxa for which extreme resistance has not 98 

been previously reported or investigated. 99 

Results 100 

UVCR-Resistance in Stratospheric Isolates and Related Strains 101 

Based on comparison of 16S rRNA gene sequences from strains L6-1 and L7-7A, these 102 

isolates were identified as members of the Gram-positive actinobacterial genus Curtobacterium 103 

and the Gram-negative betaproteobacterial genus Noviherbaspirillum, respectively (20). To 104 

assess whether the high UVCR tolerance observed in the isolates is a feature shared with other 105 

closely related taxa, actinobacterial and betaproteobacterial reference strains were identified (Fig. 106 

1A), obtained from culture collections (Table A1), and screened for UVCR tolerance. The 107 

inactivation rate (k) and LD90 were derived from a survival curve for each strain (Table A2). 108 

Curtobacterium sp. L6-1 has higher UVCR tolerance (LD90 of 470 J m-2) than DSM 20129 (LD90 109 

of 98 J m-2; Fig. 1B; Table S2). Similarly, Noviherbasprillum sp. L7-7A also displayed higher 110 
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UVCR tolerance than the reference strains tested (Fig. 1C), with an average LD90 of 290 J m-2 111 

compared to 195 J m-2 for N. soli SUEMI10, 63 J m-2 for N. autotrophicum TSA66, and 35 J m-2 112 

for N. denitrificans TSA40 (Table A2).  113 

Genetic Differences Between UVCR-Tolerant and -Sensitive Strains 114 

The disparities in UVCR tolerance between the stratospheric isolates and reference 115 

strains suggested that L6-1 and L7-7A possess genetically discernable features contributing to 116 

this phenotype. To enable comparative genomic analysis, whole genome sequences were 117 

obtained for the Curtobacterium and Noviherbaspirillum strains and deposited in GenBank (33).  118 

Strain L6-1 has a single 3.4 Mbp circular chromosome with a GC content of 72.0% and 119 

3,158 genes encoding 12 rRNAs, 46 tRNAs, and 3,072 proteins (Table 1). Strain DSM 20129 120 

possesses a circular chromosome and plasmid that together total 3.8 Mbp, with a GC content of 121 

70.9%, and 3,616 genes encoding 9 rRNAs, 47 tRNAs, and 3,517 proteins. The two strains share 122 

83% average nucleotide identity (ANI), which is below >95% values typically observed for 123 

closely related populations in a species taxon (34–37). For the Noviherbaspirillum strains, L7-7A 124 

possesses three circular chromosomes consisting of 5.2 Mbp and a GC content of 62.0%, with 125 

4,771 genes encoding 15 rRNAs, 64 tRNAs, and 4,581 proteins. Although L7-7A has a genome 126 

size and content more similar to that of strain TSA66, it shares 79% ANI with both TSA66 and 127 

TSA40 and is likely a separate species (Table 1).  128 

To analyze DNA repair and ROS detoxification pathways of the UV-resistome, genome 129 

comparisons using the RAST annotation server and the BLAST alignment tool were performed 130 

(Tables A3 and A4 for L6-1; Tables A5 and A6 for L7-7A; respectively). L6-1 encodes four 131 

additional proteins associated with DNA repair that are not found in DSM 20129 (Fig. 2; Table 132 

A3), including endonuclease VIII (nei2), two homologs of the UvrD/PcrA DNA helicases 133 
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(uvrD2 & pcrA), and a cryptochrome/photolyase family protein (phr1). In addition to DNA 134 

repair genes, L6-1 encodes a homolog of the KatA catalase (katA; Fig. 2; Table A4), the major 135 

catalase expressed in vegetative Bacillus (38), whereas DSM 20129 encodes a KatX homolog 136 

(Table A4), which has been demonstrated to protect germinating endospores from H2O2 stress 137 

(39). A homolog of the peroxide operon regulator PerR (perR) from B. subtilis is also found in 138 

L6-1, but not DSM 20129 (Fig. 2; Table A4). L6-1 also possesses an extra copy of the 139 

glutaredoxin-like protein NrdH (nrdH2; Fig. 2; Table A4) involved in disulfide reduction. 140 

Of the nine DNA repair genes identified in L7-7A that are absent in strains TSA40 and 141 

TSA66 (Fig. 3; Table A5), there are additional copies of endonuclease III (nth2 & nth3) and 142 

excinuclease UvrABC subunit A (uvrA2), along with the RecBCD nuclease subunit D (recD), 143 

DNA ligase C (ligC), alpha-ketoglutarate-dependent dioxygenase AlkB (alkB), error prone DNA 144 

polymerase V subunit D (umuD), and exonuclease SbcCD (sbcC & sbcD). Notably, all the 145 

