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Background: Low-pass sequencing followed by sequence vari-
ant genotype imputation is an alternative to the routine
microarray-based genotyping in cattle. However, the impact
of haplotype reference panel composition and its interplay with
the coverage of low-pass whole-genome sequencing data has not5

been sufficiently explored in typical livestock settings where only
a small number of reference samples are available.

Methods: Sequence variant genotyping accuracy was compared
between two variant callers, GATK and DeepVariant, in 50
Brown Swiss cattle with sequencing coverages ranging from 4 to10

63-fold. Haplotype reference panels of varying sizes and compo-
sition were built with DeepVariant considering 501 cattle from
nine breeds. High coverage sequencing data of 24 Brown Swiss
cattle was downsampled to between 0.01- and 4-fold coverage
to mimic low-pass sequencing. GLIMPSE was used to infer se-15

quence variant genotypes from the low-pass sequencing data us-
ing different haplotype reference panels. The accuracy of the
sequence variant genotypes imputed inferred from low-pass se-
quencing data was compared with sequence variant genotypes
called from high-coverage data.20

Results: DeepVariant was used to establish bovine haplotype
reference panels because it outperformed GATK in all evalua-
tions. Same-breed haplotype reference panels were better suited
to impute sequence variant genotypes from low-pass sequenc-
ing than equally-sized multibreed haplotype reference panels25

for all target sample coverages and allele frequencies. F1 scores
greater than 0.9, implying high harmonic means of recall and
precision of called genotypes, were achieved with 0.25-fold se-
quencing coverage when large breed-specific haplotype refer-
ence panels (n = 150) were used. In absence of such large same-30

breed haplotype panels, variant genotyping accuracy from low-
pass sequencing could be increased either by adding non-related
samples to the haplotype reference panel or by increasing the
coverage of the low-pass sequencing data. Sequence variant
genotyping from low pass sequencing was substantially less ac-35

curate when the reference panel lacks individuals from the tar-
get breed.

Conclusions: Variant genotyping is more accurate with Deep-
Variant than GATK. DeepVariant is therefore suitable to estab-
lish bovine haplotype reference panels. Medium-sized breed-40

specific haplotype reference panels and large multibreed hap-
lotype reference panels enable accurate imputation of low-pass
sequencing data in a typical cattle breed.
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Introduction 45

More than a million cattle are genotyped every year with mi-
croarray technology for the purpose of genomic prediction
(1). Access to whole genome sequence variants can improve
the accuracy of genomic predictions and facilitates the mon-
itoring of trait-associated alleles (2). However, costs are still 50

too high to sequence all individuals from a population to a
sufficient coverage to call variants.

Low-coverage whole-genome sequencing (lcWGS) followed
by genotype imputation has emerged as an alternative with
comparable costs to genotyping microarrays but with sub- 55

stantially higher marker density (tens of millions versus tens
of thousands) for obtaining genotypes for a target popula-
tion (3–6). Sequencing coverage as low as 0.1-fold can be
used to infer sequence variant genotypes that are as accu-
rate as those obtained from genotyping microarrays, espe- 60

cially for rare variants, while sequencing coverage greater
than 1-fold can have much higher accuracy (5). For many
imputation methods, reference panels that are representa-
tive for the target populations are a prerequisite for the ac-
curate imputation of genotypes from lcWGS (7–9). The 65

1000 Genomes Project (1KGP) and the Haplotype Refer-
ence Consortium (HRC) established such reference panels
for several human ancestry populations (10, 11) and made
them available through dedicated imputation servers (12). A
bovine imputation reference panel established by the 1000 70

Bull Genomes project is frequently used to infer sequence
variant genotypes for large cohorts of genotyped taurine cat-
tle, thus enabling powerful genome-wide analyses at the nu-
cleotide level (13). Sequenced reference panels are available
for other animal species (14, 15). However, these haplotype 75

panels lack diversity as they were established mainly with
data from mainstream breeds and thus are depleted for indi-
viduals from local or rare populations.

An exhaustive set of variants and accurate genotypes are cru-
cial to compile informative haplotype reference panels. The 80

Genome Analysis Toolkit (GATK) has been frequently ap-
plied to discover and genotype sequence variants in large
reference populations of many livestock species (3, 14).
DeepVariant has recently emerged as an alternative ma-
chine learning-based variant caller (16). Several studies sug- 85

gest that DeepVariant has superior genotyping accuracy over
GATK (17–20). However, DeepVariant had rarely been ap-
plied to call variants in species other than humans (21, 22).

