Progranulin maintains blood pressure and vascular tone dependent on EphrinA2 and Sortilin1 receptors and eNOS activation

Ariane Bruder-Nascimento, PhD1,2, Wanessa M.C. Awata, Msc1,2, Juliano V. Alves, Msc1,2, Shubhnita Singh, MD1,2, Rafael M. Costa, PhD1,2, Thiago Bruder-Nascimento, PhD1,2,3,4

1Department of Pediatrics, 2Center for Pediatrics Research in Obesity and Metabolism (CPROM) and 3Endocrinology Division at UPMC Children’s Hospital of Pittsburgh; 4Vascular Medicine Institute (VMI), University of Pittsburgh, Pittsburgh, PA, USA.

Short title: Progranulin, vascular biology, and blood pressure

Address correspondence to:

Thiago Bruder do Nascimento, Ph.D.

University of Pittsburgh School of Medicine,

Assistant Professor of Pediatrics

5131 Rangos Research Center, 4401 Penn Ave.

Pittsburgh, PA 15224

Tel: 412-692-6123

bruder@pitt.edu

Total word count: 6714
Abstract

Background: Even though vascular tone is an important determinant of blood pressure management, the processes governing it are still not completely understood. Many circulating proteins have a significant impact on controlling vascular tone. Progranulin (PGRN) displays with anti-inflammatory effects and has been extensively studied in neurodegenerative illnesses. We investigated whether PGRN sustains the vascular tone that helps regulate blood pressure.

Methods: We used male and female C57BL6/J wild type (PGRN+/+) and B6(Cg)-Grn^{tm1.1Aidi}/J (PGRN-/-) to understand the impact of PGRN on vascular contractility and blood pressure.

Results: We found that mesenteric arteries from male and female PGRN-/- mice display hypercontractility to noradrenaline and elevated blood pressure, which are restored by supplementing the mice with PGRN. In addition, PGRN attenuated the vascular contractility to noradrenaline in male and female PGRN+/+, such effect was blunted by blocking EphrinA2 or Sortlin1. To understand the mechanisms whereby PGRN evokes anti-contractile effects, we inhibited endothelial factors in wire myograph. L-NAME [nitric oxide synthase (NOS) inhibitor] prevented the PGRN effects, whereas indomethacin (cyclooxygenases inhibitor) only affected the contractility in arteries incubated with vehicle, indicating the PGRN increases nitric oxide and decreases contractile prostanoids. Finally, PGRN induced endothelial NOS (eNOS) phosphorylation and nitric oxide production in isolated mesenteric endothelial cells.

Conclusion: Circulating PGRN regulates vascular tone and blood pressure via EphrinA2 and Sortlin1 receptors and eNOS activation. Collectively, our data suggest that deficiency in PGRN is a cardiovascular risk factor and that PGRN might be a new therapeutic avenue to treat high blood pressure.

Keywords: progranulin; blood pressure; vascular function; nitric oxide
Clinical Perspective:

What is new?

- PGRN induces vascular relaxation dependent on EphrinA2 and Sortilin1 receptors and nitric oxide formation, such mechanisms seem to be similar in male and female
- Deficiency in PGRN triggers high blood pressure and induces vascular dysfunction characterized by hypercontractility to noradrenaline
- PGRN supplementation restores blood pressure and vascular dysfunction in PGRN deficient mice

What are the clinical implications?

- PGRN deficiency is associated with neurodegenerative diseases including neuronal ceroid lipofuscinosis and frontotemporal dementia (FTD). Our study reveals that lack in PGRN might be associated with vascular dysfunction and high blood pressure
- Supplementation with PGRN might be a potential therapeutic route to treat high blood pressure and diseases associated with vascular dysfunction
- Reduction in PGRN might be a target to screen for higher cardiovascular risk
Abbreviations

Progranulin (PGRN)

Nitric oxide synthase (NOS)

Endothelial NOS (eNOS)

High blood pressure (HBP)

Endothelium-derived relaxing factors (EDRF)

Endothelium-derived hyperpolarizing factor (EDHF)

Endothelium-derived contracting factors (EDCF)

Protein kinase B (AKT)

Nuclear factor-κB (NFκB) Angiotensin II (Ang-II)

Aldosterone (Aldo)

Phosphate-buffered saline (PBS)

Paraformaldehyde (PFA)

Mouse Mesenteric Endothelial Cells (mmec)

Human Mesenteric Endothelial Cells (hmec)

2-Mercaptoethanol (β-mercaptoethanol)

Radioimmunoprecipitation assay buffer (RIPA)

α Smooth Muscle Actin (αSMA)

