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8 Center for Human Genetics, University Hospital of Liège (CHULiege), 4000 Liege,
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Abstract

Biomarker signature discovery remains the main path to develop clinical diagnostic
tools when the biological knowledge on a pathology is weak. Shortest signatures are
often preferred to reduce the cost of the diagnostic. The ability to find the best and
shortest signature relies on the robustness of the models that can be built on such set of
molecules. The classification algorithm that will be used is selected based on the
average performance of its models, often expressed via the average AUC. However, it is
not garanteed that an algorithm with a large AUC distribution will keep a stable
performance when facing data. Here, we propose two AUC-derived hyper-stability
scores, the HRS and the HSS, as complementary metrics to the average AUC, that
should bring confidence in the choice for the best classification algorithm. To emphasize
the importance of these scores, we compared 15 different Random Forests
implementation. Additionally, the modelization time of each implementation was
computed to further help deciding the best strategy. Our findings show that the
Random Forest implementation should be chosen according to the data at hand and the
classification question being evaluated. No Random Forest implementation can be used
universally for any classification and on any dataset. Each of them should be tested for
both their average AUC performance and AUC-derived stability, prior to analysis.
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Author summary

To better measure the performance of a Machine Learning (ML) implementation, we
introduce a new metric, the AUC hyper-stability, to be used in parallel with the average
AUC. This AUC hyper-stability is able to discriminate ML implementations that show
the same AUC performance. This metric can therefore help researchers in choosing the
best ML method to get stable short predictive biomarker signatures. More specifically,
we advocate a tradeoff between the average AUC performance, the hyper-stability
scores, and the modeling time.

Introduction 1

In the field of cancer care, biomarker screening helps clinicians in their decision making. 2

Biomarker Signature Discovery (BSD) aims to identify a set of hundreds of variables, 3

out of thousands, that will capture the molecular differences between the categories of 4

patients to study. Short BSD focuses on the most relevant variables to build the 5

shortest predictive signature for comfortable use in daily clinical routine. While the 6

clinicians expect a manageable test with few variables, they also expect it to be robust 7

enough to reduce the prediction error. 8

Short combinations of biomarkers, also called short signatures, can be easily 9

transferred to the daily clinical routine. These short signatures can be used at low costs 10

to diagnose a cancer subtype, predict treatment responses, or monitor the patient 11

during the treatment [1, 2]. However, with more than 10,000 clinical trials, based on 12

biomarkers and cancer, currently ongoing [3], only a few studies may be successfully 13

transferred to the clinics, and fewer may impact the diagnosis practices as only a few 14

biomarkers are clinically relevant yet [4]. Indeed, within the past clinical trials on Breast 15

Cancer, only the Oncotype DX, MammaPrint, EndoPredict, Breast Cancer Index (BCI), 16

and Prosigna (PAM50) multianalyte tests have been successfully transferred with their 17

associated model of prediction [5]. Despite these few commercial successes, many 18

publications are directly related to biomarkers [4], and the design of short, robust, and 19

universal signatures of biomarkers predictive of a clinical state remains challenging. 20

Combinatory strategies are increasingly used to determine multivariate 21

signatures [1, 6]. Machine Learning (ML) have gained popularity in this sense (missing) 22

to create associated models [6–8]. Researchers often compare ML strategies upstream to 23

determine the “best” approach to use, (missing) usually relying on the highest average 24

AUC performance. However, such average AUCs are highly variable. Indeed, based on 25

Gonzalez-Bosquet et al. Fig 2 A, nine ML methods including RF displayed AUCs 26

between 0.6 and 0.75 [9]. Due to this variation, the average AUC is not an optimal 27

criterion for assessing the best ML methodology. 28

Random Forest (RF) is among the most popular machine learning methods in 29

bioinformatics and related fields. RF is an ensemble of classification or regression trees 30

that was introduced by Breiman [10]. It is extensively applied on gene expression data 31

because it copes with large p small n problems, it exhibits a relatively good accuracy, is 32

robust to noise, and requires little parameter tuning. Moreover, RF is easy to use and 33

the interpretation of the resulting models is facilitated since it is all about a suite of 34

“if..else”-like decision rules. Since the original RF algorithm proposed by Breiman [10], 35

several variations to RFs have been made available via the R Project for Statistical 36

Computing, including orthogonal and oblique methods. 37

The current study aims at assessing RF strategies based on both the average AUC 38

and the stability of the resulting AUC. Therefore, the question asked is how AUC 39

stability can help deciding the best predictive RF implementation? We put this 40

question in the context of short BSD identification and evaluation. In the BSD field, 41
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several applications of RFs exist [6, 9]. In this work, we focus on assessing the most 42

stable RF method, from 15 implementations in R (see Table 1). Our study is driven by 43

tumor vs. healthy in paired samples from The Cancer Genome Atlas (TCGA) database 44