Lloret-Villas, A. et al. | bioRχiv | March 30, 2023 | 1–10

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 30, 2023. ; https://doi.org/10.1101/2023.01.13.523894doi: bioRxiv preprint 

https://doi.org/10.1101/2023.01.13.523894
http://creativecommons.org/licenses/by-nc/4.0/


In this study, we benchmark sequence variant genotyping of
DeepVariant and GATK in a livestock population. We then90

build haplotype reference panels of varying sizes and com-
position with DeepVariant, and use GLIMPSE to impute se-
quence variant genotypes for cattle that had been sequenced
at between 0.01- and 4-fold genome coverage. We show that
within-breed haplotype reference panels outperform multi-95

breed reference panels across all tested scenarios, provided
that enough sequenced samples are available.

Materials and methods

Data availability and code reproducibility.
100

Short paired-end whole-genome sequencing reads of 501 cat-
tle from nine breeds were used: 327 Brown Swiss (BSW), 50
Fleckvieh, 13 Hereford, 57 Holstein, 2 Nordic Red, 14 Rätis-
ches Grauvieh, 10 Simmental, 25 Tyrolean Grauvieh and 3
Wagyu cattle. Accession numbers for the raw data are avail-105

able in the Supplementary file 1. Computational workflows
were implemented using Snakemake (23) (version 7.5.0 or
newer). The R software environment (version 4.0.2) and gg-
plot2 package (24) (version 3.3.2) were used to create figures
and perform statistical analyses. Scripts and workflows are110

available online.

Alignment, mapping quality and depth of coverage.

Raw short sequencing reads were filtered with fastp (25)
(version 0.23.1), and MultiQC (26) (version 1.11) was ap-115

plied to collect the quality metrics across samples. Reads
were split per read groups with gdc-fastq-splitter (27) (ver-
sion 1.0.) and subsequently aligned with bwa-mem2 (28)
using the -M and -R flags to a manually curated version of
the current bovine Hereford-based reference genome (ARS-120

UCD1.2) (29) that included a Y chromosome as described
in (30). Samblaster (31) (version 0.1.26), Sambamba (32),
samtools (33, 34) (version 1.12), and Picard tools (35) (ver-
sion 2.25.7) were used to deduplicate and sort the BAM files.
We calculated average coverage with mosdepth (36) (version125

0.3.2) considering all aligned reads that had MQ ≥ 10.

Comparison of variant callers.

Testing set. 50 BSW cattle with coverages ranging from 4 to
63-fold were selected as testing set for a comparison between
GATK and DeepVariant.130

GATK. We used the BaseRecalibrator module of GATK (37,
38) (version 4.2.2.0) to adjust the base quality scores of
the deduplicated bam files using 115,815,224 unique posi-
tions from the Bovine dbSNP version 150 as known variants.
Multi-sample variant calling was performed with the GATK135

HaplotypeCaller, GenomicsDBImport and GenotypeGVCFs
modules according to the best practice guidelines (39, 40).

We applied the VariantFiltration module for site-level filtra-
tion with thresholds indicated in (30) to retain high-quality
SNP and INDELs. 140

DeepVariant + GLnexus. DeepVariant (16) (version 1.2) was
run on the deduplicated bam files using the WGS Illumina-
trained model, producing gVCF output per sample. The
gVCF files were then merged and filtered using GLnexus (41)
(version 1.4.1) with the DeepVariantWGS configuration but 145

with the revise_genotypes flag set to false.

VCF imputation and statistics. We used Beagle 4.1 (42)
(27Jan18.7e1) to improve genotype calls and impute spo-
radically missing genotypes from genotype likelihoods (gl
mode). INDELs were left-normalised using bcftools (34) 150

(version 1.12 or 1.15) norm. Variant and genotype counts,
and Ti:Tv ratios were calculated with bcftools stats and
bcftools query. VCF files were indexed with tabix (43, 44).

Variant annotation. Functional consequences of SNPs were
predicted based on the Ensembl (release 104) annotation of 155

the bovine reference assembly using the Variant Effect Pre-
dictor tool (VEP) (45) (version 106) with default parameter
settings.

