Robust neural tracking of linguistic speech representations using a convolutional neural network

Corentin Puffay1,2, Jonas Vanthornhout1, Marlies Gillis1, Bernd Accou1,2, Hugo Van hamme2, Tom Francart1

1KU Leuven, Dept. Neurosciences, ExpORL, Leuven, Belgium
2KU Leuven, Dept. of Electrical engineering (ESAT), PSI, Leuven, Belgium

E-mail: corentin.puffay@kuleuven.be, jonas.vanthornhout@kuleuven.be, marlies.gillis@kuleuven.be, bernd.accou@kuleuven.be, hugo.vanhamme@kuleuven.be, tom.francart@kuleuven.be

Abstract.

Objective. When listening to continuous speech, populations of neurons in the brain track different features of the signal. Neural tracking can be measured by relating the electroencephalography (EEG) and the speech signal. Recent studies have shown a significant contribution of linguistic features over acoustic neural tracking using linear models. Linear models cannot model the nonlinear dynamics of the brain. We introduce a convolutional neural network (CNN) that relates EEG to linguistic features using phoneme or word onsets as a control, and has the capacity to model non-linear relations. Approach. We integrate phoneme- and word-based linguistic features (phoneme surprisal, cohort entropy, word surprisal and word frequency) in our nonlinear CNN model and investigate if they carry additional information on top of lexical features (phoneme and word onsets). We compare the results to a linear decoder and a linear CNN, and evaluate the impact of the model’s architecture, the presence of linguistic features and the training paradigm on a match-mismatch task performance. Main results. For the non-linear CNN, we found a significant contribution of cohort entropy over phoneme onsets, and of word surprisal and word frequency over word onsets. The training paradigm and architecture have a significant impact on the performance, and the non-linear CNN outperforms the linear baselines on the match-mismatch task. Significance. Measuring coding of linguistic features in the brain is important for auditory neuroscience research and applications that involve objectively measuring speech understanding. With linear models this is measurable, but the effects are very small. The proposed non-linear CNN model yields larger effect sizes and therefore could show effects that would be otherwise unmeasurable, and may in the future lead to improved within-subject measures and shorter recording durations.

Index Terms: EEG decoding, speech processing, CNN, linguistics.

1. Introduction

When someone listens to sounds, the information picked up by the ears is carried along the auditory pathway from the cochlea to the brain. The resulting brain response can be measured using a non-invasive method called electroencephalography (EEG). In early studies (e.g., Picton et al., 2005; Anderson et al., 2013), unnatural periodic stimuli are presented to listeners, and the recorded EEG signal is averaged to obtain
Robust neural tracking of linguistic speech representations using a convolutional neural network

The resulting brain response, and to enhance its speech-related component. These short and repeated stimuli do not reflect real-life situations where humans listen to continuous speech that is not repeated. To investigate continuous speech processing, a method that models the mapping between the stimulus features and the brain response was implemented and described in prior work (Ding and Simon, 2012; Crosse et al., 2016). Such models are linear regressions that either aim to predict the EEG signal from the speech features (i.e., forward modeling), or to reconstruct the speech from the EEG (i.e., backward modeling). Typically, the correlation between the predicted (or reconstructed) EEG (or speech) and the ground truth is computed to measure what is referred to as neural tracking of speech (Ding and Simon, 2012; Crosse et al., 2016; Vanthornhout et al., 2018; Lesenfants et al., 2019; Brodbeck and Simon, 2020).

Other paradigms to measure neural tracking have been used, such as match-mismatch (MM) classification tasks (de Cheveigne et al., 2021), which consist of classifying whether a given EEG segment is synchronized (matched) or not with a given speech segment. The accuracy obtained on the MM task can be used as a measure of neural tracking.

The speech signal contains multiple features known to be processed at different stages along the auditory pathway. The neural tracking of different features of speech has hence been investigated, including acoustics (e.g., spectrogram, speech envelope, (Di Liberto et al., 2015)), lexical features (e.g., phoneme onsets, word onsets, (Di Liberto et al., 2015; Lesenfants et al., 2019)), and linguistics (e.g., phoneme surprisal, word frequency, (Gillis et al., 2022; Brodbeck et al., 2018; Broderick et al., 2018; Weissbart et al., 2019; Koskinen et al., 2020)).

Considering the nonlinear response of the brain, and non-stationarities, the use of linear models is a crude simplification. Following-up recent advances in deep learning in Automatic Speech Recognition (ASR), many studies attempted to relate EEG to speech using deep learning models (e.g., de Taillez et al. (2020); Thornton et al. (2022); Accou et al. (2021b,a); Monesi et al. (2020); Puffay et al. (2022, 2023)). As examples, an LSTM-based model (Monesi et al. (2020)), as well as a dilated-convolution-based model (Accou et al. (2021b)), were used and outperformed linear models on a MM task.

Linguistic features are related to the information carried by a word or a phoneme; as such, their presence in the EEG can indicate speech understanding. However, different speech features are derived from the same acoustic signal and are often highly correlated (Daube et al. (2019)). Hence, some studies (Gillis et al. (2022); Brodbeck et al. (2018)) control for acoustics and lexical information by measuring the added value of linguistics over acoustics and phoneme/word onsets, effectively comparing a baseline model with acoustic and lexical features, to a full model that also includes linguistic features. This approach is very conservative as the information that is shared between acoustic, lexical and linguistic features is eliminated. On the other hand, some studies do not control for any speech feature (e.g., Broderick et al. (2018); Weissbart et al. (2019)), which does not guarantee that the neural tracking measured is not purely acoustic. Regarding deep-learning based models, a recent study (Puffay et al. (2022)) also implemented a multi-input feature convolutional neural network, which enables investigating the added value of one speech feature over another.