(RNAseq of BRCA, LUSC, and THCA cancers). 45

The conclusions are twofold. First, AUC-derived stability reveals the dataset 46

dependency of an RF implementation. Second, based on two distinct scores, 47

hyper-stability can highlight whether an RF implementation is signature or resampling 48

dependent. Consequently, AUC stability provides a confidence score on top of the 49

commonly used average AUC for the selection of the best RF implementation. 50

Additionally, the modelization time can further help discriminating between RF 51

implementations with equal stability performance. 52

Table 1. Summary of the implementations used in this study. The R
package column denotes the package version used in comparisons.

Implementation Type OOB R package
RandomForest Orthogonal ✓ randomForest v4.6-12 [11]
RandomForestSRC Orthogonal ✓ randomForestSRC v2.6.1 [12]
Ranger Orthogonal ✓ ranger v0.10.1 [13]
cForest Orthogonal ✓ partykit v1.1.1 [14]
Rborist Orthogonal ✓ Rborist v0.1-8 [15]
ExtraTrees Orthogonal extraTrees v1.0.5 [16]
RandomUniformForest Orthogonal ✓ randomUniformForest v1.1.5 [17]
RRF Orthogonal ✓ RRF v1.7 [18]
WSRF Orthogonal ✓ wsrf v1.7.17 [19]
iForest Orthogonal iRF v2.0.0 [20]
CCF Oblique ccf v1.0.0 [21]
PPForest Oblique ✓ PPforest v0.1.1 [22]
obliqueRF Oblique ✓ obliqueRF v0.3 [23]
RotationForest Oblique rotationForest v0.1.3 [24]
Rerf Oblique ✓ rerf v1.0 [25]

Ns = 2Nv′
− 1 (1)

S = 3 ∗ (Nv′ − 2) (2)

RFr = S ∗ k ∗ q (3)

CV =
s

x̄
(4)

HRkn
=

S0

S
(5)

HSSn
=

k0
k

(6)
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Materials and methods 53

The description of the symbols used in the formulas is given in S1 Table. 54

TCGA sample collection, normalization, and filtering 55

The TCGA database was screened to maximize the number of paired tumor-healthy 56

samples in the cancer cohorts. TCGA clinical data were filtered to select cancers with 57

the most abundant similar Histological subtype and patients with paired tumor-healthy 58

samples. Subsequently, three TCGA datasets were targeted in the current study, the 59

BRCA, the LUSC, and the THCA cancers. These three datasets were downloaded using 60

the TCGA2STAT R-package [26]. Paired tumor-healthy samples were collected with 61

RPKM normalization using the tumorNormalMatch function from the same R-package. 62

The total number of primary variables was reduced based on their variance to Nv 63

variables before the feature selection step, using the Log Intensity variation function of 64

the BRB ArrayTools software (version 3.8.1) with the p-value parameter set to 0.001. 65

These filters were listed in S2 Table for the three datasets. 66

Workflow of the comparative study 67

A graphical summary of our study comparing multiple RF implementations via 68

hyper-stability assessment is given in Fig 1. Next, we explain each step in greater detail. 69

In the following sections, we use the term “resampling rate” to refer to the percentage 70

of data that goes to the training partition after a balanced random sampling from the 71

original data. 72

Step 1: Feature selection 73

Feature Selection (FS) followed rank-based overlap and correlation principles inspired 74

by Alelyani et al [27]. FS was used to determine the minimum number of variables Nv′ 75

to be kept for downstream analysis. Rank-based variable importance was used and was 76

calculated based on a combination of the mean decrease in GINI (MDG), and mean 77

decrease in Accuracy (MDA) of the RF algorithm. The threshold used for the selection 78

of Nv′ was determined using stability indices Kuncheva and Spearman. The entire 79

methodology is provided in supplementary (S1 File). 80

Step 2: Data and model preparation 81

Fine tune the parameter ntree 82

For all RF methods that implemented the out-of-bag principle (see Table 1) the 83

out-of-bag error (OOBerr) was computed based on Nv′ variables and increased values of 84

ntree ∈ {10, 20, .., 1200}. Similarly, a total of k = 50 balanced random case/control 85

partitions were generated using a resampling rate of p = 0.9, and q = 25 intrinsic RF 86

models per partition. Subsequently, 50 x 25 = 1,250 models and 1,250 OOBerr values 87

were obtained for each value of ntree. The OOBerr was averaged over the ntree value 88

and plotted as a function of ntree for each RF method. The minimal number of trees 89