Variant accuracy evaluation. Microarray-derived genotypes
from 33 cattle that also had sequence-derived genotypes 160

(Supplementary File 1) were our truth chip set. We inter-
sected the truth (microarray) and query (WGS variants) VCF
files using bcftools isec with both the -c none (exact – only
matching REF:ALT alleles are allowed) and -c all (position
– all coordinate matches are allowed) flags, and retained 165

biallelic SNPs with bcftools view to compare the genotypes.
Three-way intersection overlaps were counted with bedtools
multiinter (46) and visualised with UpSetR (47, 48). Since
the microarray data contains fewer sites than WGS, we in-
tersected the truth and query sets. Only positions where the 170

truth genotypes were not homozygous for the reference al-
lele (i.e., the variants that segregate within the target sam-
ples) were retained. We calculated recall (percentage of true
positives in the query set), precision (proportion of matching
genotypes in both truth and query sets), and F1 scores (har- 175

monic mean of precision and recall) using hap.py (49) (ver-
sion 0.3.9) on a per-sample basis. Agreement between the
imputed variant alleles/genotypes and raw sequencing reads
was assessed with Merfin’s k-mer-based filtering method (50)
(commit fc4f89a). A k-mer database was prepared using 180

Meryl (commit 51fad4b) with a k-mer size of 21 and min-
imum k-mer occurrence of 2 in the short sequencing reads.
Variants that were poorly supported, i.e., the alternate se-
quence (variant and flanking regions) appeared less often in
k-mers than the reference sequence did in a genotype-aware 185

proportion, were filtered out.

We assessed Mendelian consistency in filtered but not-
imputed data from parent-offspring pairs and trios (Supple-
mentary File 2) using the bcftools +mendelian plugin (34).
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We calculated discrepancy rate as the number of inconsis-190

tent sites divided by the total number of non-missing sites.
For duos (dam-offspring or sire-offspring) only homozygous
sites were considered. When only one parent was available
(duos), assessing discrepancy was only possible when the
parent genotype was homozygous (0/0 or 1/1).195

Imputation of low-pass sequencing data.

Haplotype panel generation. The BSW reference panels con-
tained 150, 75 and 30 samples that were randomly selected
from 303 BSW samples. The non-BSW panels contained200

150, 75 and 30 samples that were randomly selected from 174
non-BSW samples. The multibreed panels were randomly se-
lected from a combination of the above, and they contained
150 samples of which 50%, 25%, and 10% were BSW sam-
ples and the remaining were non-BSW. Three random repli-205

cates for each panel were created. A subset of 2,078 taurine
samples of the 1000 Bull Genomes project (13) was used to
generate a benchmark haplotype reference panel. Sequence
variant genotypes were called for each panel with DeepVari-
ant and sporadically missing genotypes were imputed with210

Beagle 4.1 (42) (27Jan18.7e1) as described above.

Truth sequencing set, truth variants and subsampling. Vari-
ants were called with DeepVariant and GLnexus as described
previously for 24 BSW samples with coverage above 20-fold
to generate a truth set for assessing imputation accuracy. The215

raw whole-genome sequencing reads of the 24 BSW sam-
ples were then downsampled with seqtk (51) to mimic 4x, 2x,
1x, 0.5x, 0.25x, 0.1x, and 0.01x coverage, and subsequently
aligned to ARS-UCD12 as described previously.

Genotype likelihoods for the variants that are present in the220

haplotype reference panel were estimated from the subsam-
pled read alignments with bcftools mpileup and bcftools call.
These were then imputed using the different haplotype pan-
els using GLIMPSE (52) (version 1.1.1). We used 2 Mb win-
dows and 200 Kb buffer sizes during the chunk step followed225

by phasing and ligation to produce the final imputed variant
calls.

Comparison of true and imputed variants. The accuracy of
the imputed sequence variant genotypes was assessed with
hap.py as described above. The minor allele frequency230

(MAF) of the imputed sequence variants was calculated with
PLINK (53) (version 1.9). The estimated imputation quality
was retrieved from the INFO flag from the VCF files pro-
duced by GLIMPSE with bcftools query. Pearson squared
correlation between expected and actual dosages (r2) was235

calculated with the bcftools stats.

Results

Variant calling with GATK and DeepVariant.