Platelet endothelial cell adhesion molecule (CD31)
Introduction

Hypertension, commonly known as high blood pressure (HBP), is a chronic medical condition that affects millions of people worldwide. It is a silent killer that often goes undetected for years, and if left untreated, can lead to serious health consequences such as heart disease, stroke, and kidney failure. HBP is still regarded as the primary risk factor for the global burden of illness despite substantial advancements in prevention and treatment1,2, and it affects people in both economically developed and developing countries equally1,3. HBP patients are more likely to suffer from chronic renal disease, dementia, myocardial infarction, and stroke2,3. The central nervous system (CNS), the kidneys, and the vasculature have all been identified as potential triggers for HBP3-7. In this work, our main goal was to comprehend how changes in the vasculature contributed to the development of HBP.

Vascular resistance is supported by three major factors: the viscosity of the blood, the length, and the diameter of the blood vessels5. High systemic vascular resistance, which can lead to HBP, is primarily caused by changes in vascular stiffness, inflammation, and tone3,5,6,9-11. Control of vascular tone is coordinated primarily by a balance between endothelium-derived relaxing factors (EDRF) such as nitric oxide, prostaglandins, endothelium-derived hyperpolarizing factor (EDHF), and endothelium-derived contracting factors (EDCF) such as endothelin-1, thromboxane, and reactive oxygen species2-5, an unbalance between these factors triggers vascular hypercontractility leading to elevated vascular resistance.

Obesity6,7, diabetes8,9, and lipodystrophy10-12 are major causes of HBP. Interestingly, these conditions share a striking circulating increase of progranulin (PGRN)13-17, however why PGRN is elevated in the plasma and if this increase can modulate the vascular tone and blood pressure is
PGRN is a highly conserved glycoprotein that is expressed in adipocytes, neurons, immune cells, and endothelial cells18-20. It plays a pivotal role in regulating wound healing, cell growth, and inflammation via autocrine, paracrine, or endocrine actions18-20. Studies have shown that PGRN has anti-inflammatory and antihypertrophic aspects in sepsis21, liver fibrosis22, diabetic nephropathy15, 23, age-related cardiac disorders24, ischemia/reperfusion diseases25, and atherosclerosis26-28. Other studies have found that PGRN is associated with neurodegenerative diseases18, 29, 30. For instance, loss of PGRN causes neuronal ceroid lipofuscinosis19, 31 and frontotemporal dementia (FTD)19, 31, while reduced PGRN levels increase the risk of Parkinson’s disease and Alzheimer’s disease19. Finally, prior studies have shown a connection between PGRN and endothelial activity via regulating protein kinase B (AKT) and endothelial nitric oxide synthase (eNOS), as well as blocking nuclear factor-κB (NFkB)26, 32, 33. Although a connection between endothelial activation and PGRN has been previously suggested, its association with vascular tone and blood pressure is still undetermined.

Herein, we used PGRN-deficient mice and recombinant PGRN combined with pharmacological interventions to better understand the contribution of circulating PGRN to vascular tone and blood pressure regulation and more specifically to test the hypothesis that PGRN maintains vascular function and blood pressure via modulating endothelial factors.

Material and methods

Eleven- to thirteen-week-old male and female C57BL6/J wild type (PGRN+/+) and B6(Cg)-Grntm1.1Aidi/J (PGRN-/-) were used. All mice were fed with standard mouse chow and tap water was provided ad libitum. Mice were housed in an American Association of Laboratory Animal
Care–approved animal care facility in the Rangos Research Building at the Children’s Hospital of Pittsburgh of the University of Pittsburgh. Institutional Animal Care and Use Committee approved all protocols (IACUC protocols # 19065333 and 22061179). All experiments were performed in accordance with Guide Laboratory Animals for The Care and Use of Laboratory Animals.

Mouse models of HBP

To characterize the circulating levels of PGRN in HBP, we used two different models.

- **Angiotensin II (Ang-II) treated mice**: Male mice were infused with vehicle or Ang-II (490 ng/min/kg) for 14 days with ALZET osmotic minipumps (Alzet Model 1002; Alzet Corp Durect, Cupertino, CA).

- **Aldosterone (Aldo) treated mice**: Male mice were infused with vehicle or aldosterone (600 μg/kg per day) for 14 days with ALZET osmotic minipumps (Alzet Model 1002; Alzet Corp Durect, Cupertino, CA) while receiving 1% saline in the drinking water.

Restoration of circulating PGRN

Mice were treated with recombinant PGRN (rPGRN) ALZET osmotic minipumps (Alzet Model 1001; Alzet Corp Durect, Cupertino, CA) for 7 consecutive days (20ug/day)

Circulating PGRN levels

Enzyme-Linked Immunosorbent Assay (ELISA) was used to detect plasmatic PGRN (R&D biosystem).