Here, we relate linguistic features of speech to EEG using a nonlinear convolutional neural network (CNN) while controlling for lexical information. In the first part, we...
Robust neural tracking of linguistic speech representations using a convolutional neural network

investigate the potential added value of our linguistics models over lexical control models at both the phoneme and word levels. In the second part, we compare the performance of our nonlinear CNN model with two baselines: a linear CNN model and a linear decoder baseline typically used in prior work. We investigate the impact of the presence of linguistics, the model’s architecture, and the training paradigm on the performance. In a last part, we quantify the added value of linguistic features across architectures, by comparing the difference in accuracy between linguistics and control models, which is indicative of the power of the model to detect coding of linguistic features in the EEG.

2. Methods

2.1. Data collection

Sixty normal-hearing native Flemish speaking participants between 18 and 30 years old were recruited. This study was approved by the Medical Ethics Committee UZ KU Leuven/Research (KU Leuven, Belgium) with reference S57102, and all participants provided informed consent. We presented natural running speech (stories) in Flemish without background noise to participants and recorded the EEG signal simultaneously. All participants were normal hearing as confirmed by pure tone audiometry, and the Flemish Matrix test (Luts et al., 2014). All the participants listened to 10 unique stories of roughly the same duration (average: 14 minutes 30 seconds). The presentation order of the stories was randomized for each subject. The stories were presented binaurally at 62 dBA with shielded ER-3A insert phones (Etymotic, Elk Grove Village, Illinois, United States). Their only task was to answer a comprehension question after listening to each story to ensure they paid attention. EEG data were recorded using a 64-channel Active-Two EEG system (BioSemi, Amsterdam, The Netherlands) at a 8192 Hz sampling rate. The stimuli were presented using the APEX 4 software platform developed at ExpORL (Francart et al., 2008). The experiments took place in an electromagnetically shielded and soundproofed cabin.

2.2. Feature extraction and pre-processing

2.2.1. Speech features

In this study, we compare the neural tracking of lexical features (a one-dimensional vector representing the onset of any phoneme (PO), and the onset of any word (WO)) with phoneme-based linguistic features (cohort entropy (CE), and phoneme surprisal (PS)) and word-based linguistic features (word frequency (WF), and word surprisal (WS)). Word- and phoneme-level features are illustrated in Figure 1. Among other linguistic features, we selected those which showed an added value over control speech features in a previous linear model study (Gillis et al., 2022).

Phoneme onsets and word onsets: Time-aligned sequences of phonemes and words were extracted by performing a forced alignment of the identified phonemes (Duchateau et al., 2009). The resulting features were one-dimensional arrays with pulses on the onsets of, respectively, phonemes and words. Silence onsets were set to 0 for both phonemes and words.

Active cohort of words: Prior to introducing phoneme-based linguistics, the active cohort of words must be defined. Following previous studies’ definition (Brodbeck et al., 2018; Gillis et al., 2022), it is a set of words that starts with the same acoustic
input at any point in the word. Should we find cohorts in English, the active cohort of words for the phoneme /n/ in “ban” corresponds to the ensemble of words that exist in that language starting with “ban” (e.g., “banned”, “banana”, “bandwidth” etc.). For each phoneme, the active cohort was determined by taking word segments that started with the same phoneme sequence from the lexicon.

Lexicon: The lexicon for determining the active cohort was based on a custom pronunciation dictionary maintained at our laboratory (created manually and using grapheme-to-phoneme conversion; containing 9157 words). As some linguistic features are based on the word frequency in Dutch, the prior probability for each word was computed, based on its frequency in the SUBTLEX-NL database (Keuleers et al., 2010).

Phoneme-based linguistics: Two phoneme-based linguistic features were extracted from the speech: PS and CE as defined in previous studies (Brodbeck et al. (2018); Gillis et al. (2022)). The two features are derived from the active cohort of words.

PS is a measure of how surprising a phoneme is considering the active cohort and is defined in Equation 1. PS of a given phoneme is defined as the negative logarithm of the conditional probability of each phoneme given the preceding phonemes in the same word. i is the phoneme index in the given word. For PS_i, the surprisal corresponding to the first phoneme of the word, we took the frequency of this phoneme at the beginning of a word in the corpus.

$$PS_i = -\log_2 \left(\frac{freq(cohort_i)}{freq(cohort_{i-1})} \right)$$ \hspace{1cm} (1)

CE reflects the degree of competition among possible words that can be created from the active cohort including the current phoneme. It is defined as the Shannon entropy of the active cohort of words at each phoneme as explained in Brodbeck et al. (2018) (see Equation 2). CE_i is the entropy at phoneme i and p_{word} is the probability of the given word in the language. The sum iterates over words from the active cohort $cohort_i$.

$$CE_i = -\sum_{word} p_{word} \log_2(p_{word})$$ \hspace{1cm} (2)
Robust neural tracking of linguistic speech representations using a convolutional neural network

Word-based linguistics: Two word-based linguistic features were extracted from the speech: word frequency (WF) and word surprisal (WS) as defined in previous studies (Brodbeck et al. (2018); Gillis et al. (2022)). We used a five-gram with a vocabulary of 400,000 words, trained with Kneser-Ney smoothing on newspapers and magazines totaling over 3 billion words. The prior probability for each word was based on its frequency in the SUBTLEX-NL database (Keuleers et al., 2010). Values corresponding to words not found in the SUBTLEX-NL nor by the five-gram model were set to 0. WF is a measure of how frequently a word occurs in the language, and is defined in Equation 3. WS reflects how surprising a word \(w_i \) is considering the four preceding words, as defined in Equation 4. \(i \) is the index of a given word.

\[
WF_i = -\log_{10}(p(w_i)) \quad (3)
\]

\[
WS_i = -\log_{10}(p(w_i | w_{i-4}, \ldots, w_{i-1})) \quad (4)
\]

2.2.2. Pre-processing The EEG signal was first downsampled to 1024 Hz. A multi-channel Wiener filter (Somers et al., 2018) was then used to remove eyeblink artifacts, and re-referencing was performed to the average of all electrodes. The resulting signal was band-pass filtered between 1 and 32 Hz using a zero-phase Chebyshev type-II filter with 80 dB attenuation at 10% outside the pass-band and a pass-band ripple of 1 dB, then downsampled to 64 Hz. As lexical and linguistic features are discrete, they were used as-is. We calculate the features at the 64 Hz sampling rate.