We compared sequence variant discovery and genotyping be- 240

tween GATK and DeepVariant in 50 Brown Swiss (BSW)
cattle that had between 4 and 63-fold sequencing depth
(19.26 ± 11.09) along the autosomes. GATK and DeepVari-
ant identified 18,654,649 and 18,748,114 variants, respec-
tively, of which 7.79% and 8.38% were filtered out due to 245

low quality (Table 1). There were 16,147,567 filtered vari-
ants identified by both callers, but 1,053,716 and 1,292,671
variants were private to GATK and DeepVariant, respectively
(Figure 1A). Overall, DeepVariant had more private SNPs
than GATK, but GATK had more private INDELs than Deep- 250

Variant (Supplementary Table 1). 416,642 variants had the
same coordinates but different alternative alleles. These dis-
crepant sites were primarily INDELs (83%, as opposed to
the 12% of INDELs in all shared variants). Multiallelic sites
accounted for 3.44% and 3.31% of the variants (0.33% and 255

0.28% of the SNPs, and 23.22% and 23.94% of the INDELs)
that passed the quality filters of GATK and DeepVariant, re-
spectively. Multiallelic sites were enriched among the vari-
ants private to either GATK or DeepVariant (Supplementary
Table 2). 260

The biallelic variants called by GATK had a higher per-
centage of homozygous reference (HOMREF) and heterozy-
gous (HET) genotypes whereas the biallelic variants called
by DeepVariant had a higher percentage of homozygous al-
ternative (HOMALT) genotypes (Figure 1B, Supplementary 265

Figure 1A). Missing genotypes were very rare (<0.01%)
for GATK-called biallelic variants but accounted for 2.72%
of the DeepVariant-called genotypes (Supplementary Figure
1B). Beagle phasing and imputation increased the number of
HET genotypes for both GATK - mainly transitioning from 270

HOMREF - and DeepVariant - mainly due to the refinement
of missing genotypes (Supplementary Figure 1C).

Functional consequences on the protein sequence were pre-
dicted for all biallelic variants. DeepVariant identified 9%
more SNPs that were predicted to have a high impact on pro- 275

tein function than GATK (Table 1 & Supplementary Table
3). Around one fourth of the high impact SNPs detected by
DeepVariant (24%) were not detected by GATK. GATK iden-
tified 78% more INDELs that were predicted to have a high
impact on protein function than DeepVariant. More than half 280

of the high impact INDELs detected by GATK (52%) were
not detected by DeepVariant.

We investigated the ratio of transitions to transversions
(Ti:Tv) to assess variant quality. Deviations from an expected
genome-wide Ti:Tv ratio of ∼ 2.0-2.2 indicate random geno- 285

typing errors or sequencing artifacts (17, 20, 38, 54). The
Ti:Tv ratio was 2.16 and 2.24 for raw SNPs identified by
GATK and DeepVariant, respectively (Table 1). While the
Ti:Tv ratio was higher (2.20) for the GATK variants that
met the quality filters, variant filtration had no impact on the 290

Ti:Tv ratio for SNPs called by DeepVariant. The Ti:Tv ratio
of the filtered out SNPs was substantially lower for GATK
(1.66) than DeepVariant (2.19). SNPs private to GATK
had lower Ti:Tv ratios than the SNPs private to DeepVari-
ant (Figure 1A). Substantial differences in the Ti:Tv ratio 295

(0.81 points) existed between overlapping and GATK-private
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SNPs but were less (0.18 points) between overlapping and
DeepVariant-private SNPs.

Variant calling accuracy.
300

Thirty-three sequenced cattle also had between 17,575 and
490,174 SNPs genotyped with microarrays. The filtered
biallelic SNPs called with GATK and DeepVariant (query
sets) were compared to those genotyped with the microar-
rays (truth chip set). The vast majority (98.82%) of the SNPs305

present in the truth chip set was called by both tools (Fig-
ure 1C). The overlap of SNPs present in the truth chip set
was slightly higher for DeepVariant than GATK. 1.06% (n
= 5,309) of the SNPs present in the truth chip set were not
called by any of the software as biallelic SNPs. However,310

3,497 of these SNPs were present at the same position but
had different alternative alleles (e.g., multiallelic SNPs or IN-
DELs) in DeepVariant/GATK while the other 1,812 positions
were truly missing. Most of the biallelic SNPs private to the
chip set (5,265) were also missing in the raw calls from the315

variant callers. DeepVariant filtered out more variants present
in the truth chip set than GATK.