In vivo blood pressure measurement

Blood pressure was analyzed via radiotelemetry using HD-X10 telemeter (Data Sciences International, St Paul, MN). Transmitters were implanted as described previously. After 7 days of recovery from surgery, necessary for the mice to gain their initial body weight, data were
recorded for 5 days as a baseline. Then, rPGRN was continuously administrated as described above.

Indices of autonomic function

To analyze whether changes in autonomic response interfere with any changes in blood pressure, indices of the autonomic function were obtained on the last day of the recording baseline period. A classic pharmacological method consisting of a single intraperitoneal injection of the ganglionic blocker mecamylamine (5 mg/kg) or of the β-adrenergic receptor blocker propranolol (6 mg/kg) was used36-38. Injections were conducted more than 2 h apart in a random order. Changes in blood pressure response to pharmacological compounds within 60 min post-injection were reported. Data were expressed as a percent of the baseline value.

Histology

PGRN+/+ and PGRN−/− were euthanized for aortae harvest and perfused with cold phosphate-buffered saline (PBS). Aortae were collected and placed in 4% paraformaldehyde (PFA) solution for histology analysis. After 12h in PFA, tissues were placed in 70% ethanol until the day of preparing the samples for histology. Aortae were embedded in paraffin, then samples were sectioned and stained with hematoxylin and eosin (H&E) and Masson's Trichrome to analyze the vascular remodeling and structure.

Vascular function

Rings from second-order mesenteric resistance arteries were mounted in a wire myograph (Danysh MyoTechnology) for isometric tension recordings with PowerLab software (AD Instruments) as described before34, 35, 39. Briefly, rings (2mm) were placed in tissue baths containing warmed (37 °C), aerated (95% O\textsubscript{2}, 5% CO\textsubscript{2}) Krebs Henseleit Solution: (in mM: 130 NaCl,
4.7 KCl, 1.17 MgSO₄, 0.03 EDTA, 1.6 CaCl₂, 14.9 NaHCO₃, 1.18 KH₂PO₄, and 5.5 glucose) and after 30 min of stabilization, curves of tension were performed to adjust the ideal tension for each segment.

- **Protocol to study the effects of PGRN:** Concentration-response curves (CRC) for noradrenaline were performed to study the role of PGRN on vascular tone control. Arteries were incubated with rPGRN for 1h prior noradrenaline curves in three different concentrations (100, 300, and 600ng/mL).

- **Protocol to study the endothelial factors:** CRC to noradrenaline was performed in presence of cyclooxygenase 1 and 2 inhibitor (Indomethacin, 10µM), NOS inhibitor (L-NAME, 100µM), or the combination of indomethacin and L-NAME (to indirectly analyze the endothelium-derived hyperpolarizing factor, EDHF).

- **Protocol to study the receptors of PGRN:** Arteries were pre-incubated (30 minutes prior rPGRN incubation) with EphrinA2 antagonist (ALW-II-4127, 5µM) or Sortilin1 inhibitor (AF38469, 40µM).

Freshly endothelial cells isolation from mesenteric bed

Adapted from our previous publications. Male and female mice were sacrificed, and their mesenteric beds excised and pooled, washed in PBS and diced into small pieces, which were incubated in Dulbecco’s Modified Eagles Medium (DMEM; Gibco, Thermo Fisher Scientific, NH-USA) containing 10% fetal bovine albumin (FBS), 2mg/mL of collagenase II and 40 mg/ml dispase-II at 37°C for 1 hour while shaking. The cell suspension was vigorously vortexed and meshed through 40 µm nylon cell strainers (Fisherbrand, Thermo Fisher Scientific, NH-USA). After centrifugation, the cell pellet was resuspended in 1X PBS with 0.5% bovine serum albumin (BSA).
and 2 mM ethylenediaminetetraacetic acid (EDTA). Endothelial cells were labeled with CD31-conjugated magnetic microbeads and sorted using magnetic separation LS columns (Miltenyi Biotech, German). RNA was isolated as described below and the purity of endothelial cells was checked by evaluating smooth muscle cells (αSMA) and endothelial cells (CD31 and eNOS) markers. Expression of EphrinA2 and Sortilin1 was evaluated in samples from male and female mice.