Nt = 500 was obtained when the OOBerrs were optimized and stabilized for the tested 90

implementations. This value of Nt is sufficiently acceptable from all the RF 91

implementations including those not implementing the out-of-bag principle. 92
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Step 1: Feature selection
   - Calculate variable importance rank
   - Calculate stability indices (Kuncheva and Spearman)
   - Select N'v variables accordingly

Step 4: Hyper-stability of AUCs   
   - Coefficients of variation CVs
   - Hyper-stability scores: Resampling dependent HRS
   - Hyper-stability scores: Signature dependent HSS

   Step 3: RF modelization and AUCs
       - Compute q=25 RF models and AUCs per signature and 
          resampling
       - Calculate average AUC and runtime

Step 2: Data and model preparation
   - Samples: random generation of p=50 resampling
   - Variables: random selection of S signatures   
   - Model hyperparameter: finetune the parameter ntree
   

Dataset: M samples x Nv variables

Fig 1. Comparative study flowchart: from feature selection to AUC
hyper-stability Overall procedure of AUC-based hyper-stability comparison. Step 1-
Feature selection based on the variable importance rank and stability indices for the
selection of the most important and most stable variables. Step 2- Preparation step
including the generation of random partitions to be used as training and validation sets,
the random selection of variable combinations, and the finetuning of the RF parameter
ntree; Step 3- Modelization and validation: training and validation of 25 RF models
per signature and resampling partition, with recorded runtime; Step 4- AUC-based
hyper-stability scores HRS and HSS to complement average AUCs across signatures and
samples

Obtain potential signatures of max length Nv′ 93

The total number of possible signatures Ns was defined by Eq 1. These signatures 94

contained a different number of variables, from size 1 to size Nv′. A random selection of 95

three signatures from size 2 to size Nv
′ − 1 was made (see S3 Table). A total of S 96

signatures were therefore selected for the comparison using Eq 2. 97

Define learning and validation sets. 98

A total of k = 50 random training partitions were generated from the original dataset, 99

using a resampling rate p = 0.5 for downstream analysis. The function 100

createDataPartition from the R-cran package caret [28] was used to create these 101
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partitions. 102

Step 3: RF Models and AUCs 103

Each RF implementation was computed with the ntree parameter Nt for a total of RFr 104

times based on Eq 3; where S is the number of signatures based on Eq 2, k is the 105

number of random partitions, and q is the number of models generated per partition. 106

For the current article each RF implementation was sent to an individual 107

computational node for learning and validation, with k = 50 and q = 25. Each node 108

was, therefore, handling RFr computations, which resulted in RFr models and RFr 109

AUCs. Metrics for each model validation were also computed with the R-package 110

MLmetrics [29]. The time was measured before and after each modelization. 111

To get the average AUC of an implementation, the AUC was averaged across RFr 112

runs. Similarly, the time to process the model was averaged across RFr runs to get the 113

average runtime of the implementation. 114

To measure the runtime, we selected computational nodes having the same 115

characteristics.We used the nodes from the CECI’s Dragon1 cluster hosted by the 116

UMons university Belgium, which provided 416 CPU distributed on 26 nodes and 117

128GB of RAM. The CPUs used were SandyBridge processors of 2.60GHz. 118

Step 4: Hyper-stability 119

For each RF implementation’s resampling-signature combination, the coefficient of 120

variation (CV) of the q AUCs was computed. In the current article, q = 25. This CV 121

measures the average variability of AUCs around the mean AUC, defined by Eq 4, where 122

s is the sample standard deviation and x̄ is the sample mean. It lies between 0 and 1. 123

The hyper-stability scores were computed based on CV == 0 values. Two novel 124

hyper-stability scores were created, a resampling dependent (HRS) and a signature 125

dependent (HSS) score. For HRS, signatures with CV == 0 (in total S0) were 126

averaged across the total number of signatures S tested for a resampling kn and was 127

named HR, as displayed by Eq 5. The mean of non-zero HRs across all the 128

resamplings was then used to create the HRS score, which describes the method on a 129

resampling base. The HSS averages the number of resampling with CV == 0 denoted 130

k0 across the total number of resampling k tested for a signature and was named HS, 131

as displayed by the Eq 6. The mean of non-zero HSs was then used to create the HSS 132

score, which describes the method on a signature base. 133

We used R version 3.3.1 for all the analyses detailed in the current study. Table 1 134

listed all RF implementation R-packages and their versions used in the current study. 135

Results 136

Hyper-reproducibility of the AUCs 137

To assess each RF implementation’s modelization, we identified which 138

signature-resampling combination could produce the same AUC, using the Coefficient of 139