The analysis of variant effect predictions for the filtered
variants revealed that most low/moderate/high impact vari-
ants were called by both GATK and DeepVariant (99.4%,320

98.8%, and 92.8%, respectively). However, DeepVari-
ant additionally called 5/2/4 biallelic SNPs predicted as
low/moderate/high impact respectively, while GATK only
called 0/1/1 (Figure 1C). Some of the low/moderate/high im-
pact biallelic SNPs private to GATK (1 out of the 2) and325

DeepVariant (5 out of the 11) were called either as multial-
lelic SNPs or as INDELs by the other caller (Supplementary
Table 4). Only half (1 out of 2) of GATK’s private variants
annotated with low/moderate/high have minor allele frequen-
cies (MAF) > 0.05, while most (9 out of 11) of DeepVariant’s330

do, suggesting that GATK misses more variants that might
have larger impact in populations.

Genotyping accuracy of variant calls.

GATK and DeepVariant called 492,265 and 493,145 variants335

from the truth chip set, respectively. GATK missed (8.13%)
and miscalled (10.13%) more truth variants than DeepVari-
ant. Around 90.6% of the discrepancies between the se-
quence variant genotypes and the truth chip set in both vari-
ant callers were due to missing genotypes in the sequence set.340

Of those, GATK missed proportionally more HOMALT than
DeepVariant and DeepVariant missed proportionally more
HET variants. For the remaining ∼9.4% of mismatching
genotypes (miscalled), also GATK miscalled proportionally
more HOM variants and DeepVariant significantly miscalled345

proportionally more HET variants (Supplementary Figure 2).
After imputation, however, the proportion of HET positions
miscalled was higher in the GATK set and the proportion
of HOMREF positions miscalled as HET was significantly
higher in the DeepVariant set.350

Recall, precision and F1 score of the filtered query sets
were calculated to assess the genotyping accuracy for both
variant callers. DeepVariant had strictly better F1 scores
than GATK for the filtered data (mean of 0.9719 versus
0.9694, Figure 2A-B). The difference was small but signif- 355

icant (Wilcoxon signed-rank test, p=2.3x10−10). As ex-
pected, lower coverage (<20x) samples benefited from im-
putation, improving their F1 scores to be comparable to high
coverage samples. Imputation improved GATK genotypes
more than DeepVariant genotypes at lower coverages, po- 360

tentially due to better calibration of genotype likelihoods,
but DeepVariant was still strictly better above 7x coverage.
Overall, DeepVariant still had a significantly higher mean F1
score for the imputed data (0.9912 versus 0.9907, Wilcoxon
signed-rank test p=4.2x10−05, Figure 2C). 365

We further examined variant genotyping accuracy through
Merfin (50). Merfin filters out variants when the propor-
tion of "reference" and "alternate" k-mers for that variant
from the sample’s short sequencing reads does not match
the genotype and so is likely wrong. HET genotypes of 370

both GATK and DeepVariant had less support from the se-
quencing reads, as they are harder to genotype correctly than
HOM genotypes. For both HET and HOMALT, more of
DeepVariant’s than GATK’s variants were supported (Fig-
ure 3A). The difference between the tools was statistically 375

significant for both genotypes (two-sided paired Wilcoxon
test, pHET=3.6x10−19, pHOMALT=1.8x10−19).

In addition, we compared Mendelian concordance rate
among sequenced duos and trios across the two variant
callers. There were only two family relationships in the previ- 380

ously examined 50 samples, and so we evaluated the concor-
dance on a separate set of 206 samples (Supplementary File
2) forming 7 trios (both parents available) and 142 duos (one
parent available). DeepVariant had less genotypes conflict-
ing with Mendelian inheritance compared to GATK (2.3% 385

versus 3.8%, Figure 3B, one-sided paired Wilcoxon signed-
rank test p=1.3x10−24). This was due to DeepVariant calling
both more genotypes that were compatible as well as fewer
that were incompatible with parent-offspring relationship.

Generation of a sequencing validation set for lcWGS 390

imputation.

We benchmarked the accuracy of low-pass sequence variant
imputation in a target population consisting of 24 BSW sam-
ples with mean autosomal coverage of 28.12 ± 9.07-fold. 395

DeepVariant identified 15,948,663 variants (87.77% SNPs
and 12.23% INDELs) in this 24-samples cohort of which we
considered 13,854,932 biallelic SNPs as truth set.