Furthermore, we divided each subject’s EEG and speech features into training, validation, and testing sets as in previous studies using the same stimuli (Monesi et al. (2020); Bollens et al. (2022); Accou et al. (2021b)). The first and last 40% of the recording segment were used for training. The first half of the remaining 20% was used for validation and the last half for testing. For the training, validation and testing set, the mean EEG signal per channels and corresponding standard deviation were computed. For each set (training, validation and testing, respectively), each EEG channel was then normalized by subtracting the mean and divided by the standard deviation previously computed.

2.3. Match-mismatch classification task
The performance of a MM classification task is used in this study to measure neural tracking of different speech features. This paradigm is depicted in Figure 2. The model is trained to associate the EEG segment with the matched speech segment. The matched speech segment is synchronized with the EEG, while the mismatched speech segment occurs 1 second after the end of the matched segment. These segments are of fixed length, namely 10 s for word-based features and 5 s for phoneme-based features, to provide enough context to the models. This task is supervised as the matched, and mismatched segments are labeled. The evaluation metric is classification accuracy.

2.4. Models
2.4.1. Preamble All the described models were created in Tensorflow (2.3.0) (Abadi et al., 2015) with the Keras API ((Chollet et al., 2015)). In this section, we present a linear decoder baseline (Section 2.4.2), a linear CNN
Figure 2: **Match-mismatch classification task.** The match-mismatch task is a binary classification paradigm that associates the herewith yellow EEG and speech segments. The matched speech segment is synchronized with the EEG (yellow segment), while the mismatched speech occurs 1 second after the end of the matched segment (black segment). The figure depicts segments of 5s; however, different durations are picked throughout our analyses.

(Section 2.4.3), and a nonlinear CNN (Section 2.4.4) to investigate whether word- and phoneme-based linguistic features carry non-redundant information over word and phoneme onsets respectively.

We then introduce the lexical control models’ implementation (i.e., without linguistics information). Motivations for lexical control are explained further in depth in Section 2.4.6.

We also present the linguistics models to evaluate the linguistic neural tracking (i.e., with both lexical and linguistic information). Note that, across feature conditions, the linear decoder baseline, the linear CNN, and the CNN models keep the same number of parameters, which excludes the possibility of differences due to the model’s complexity.

Finally, we introduce the statistical models used to compare linguistic and control model performances across various model architectures and training paradigms.

2.4.2. **Linear decoder baseline** To relate with the existing literature, we evaluated a linear architecture for the lexical control and the linguistics models. In this case neural tracking is generally measured by computing the correlation between the predicted and ground truth EEG signal. To obtain a performance on the MM task, we implement a correlation-based MM task as depicted in Figure 3.

We first use the training and validation sets to train a forward model. We choose an iterative over a closed-from solution approach to be able to keep the training paradigms similar across architectures (deep learning models we use involve an iterative approach with early stopping as only regularization method). We also believe that an iterative approach with early stopping should converge to the closed-form solution. The model concatenates the two speech features provided as inputs (batch’s dimensions: $2 \times T$, $T = 30 \text{ s}$), and applies a linear convolution to it with a kernel size of 600 ms, 64 spatial filters, and causal padding. The output corresponding to the predicted EEG has
Robust neural tracking of linguistic speech representations using a convolutional neural network

Figure 3: Linear decoder baseline architecture. In this model, an EEG segment and two stimulus segments (matched and mismatched) are provided as inputs. All segments are \(T = 5 \) s long. The EEG segment has dimensions \(64 \times T \) and the matched and mismatched stimulus segments have dimensions \(2 \times T \) as 2 speech features were systematically concatenated. The pre-trained forward model is applied to the matched and mismatched segments and results in two predicted EEG segments of dimensions \(64 \times T \). The Pearson correlation is then computed between corresponding channels of matched and mismatched segments and the ground truth EEG segment, which results in two correlation vectors (dimensions: \(1 \times 64 \)). The threshold decision layer counts the number of channels and performs a majority voting.

dimensions \(64 \times T \) and the mean square error with the ground truth EEG is computed as the loss function. We use the Adam optimizer with a learning rate of 0.001. We also verified that the MSE values reached were in the order of those obtained with the closed-form solution approach in prior studies.

We then integrate the pre-trained forward model in a MM paradigm and evaluate the MM task on the test set. We provide three inputs to the model: one EEG segment (dimensions: \(64 \times T \), \(T = 5 \) s), one matched speech segment (dimensions: \(2 \times T \)) and one mismatched speech segment (dimensions: \(2 \times T \)). The pre-trained forward model is applied to both matched and mismatched speech segments to obtain two predicted EEG segments (dimensions: \(64 \times T \)). For the two resulting predicted EEG segments, the Pearson correlation with the ground truth EEG segment is computed per channel, resulting in two vectors (dimensions: \(1 \times 64 \)). A channel-wise comparison is performed between the matched and mismatched correlation vectors, and one segment is chosen with majority voting. The accuracy is derived from the number of correctly classified segments and computed for each subject.