Noviherbaspirillum strains lack the recB and recC genes, as well as genes for the alternative 146 

repair protein RecF of the RecFOR recombination pathway (Table A5). In addition to LigC, 147 

other essential components of the bacterial non-homologous end joining (NHEJ) repair pathway 148 

(LigD and Ku) are present in strains L7-7A and TSA40 (Table A5). Antioxidant genes unique to 149 

L7-7A (Fig. 3; Table A6) include additional copies of catalase (katE), a divalent metal cation 150 

transporter (mntH2), and the paraquat-inducible protein A (pqiA2). All three Noviherbaspirillum 151 

strains encode an ortholog of the B. subtilis KatX catalase (Table A6). However, L7-7A also 152 

encodes an ortholog of the E. coli KatE catalase (Fig. 3; Table A6). Though strain TSA40 153 

possesses two genes for MntH, mntH2 has low similarity to the mntH2 of L7-7A (Table A6) and 154 

may have a different function. 155 

Directed Evolution of UVCR Tolerance in C. flaccumfaciens DSM 20129 156 
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Experiments designed to improve UVCR tolerance of the reference strains through 157 

repeated exposure to sublethal doses of UVCR (Fig. 4A) were partially successful. After 10 158 

rounds of selection, we were unable to significantly improve the UVCR tolerance of the 159 

Noviherbaspirillum strains (data not shown). However, decreased UVCR sensitivity occurred 160 

incrementally in strain DSM 20129 during 12 rounds of selection, increasing its LD90 by 3.5-fold 161 

in comparison to the founder population and to a level comparable with isolate L6-1 (Fig. 4B).  162 

Whole genome sequences were obtained for five evolved strains of DSM 20129 from the 163 

directed evolution experiment and where an increase in UVCR tolerance was observed (Table 2), 164 

and the mutations acquired were identified using the Breseq mutation analysis pipeline (40). In 165 

total, 40 mutations were identified in the most tolerant strain (DSM-9.3.3), with five occurring in 166 

intergenic regions, six in hypothetical genes, three in pseudogenes, and 26 in protein coding 167 

genes (Fig. 4C). Of the 26 mutations in protein coding genes, six are silent and 20 are 168 

nonsynonymous mutations (Table 2; Table A7) of proteins that participate in a wide range of 169 

reactions (Fig. 4C). The most notable are involved in DNA repair (uracil DNA glycosylase and 170 

DNA photolyase), cellular redox homeostasis (NAD(P)/FAD‑dependent oxidoreductase in the 171 

thioredoxin reductase family), and the stress response (cold shock protein).  172 

Intracellular ROS Concentrations After UVCR Exposure 173 

Given the indirect effects of UVR exposure, we determined the concentration of ROS in 174 

the cells to assess if ROS detoxification may play a role in explaining the tolerances observed. 175 

ROS concentration before and after exposure to UVCR was monitored in isolate L6-1, the DSM 176 

20129 parent strain, and the most UVCR-tolerant evolved strain (DSM-9.3.3) using the free 177 

radical sensing fluorescent probe H2DCFDA. ROS concentration did not significantly increase in 178 

L6-1, DSM 20129, or DSM-9.3.3 at any of the UVCR doses tested (up to 1,980 J m-2; Fig. 5A). 179 
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Identical observations were made in experiments with D. radiodurans R1 (Fig. 5A), which is 180 

well known for its capacity to resist and detoxify oxidative stress-generating agents (41–43). In 181 

stark contrast, ROS concentrations in E. coli approximately doubled after each ~1,000 J m-2 of 182 

UVCR exposure (Fig. 5A).  183 

In vivo Assessment of Photolyase Activity 184 

The contribution of photolyase to UVCR tolerance was investigated using an in vivo 185 

photorepair assay. Light activates photolyase for the repair of DNA photoproducts (44); 186 

therefore, its relative activity can be determined by examining the survival rate of UVCR 187 

exposed populations that recover under white light in comparison to those kept in the dark. 188 

Consistent with previous studies (45–47), post-UVCR exposure to white light increased the 189 

survival rate for all strains (Fig. 5B). Based on the interpolated LD90 values, there was not a 190 

significant difference in survival for DSM 20129 and DSM-9.3.3, indicating that the mutations 191 

incurred in the photolyase gene did not significantly affect DNA repair activity under the 192 

conditions tested (Fig. 5B inset). Photoreactivation of L6-1 increased the LD90 ~140%, which is 193 

significantly higher (P-value = 0.004; one-way ANOVA) than the ~19% increase observed for 194 

the DSM strains (Fig. 5B inset). 195 

To determine if the second photolyase gene possessed by strain L6-1 contributes to its 196 

superior photorepair capacity, we aligned the sequences to known CPD and (6-4) photolyases. 197 