Variation (CV). A dot-matrix Fig 2 displayes all the LUSC dataset CV == 0, obtained 140

for all combined signature-resampling of each RF implementation. Then we classified 141

the RF implementations into three groups based on lack of reproducibility. i) The 142

signature dependent group (type A) contained only PPForest, which displayed multiple 143

blank rows; ii) The resampling dependent group (type B) encompassed ccf, rerf, 144

randomForest, iForest, and ranger, which presented numerous empty columns; iii) The 145

signature-resampling group (type C) was composed of the remaining implementations 146
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where no trend neither in signature nor in resampling could be found. Aside from our 147

classification, RRF showed only a few stable signature-resampling combinations and was 148

therefore unclassified. RF implementations switched between groups depending on the 149

dataset under study (results not shown). 150
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Fig 2. Dot-matrix of AUCs coefficient of variation equal to 0 for all RF
implementations. Coefficient of variation equal to 0 for q = 25 AUCs obtained for
each signature-resampling combination per RF implementation for the LUSC dataset.
Each dot corresponds to 25 equal AUCs (CV == 0) for a signature-resampling
combination. No dot correponds to a variation in the 25 AUCs (CV > 0) for a
signature-resampling combination.

Hyper-stability score 151

We computed the hyper-stability scores for resampling (HRS) and signature (HSS) to 152

further compare the RF implementations. Dot-marix Fig 2 was used to calculate HRS 153

and HSS (see Fig 3.a for an example how to calculate HRS and HSS from the 154

dot-matrix). A bar chart to display these HRS (green bars) and HSS (purple bars) for 155

the LUSC is given in (Fig 3.b). The type A group PPforest method shows a combined 156

score below 0.4. The type B implementations shows almost a similar values of HRS and 157

HSS with a combined value ≥ 0.65. Furthermore, among the type C group, only 158

obliqueRF, randomForestSRC, and wsrf obtained a combined score around 0.9, while 159

the remaining implementations obtained a score below 0.8. We observed similar trends 160

for the BRCA dataset. However, the THCA dataset displayed HRS and HSS scores 161
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below 0.4 for all implementations. More specifically, for the LUSC dataset, good scores 162

( ]0.8, 1] ) were obtained for obliqueRF, randomForestSRC and wsrf; moderate scores ( 163

[0.4, 0.8] ) for rotationForest, ccf, cForest, extraTrees, iForest, randomForest, RUF, 164

Rborist, ranger, Rborist, rerf, and rotationForest; and poor scores ( [0, 0.4[ ), for RRF 165

and PPforest. Interestingly, the poorly performing group implementations persisted 166

across datasets (LUSC, BRCA, and THCA). The good and moderate RF 167

implementations were inconsistent across datasets. These results underlined the dataset 168

dependency of the RF implementations studied here. 169

a. b.
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Fig 3. Random Forest hyper-stability scores. a) Example of calculating the HR
(Eq 5), the HS (Eq 6), HRS, and HSS. b) HRS score (green) and HSS score (purple) are
displayed as barplots for each RF implementation, using the left scale of the graph.
Average AUC of each RF implementation is reported with a green line using the left
scale of the graph. Average time to process the modelization is reported with a red line
using the right scale of the graph.

Average AUC and time of modelization 170

We calculated the average AUC obtained from RFr modelizations. We also calculated 171

the average time to process a model. Fig 3.b displays this average AUC (green line) and 172

time (red line) obtained by each RF implementation for the LUSC dataset. Except for 173

PPforest and RRF, the average AUC was equal to 1 for all the RF implementations. 174

With an average time of 23.3 sec to process a model, rotationForest was the slowest 175

method. RF implementations ccf, cForest, obliqueRF, PPForest, and 176

randomUniformForest processed the models with an average time between 1 and 4.1 177

seconds. The remaining RF implementations processed the models with an average time 178

below 0.2 seconds. Similar trends were observed for the BRCA and THCA datasets but 179

with a higher modelization time (data not shown). 180

Identification of probable causes of hyper-stability scores 181

impairment 182

Algorithm taxononomic classification 183

We further assessed whether the hyper-stability scores varied according to the RF 184

implementation taxonomy previously described by Pretorius et al. [30]. Based on the 15 185

RF implementations, the following four criteria could be derived from this taxonomy: 186

number of layers of randomization modification; transformation or projection of the 187

dataset; non-exhaustive search, and deterministic modifications. 188
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Taking the randomForest original implementation as a reference, we assessed these 189

four criteria’ impact on the HRS and HSS scores. Adding or removing layers of 190

randomization did not improve the scores. Similarly, non-exhaustive search methods did 191

not drastically change the scores. Indeed, extraTrees or RUF did not show the highest 192

HRS and HSS scores. Besides, data transformation or projection might have an impact 193

on the scores. We observed a decrease of the HRS and the HSS scores for rotationForest, 194