2.4.3. Linear CNN The linear CNN is a variation of the nonlinear CNN, first introduced for this particular task by Puffay et al. (2022) and inspired by Accou et al. (2021b). It enables providing information from \(N \) different speech features (here \(N = 2 \)) to our model and evaluating its performance on the MM task. The model is depicted in Figure 4.

As defined in the MM task, three inputs are provided to the model per speech feature (i.e., one EEG, one matched speech segment, and one mismatched speech segment). In the figure, there are two of these triplets, one for the lexical speech (\(EEG_1 \), PO (match), PO(mismatch)), and one for the linguistic or second lexical speech feature (\(EEG_2 \), PO/CE/PS (match), PO/CE/PS (mismatch)). Two separate EEG streams
are created to constrain the model to extract EEG information solely related to the corresponding speech feature. The EEG (size: $64 \times T$, 64 the number of EEG channels, and T the selected number of time samples) is passed through two convolutional blocks: one spatial convolution (kernel size of 1-time sample), and three temporal convolutions (each with a kernel size of 39 time samples or 609 ms) to model spatio-temporal information from the EEG input. For each convolution, a linear function was used as activation, no padding was performed, and biases were initialized by default to zero.

The speech inputs (matched and mismatched) are processed in another stream with solely the three temporal convolutions. The speech input is always 1-dimensional as it has no spatial component to the model. Once the encoded representation of both EEG and speech segments are obtained, two normalized dot products (i.e., cosine similarity) are computed: one between EEG and the matched segment encodings, and one between EEG and the mismatched segment encodings, resulting in two 16×16 similarity matrices concatenated into a single 32×16 matrix. This operation is repeated for each speech feature, resulting in two 32×16 similarity matrices. These are concatenated into a 64×16 matrix that is flattened into a 1024×1 vector that is lastly passed through a dense layer with a sigmoid as the activation function. The model decides whether the first speech segment is a match or a mismatch based on the similarity between the encoded EEG and speech representations. Binary cross-entropy is used as the loss function on the match and mismatch labels.

2.4.4. Nonlinear CNN

The nonlinear CNN is a variation of the linear CNN. The activation functions of all the convolutions are switched from linear functions to rectified linear units (ReLUs) to introduce nonlinearity.

2.4.5. Model training

Every model can be trained according to three paradigms: subject-specific (SS), subject-independent (SI) or fine-tuned (FT). The SS paradigm involves using the training and validation sets (according to the split defined in Section 2.2.2) of a single subject to optimize the model and evaluate it on the unseen test set of selected subject. The SI paradigm uses the combined training and validation sets of the 60 subjects to optimize the model’s hyperparameters, and evaluate the model’s performance per subject on their individual unseen testing set. Finally, the FT paradigm loads the weights obtained using the SI paradigm, and fine-tunes the model on a selected subject’s training and validation sets before the evaluation on the selected subject’s test set.

2.4.6. Lexical control models

We use the lexical control models as a baseline to ensure the linguistics models also use the information carried by each phoneme or word rather than just the timing of their onset. If the linguistic model performs significantly better than our control models, we can confirm the previous statement. In the control models, instead of providing two different speech features to the model, we provide the same feature twice, either twice PO (2PO) or twice WO (2WO). As a result, lexical models have the same number of parameters as the linguistics models while not incorporating linguistic information. We use 2PO as the control for phoneme-based linguistics models and 2WO for world-level linguistics models.

Although previous studies used acoustic controls, lexical controls with our current
Robust neural tracking of linguistic speech representations using a convolutional neural network

Figure 4: Linear/nonlinear CNN. In this model, two speech features are integrated: in the phoneme-level models: PO and either PO, CE or PS, in the word-level models: WO and either WO, WS or WF. For each speech feature, an EEG segment and a matched and mismatched speech segments are provided. Separated EEG for the two features is provided to make sure EEG information only related to the corresponding speech feature is extracted. Each EEG segment (EEG\textsubscript{1} and EEG\textsubscript{2} for the first and second feature, respectively) is passed through a convolutional block (one spatial and three temporal convolutions), leading to an encoded representation. The matched and mismatched segments pass through a different convolutional block only containing three temporal convolutions leading to an encoded representation for both. The cosine similarity is computed for the pairs (EEG, match) and (EEG, mismatch), leading to two 16 × 16 cosine similarity matrices (Cosine similarity 1 and 2 for the first and the second feature, respectively), further concatenated into a single 16 × 32 matrix. The cosine similarity matrices for each speech feature are concatenated and flattened into a 1D vector passed through a dense layer with a sigmoid as an activation function to decide which of the two speech segments matches. All convolutions in this model have a linear activation function for the linear CNN, and a ReLU activation function for the nonlinear CNN, respectively.

nonlinear CNN architecture might help us gain more insight into what the model uses in speech features.

Acoustics features are very broad and close to the original raw speech signal, and a possibility is that a powerful model could extract all the linguistic information from them, hence reducing the performance difference between the control and the linguistic models. We therefore choose more specific features as controls.

PO (or WO) is a one-hot vector, having the value of 1 when the onset of a phoneme (or a word) occurs and 0 when it does not. The pulses are 1-sample long. Linguistic features are structurally the same (i.e., CE and PS are non-zero at the same time indices as PO; WS and WF are non-zero at the same time indices as WO) as depicted in Figure 1. However, the non-zero values have a varying magnitude that provides the linguistic information. Therefore, if linguistics models outperform lexical control models, we can conclude that there is information in the EEG related to the onsets’ magnitude. We thus use the difference in performance (i.e., match-mismatch accuracy) between lexical control models and linguistics models as an objective measure of...
Robust neural tracking of linguistic speech representations using a convolutional neural network

linguistic tracking.