The CPD photolyases from E. coli (EcPhrB) and Agrobacterium fabrum (AfPhrA) align well 198 

with one of the photolyases found in L6-1 (phr2: KM842_RS02105) and the photolyase from 199 

DSM 20129 (phr: K0028_16065) (Fig. A1A). However, the additional photolyase in L6-1 (phr1: 200 

KM842_RS01465) is more closely related (~37% identity) to the bacterial (6-4) photolyases of 201 

A. fabrum (AfPhrB), Cereibacter sphaeroides (CsCryB), and Vibrio cholerae (Vc(6–4) FeS-202 
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BCP), and the active site residues determined for AfPhrB are largely conserved in all four 203 

species (Fig. A1B). Furthermore, the protein structural prediction algorithm AlphaFold2 was 204 

used to model 3D structures for the L6-1 and DSM 20129 photolyases with a high degree of 205 

confidence (Fig. A2A-C). 3D structural alignments with the E. coli CPD photolyase (EcPhrB, 206 

PDB ID: 1DNP) show high similarity with the L6-1 Phr2 and DSM 20129 Phr, with a template-207 

modeling score (TM-score) of 0.87 for both proteins (Fig. A3A). The L6-1 Phr1 shows high 208 

similarity with the A. fabrum (6-4) photolyase (AfPhrB, PDB ID: 5KCM) with a TM-score of 209 

0.89, further supporting its proposed function as a bacterial (6-4) photolyase (Fig. A3B). 210 

To assess the contributions of phr1 and phr2 to survival under UVCR exposure, we 211 

cloned them into expression vectors for heterologous expression in E. coli BL21 cells. Wild type 212 

BL21 cells were rapidly inactivated upon UVCR exposure, with an LD90 of 16 J m-2 under 213 

photoreactivating conditions (Fig. A4A). Overexpression of the native E. coli CPD photolyase 214 

(EcPhrB) significantly increased the LD90 by more than 230% during photoreactivation (Fig. 215 

A4B). Photoreactivation by the putative CPD photolyases from the Curtobacterium strains 216 

(L6Phr2 and DSMPhr for L6-1 phr2 and DSM 20129 phr, respectively) also improved the 217 

survival of BL21, increasing the LD90 by 330% and 270%, respectively (Fig. A4B). In contrast, 218 

expression of the putative (6-4) photolyase from strain L6-1 (L6Phr1) alone did not significantly 219 

improve UVCR survival of BL21 cells (Fig. A4B). However, when the two L6-1 photolyases 220 

were co-expressed (L6Phr1 + L6Phr2), photoreactivation significantly improved survival over 221 

L6Phr2 alone (Fig. A4B) and increased the LD90 by an average of 400%.  222 

Discussion 223 

There is a strong gradient of increasing biological stressors with altitude in the 224 

atmosphere (48, 49), and under the extreme environmental conditions in the stratosphere, 225 
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prolonged exposure to UVR and desiccation are most important to limiting survival (18, 19, 50–226 

61). The bacterial isolates studied (Curtobacterium sp. L6-1 and Noviherbaspirillum sp. L7-7A) 227 

were isolated from aerosols sampled at altitudes of 18 to 29 km ASL in New Mexico, USA and 228 

investigated because of their high tolerance to UVCR and desiccation (20). We tested close 229 

phylogenetic relatives of these isolates and found that they do not have extraordinary tolerance to 230 

UVCR (Fig. 1), providing an opportunity for a comparative analysis. UVR-induced cellular 231 

damage occurs directly through dimerization of pyrimidine bases in DNA, and indirectly, 232 

through the ROS generated by photosensitization mechanisms (31, 62). Accordingly, we 233 

hypothesized that higher tolerance to UVCR by isolates from the stratosphere is due to 234 

possessing DNA repair and antioxidant genes not found in their sensitive relatives. 235 

Comparative genomic evidence for UVR tolerance in Noviherbaspirillum sp. L7-7A 236 

To our knowledge, UVR tolerance in the genus Noviherbaspirillum has not been 237 

previously reported or examined. Though we were unable to improve UVCR tolerance in the 238 

Noviherbaspirillum reference strains through directed evolution, comparative genomic analyses 239 

identified 12 genes in isolate L7-7A involved in DNA repair and antioxidant systems that were 240 

not present in the Noviherbaspirillum reference strain genomes (Fig. 3; Tables A5-A6): nth2, 241 

nth3, uvrA2, recD, ligC, alkB, umuD, sbcC, sbcD, katE, mntH2, and pqiA2. Previous studies 242 

have implicated a role for these genes in UVCR tolerance (Supplemental Discussion), and as 243 

such, any one (or combination) of these 12 genes could be responsible for isolate L7-7A’s high 244 