RT-PCR

mRNA from mesenteric bed and freshly isolated flow through and endothelial cells from mesenteric beds were extracted using RNeasy Mini Kit (Qiagen, Germantown, MD – USA). Complementary DNA (cDNA) was generated by reverse transcription polymerase chain reaction (RT-PCR) with SuperScript III (Thermo Fisher Waltham, MA USA). Reverse transcription was performed at 58 °C for 50 min; the enzyme was heat inactivated at 85 °C for 5 min, and real-time quantitative RT-PCR was performed with the PowerTrack™ SYBR Green Master Mix (Thermo Fisher, Waltham, MA USA). Sequences of genes as listed in supplementary table 1. Experiments were performed in a QuantStudio™ 5 Real-Time PCR System, 384-well (Thermo Fisher, Waltham, MA USA). Data were quantified by 2ΔΔ Ct and are presented by fold changes indicative of either upregulation or downregulation.

Culture of endothelial cells

Mouse Mesenteric Endothelial Cells (mMEC) or human Mesenteric Endothelial Cells (hMEC) were purchased from Cell Biologics (Chicago, IL, USA). Cells were maintained in Complete Mouse Endothelial Cell Medium (Cell Biologics, Chicago, IL, USA) containing Endothelial Cell Medium Supplement Kit (Cell Biologics, Chicago, IL, USA). Cells were used between passage 4-8.
Protocol of endothelial cells treatment

Cells were treated with rPGRN (600ng/mL) at different times (0-60 minutes). To understand by which receptors PGRN induces endothelial cell activation. hMEC were treated with rPGRN with or without ALW-II-4127 (5µM) or AF38469 (40µM). Then, eNOS phosphorylation and NO levels were measured as described below. EphrinA2 and Sortilin1 protein expression was also analyzed in mMEC and hMEC.

Western Blot

mMEC and hMEC samples were directly homogenized using 2x Laemmlli Sample Buffer and supplemented with 2-Mercaptoethanol (β-mercaptoethanol) (BioRad Hercules, California – USA). Aortic protein was extracted using radioimmunoprecipitation assay buffer (RIPA) buffer (30mM HEPES, pH 7.4,150mM NaCl, 1% Nonidet P-40, 0.5% sodium deoxycholate, 0.1% sodium dodecyl sulfate, 5mM EDTA, 1mM NaVO₄, 50mM NaF, 1mM PMSF, 10% pepstatin A, 10 μg/ml leupeptin, and 10 μg/ml aprotinin). Proteins were separated by electrophoresis on a polyacrylamide gradient gel (BioRad Hercules, California – USA), and transferred to Immobilon-P poly (vinylidene fluoride) membranes. Non-specific binding sites were blocked with 5% skim milk or 1% bovine serum albumin (BSA) in tris-buffered saline solution with tween for 1h at 24 ºC. Membranes were then incubated with specific antibodies overnight at 4 ºC as described in supplementary table 2. After incubation with secondary antibodies, the enhanced chemiluminescence luminol reagent (SuperSignal™ West Femto Maximum Sensitivity Substrate, Thermo Fisher Waltham, MA, USA) was used for antibody detection.

Nitric oxide measurement
Nitric oxide production was measured by 4,5-Diaminofluorescein diacetate (DAF-2 DA) probe. Briefly, mMEC were treated with rPGRN (600ng/mL) for 60 minutes, with or without pre-incubation of ALW-II-4127 (5µM) or AF38469 (40µM), then cells were washed with PBS and stained with DAF-2 DA (5µM) for 30 minutes before analyze. Fluorescence intensity was analyzed in a fluorimeter (SpectraMax i3x Multi-Mode Microplate Reader) (Emission. 538 nm/Excitation. 485 nm). Bradykinin (10µM) was used as a positive control.

Statistic

For comparisons of multiple groups, one-way or two-way analysis of variance (ANOVA), followed by the Tukey post-test was used. Differences between the two groups were determined using Student’s t-test. The vascular function data are expressed as a percentage of KCl (60mM)-induced maximal response (mN/KCL response). The concentration-response curves were fitted by nonlinear regression analysis. Maximal response (Emax) was determined. Analyses were performed using Prism 9.0 software (GraphPad). A difference was considered statistically significant when P ≤ 0.05.

Results

Hypertension is associated with high circulating levels of PGRN

Previous studies have shown that circulating PGRN is elevated obesity, diabetes, and lipodystrophy – major causes of cardiovascular diseases. Here we observed that two different models of hypertension, Ang-II, or Aldo-treated mice, displayed approximately 4.5-fold increases in circulating PGRN (Fig.1A and 1B). However, why PGRN is enhanced in hypertension is fully
unknown. In this study, we are investigating the importance of PGRN in maintaining the blood pressure and vascular tone by using a global PGRN-deficient mouse and PGRN treatment.