2.4.7. Linguistics models The linguistics models we use in this study integrate both lexical and linguistic information. We investigate whether the model uses information contained in linguistics but not in lexical features to solve the MM task.

Phoneme-based linguistics model: We introduce two models integrating PO and CE (PO+CE), and PO and PS (PO+PS).

Word-based linguistics model: We introduce two models integrating WO and WS (WO+WS), and WO and WF (WO+WF).

2.5. Statistical significance

In Section 3.1, we compare performance across models using Wilcoxon signed-rank tests with an alpha level of 0.05, with Holm-Bonferroni corrections performed for word- and phoneme-level. All the tested models are reported in Table 1.

Table 1: Overview of all the models evaluated. The control and linguistic models are reported as well as the feature combination they used. PO=phoneme onsets; PS=phoneme surprisal; CE=cohort entropy; WO=word onsets; WS=word surprisal; WF=word frequency.

<table>
<thead>
<tr>
<th></th>
<th>Phoneme-based features</th>
<th>Word-based features</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control models</td>
<td>PO + PO</td>
<td>WO + WO</td>
</tr>
<tr>
<td>Linguistics models</td>
<td>PO + CE</td>
<td>WO + WF</td>
</tr>
<tr>
<td></td>
<td>PO + PS</td>
<td>WO + WS</td>
</tr>
</tbody>
</table>

In Section 3.2, we build an linear mixed model (LMM) given a series of predictors, and all their possible interactions using the R software package, and retained the best fit using , the Buildmer toolbox (Voeten, 2023). Separately for phoneme- and word-level models, we investigated the impact of linguistic features (L), training paradigm (Tr), and the model's architecture (A) on the match-mismatch accuracy. We added subject ID (subject) as a random effect to the model. The full model before optimization is summarized in Equation 5.

\[
\text{Accuracy} = L + \text{Tr} + A + L \times A + L \times \text{Tr} + \text{Tr} \times A + (1|\text{subject}), (5)
\]

where L is a categorical variable taking as values either "PO", "PS" or "CE" for phoneme-based models, and either "WO", "WS" or "WF" for word-based models. Tr is a categorical variable with "SS", "SI" or "FT" as possible values, and A indicates the architecture of a given model ("linear", "linear CNN" or "nonlinear CNN"). The "\times" represents multiplication to model interaction between variables. These variables are defined as fixed effects while subject is defined as a random effect. After optimization
Robust neural tracking of linguistic speech representations using a convolutional neural network

using Buildmer, the model obtained is summarized in Equation 6 below.

\[Accuracy = Tr + A + Tr \times A + (1|subject) \]

The models’ outcomes are reported in Section 3 for each source of variation, with the sum of squares, the mean squares, the F value and the corresponding p-value. If significant interaction effects were found or if we aimed to identify differences between values of a predictor, additional Holm-adjusted posthoc tests were performed on the estimated marginal means, linear trends or pairwise comparisons of these estimates, implemented by the Emmeans toolbox (Lenth et al., 2018).

3. Results

3.1. Neural tracking of linguistics using the nonlinear CNN.

3.1.1. Phoneme-level linguistics We here use the nonlinear CNN architecture, trained and validated on the training and validation sets of all the 60 subjects (subject-independent) and evaluated on each subject’s test set individually. Each point in the violin plots in Figure 5a is the accuracy obtained for individual subjects on their test sets. We compare the accuracy obtained on the MM task for each model on each subject’s test set between two phoneme-level linguistics models (PO+PS and PO+CE) and our phoneme-level lexical control model (2PO). On the right side of the figure, the paired difference in accuracy between each of the two PO+PS and PO+CE models and the 2PO model is depicted.

We observe no significant difference between the linguistics model PO+PS and the lexical control model 2PO \((W = 853, p = 0.812, \text{after Holm-Bonferroni correction})\). We do observe a significant performance increase in the linguistics model PO+CE over the lexical control model 2PO \((W = 410, p < 0.001, \text{after Holm-Bonferroni correction})\).

We then repeat the same experiment while fine-tuning the model on each subject’s training and validation set before evaluating it on that subject’s test set. The results are depicted on Figure 5b.

We observe no significant difference between the linguistics model PO+PS and the lexical control model 2PO \((W = 593, p = 0.0275, \text{after Holm-Bonferroni correction})\). We do observe a significant performance increase of the linguistics model PO+CE over the lexical control model 2PO \((W = 573, p = 0.0370 \text{ after Holm-Bonferroni correction})\).

3.1.2. Word-level linguistics The training and evaluation are performed identically to Section 3.1.1. We compare two word-level linguistics models (WO+WS and WO+WF) to our word-level lexical control model (2WO). The accuracy obtained on the MM task for each model on each subject’s test set is depicted in Figure 6a. On the right part of the figure, the paired difference in accuracy between each of the two WO+WS and WO+WF models and the 2WO model is depicted.

We observe no significant difference between linguistics models (WO+WS and WO+WF) and the lexical control model 2WO \((W = 749, p = 0.444, \text{and } W = 841,\)
Figure 5: Model accuracy for the lexical control model (2PO) and the linguistics models (PO+PS and PO+CE). The left panel depicts the accuracy obtained for each subject. The right panel depicts the difference in accuracy between the linguistics and the control model ($\Delta(2PO, PS)$ and $\Delta(2PO, CE)$ respectively).(\ast: $p < 0.05$, $\ast\ast$: $p < 0.01$, $\ast\ast\ast$: $p < 0.001$)

$p = 0.911$ respectively, after Holm-Bonferroni corrections).

We then repeat the same experiment while fine-tuning the model on each subject’s training and validation set before evaluating it on each subject’s test set. The results are depicted on Figure 6b.