UVCR tolerance. However, genes with unknown functions (~21% of ORFs in the L7-7A 245 

genome) cannot be ruled out as contributing to this phenotype. 246 

Genetic basis of UVR tolerance in the Curtobacterium strains  247 
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Previous studies have documented high UVR tolerance in members of the 248 

Curtobacterium, implying that it may be a common phenotype in this genus. Sundin and Jacobs 249 

(63) examined UVCR tolerance in bacteria isolated from the phyllosphere of field-grown peanut 250 

plants and found that Curtobacterium strains represented the largest proportion (~43%, n=213) 251 

of those with UVCR minimum inhibitory doses (MIDc) greater than 150 J m-2. Highly UVCR 252 

resistant strains of Curtobacterium have also been isolated from desert rock varnish, with 17% 253 

remaining viable after a UVCR dose of 220 J m-2 (64). Our results are consistent with these 254 

studies, with even the most UVCR “sensitive” Curtobacterium strain (DSM 20129) having an 255 

LD90 of ~100 J m-2. Notably, Curtobacterium sp. L6-1 has a UVCR LD90 of 470 J m-2, which is 256 

more than double of that reported for other members of this genus and near survival rates 257 

reported for D. radiodurans (660 J m-2; (65)). In general, a species’ tolerance to UVR 258 

approximates natural exposure (24), which makes high tolerance to UVCR a surprising 259 

phenotype for populations to maintain in surface environments. However, this phenotype would 260 

be highly relevant for enabling survival and persistence at high altitudes in the atmosphere (20). 261 

Comparative genomic analyses with DSM 20129 showed that strain L6-1 possesses 262 

seven additional genes related to DNA repair and antioxidant systems (Fig. 2; Tables A3-A4): 263 

nei2, uvrD2, pcrA, phr1, katA, perR, and nrdH2. Endonuclease VIII (nei2) is a bifunctional DNA 264 

N-glycosylase and abasic (AP) site lyase involved in the BER pathway. It initiates DNA repair 265 

by recognizing and removing oxidative base lesions and cleaving the phosphodiester backbone 266 

of the resulting AP site (66, 67). The UvrD DNA helicase II protein unwinds DNA in the 3′-5′ 267 

direction and plays a critical role in recombination, NER, and MMR (68–70). PcrA is a homolog 268 

of the UvrD helicase found in Gram-positive bacteria and has also been shown to participate in 269 

repairing UVR-induced DNA damage in Bacillus species (71).  270 
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Glutaredoxins (Grx) and glutathione (GSH), the main nonenzymatic antioxidants in 271 

Gram-negative bacteria, are generally absent in Gram-positive species. Many actinobacterial 272 

species are known to possess an alternative antioxidant system involving mycothiol (MSH), a 273 

low molecular weight thiol (72). Both L6-1 and DSM 20129 possess homologs for the mshA-D 274 

operon of the MSH biosynthesis pathway, and thus, MSH may serve as an important antioxidant 275 

in these strains. An additional copy of the gene encoding glutaredoxin-like protein NrdH in strain 276 

L6-1 is notable as NrdH has been shown to perform similar functions as the Grx/GSH system 277 

and is reducible by thioredoxin reductase (73, 74), an enzyme ubiquitous in all domains of life. 278 

In the GSH-lacking bacterium Corynebacterium glutamicum, NrdH enhances oxidative stress 279 

resistance (75), suggesting the second nrdH gene in L6-1 could play a similar role. 280 

Cross-tolerance to environmental stress 281 

Desiccation- and radio-tolerance phenotypes frequently co-occur in extremophilic 282 

bacteria and archaea (76–84). Given that the acute doses to which radiotolerant species are 283 

resistant greatly exceed natural ionizing radiation sources on Earth, there is no evolutionary basis 284 

for ionizing radiation resistance to arise through natural selection. Studies have demonstrated a 285 

genetic linkage between desiccation- and ionizing radiation-resistance in D. radiodurans R1, 286 

supporting the hypothesis that DNA repair mechanisms evolved to compensate for water loss are 287 

also highly effective at repairing the similar pattern of DNA damage produced by exposure to 288 

ionizing radiation (85). Similarly, there is no obvious fitness benefit to having high UVCR 289 

resistance in any modern environment on Earth besides the stratosphere. However, since water 290 

stress is a very common phenomenon in the biosphere, the genetic and biochemical mechanisms 291 

that enhance survival to desiccation (e.g., ROS detoxification) may also provide tolerance to 292 

UVCR. Further, when L6-1 and L7-7A are desiccated (25% RH) and exposed to UVCR, their 293 
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LD90s are 1200 J m-2 and 580 J m-2, respectively (20). These rates of survival are 2- to 3-fold 294 

higher than those observed when water has not been actively removed from the cells (Table A2) 295 

and highlights another protective effect that desiccation resistance can provide against indirect 296 

effects of UVR exposure. 297 

In addition to possessing efficient pathways for repairing DNA damage, the ionizing and 298 