PPforest and ccf, as well as an increase of these scores for rerf for the BRCA dataset or 195

obliqueRF for the LUSC dataset. The deterministic modification might also impact the 196

scores, especially for RRF, PPforest, cForest, rerf, and wsrf. Nevertheless, no impact of 197

this deterministic modification could be detected with the scores obtained by RUF, 198

ramdomForest, SRC, Rborist, and obliqueRF. Importantly, no common impact could be 199

linked to Pretorius et al. taxonomy to the HRS and HSS scores. 200

Dataset properties 201

To assess whether the dataset’s size may impair the hyper-stability scores, we further 202

explored the variable-sample ratio (number of variables / number of samples) in the 203

datasets. With a data perturbation of 0.5, 0.5 ∗ 96 = 48 samples were randomly selected 204

in each LUSC resampling, leading to a variable-sample ratio of 9
48 = 0.19. By 205

decreasing the data resampling rate to 0.9, the variable-sample ratio decrease to 0.1, 206

which resulted in higher HRS and HSS scores for all implementations (data not shown). 207

Despite the same number of samples in the THCA dataset, this ratio reached 0.77 for a 208

resampling rate of 0.5, leading to HRS and HSS scores around 0.4 for all the 209

implementations. Again, the scores could be increased over 0.8 by switching to a 210

variable-sample ratio of 0.44 at a resampling rate of 0.9. Besides, with 28 variables and 211

182 samples, the BRCA variable-sample ratio reached 0.3 for a resampling rate of 0.5. 212

Consequently, HRS and HSS scores were likely to depend on the variable-sample ratio, 213

where good scores (> 0.8) were obtained with a low variable-sample ratio (< 0.5). 214

To evaluate whether the resampling could impair an RF implementation’s 215

hyper-stability, we quantified the resampling with few CV == 0. Using the dot matrix 216

based on LUSC, Fig 2, we observed that resampling 37 and 38 were struggling to 217

stabilize the AUC for most RF implementations. Such a lack of stability on the LUSC 218

dataset was particularly significant for the ccf, PPforest, rerf, rotationForest, and RRF 219

implementations. We made similar observations for BRCA’s resampling 6 and 34 and 220

THCA’s resampling 6 to 10. Consequently, the presence of these problematic 221

resamplings might contribute to the decrease of the hyper-stability scores. 222

To better understand the HRS and HSS variabilities between the datasets, we looked 223

into gene connectivity. Differences in connectivity might explain the modelization 224

performances of machine learning. Using WGCNA [32] on the 7031 genes in common 225

between the tumor samples of the three filtered datasets, we seek for modules with 226

highly correlated genes conserved between the three datasets. Thus, we compared 227

BRCA >> LUSC, BRCA >> THCA, and LUSC >> THCA (S1 Fig) We found 228

that 15 modules among 25 showed low preservation for BRCA >> LUSC. When 229

performing a module preservation analysis, genes with a similar function tend to cluster 230

together according to a phenotype or a disease [31]. These modules were located 231

between no preservation (blue line, Zsummary = 2) and very weak preservation (green 232

line Zsummary = 10) region. These modules also had the lowest median rank statistic, 233

meaning their observed preservation statistics tend to be the lowest among the other 234

modules. Moreover, 14 highly connected genes within the grey60 module of BRCA lost 235

their connectivity within the LUSC network (S2 Fig). Similarly, for the 236

BRCA >> THCA case, we observed that 15 modules among 25 were lowly preserved 237

in the THCA samples, and 20 modules out of 24 showed weak preservation for the 238

LUSC >> THCA case. These results underlined that the functional connectivity was 239
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not conserved between the three datasets, and further contribute to explain differences 240

in HRS/HSS scores. 241

Discussion 242

In this study, we tested the stabilities of 15 different RF modelizations over three 243

distinct cancer datasets. These datasets were composed of paired tumor-healthy 244

samples. We compared RF modelizations for AUC hyper-stability scores and runtime, 245

and investigated drivers of (in)stability. 246

We assessed RF’s hyper-stability based AUC-derived HRS and HSS scores for 15 RF 247

implementations. The AUC has become a common measure to determine the accuracy 248

of classification models. Nevertheless, it only evaluates how much the classification 249

model can discriminate the classes. The AUC could, therefore, be misleading and might 250

suffer from the following drawbacks [33]: AUC i) ignores the probability values of the 251

samples; ii) includes less interesting regions on the ROC plot; iii) does not reflect the 252

intended use of the model; iv) does not provide information about the spatial 253

distribution of model errors. Besides, the AUC might be insensitive to 254

strongly-associated disease features added to the model [34]. Moreover, AUC displays a 255

high dispersion, especially for imbalanced or small sample sets [35]. AUC alternatives 256

can provide useful measures of performance for prognostic models [35]. Examples are 257