We observe a significant performance increase for the WO+WS model ($W = 411$, $p = 0.00116$, after Holm-Bonferroni correction) and the WO+WF ($W = 570$, $p = 0.011$, after Holm-Bonferroni correction) over the lexical control model 2WO.
Robust neural tracking of linguistic speech representations using a convolutional neural network

Figure 6: Word-level linguistic tracking over word onset for subject-independent and fine-tuned training paradigms using the nonlinear CNN architecture (window length: 10 s). The left panel depicts the accuracy obtained for all subjects on their test set using the lexical control model (2WO) and the linguistics models (WO+WS and WO+WF). The right panel depicts the difference in accuracy between the linguistics and the control model (Δ(2WO, WS) and Δ(2WO, WF) respectively). (*: p < 0.05, **: p < 0.01, ***: p < 0.001)

3.2. Effect of training paradigm, presence of linguistics and model architecture

3.2.1. Phoneme-level linguistic features For each phoneme-based model, we depict in Figure 7a, the match-mismatch accuracy for the linear decoder baseline, the linear CNN and the nonlinear CNN under subject-specific (SS), subject-independent (SI) and fine-tuned (FT) paradigms.

The LMM models described in Equation 6 are then fitted and the outcomes of the ANOVA tests are depicted in Table 2. The presence of linguistics was not significant after model optimization (F = 1.14, p = 0.320) and hence not reported. The training
Robust neural tracking of linguistic speech representations using a convolutional neural network

Figure 7: Impact of training conditions on word- and phoneme-based models. In the upper panel, the phoneme-based models are depicted (2PO, PO+PS, and PO+CE, respectively). In the lower panel, the word-based models are depicted (2WO, WO+WS, and WO+WF, respectively). For each feature combination, the linear decoder baseline (linear), the linear CNN (LCNN) and the nonlinear CNN (NLCNN) models were trained in subject-specific (SS) and subject-independent (SI) paradigms. The linear CNN and CNN models were also fine-tuned per subject (FT).

Holm-adjusted pairwise comparisons confirmed that the average model accuracy over training paradigm levels was higher for the nonlinear CNN over the linear CNN (on average 0.076 higher; $SE = 0.002$, $df = 1549$, $t - ratio = 34.2$, $p < 0.001$) and for the linear CNN over the linear decoder baseline (on average 0.058 higher; $SE = 0.002$, $df = 1549$, $t - ratio = 25.9$, $p < 0.001$). Holm-adjusted pairwise comparisons confirmed that the average model accuracy over
Robust neural tracking of linguistic speech representations using a convolutional neural network

Table 2: ANOVA test results for phoneme-based models. Training=categorical variable with value "SS", "SI" and "FT"; Architecture=categorical variable with value "linear", "linear CNN" or "CNN".

<table>
<thead>
<tr>
<th></th>
<th>Sum Square</th>
<th>Mean Square</th>
<th>F value</th>
<th>Pr((< F))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Training</td>
<td>0.293</td>
<td>0.146</td>
<td>107</td>
<td>(p < 0.001)</td>
</tr>
<tr>
<td>Architecture</td>
<td>4.93</td>
<td>2.46</td>
<td>181*10^4</td>
<td>(p < 0.001)</td>
</tr>
<tr>
<td>Training:Architecture</td>
<td>0.455</td>
<td>0.113</td>
<td>83.6</td>
<td>(p < 0.001)</td>
</tr>
</tbody>
</table>

architecture levels was higher for the FT over the SI training paradigm (on average 0.0187 higher; \(SE = 0.00225, df = 1539, t - ratio = 8.30, p < 0.001\)) and for the SI over SS training paradigm (on average 0.0142 higher; \(SE = 0.00225, df = 1549, t - ratio = 6.30, p < 0.001\)).

As the interaction term \(Tr \times A\) is significant, we provide more details about the average trends stated above. The FT training paradigm generally performed significantly better than the SS training paradigm \((t - ratio = 19.5, p < 0.001\) for the nonlinear CNN, and \(t - ratio = 5.75, p < 0.001\) for the linear CNN), except for the linear decoder baseline, where no difference was observed \((t - ratio = 0.047, p = 1.0)\). On the other hand, the effect of FT over SI was not consistent across architectures, for the nonlinear CNN, the difference was not significant \((t - ratio = 2.93, p = 0.0823)\), whereas it was significant for both the linear CNN \((t - ratio = 4.13, p = 0.0013)\) and the linear decoder baseline \((t - ratio = 7.3, p < 0.001)\). Finally, SI outperformed SS for the nonlinear CNN \((t - ratio = 36.8, p < 0.001)\), but not for the linear CNN \((t - ratio = 1.62, p = 0.794)\). With the linear decoder baseline, SS outperformed SI \((t - ratio = -7.25, p < 0.001)\).

3.2.2. Word-level linguistics For each word-based model, we depict in Figure 7b, the match-mismatch accuracy for the linear decoder baseline, the linear CNN and the nonlinear CNN under subject-specific (SS), subject-independent (SI) and fine-tuned (FT) paradigms.

The LMM models are then evaluated and the outcomes of the ANOVA tests are depicted in Table 3. The presence of linguistics was not significant after model optimization \((F = 0.0956, p = 0.901)\), hence not reported. The training paradigm \((F = 258, p < 0.001)\) and the architecture \((F = 160 * 10, p < 0.001)\) of the model have a significant impact. Finally, the interaction between the training paradigm and architecture was found to be significant \((F = 104, p < 0.001)\).