UVCR ‘resistome’ also includes mechanisms to physiologically detoxify ROS generated during 299 

exposure to these high-energy wavelengths. ROS produced when cells are exposed to UVR or 300 

desiccated can oxidize lipids and proteins (86, 87), as well as react with many other cellular 301 

constituents to inflict damage. ROS detoxification is known to have a role in bacterial 302 

desiccation resistance (87) and radiosensitive strains of D. radiodurans are more susceptible to 303 

oxidative damage than radiotolerant strains (88). Oxidative stress is a major contributor to the 304 

damage caused by desiccation and radiation; therefore, efficient antioxidant systems are likely to 305 

be important traits of xero- and radio-tolerant species. Our experiments indicate the presence of 306 

efficient ROS detoxification mechanisms in L6-1 and DSM 20129, with neither showing any 307 

significant increases in intracellular ROS concentrations after UVCR exposure (Fig. 5A). This 308 

implies other members of the Curtobacterium could also possess this trait, a contention 309 

supported by a study that exposed phyllosphere communities to the highly oxidative compound 310 

ozone (5,000-10,000 ppb) and found that the relative abundance of Curtobacterium taxa 311 

increased by ~4-fold, implying a high tolerance of ozone (89). Consequently, it is tempting to 312 

speculate on the role that microbial antioxidant mechanisms may play during stratospheric 313 

transport beyond enhancing microbial tolerance to UVR and desiccation, as the concentration of 314 

ozone at altitudes of 15 to 30 km ASL (~1,000 to 8,000 ppb) is ~1000-fold higher than air near 315 

the surface (90).  316 
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Photoprotection strategies in Curtobacterium 317 

The comparative genomics analysis and directed evolution experiments implicated 318 

photolyase family proteins in providing increased UVCR tolerance in the Curtobacterium strains 319 

(Figs. 2 and 4C; Table 2). In bacteria, UVR-induced DNA dimers are repaired through direct 320 

reversal by photolyases or the lesion is removed via the NER pathway. NER requires the 321 

coordinated action of multiple proteins for incision, unwinding, and excision of a damage-322 

containing segment of DNA, followed by resynthesis and ligation of the excised nucleotides (22, 323 

29, 91). However, because this is an energy-intensive process, a more measured response may be 324 

necessary if a generous supply of energy is not available to the cell. For instance, direct reversal 325 

of DNA photoproducts by photolyases requires a single protein and light. Given the opportunity 326 

to function, the selective advantages of the photolyase repair system would make it a trait 327 

favorable to any species in an energy limited, high UVR flux environment, including the high 328 

atmosphere.  329 

Photolyases catalyze the direct reversal of pyrimidine dimers in DNA when activated 330 

with near-UV/blue light in a process called photoreactivation (44). Two major classes of DNA 331 

photoproducts are produced by UVR: cyclobutane pyrimidine dimers (CPD) and pyrimidine (6-332 

4) pyrimidone photoproducts (6-4PP). Direct repair of these lesions is catalyzed by photolyases 333 

specific to each lesion type (44, 92). Though CPD photolyases are widespread amongst bacteria, 334 

only three bacterial (6-4) photolyases have been characterized to date: PhrB of Agrobacterium 335 

fabrum (45, 93) (formerly Agrobacterium tumefaciens (94)), CryB of Cereibacter sphaeroides 336 

(95, 96) (formerly Rhodobacter sphaeroides (97)), and Vc(6–4) FeS-BCP of Vibrio cholerae 337 

(98). However, phylogenetic comparison with photolyase genes in the eukaryotic 338 

cryptochrome/photolyase family suggests that (6-4) photolyases are more prevalent in 339 
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prokaryotes than initially thought (93). Sequence alignments and predicted structural models of 340 

the L6-1 photolyases (Fig. A1) suggest it possesses a putative CPD photolyase (phr2: 341 

KM842_RS16065) and (6-4) photolyase (phr1: KM842_RS01465). Strain L6-1 has higher 342 

photorepair capacity than strain DSM 20129 (Fig. 5B), which only possesses a CPD photolyase.  343 