The sequencing reads of these 24 samples were randomly
downsampled to mimic mid (4x and 2x), low (1x, 0.5x, 0.25x, 400

and 0.1x), and ultralow (0.01x) sequencing coverage. We
then aligned the reads to the reference sequence and produced
genotype likelihoods from the pileup files. Subsequently,
genotypes were imputed with GLIMPSE considering nine
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B C

Fig. 1. Variant call comparison between DeepVariant (DV) and GATK. a) Intersection of variants called with each variant caller (or both) and the Ti:Tv ratio of the biallelic SNPs
of each set. b) Percentage of imputed genotypes called by each variant caller. c) Intersection of variant calls with truth genotyping arrays, where only positions intersecting
truth are retained. Low, moderate, and high predicted impact variants from the intersection sets are indicated.

A B C

Fig. 2. Comparison of the F1 values obtained with hap.py from GATK and DeepVariant (DV) variant calls against the truth chip set for 33 samples. a) Imputation improves
genotype accuracy below 20x coverage but has minor impact above that. b) DV has a higher F1 score for every sample than GATK for post-filter variants. The high confidence
set indicates the 17 microarray genotyped samples out of the 24 samples used later as a truth set for GLIMPSE imputation. c) Similar to (b) but for post-imputation variants.

A B

Fig. 3. Genotyping accuracy of variant calls validated with sequencing reads and mendelian relationships. a) Filtering rate of heterozygous (0/1) and homozygous alternate
(1/1) variant calls post-imputation for GATK and DV. Higher filtering rate indicates the genotype/allele is not consistent with k-mers from the same-sample sequencing reads.
b) Mendelian violation rate for 206 separate samples, with either 2 family members (Duo) or all 3 (Trio). Mendelian violations are defined as genotypes in the offspring that
could not have been inherited from the parents. In the case of duos, only homozygous variants can be assessed.
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Table 1. Summary of the variants called by GATK and DeepVariant (DV). Multiallelic sites are presented in parentheses. Ti:Tv ratios are restricted to biallelic SNPs. Functional
consequences are predicted for biallelic SNPs / biallelic INDELs.

Variant caller Sets Variants SNPs INDELs Ti:Tv ratio
High impact predicted

SNPs / INDELs

GATK Raw 18,654,649 (831,391) 16,135,130 (58,049) 2,617,546 (773,342) 2.16 2,680 / 4,493

GATK Filtered out 1,453,366 (239,008) 1,271,522 (8,577) 279,871 (230,431) 1.66 428 / 500

GATK Filtered 17,201,283 (592,383) 14,863,608 (49,472) 2,337,675 (542,911) 2.20 2,252 / 3,993

DV Raw 18,748,114 (702,173) 16,554,438 (54,438) 2,401,933 (647,735) 2.24 3,530 / 2,778

DV Filtered out 1,571,454 (270,963) 1,174,815 (11,834) 393,927 (259,108) 2.19 1,061 / 612

DV Filtered 17,440,238 (577,997) 15,361,785 (42,899) 2,240,627 (535,098) 2.24 2,474 / 2,240

haplotype reference panels, and compared to the truth set to405

determine the accuracy of imputation.

The nine haplotype reference panels varied in size and com-
position. Five haplotype reference panels contained 150 cat-
tle (full panels) of which either 0%, 10%, 25%, 50% or 100%
were from the BSW breed (i.e., the breed of the target sam-410

ples). The other four panels contained either 75 or 30 cat-
tle (reduced panels) that were either from the BSW breed or
from breeds other than BSW. DeepVariant identified between
17,035,514 and 28,755,400 sequence variants in the nine hap-
lotype reference panels (Table 2). The full BSW panel con-415

tained around 5,167,875 less biallelic SNPs than the full non-
BSW panel. The 50% multibreed panel had the highest num-
ber of variants shared with the truth set and the lowest number
of variants present in the truth set but missing in the reference
panel, closely followed by the BSW panel. The reduced non-420

BSW panel (30 samples) had the lowest number of shared
variants and the highest number of variants that were present
in the truth but missing in the reference.

Assessment of lcWGS imputation with the different
haplotype panels.425

Increasing the number of reference haplotypes enabled
higher F1, recall and precision scores in all tested scenar-
ios (Figure 4A & Supplementary Table 5). Imputation ac-
curacy also improved with increasing lcWGS coverage, with430

the largest change between 0.01x and 1x coverage. Accuracy
continued to improve with diminishing returns between 1x
and 4x coverage. The difference in accuracy between panels
also reduced as coverage increased.