A Holm-adjusted pairwise comparison confirmed that the average model accuracy over training paradigm levels was higher for the nonlinear CNN over the linear CNN (on average 0.125 higher; \(SE = 0.00307, df = 155 * 10, t - ratio = 40.7, p < 0.001\)) and for the linear CNN over the linear decoder baseline (on average 0.0421 higher; \(SE = 0.00307, df = 1549, t - ratio = 13.7, p < 0.001\)).

Holm-adjusted pairwise comparisons confirmed that the average model accuracy over architecture levels was higher for the FT over the SI training paradigm (on average 0.0433 higher; \(SE = 0.00307, df = 1549, t - ratio = 14.0, p < 0.001\)) and for the
Robust neural tracking of linguistic speech representations using a convolutional neural network

Table 3: ANOVA test results for word-based models. Training=categorical variable with value "SS", "SI" and "FT"; Architecture=categorical variable with value "linear", "linear CNN" or "CNN".

<table>
<thead>
<tr>
<th></th>
<th>Sum Square</th>
<th>Mean Square</th>
<th>F value</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Training</td>
<td>1.31</td>
<td>0.657</td>
<td>258</td>
<td><0.001</td>
</tr>
<tr>
<td>Architecture</td>
<td>8.13</td>
<td>4.07</td>
<td>160*10^1</td>
<td><0.001</td>
</tr>
<tr>
<td>Training:Architecture</td>
<td>1.06</td>
<td>0.265</td>
<td>104</td>
<td><0.001</td>
</tr>
</tbody>
</table>

SI over SS training paradigm (on average 0.0257 higher; SE = 0.00307, df = 1549, t−ratio = 8.37, p < 0.001).

As the interaction term Tr*A is significant, we provide more specific details about the average trends above. The FT training paradigm was overall performing significantly better than the SS training paradigm (t−ratio = 28.9, p < 0.001, for the nonlinear CNN, and t−ratio = 3.44, p = 0.0047 for the linear CNN) except for the linear decoder baseline, where no difference was observed (t−ratio = 0.067, p = 1.0). As opposed to phoneme-level models, FT consistently outperformed SI (t−ratio = 16.2, p < 0.001 for the nonlinear CNN, t−ratio = 3.42, p = 0.0047 for the linear CNN, and t−ratio = 8.33, p < 0.001 for the linear decoder baseline). Finally, SI outperformed SS for the nonlinear CNN (t−ratio = 36.8, p < 0.001) and the linear decoder baseline (t−ratio = 27.6, p < 0.001), but not for the linear CNN (t−ratio = 0.0022, p = 1.0).

3.3. Effect of model architecture on contribution of linguistic features

The difference in accuracy between linguistics and control models is indicative of neural tracking of linguistics, and the architecture significantly impacts the accuracy of models. We hence quantify the impact of the model’s architecture on this difference.

In Figure 8a, we depict the difference in accuracy between phoneme-based linguistics and their control models (∆(PO, PS), and ∆(PO, CE)) for the linear decoder baseline, the linear CNN and the nonlinear CNN. We report only the fine-tuned training condition as we observed the largest linguistics effect with it in subsection 3.1. The accuracy difference ∆(PO, CE) was significantly higher for the nonlinear CNN over the linear decoder baseline (W = 202, p < 0.001) and the linear CNN (W = 249, p < 0.001). There was no significant difference between the linear CNN and the linear decoder baseline (W = 769, p = 0.381). The accuracy difference ∆(PO, PS) did not change significantly across architectures (nonlinear CNN-linear SoA: W = 692, p = 0.145; linear CNN-linear SoA: W = 798, p = 0.514; linear CNN-nonlinear CNN: W = 741, p = 0.277).

In Figure 8b, we depict the difference in accuracy between word-based linguistics and their control models (∆(WO, WS), and ∆(WO, WF)) for the linear decoder baseline, the linear CNN and the nonlinear CNN. We report only the subject-independent training condition as we solely observed a linguistics effect with it in subsection 3.1. The accuracy difference ∆(WO, WS) was significantly higher for the nonlinear CNN model than the linear decoder baseline (W = 393, p < 0.001), but not higher than
Robust neural tracking of linguistic speech representations using a convolutional neural network

the linear CNN ($W = 612, p = 0.0257$, non-significant after Holm-Bonferroni correction). There was also no significant difference between the linear CNN and the linear baseline decoder ($W = 717, p = 0.146$). The accuracy difference $\Delta(W_0, W_F)$ was significantly higher for the nonlinear CNN model over the linear decoder baseline ($W = 500, p = 2.28 \times 10^{-3}$), but not over the linear CNN ($W = 599, p = 0.0202$, non-significant after Holm-Bonferroni correction). There was also no significant difference between the linear CNN and the linear baseline decoder ($W = 710, p = 0.132$).

Figure 8: Difference between linguistic and control models for phoneme-based (figure a, 5 s segments) and word-based (figure b, 10 s segments) models. (*: $p < 0.05$, **: $p < 0.01$, ***: $p < 0.001$)
Robust neural tracking of linguistic speech representations using a convolutional neural network

4. Discussion

We first used our nonlinear CNN to evaluate if linguistic features significantly contribute beyond onset neural tracking for both phoneme- and word-based features.

At the phoneme level, and for both subject-independent and fine-tuned training conditions (see Section 3.1.1), cohort entropy added on top of phoneme onsets significantly contributes beyond phoneme onsets. Gillis et al. (2022); Brodbeck et al. (2018) showed the significant contribution of cohort entropy over acoustic and lexical features within a regression task; however they also showed the significant contribution of phoneme surprisal, which we did not observe. The use of different control methods, the complexity and the non-linearity introduced by the nonlinear CNN could explain this. Gillis et al. (2022) evaluated neural tracking using a regression task as opposed to our match-mismatch task, which might also impact the conclusions. Brodbeck et al. (2018), the brain signals were recorded using magnetoencephalography (MEG), which might also explain effect differences.