the Pietra index and the standardized Brier or scaled Brier scores. These alternatives 258

should be considered for future calculation of the hyper-stability scores. 259

In this work, we built on AUC for different scenarios of resampling and signature 260

combinations to derive hyper-stability scores HRS and HSS. The proposed methodolgy 261

tried to assess RF inherent randomness while keeping the external randomness under 262

control. While we measured the exact same AUC from 25 models, our system was not 263

deterministic, as defined by Padhye et al. [36]. Indeed, rule extraction showed that the 264

genes, the thresholds, and the number of steps used could differ in each model (see 265

supporting information section (S1 File)). Consequently, our system kept the intrinsic 266

randomness of the RF implementations and could not be considered deterministic. 267

Good HRS and HSS scores were obtained in our study, except for the THCA dataset at 268

a perturabtion rate of 0.5. With a perfect balance between tumor and healthy samples, 269

the small sample size might explain THCA’s low performances. Nevertheless, the LUSC 270

dataset displayed good hyper-stability scores with the same number of samples. 271

Specific characteristics of the RF algorithm and nature of the application data are 272

the main drivers to model performance (S4 Fig), which we discuss next. 273

� Algorithm characteristics: RF algorithms may differ from Breiman’s original 274

implementation in their randomization and deterministic components. Except for 275

the tree selection and the ensemble compilation, the 15 chosen RF 276

implementations covered all the taxonomy criteria listed by [37]. The following 277

characteristics could therefore impact AUC performances: 278

i) The number of trees; A model with more trees is better [38]. Our results 279

were based on 500 trees for each RF implementation. Indeed, except for 280

RRF, the resulting OOBerr stabilized for most RF implementations after 500 281

trees (S3 Fig c). RRF struggled to stabilize the OOBerr after 500 trees, 282

which might explain its poor hyper-stability over all the datasets. 283

ii) The sources of randomization encompass; selecting samples, sampling the 284

features, and selecting the splitting point [37]. The randomization 285

component deals with the insertion or deletion of randomization layers and 286

the modification of the random sampling procedure. 287
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iii) The deterministic modifications, which encompass; oblique or orthogonal 288

splits, impurity measure, and penalization [37]. The deterministic component 289

deals with the tree construction, data transformation, type or rules to split, 290

impurity measure, or variable penalities. 291

No relationships were found between the hyper-stability scores, the sources of 292

randomization, and the deterministic modifications. However, “good”, 293

“moderate”, and “poor” groups could be derived from the hyper-stability scores. 294

Interestingly, only the “poor” group contained dataset-independent RF 295

implementations, RRF and PPForest. 296

For the purpose of the current study, we used an RF-based FS coupled with the 297

Kuncheva and Spearman indexes to check the overlap and the correlation of the 298

variable ranking. The aim was to get the minimal set of important and stable 299

variables before performing the comparison. The FS did not favor any RF 300

implementation method, it may negatively impact the “poor” group. For example, 301

RRF uses regularized selected variables during FS. Further work is thus needed to 302

study how such regularization may affect the FS used here. This work might be 303

done for RRF and PPforest using the LDA-based projection pursuit index to 304

identify projections that separate classes [39]. Conversely, the Good and the 305

Moderate groups contained non-fixed RF implementations regarding the dataset 306

studied. Indeed, each RF implementation resulted in different HRS and HSS 307

scores when facing another dataset, and thus might be classified as Good or 308

Moderate. 309

� Dataset characteristics: Although the RF versatility between Good and 310

Moderate groups could not be ignored, it might be linked to the training set. 311

Indeed, the selected samples and variables should provide enough information to 312

the model to fully recognize the patterns. A low variable-sample ratio could be 313

critical to produce models with a high average AUC [40] and a good 314

hyper-stability. The following dataset characteristics could, therefore, impact the 315

AUC. 316

i) The balance between the categories: While the three datasets used in the 317

current study were perfectly balanced between the tumor and the healthy 318

classes, extremely imbalanced classes could harm RF behaviors [41]. To 319

apply our methodology on non-balanced datasets, we recommend the use of 320

balanced or weighted RF implementations. Chen et al. proposed balanced 321

and weighted RF, where balanced RF will force to deal with equally sized 322

classes, and the weighted RF were based on cost-sensitive learning. For such 323

skewed datasets, the precision-recall curve (PR-curve) and the weighted-AUC 324

should be preferred over the ROC-curve and the AUC [42,43]. 325

ii) The size of the training set: The number and the heterogeneity of the 326

samples could be an essential source of instability during the biomarker 327

selection, leading the training set to be more or less attractive for the 328

RF [44–46]. Subsequently, thousands of samples were recommended to reach 329

good Kuncheva and Spearman scores [40]. However, our results achieved 330

acceptable scores with the FS and only 192, 96, and 98 samples, meaning 331

that a good apriori on the samples could circumvent this issue. Nevertheless, 332