The largest BSW haplotype reference panel (n = 150) per-435

formed better than any of the multibreed panels at all se-
quencing coverages. Multibreed panels outperformed BSW
panels with a larger number of BSW samples, especially at
low coverage. For instance, a large multibreed panel con-
taining 10% BSW samples (n = 15) produced higher F1440

scores than a smaller breed-specific panel containing two
times more BSW samples (n = 30). Similarly, a large multi-
breed panel containing 25% BSW samples (n = 37) provided
higher F1 scores than a smaller breed-specific panel contain-

ing two times more BSW samples (n = 75) for lcWGS be- 445

low 1-fold coverage. Accuracies were similar between large
multibreed panels and smaller breed-specific panels when the
coverage of the lcWGS was higher than 1-fold. All results
were validated by three different conformations of the haplo-
type reference panels (replicas). Standard errors accounting 450

for all the replicas did not overlap for any of the haplotype
panels (Supplementary Figure 3A).

The imputation accuracy estimated by GLIMPSE (INFO
score) was higher for all BSW panels than for the multibreed
panels across all coverages (Figure 4B). A higher proportion 455

of variants were imputed with an INFO greater than 0.6 in
the BSW than in non-BSW or multibreed panels (Supple-
mentary Figure 3B). Therefore, panels for which the aver-
age INFO was higher had also a major proportion of variants
with high imputation quality, potentially selected for down- 460

stream analyses. Differences between BSW panels and the
rest were higher than the differences between multibreed and
non-BSW. The average values of F1 and the average INFO
scores were closer for the variants imputed with BSW panels
(Figure 4C). The differences between both metrics decreased 465

as the coverage of the lcWGS increased (Supplementary Fig-
ure 3B-C).

The variants were then stratified by MAF, and the squared
correlation of genotype dosages (r2) was calculated (Fig-
ure 4D). The correlations increased along with the MAF 470

similarly for all the panels. The highest correlations were
for BSW panel (150 samples) and multibreed panels (50%
and 25%). The values increased substantially between 0-0.1
MAF and continued slowly incrementing until 0.5 for all pan-
els. 475

Discussion

Higher F1 scores against a microarray truth set, improved k-
mer based variant filtering, and less Mendelian errors sug-
gest that DeepVariant is a superior variant caller to GATK for
bovine short read sequencing. These results extend evidence 480

of DeepVariant’s greater accuracy established in multiple hu-
man studies (17–20). Ti:Tv ratios in the expected range of
2-2.2 suggest that variant calls private to DeepVariant con-
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Table 2. General overview of the haplotype reference panels: number of samples, coverage and number of variants called. Shared and private variants are considered
through exact matching (position and alleles). Values are the mean of 3 replicas per haplotype panel.

Panel Samples Coverage Variants Biallelic SNPs
SNPs shared

truth-query sets
Truth SNPs missing in

haplotype panel
SNPs private to
haplotype panel

BSW 150 9.40 22,493,568 19,682,362 13,537,126 317,806 6,145,236

BSW 75 9.65 19,883,488 17,345,201 13,373,462 481,470 3,971,739

BSW 30 9.42 17,035,514 14,839,600 12,810,541 1,044,391 2,029,059

Multibreed (50%) 150 10.48 27,710,504 24,325,185 13,568,744 286,188 10,756,441

Multibreed (25%) 150 10.86 28,755,400 25,266,484 13,531,721 323,211 11,734,763

Multibreed (10%) 150 11.44 28,608,506 25,126,433 13,427,451 427,481 11,698,982

Non-BSW 150 11.78 28,303,738 24,850,237 13,075,827 779,105 11,774,410

Non-BSW 75 11.78 25,059,239 21,968,792 12,868,909 986,023 9,099,883

Non-BSW 30 11.45 21,011,311 18,402,870 12,283,284 1,571,648 6,119,586

Fig. 4. Genotyping accuracy from low-pass whole-genome sequencing. a) F1 score between truth and imputed variants. b) GLIMPSE INFO score achieved with different
sequencing coverages and haplotype panels. c) Differences (subtraction) between F1 and GLIMPSE INFO average scores for different sequencing coverages and haplotype
panels. d) Squared dosage correlation (r2) between imputed data and truth set, stratified by MAF for lcWGS at 0.5x. Panels are indicated with colours and number/percentages
of BSW samples in different point shapes. Points indicate the average of the results for all variants in three different replicates.
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tain genuine variants, whereas a lower Ti:Tv ratio in vari-
ants private to GATK indicate an excess of false positives.485

DeepVariant revealed more SNPs with impactful annotations,
likely providing additional putative trait-associated candi-
dates for downstream analyses. DeepVariant was approxi-
mately 3.5x faster in end-to-end variant calling compared to
GATK, due to greater multithreading potential and not re-490

quiring pre-processing like GATK’s base recalibration step
(Supplementary Table 6). The peak memory usage was ap-
proximately 65% higher for DeepVariant compared to GATK
(81 GB versus 49 GB). Although our work focused on CPU-
only machines, DeepVariant also natively offers GPU accel-495

eration (roughly 1.9x faster overall), while GATK has no of-
ficial GPU support, although there are third-party develop-
ments (roughly 1.4x faster overall) (55).