To demonstrate functionality of the putative 6-4PP and CPD photolyases of L6-1, phr1 344 

and phr2, respectively, were heterologously expressed in E. coli and their effects on its UVCR 345 

tolerance were examined. Although expression of phr1 did not increase UVCR tolerance over 346 

that observed in the control, expression of phr2 increased survival by ~325%, while co-347 

expression of phr1 and phr2 increased the survival rate even further (Fig. A4). These results are 348 

likely due to the larger number of CPD lesions (75-90% of total) upon UV exposure as compared 349 

to 6-4PP generated (22, 99–101). If further study shows the L6-1 phr1 to be a bona fide (6-4) 350 

photolyase, its activity alone might be expected to have a negligible effect on cell survival since 351 

the overwhelming amount of DNA damage would be CPD dimers. However, when phr1 and 352 

phr2 are co-expressed, the repair of both CPD and 6-4PP dimers has a synergistic effect on 353 

survival. 354 

Conclusion 355 

We investigated the genetic basis for extreme UVCR resistance phenotypes in bacteria 356 

recovered from stratospheric air masses (20), where high UVCR fluxes and low water 357 

availability represent endmember values for these variables in the biosphere. Recognizing the 358 

genetic underpinnings for the expressed characteristics mitigating damage from UVCR was 359 

facilitated by the rich history of experimental work that has characterized the biochemistry and 360 

molecular biology of DNA repair processes in model organisms. In fact, the genomes of the 361 

proteobacterial and actinobacterial strains studied encode genes for most, if not all, of the typical 362 
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complement of DNA repair proteins documented in E. coli and many other bacteria. This 363 

indicates that strains L7-7A and L6-1 operate their canonical DNA repair pathways in a manner 364 

more effective than other species and/or that survival to UVCR is enhanced through alternative 365 

mechanisms. For microbial species surviving long distance dispersal as aerosols in the 366 

atmosphere, efficient DNA repair systems, such as photoreactivation, and mechanisms that 367 

evolved to cope with water stress are likely to be valuable for enduring the high UVR fluxes that 368 

intensify with altitude. 369 

Materials and Methods 370 

Bacterial Strains and Culture Conditions 371 

The bacterial strains used in this study are listed in Table A1. Curtobacterium sp. L6-1 and 372 

Noviherbaspirillum sp. L7-7A were isolated from aerosols collected using a helium balloon 373 

payload that sampled at altitudes of 18 to 23 km and 24 to 29 km ASL, respectively, near Ft. 374 

Sumner, New Mexico in 2013 (32). Reference strains phylogenetically related to isolates L6-1 375 

and L7-7A and that were identified as available in culture collections were obtained from the 376 

German Collection of Microorganisms and Cell Cultures (DSMZ) and the United States 377 

Department of Agriculture (USDA) Agricultural Research Service Culture Collection (NRRL). 378 

These included Curtobacterium flaccumfaciens pv. flaccumfaciens (DSM 20129), Mycetocola 379 

reblochoni (LMG 22367), Plantibacter flavus (DSM 14012T), and Noviherbaspirillum soli 380 

(SUEMI10). Noviherbaspirillum denitrificans (TSA40) and Noviherbasprillum autotrophicum 381 

(TSA66) were kindly provided by Dr. Satoshi Ishii of the University of Minnesota. Unless 382 

otherwise noted, the actinobacterial and betaproteobacterial strains were cultured aerobically at 383 

30°C with vigorous shaking in LB (10 g L-1 tryptone, 5 g L-1 yeast extract, 10 g L-1 NaCl) and 384 

R2A (Difco cat. no.: 218262) media, respectively. When required, media were amended with 385 
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antibiotics at the following concentrations: spectinomycin (50 µg mL-1) & carbenicillin (100 µg 386 

mL-1). 387 

UVCR Survival Assays 388 

Cultures were grown in 5 mL of liquid media to stationary phase, and six serial dilutions of this 389 

material were prepared in 10 mM MgSO4. Ten μL of each dilution was transferred to six sections 390 

of a square plate containing agar-solidified growth media. Portions of the plate were then 391 

covered with aluminum foil such that sections uncovered sequentially during 1 min interval 392 

exposures were provided with controlled doses of UVCR (GE G36T5 UVC Light Bulb; λ = 254 393 

nm; 3.3 W m-2) that were 198, 396, 594, 792, and 990 J m-2. The UVCR dose was measured 394 

using a digital radiometer (Solar Light Company, Inc., Glenside, PA). The longest exposure for 395 

the populations was 5 min. and the section of the plate that remained covered during the 396 

experiment (i.e., was not exposed to UVCR) served as the control (N0). The cultures were 397 

incubated at 30°C for 24 to 48 h and the number of colony forming units (CFU) surviving each 398 

UVCR dose (N) was used to calculate the surviving fraction, expressed as N/N0. Survival rates 399 

are reported as the mean and SEM for three biological replicates. 400 

Whole Genome Sequencing and Comparative Genomics 401 

Whole genome sequences for Noviherbaspirillum sp. L7-7A, Curtobacterium sp. L6-1, and 402 

Curtobacterium flaccumfaciens strain DSM 20129 were obtained as described previously (33). 403 

Briefly, stationary phase cultures were pelleted, frozen (-70°C), and shipped to SNPsaurus 404 