few resamplings displayed a low number of CV == 0 across RF 333

implementations but impacted them similarly. A good apriori on the sample 334

classes could, therefore, lead to heterogeneous random resamplings. Thus, 335

such heterogeneity could impact the FS and the hyper-stability scores [27]. 336

Interestingly, the variable-sample ratio appeared to be more related to the 337
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variability observed for the hyper-stability scores. By keeping the 338

variable-sample ratio below 0.5, we obtained good hyper-stability scores 339

(> 0.8) for the implementations. For example, we observed that the AUC 340

reproducibility decreased along with the signature size for the THCA dataset, 341

which was the only dataset that displayed a high variable-sample ratio and 342

an average of low hyper-stability scores. Also, the length of a signature might 343

impact the mtry parameter and might impair their hyper-stability [47]. 344

However, by decreasing the data perturbation of the training step to 0.9, the 345

RF implementations reached good hyper-stability scores while keeping the 346

variable-sample ratio below 0.5. Therefore, reducing the Nv′ or the data 347

perturbation for the THCA dataset could keep the variable-sample ratio 348

below 0.5, leading to higher hyper-stability scores. Remarkably, we repeated 349

all the modelizations on three different sets of increasing signature sizes for 350

each dataset, and the same hyper-stability scores (avg SD = 0.01) were 351

obtained each time for each RF implementation. Subsequently, the HSS and 352

HRS scores were more tied to the models and their overfitting when the 353

variable-sample ratio was kept under 0.5. 354

iii) The feature connectivity: By grouping the genes into modules of highly 355

co-expressed genes, we could assess the FS bias occurring when 356

highly-connected genes are selected. Our results demonstrated the difference 357

between the three datasets in the gene-gene connectivity across the tumor 358

samples, meaning that the functional information was different between the 359

datasets. While 60% of the modules displayed a low preservation from BRCA 360

to LUSC (15/25) or from BRCA to THCA (15/25), 83% of the modules 361

displayed a weak preservation from LUSC to THCA (20/24). Such a 362

difference might explain the variation also observed in AUC-hyper-stability 363

between the datasets. Nevertheless, more work is needed to find a causative 364

link between such connectivity and either the AUC-hyper-stability or the 365

data perturbation by performing module preservation between the training 366

partitions. 367

iv) The correlations within signatures: Datasets with many correlated variables 368

may have created misleading feature rankings [48]. Very few strong 369

correlations were found within BRCA signatures, while this dataset displayed 370

excellent hyper-stability scores. Subsequently, the correlations between 371

variables within the signatures could not explain lower hyper-stability scores 372

observed for both LUSC and THCA datasets. 373

v) The variability of the dataset: With a high entropy, datasets tend to be more 374

sensitive to perturbation, which results in different AUC performance. This 375

is often the case of small datasets like biological data. In this study, the FS 376

allowed us to maximize the class separability and separate the samples 377

according to the tumor or healthy groups. However, while a perfect 378

separation was observed for the BRCA and LUSC datasets, it was close to 379

perfect for the THCA dataset. Indeed, all but four THCA samples were 380

linked to their respective class. These few crossing-class samples might 381

explain both the high-number of THCA variables after the FS and the low 382

AUC hyper-stabilities. Further work is therefore needed to assess if the class 383

separability could impair the AUC hyper-stability. 384

Intuitively, as defined in the current study the HR score relies on the robustness of 385

the signature tested because the HR score allowed us to measure the AUC-performance 386

reproducibility of a signature over different resampling. On the other hand, the HS score 387
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can refer to the signature multiplicity invoked in [49], because the HS score allowed us 388

to assess the performance of multiple alternative signatures on one resampling partition. 389

Conclusion 390

In the current study, we demonstrated the importance of measuring RF 391

implementations’ hyper-stability in the context of short BSD. We reinforced the 392

message that no RF implementation should be used blindly for classification and on any 393

datasets. Instead, each should be tested for their AUC performance and AUC-derived 394

hyper-stability before the analysis. While the AUC-derived hyper-stability could reveal 395

the dataset dependency of an RF implementation, it could also identify the origin of 396

such reliance, telling whether an RF implementation is signature or resampling 397

dependent. Therefore, the hyper-stability scores measured a trustable difference that 398

should be taken into account while comparing the RF implementations. Moreover, the 399

modelization time could further help discriminate RF implementations with equal 400

hyper-stabilities. Consequently, the AUC hyper-stability and the modelization time 401

reinforce the average AUC message and guide the researcher towards the best RF 402

strategy for short biomarker signature discovery or other fields. 403

Supporting information 404

S1 Fig. Evaluation of module preservation between tumor samples of the 405

three datasets: a- BRCA >> LUSC; b- BRCA >> THCA; and c- 406

LUSC >> THCA. Horizontal dashed lines on the preservation Zsummary plots 407

delimit weak preservation zone. Modules located above the blue line are not preserved. 408