To the best of our knowledge, our study is the first to estab-
lish bovine haplotype reference panels with DeepVariant. A500

within-breed panel consisting of 75 samples enabled us to
genotype more than 13 million sequence variants in animals
sequenced at 0.5-fold sequencing coverage with F1 scores
greater than 0.9. Larger haplotype reference panels (n = 150)
from the same breed as the lcWGS data outperform multi-505

breed panels across all low coverage spectrum (from 0.1- to
1-fold) and MAFs, including rare variants. The development
of such panels is a feasible alternative option to using much
bigger multibreed panels, such as the 1000 Bull Genomes
project imputation reference panel (13). Such large panels,510

encompassing huge within- and across-breed diversity, may
be regarded as the most complete and thus best genomic re-
sources available in bovine genomics. However, using such
large panels may be detrimental for breed-specific imputation
(also described by Nawaz et al. (56)), as we observed many515

relevant sites were filtered out before imputation due to being
multiallelic, resulting in a lower F1 score than the 75 sample
BSW panel at 1-fold coverage and greater. Same-breed pan-
els are also more computationally efficient and are 18%-33%
faster than using multi- or different-breed panels of the same520

size (Supplementary Figure 4), and approximately 7 times
faster than using the 1000 Bull Genomes Project panel.

In absence of an adequately sized breed-specific panel (e.g.,
below 30 animals), F1 scores of 0.9 can also be accom-
plished either by increasing the coverage of the lcWGS or525

by adding distantly related samples from other breeds to
the haplotype panels as even animals from seemingly un-
related breeds may share short common haplotypes. Both
options will provide accurate sequence variant genotypes at
affordable costs for samples from rare breeds, where large530

breed-specific haplotype reference panels can’t be easily es-
tablished. For instance, F1 scores > 0.92 are observed at
2-fold sequencing coverage for all tested haplotype panels
with small differences among them. This is likely caused be-
cause higher coverages provide more information for impu-535

tation from the own sequencing reads, while lower coverages
rely on the information from haplotypes in the panels. We
also achieved F1 scores of 0.9 with large multibreed panels
containing only 10% same-breed samples (n = 15). How-
ever, reference panels that contain only few samples from540

the target breed are in general less informative as evidenced
by the lack of around 100K truth SNPs that were present in
same-size breed-specific panels. Additionally, a threshold
of non-related haplotypes from where only marginal gains
to imputation accuracy are observed have been described 545

(15, 56, 57). Overall results are compatible with similar stud-
ies with haplotype panels of both bigger and smaller sam-
ple sizes (15, 56, 58). Genotypes imputed from lcWGS en-
able predicting genomic breeding values and facilitate power-
ful genome-wide association studies at nucleotide resolution 550

(3, 59).

Although imputation accuracy (F1) and GLIMPSE’s pre-
dicted imputation accuracy (INFO score) are respectively av-
eraged over each sample and each variant, we note that F1
(truth) is strictly higher than INFO (estimation). The dif- 555

ferences appear to be more pronounced for reference hap-
lotype panels that are of different breed to the target sam-
ple and at lower coverages (i.e., less than 0.25-fold coverage,
where GLIMPSE’s INFO scores are inaccurate (6)). While,
for example, multibreed panels are near equally accurate to 560

the 150 sample BSW panel, the INFO scores are noticeably
lower. Similarly, the INFO score drops more rapidly for
lower coverages, suggesting that a fixed threshold may be
unnecessarily conservative given the slower decay in F1. The
GLIMPSE INFO score is also positively correlated with vari- 565

ant MAF, and thus filtering based on INFO predominantly re-
moves low-frequency variants. While INFO and other impu-
tation accuracy scores are still useful, additional care should
be taken in determining a constant filtering threshold as more
and different panels become available for use. 570
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