(Eugene, OR) for DNA extraction, library preparation, sequencing, and genome assembly using 405 

the PacBio Sequel II sequencing platform followed by de novo genome assembly using the Flye 406 

v2.7 assembler (102). The assembled genomes were submitted to GenBank (L7-7A: JAHQRJ01; 407 
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L6-1: CP076544.1; DSM 20129: CP080395.1/CP080396.1) and annotated using the NCBI 408 

Prokaryotic Genome Annotation Pipeline (PGAP) (103).  409 

Average nucleotide identity (ANI) and average amino acid identity (AAI) among the isolates and 410 

reference strains were calculated using the ANI and AAI calculators from the Kostas lab 411 

(http://enve-omics.ce.gatech.edu/) (104, 105). Functional comparisons were made with the Rapid 412 

Annotation using Subsystem Technology (RAST) server and the SEED Viewer (106–108). 413 

Further comparisons were made by searching for homologs of known DNA repair and ROS 414 

detoxification proteins from model organisms in the L6-1, DSM 20129, L7-7A, TSA40, and 415 

TSA66 genomes using the blastp algorithm from NCBI’s Basic Local Alignment Search Tool 416 

(BLAST) (109). Query protein sequences were obtained from the UniProt database for 417 

Escherichia coli strain K12, Bacillus subtilis strain 168, and Mycobacterium tuberculosis strain 418 

ATCC 25618 / H37Rv (110). Reciprocal best hits were considered homologs if the bit score was 419 

>50, E-value was <1e-5, and query coverage was >50% (111). Differences in gene content 420 

among the isolates and the reference strain relatives were visualized using the BLAST Ring 421 

Image Generator (BRIG) (112).  422 

Directed Evolution and Mutation Analysis 423 

The survival of strain DSM 20129 to UVCR exposure was determined as described above. 424 

Triplicate colonies surviving the highest UVCR dose were selected, grown separately in liquid 425 

media, exposed to UVCR (as described in the section “UVCR Survival Assays” above), and the 426 

process was repeated a total of 12 times (Fig. 4A). The populations from each cycle of exposure 427 

were archived by freezing aliquots of the cultures in 25% glycerol and storing at -70°C.  428 

Genome sequences were obtained for select strains throughout the directed evolution process 429 

using the Illumina NextSeq 2000 sequencing platform (Microbial Genome Sequencing Center, 430 
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Pittsburgh, PA) with 2×150 bp reads. Sequencing reads were quality filtered and adaptors 431 

trimmed using the Trim Galore script (113), followed by mapping to the reference genome and 432 

mutation identification with the Breseq mutation analysis pipeline (40). The ancestral parent 433 

strain was sequenced and used as a control to correct the reference genome before comparison 434 

with the evolved strains. Gene Ontology (GO) functional annotations for proteins incurring 435 

mutations throughout the directed evolution process were obtained using Blast2GO (114). 436 

ROS Quantification Assays 437 

The free radical probe 2’,7’-dichlorodihydrofluoresceindiacetate (H2DCFDA) (Biotium, 438 

Fremont, CA) was used to quantify ROS. Stationary phase cultures of E. coli MG1655, D. 439 

radiodurans R1, isolate L6-1, the wild-type parent strain DSM 20129, and UV-evolved strain 440 

DSM-9.3.3 were diluted to OD600 1.0 in 10 mL of media. Cells were washed with 10 mM 441 

potassium phosphate buffer (pH 7.0) and incubated for 30 min at 25°C in the same buffer 442 

containing 10 μM H2DCFDA. Subsequently, cells were washed and resuspended in 10 mL 443 

potassium phosphate buffer (10 mM; pH 7.0), transferred to 60×15 mm petri plates, and exposed 444 

to UVCR doses of 0, 990, or 1,980 J m-2 while stirring the cell suspensions at 400 rpm with a 445 

magnetic stir bar. The exposed cell populations were then washed, resuspended in fresh buffer, 446 

and disrupted by vortexing with lysing matrix B (MP Biomedicals). Cellular debris was removed 447 

by centrifugation for 10 min at 5,000×g, and fluorescence intensity in the supernatant was 448 

measured using a multi-well plate reader (Molecular Devices SpectraMax M3; Exc. 490nm, 449 

Emm. 519nm). The amount of fluorescence observed was normalized per mg of protein, as 450 

determined by the Pierce BCA Protein Assay Kit (Thermo Scientific) and compared relative to 451 

data from the unexposed control (i.e., time zero is 100% fluorescence intensity). Values reported 452 

are the average of three biological replicates and the error bars indicate SEM. 453 
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Photolyase Activity Assays and Sequence/Structural Comparisons 454 