S2 Fig. Example of the change in connectivity between genes within the 409

grey60 (BRCA >> LUSC analysis) a- The 14 most connected genes within the 410

grey60 module in BRCA tumor samples are selected, and b- the corresponding 411

connections in the LUSC network are calculated and plotted. The network is generated 412

using VisANT software. 413

S3 Fig. Feature selection on the BRCA-TCGA dataset. a) Stability indexes 414

for the FS were calculated for an increasing cardinality from 10 to 200 with a step of 10. 415

The minimal number of stable variables (30 for the BRCA-TCGA dataset) was set as 416

the first local maxima observed on the Kuncheva index (vertical blue line); b) The rank 417

distribution of the top 200 variables. For each variable, all the 1250 ranks were 418

displayed as a boxplot. The variables were then ordered based on their average rank. 419

The minimal number of important variable obtained from figure a was reported as a 420

vertical blue line. The adjustement to this number was reported here as a vertical red 421

line; c) The prediction error (OOB error) was calculated for the methods implementing 422

the OOB concept. The parameters used to compute this OOB errors were based on 423

results obtained with figure a, b. The error was stable after 500 trees (vertical blue line) 424

for all the implementations. 425

S4 Fig. AUC performance impacting factors Diagram showing factors 426

impacting the AUC performance of an RF algorithm. Some factors concern dataset 427

characteristics, others relate on the construction of RF algorithm. Both randomization 428

sources and deterministic modifications components are used to construct RF variants 429

(inspired from [37]) 430
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S5 Fig. PCA of samples before and after the Feature Selection PCA 431

projection of the 2 first principal components for a) BRCA; b) LUSC, and c) THCA 432

datasets. For each graph, the tumor samples are in red and their paired healthy tissues 433

are in green. The Feature Selection increases the separatibility of the samples according 434

to their respective class (tumor or healthy). 435

S1 Table. Description of different symbols used in the formulas. 436

S2 Table. Summary of the results of step 1 and step 2 on TCGA datasets. 437

The row ‘Selected Signatures’ shows the number of combinations retained for the 438

comparison. The statistics value is the combined value obtained from the Kunchva and 439

the Spearman statistics. The dispersion is the optimal value obtained from the boxplots 440

of the variable ranks. 441

S3 Table. Table summarizing the signatures selected per dataset: a) BRCA, 442

b) LUSC, c) THCA 443

S4 Table. Rules randomly extracted from two randomForest models 444

trained on the same partition and the same signature for the LUSC dataset. 445

S5 Table. Three sets of rules randomly extracted from two randomForest 446

models. The RF models were trained on the same partition and the same signature for 447

the BRCA, the LUSC, and the THCA datasets. 448

S6 Table. Supplementary Range of CVs and number of CV == 0 observed 449

for LUSC dataset. 450

S1 File. Supplementary Materials Supplementary methods, results, and 451

discussion 452
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References

1. Enroth S, Berggrund M, Lycke M, Broberg J, Lundberg M, Assarsson E, et al.
High throughput proteomics identifies a high-accuracy 11 plasma protein
biomarker signature for ovarian cancer. Communications Biology. 2019;2(1):1–12.
doi:10.1038/s42003-019-0464-9.

2. Tarhini A, Kudchadkar RR. Predictive and on-treatment monitoring biomarkers
in advanced melanoma: Moving toward personalized medicine. Cancer Treatment
Reviews. 2018;71(March):8–18. doi:10.1016/j.ctrv.2018.09.005.

3. NIH. Clinical Trials on Cancer and Biomarkers; 2019. Available from:
https://clinicaltrials.gov/ct2/.

4. Selleck MJ, Senthil M, Wall NR. Making Meaningful Clinical Use of Biomarkers.
Biomarker Insights. 2017;12:1–7. doi:10.1177/1177271917715236.

5. Duffy MJ, Harbeck N, Nap M, Molina R, Nicolini A. ScienceDirect Clinical use
of biomarkers in breast cancer : Updated guidelines from the European Group on
Tumor Markers. European Journal of Cancer. 2017;75:284–298.
doi:10.1016/j.ejca.2017.01.017.

6. Frères P, Wenric S, Boukerroucha M, Fasquelle C, Thiry J, Bovy N, et al.
Circulating microRNA-based screening tool for breast cancer. Oncotarget.
2015;7(5):5416–5428. doi:10.18632/oncotarget.6786.
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