PGRN deficiency does not affect vascular inflammation and structure

PGRN seems to have anti-inflammatory effects in different cells and organs and modulate cell growth\(^{18, 20}\), therefore we investigated whether lack of PGRN might affect the inflammatory profile and vascular fibrosis and hypertrophy. Via RT-PCR we observed that PGRN-/- mice do not present inflammation in mesenteric beds and aortic remodeling (fibrosis, hypertrophy, and collagen amount) (Fig.2A-C).

PGRN deficiency elevates blood pressure and increases vascular contractility

Via radiotelemetry we found that lack in PGRN increases the MAP (Fig.3A), which seems not to be dependent on sympathetic modulation because propranolol and mecamylamine affected similarly the blood pressure in PGRN+/+ and PGRN-/- (Fig.3B-C). However, PGRN-/- mice presented higher vascular contractility compared to PGRN+/+ independent on sex since mesenteric arteries from male and female mice responded equally (Fig. 3D-E). Furthermore, increase in contractility in male and female for noradrenaline (an adrenergic agonist) was not associated with changes in expression of \(\alpha\)-adrenergic receptors, no difference in \(\alpha1a\), \(\alpha1b\), and \(\alpha1d\) was found (Fig. 1F and 1G).

PGRN replacement restores blood pressure and vascular contractility

To understand whether circulating PGRN maintains the blood pressure and vascular function we restored PGRN levels by treating PGRN-/- mice with rPGRN (20ug/day/7 days, via osmotic mini-pump). PGRN restoration decreased the vascular contractility in male and female PGRN-/- mice.
(Fig.4A and 4B), as well as recovered the MAP (Fig.4C), with no significant effects in PGRN+/+. These data suggest that circulating PGRN helps maintain physiological blood pressure levels.

PGRN attenuates vascular contractility in males and females dependent on EphrinA2 and Sortilin1

To study the mechanisms whereby PGRN exerts its anti-contractility effects, we treated mesenteric arteries from male and female control mice (PGRN+/+) for 1h prior noradrenaline CRC. We found that 600ng/ml of PGRN, but not 100 or 300ng/mL, decreased vascular contractility in male and female mice (Fig.5A and 5B).

Next, we evaluated by which receptor PGRN exerts its anti-contratilile effect via pharmacologically blocking two known receptors for PGRN: EphrinA2 and Sortilin1. Antagonism of EphrinA2, with ALW-II-4127 (5uM), or Sortilin1, with AF38469, (40uM) prevented the PGRN effects in mesenteric arteries from male and female mice (Fig. 6A-D).

Finally, we established a protocol of freshly isolation of endothelial cells from mesenteric beds by using CD31+ microbeads to measure the expression of EphrinA2 and Sortilin1 expression in endothelial cells from male and female mice. We firstly characterized the purity of endothelial cells by measuring the gene expression of αSMA (marker of smooth muscle cell) and CD31 and eNOS (markers of endothelial cells) in flow through and endothelial cells, we found a striking reduction in αSMA along with a clear increase in CD31 and eNOS in endothelial cells versus flow through (Fig. 6E). Our analyze of the expression of EphrinA2 and Sortilin1 in freshly isolated endothelial cells from male and female revealed no difference between the sexes (Fig. 6F).

PGRN reduces vascular contractility via nitric oxide production
To study the molecular mechanisms whereby PGRN reduces the adrenergic contractility in male and female mice, we used different pharmacological tools to block endothelial derived factors formation including nitric oxide, prostaglandins production, and EDHF. We found that L-NAME (NOS inhibitor) blunted the difference in noradrenaline response caused by PGRN incubation in mesenteric arteries from male and female mice (Fig. 7A and 7D), whereas indomethacin (COXs inhibitor) only affected the response in arteries incubated with vehicle but did not impact the PGRN effects in both sexes (Fig. 7B and 7E). Furthermore, L-NAME and indomethacin combination did not change any response in mesenteric arteries from male and female mice (Fig. 7C and 7E). These findings suggest that PGRN exerts its anti-contrac tile effects via modulating nitric oxide formation and/or attenuating contractile prostaglandins.