To assess in vivo photorepair, isolate L6-1, the DSM 20129 founder strain, and UV-evolved 455 

strain DSM-9.3.3 were grown to stationary phase and exposed to UVCR using the same method 456 

as described for the UVCR survival assays. After exposure, half of the cultures were 457 

immediately placed in the dark and the other half were photoreactivated for 1 h under a daylight 458 

lamp (GE F20T12-C50-ECO 20W Chroma 50 5000K Ecolux Daylight Light Bulb). All of the 459 

cultures were subsequently incubated in the dark at 30°C until colonies formed. Survival rates 460 

under dark and light conditions were calculated, and the lethal dose reducing the population by 461 

90% (LD90) was determined by fitting the survival curves to an exponential decay model. The 462 

percent increase in LD90 by photoreactivation was calculated using the equation:  463 

𝐿𝐷90𝐿𝑖𝑔ℎ𝑡−𝐿𝐷90𝐷𝑎𝑟𝑘

𝐿𝐷90𝐷𝑎𝑟𝑘
× 100 = % 𝐼𝑛𝑐𝑟𝑒𝑎𝑠𝑒. Results shown represent the average of four biological 464 

replicates with error bars representing SEM. 465 
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Fig. 1. Comparison of phylogenetic relatedness among the bacterial strains and their 841 

tolerance to UVCR. (A) Maximum-likelihood analysis of 16S rRNA gene sequences from the 842 

stratospheric isolates and closely related strains. UVCR tolerance of the (B) actinobacterial and 843 

(C) betaproteobacterial strains based on the surviving number of cells (N) at each UVCR dose 844 

divided by that in unexposed populations (N0). The values plotted are averages from three 845 

independent replicates. Error bars represent SEM. 846 

 847 

Fig. 2. DNA repair and ROS detoxification genes in Curtobacterium sp. L6-1 not found in 848 

strain DSM 20129. Genomes were compared using the BLAST Ring Image Generator (BRIG) 849 

with the blastp algorithm. Rings represent the following (from innermost to outermost): 1) GC 850 

Content, 2) GC skew of the L6-1 genome, 3) percent identity to L6-1 of protein orthologs found 851 

in strain DSM 20129, and 4) DNA repair (black) and ROS detoxification (grey) genes. Genes 852 

present in L6-1 but absent in DSM 20129 are indicated in red text. 853 

 854 

Fig. 3. DNA repair and ROS detoxification genes in Noviherbaspirillum sp. L7-7A not found 855 

in strains TSA40 and TSA66. Genomes were compared using the BLAST Ring Image Generator 856 

(BRIG) with the blastp algorithm. Rings represent the following (from innermost to outermost): 857 

1) GC Content, 2) GC skew of the L7-7A genome, 3) percent identity to L7-7A of protein 858 

homologs found in strains TSA40 and TSA66, and 4) DNA repair (black) and ROS detoxification 859 

(grey) genes. Genes present in L7-7A but absent in both TSA40 and TSA66 are indicated in red 860 

text. 861 
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 864 

Fig. 4. Directed evolution of UVCR tolerance in strain DSM 20129. A) Schematic depiction of 865 

the directed evolution method used to improve UVCR tolerance in strain DSM 20129. The details 866 

of the procedure are descried in the text. B) UVCR tolerance of DSM 20129 after each round of 867 

UVCR exposure as compared to isolate L6-1, measured as the number of surviving CFUs (N) at 868 

each UVCR dose divided by total number of CFUs in the unexposed control (N0). Data shown are 869 

the average of three independent replicates. Error bars represent SEM. C) Summary of the 870 

mutations acquired during the directed evolution process. Mutation type (smaller pie chart) refers 871 

only to the mutations occurring in coding sequences (green slice in larger pie chart). Gene 872 

Ontology (GO) function annotations were determined for proteins that acquired amino acid point 873 

mutations in their coding sequence (blue slice in smaller pie chart). 874 

 875 

Fig. 5. Cellular ROS concentrations and photolyase activity determination in UVCR treated 876 

cells. A) Intracellular ROS concentrations were quantified in the stratospheric isolate (L6-1), the 877 

DSM 20129 wild-type parent (DSM 20129), and UV-evolved strain (DSM-9.3.3) using the free 878 

radical probe H2DCFDA. E. coli MG1655 and D. radiodurans R1 were used as controls and for 879 

comparison. The average of three independent replicates with error bars representing SEM are 880 

plotted. B) UVCR survival of strains under dark repair and photoreactivating (light) conditions. 881 

Inset: Percent increase in LD90 after 1 h incubation in white light vs. dark after UVCR exposure. 882 

The data plotted are averages of four independent replicates with error bars representing SEM. (ns 883 

= not significant; ** = P-value < 0.01; *** = P-value < 0.001; one-way ANOVA and Tukey’s post-884 

test). 885 
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Table 1: General genome features of the stratospheric isolates and closely related reference 

strains. 
 

Table 2: Mutations acquired in strain DSM 20129 during the directed evolution process. 
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