At the word level, and only when fine-tuning, word surprisal and word frequency significantly contributed beyond word onsets (see Section 3.1.2). Gillis et al. (2022) showed the significant contribution of word surprisal and word frequency over and beyond acoustic and lexical features within a regression task; which is coherent with our current results. Possibly for the same reasons stated at the phoneme level, some results deviate from conclusions found in Gillis et al. (2022); Weissbart et al. (2019).

To investigate further if the nonlinear CNN performs better than linear models, we compared its performance with a linear CNN and a linear decoder baseline. We investigated which predictors among the presence of linguistic features, the training paradigm, and the model architecture were significantly impacting the match-mismatch accuracy.

We observed that for both phoneme and word level features, the training paradigm and the model architecture significantly contributed to the variance in the model’s accuracy. As the interaction between these two factors was also significant, we focused on the model architecture. Further posthoc tests revealed that across different training paradigm levels, the nonlinear CNN outperformed the linear CNN, where the latter outperformed the linear decoder baseline. The first observation suggests an impact of the nonlinearity present in the nonlinear CNN while the second observation demonstrates an impact of the architecture design (e.g., convolutional layers, cosine similarity) on the model’s performance.

Additional posthoc tests showed that across different model architectures, the fine-tuned training paradigm outperformed the subject-independent paradigm, while the latter outperformed the subject-specific training paradigm. This suggests that in general models benefit from seeing more data, and that retraining on the data from the subject of interest helps the model to perform better.

On the other hand, looking at the posthoc tests results for the interaction term between the architecture and the training paradigm revealed that some exceptions, such as the outperformance of the linear decoder baseline under subject-specific paradigms (fine-tuned and subject-specific performed equally) over subject-independent ones. Coupled with a general lower performance, this suggests the inability of the linear...
Robust neural tracking of linguistic speech representations using a convolutional neural network

decoder baseline to extract general subject-independent features, and an influence of
the last subject seen during training.

Although in our first experiment, we observed an added value of linguistic features
over neural tracking of onsets under certain training conditions, no significant impact
was found by the LMMs on the model’s accuracy. One reason could be that LMMs
assume a gaussian distribution of the residuals, which was found to not to be the case,
hence reducing the power of the statistical tests performed.

Considering the high impact of the training paradigm and the architecture on the
model performance, we propose to fix these two modalities to evaluate linguistics
tracking. This is coherent with our approach in the first experiment, as we com-
pared linguistics and control models using the nonlinear CNN model under either the
subject-independent or fine-tuned training condition.

We conducted a last experiment in which we demonstrated that our nonlinear CNN
shows a wider performance gap between linguistics models and their respective con-
trols than the linear decoder baseline. This suggests that the nonlinearity and the
complexity of a CNN model improves its ability to find the added value of linguistics
tracking over onsets.

Although some studies argue in favor of acoustic features in the control models (Gillis
et al. (2022); Brodbeck et al. (2018)), we here considered only a lexical control. An
argument supporting our approach is that acoustic features (e.g., the mel spectro-
gram (Davis and Mermelstein, 1980)) contain some aspects of linguistic information
(Gwilliams et al., 2022), and therefore including acoustic features in the baseline, also
removes part of the linguistic information from the final outcome measure, thereby
reducing the power of the analysis. On the contrary, comparing a lexical and a lin-
guistic feature (e.g., PO vs. PS) facilitates the interpretation: the unique difference
between them is the pulse magnitude.

Cognitive effects, such as attention, could also impact our models’ performance as we
did not explicitly modeled them here. For instance, a decrease in attention is often
associated with a decrease in neural tracking of acoustic features (O’Sullivan et al.,
2015; Ding and Simon, 2012). We do not consider attention processing in our model,
so modulations of our models’ performance would be difficult to evaluate. To avoid
such events, we required participants to perform an attention control task during
recordings as described in Subsection 2.1.

Apart from a study linearizing parts of deep learning architectures (Keshishian et al.,
2020), the use of nonlinear models was mainly oriented towards performance and not
interpretation. Our multi-input feature model, first introduced by Puffay et al. (2022),
allows us to separate the processing of features with their corresponding EEG, which
enables us to know what weight the model gives to each feature in various conditions
(e.g., different SNRs). This will be covered in a future study dedicated to model in-
terpretation.
REFERENCES

5. Conclusion

Our study was conducted to measure the neural tracking of linguistic information using a multi-input feature model. We first compared the MM task performance of lexical control models with the linguistics model and found that the linguistics model performed significantly better under certain training conditions. We then investigated the impact of linguistic features, architecture, and training paradigm on the model’s performance and found that the model architecture and training paradigm had a significant impact on accuracy. In a last part, we quantified the difference in accuracy between linguistics and control models across different architectures, and confirmed the superiority of our nonlinear CNN.

6. Acknowledgements

The authors thank all the participants for the recordings, as well as Wendy Verheijen, Kyara Cloes, Amelie Algoet, Jolien Smeluders, Sara Peeters, Merel Dillen, Ilham Gangami, Amber Verhoeven, Lies Bollens, Vitor Vasconcelos and Amber Aerts for their help with data collection. Funding was provided by the KU Leuven Special Research Fund C24/18/099 (C2 project to Tom Francart and Hugo Van hamme), FWO fellowships to Bernd Accou (1S89622N), Marlies Gillis (1SA0620N), Corentin Puffay (1S49823N), and Jonas Vanthornhout (1290821N).

References

REFERENCES

Heleen Luts, Sofie Jansen, Wouter Dreschler, and Jan Wouters. Development and normative data for the flemish/dutch matrix test. 2014.

REFERENCES