In this study, we particularly focused on understanding whether PGRN induces nitric oxide formation in mesenteric endothelial cells. Thus, we firstly analyzed if mesenteric endothelial cells from mouse and human express EphrinA2 and Sortilin1, as demonstrated in figure 8A, both receptors are well-expressed in mouse and human cells. Next, we analyzed whether PGRN induces eNOS activation and nitric oxide formation in mMEC. PGRN triggered eNOS activation (phosphorylation of Ser1177 residue) and elevated nitric oxide production, which were prevented by blocking EphrinA2 and Sortilin1 (Fig. 8C and 8D). Bradykinin was used as a positive control of nitric oxide production. Consequently, we can hypothesize that PGRN modifies vascular tone and blood pressure by controlling the synthesis of nitric oxide and prostanoids, which seem to be dependent on EphrinA2 and Sortilin1.
Discussion

Although PGRN is extensively researched in neurodegenerative disorders18, 19, 45, little is known about its significance in vascular biology and blood pressure regulation. Our study is the first to extensively examine how circulating PGRN affects regulating blood pressure and vascular tone. As a result, we were able to show that, under physiological conditions, circulating PGRN aids in regulating vascular resistance and possibly blood pressure maintenance. Moreover, high levels associated HBP in the blood may act as a defensive mechanism to help lower blood pressure. Lastly, it appears that these protective processes depend on EphrinA2, Sortlin1, and nitric oxide. According to these findings, individuals with low PGRN levels may be more susceptible to cardiovascular events, whereas chronic PGRN treatment is not only safe but also advantageous for the cardiovascular system. Moreover, the therapy of HBP with PGRN may be an intriguing therapeutic route because it likely modulates nitric oxide formation.

Although PGRN effects on neurodegeneration have received extensive study, little is known about how it may affect cardiovascular physiology or pathology. For instance, PGRN-deficient mice exhibit worse cardiorenal phenotype in a hyperhomocysteinemia diet46, greater renal injury in the diabetes model15, and accelerated heart hypertrophy on an age-dependent basis24. More recently, Gerrits et al45 revealed that neurovascular unit is severely affected in PGRN-associated frontotemporal dementia. Although these studies implicate that lack in PGRN induces cardiovascular and renal dysfunction or predisposes a worse phenotype in different conditions, the role of PGRN deficiency on controlling blood pressure is not well-explored. Herein, we observed that PGRN maintains the blood pressure and vascular tone by observing that global PGRN deficient mice display elevated blood pressure and increased vascular contractility, with
no interference on vascular inflammation and remodeling or changes in sympathetic tone. Our data differ from previous findings, where the authors found, via echocardiography24, 46, that deficiency in PGRN does not affect the blood pressure. Possibly our blood pressure recorded via telemetry was more sensitive to detect any small changes in blood pressure. Interestingly, we could restore the blood pressure in PGRN-/− mice by returning circulating PGRN for 7 consecutive days.

A study published by Dr. Yamawaki’s group in 201747 revealed that isolated superior rat mesenteric artery rings incubated with PGRN (10–100 ng/mL) show an increased sensitivity to acetylcholine suggesting that PGRN is physiologically relevant to keep the vascular tone. Aligned with these findings, we observed that deficiency in PGRN triggers vascular dysfunction, characterized by elevated response to noradrenaline, which is blunted by supplementing PGRN-/- mice with rPGRN. Furthermore, we noted that 6-times more PGRN than shown previously47, attenuates noradrenaline response in mesenteric arteries from male and female mice. Therefore, we can suggest that circulating PGRN maintains vascular tone and blood pressure and, in hypertension models, circulating PGRN is likely elevated as a compensatory mechanism in order to promote a decrease in vascular resistance and subsequently decrease the blood pressure.

Several PGRN receptors have been identified, including EphrinA248 and Sortilin119. EphrinA2 belongs to a family of receptor tyrosine kinases which is crucial for migration, vascular and epithelial development48, 49. Studies have shown that PGRN can bind to EphrinA2 and induce AKT activation and angiogenesis48. While Sortlin1 is a sorting receptor that can reduce PGRN bioavailability by capturing and transporting it to the lysosome for destruction50, however not all PGRN proceeds along the lysosome pathway; instead, some may move to an unknown additional
Here, we found that inhibiting EphrinA2 or Sortilin1 blunts the anti-contractile action brought on by PGRN. These findings indicate that a possible crosstalk between EphrinA2 and Sortilin1 may exist and that further research is necessary to unravel such communication. Perhaps Sortilin1 might regulate some intracellular pathways, which can interfere with EphrinA2 receptor activation, e.g., AKT pathway. Since we found that PGRN affects vascular contractility in males and females, we investigated whether EphrinA2 or Sortilin1 expression is similar in male and female mesenteric endothelial cells, we discovered that both male and female mesenteric endothelial cells express these two PGRN receptors equally.

Endothelial cells are responsiveness to PGRN effects. PGRN can directly protect the vascular endothelium against atherosclerotic environment by eNOS and NFkB, induce capillary morphogenesis and GRN autoregulation, and influences growth and development of blood vessels. We found that the anti-contractile effect of PGRN is mediated by nitric oxide formation, since blocking NOS blunted the difference between arteries incubated or not with rPGRN. Moreover, such effect seems to be sex independent because arteries from male and female mice responded similarly. Also, we discovered that PGRN may alter vasoconstrictor prostanoids. This conclusion may be drawn from the observation that only naive arteries, not PGRN-treated arteries, responded to cyclooxygenase inhibitor. To better understand the methods through which PGRN modifies the cyclooxygenase pathway, more research is required. Since double inhibition (NOS and cyclooxygenase) had no effect on any PGRN response, our data further imply that EDHF does not appear to be involved in the effects of PGRN.

As mentioned previously, PGRN can modulate nitric oxide production in endothelial. To confirm whether PGRN induces nitric formation via EphrinA2 or Sortilin1 we took advantage of culture of
mesenteric endothelial cells. Firstly, we demonstrated that mesenteric endothelial cells from mouse and human express both receptors, then we observed that PGRN leads to eNOS activation and nitric oxide formation via EphrinA2 or Sortilin1 activation. Thus, we can suggest that PGRN modulates the vascular tone via EphrinA2 or Sortilin1 and eNOS activation.

In conclusion, this work offers the first proof that PGRN aids in controlling blood pressure and vascular tone through the production of nitric oxide and EphrinA2 or Sortilin1. Moreover, we have shown that PGRN exerts an anti-contractile effect in both male and female mice via comparable methods. Together, these findings suggest that PGRN deficiency may contribute to vascular dysfunction, and hypertension, or predispose patients to a more severe cardiovascular injury. Therefore, PGRN may provide a novel treatment strategy for lowering blood pressure and restoring vascular tone. Further research is required to comprehend the relationship between EphrinA2 and Sortilin1, as well as the effects of PGRN supplementation in people with established high blood pressure.

Acknowledgments, Sources of Funding, & Disclosures

Acknowledgments: This work was supported by: NHLBI-R00 (R00HL14013903), AHA-CDA (CDA857268), Vascular Medicine Institute, the Hemophilia Center of Western Pennsylvania Vitalant, in part by Children’s Hospital of Pittsburgh of the UPMC Health System, and startup funds from University of Pittsburgh to TBN. Schematic in figure 6 was designed using BioRender.

Disclosure: The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
References

36. Bruder-Nascimento T, Butler BR, Herren DJ, Brands MW, Bence KK and Belin de Chantemele EJ. Deletion of protein tyrosine phosphatase 1b in proopiomelanocortin neurons

42. Bruder-Nascimento T, Kress TC, Kennard S and Belin de Chantemele EJ. HIV Protease Inhibitor Ritonavir Impairs Endothelial Function Via Reduction in Adipose Mass and Endothelial Leptin Receptor-Dependent Increases in NADPH Oxidase 1 (Nox1), C-C Chemokine Receptor Type 5 (CCR5), and Inflammation. *J Am Heart Assoc.* 2020;9:e018074.

<table>
<thead>
<tr>
<th>Primer</th>
<th>Sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>αSMA FW</td>
<td>TGCTGACAGAGGCACCACACTGAA</td>
</tr>
<tr>
<td>αSMA RV</td>
<td>CAGTTGTACGTCCAGAGGCAATAG</td>
</tr>
<tr>
<td>CD31 FW</td>
<td>CCAAGGCCAGTAGCATCATGGTC</td>
</tr>
<tr>
<td>CD31 RV</td>
<td>GGATGGTGAAGTTGGCTACAGG</td>
</tr>
<tr>
<td>eNOS FW</td>
<td>CGCAAGAGGAAGGAGTCTAGCA</td>
</tr>
<tr>
<td>eNOS RV</td>
<td>TCGAGCAAAGGCACAGAAAGTGG</td>
</tr>
<tr>
<td>EphrinA2 FW</td>
<td>CAAAGTGCACGAGTTCCA</td>
</tr>
<tr>
<td>EphrinA2 RV</td>
<td>CTCCTGCCAGTACCAGAAGC</td>
</tr>
<tr>
<td>Sortilin1 FW</td>
<td>CTACTCCATCCTGGCAGCCAAT</td>
</tr>
<tr>
<td>Sortilin1 RV</td>
<td>CTACTCCATCCTGGCAGCCAAT</td>
</tr>
<tr>
<td>α-adrenergic 1a FW</td>
<td>GGCTGGAGCATGGGTATATG</td>
</tr>
<tr>
<td>α-adrenergic 1a RV</td>
<td>CTGCCATTCTTCTCTGTGAT</td>
</tr>
<tr>
<td>α-adrenergic 1b FW</td>
<td>GGCATTGTAGTCGGAATGTCATC</td>
</tr>
<tr>
<td>α-adrenergic 1b RV</td>
<td>CTGTTGAAGTAGCCACAGCCAGA</td>
</tr>
<tr>
<td>α-adrenergic 1d FW</td>
<td>GCTGGTCCCCCTTTTTCTTC</td>
</tr>
<tr>
<td>α-adrenergic 1d RV</td>
<td>ATTGAAGTAGCCACAGCCAGA</td>
</tr>
<tr>
<td>GAPDH FW</td>
<td>GAGAGGCCCTATCCCACTC</td>
</tr>
<tr>
<td>GAPDH RV</td>
<td>TCAAGAGAGTAGGGAGGGCT</td>
</tr>
</tbody>
</table>

Primers were purchased from Integrated DNA Technologies
<table>
<thead>
<tr>
<th>Antibody</th>
<th>Catalog number</th>
<th>Company</th>
<th>Concentration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sortilin1</td>
<td>20681</td>
<td>Cell Signaling</td>
<td>1:1000</td>
</tr>
<tr>
<td>EphrinA2</td>
<td>sc-398832</td>
<td>Santa Cruz</td>
<td>1:500</td>
</tr>
<tr>
<td>Ser1177 eNOS</td>
<td>612393</td>
<td>BD Biosciences</td>
<td>1:1000</td>
</tr>
<tr>
<td>eNOS</td>
<td>610296</td>
<td>BD Biosciences</td>
<td>1:1000</td>
</tr>
<tr>
<td>βactin</td>
<td>A3854</td>
<td>Sigma</td>
<td>1:20000</td>
</tr>
</tbody>
</table>
Figure 1. Hypertension is associated with high levels of circulating PGRN. PGRN plasma levels in Ang-II treated mice (490ng/Kg/14 days) (A) and Aldo-treated mice (600ng/Kg/14 days). Data are presented as Mean ± Standard Error of the Mean (SEM). N=4-6. *P<0.05 vs ctrl.
Figure 2. Deficiency in PGRN does not affect vascular inflammation and aortic remodeling.

Inflammatory markers measured by RT-PCR in mesenteric beds from PGRN+/+ and PGRN-/- (A).

Masson's trichrome stain and H&E stains (B) and collagen1a1 gene expression in thoracic aortae from PGRN+/+ and PGRN-/- 11-13-weeks-old male mice were used. Data are presented as Mean ± Standard Error of the Mean (SEM). N=3.
Figure 3. Deficiency in PGRN triggers high blood pressure and vascular dysfunction. Mean arterial pressure (MAP) measured via radiotelemetry in male (11-13-weeks-old) PGRN+/+ and PGRN−/− (A). Effects of propranolol, 6 mg/kg (B) and mecamylamine, 5 mg/kg (C) on MAP. Concentration responses curves (CRC) to noradrenaline in mesenteric arteries (2nd order) from male (D) and female (E) PGRN+/+ and PGRN−/− mice. α1-adrenergic gene expression in mesenteric beds from male (F) and female (G) PGRN+/+ and PGRN−/− mice. Gray bars represent nighttime in telemetry. Data are presented as Mean ± Standard Error of the Mean (SEM). N=3-4. *P<0.05 vs PGRN+/+.
Figure 4. PGRN replacement restores vascular function and MAP in PGRN deficient mice.

Concentration responses curves (CRC) to noradrenaline in mesenteric arteries (2nd order) from male (A) and female (B) PGRN+/+ and PGRN-/- treated with rPGRN. Mean arterial pressure (MAP) measured via radiotelemetry in male (11-13-weeks-old) PGRN+/+ and PGRN-/- treated with rPGRN (C). Gray bars represent nighttime in telemetry. Data are presented as Mean ± Standard Error of the Mean (SEM). N=3-4. *P<0.05 vs PGRN-/-; #P<0.05 rPGRN treated mice vs PGRN-/-.
Figure 5. PGRN incubation attenuates vascular contractility. Effects of PGRN (100, 300, and 600ng/mL/1h) on concentration responses curves (CRC) to noradrenaline in mesenteric arteries (2nd order) from male (A) and female (B) C57BL6/J mice (11-13-weeks-old). Data are presented as Mean ± Standard Error of the Mean (SEM). N=4-6. *P<0.05 vs vehicle.
Figure 6. PGRN incubation attenuates vascular contractility dependent on EphrinA2 and Sortilin1. Concentration responses curves (CRC) to noradrenaline in mesenteric arteries (2nd order) from male (A and C) and female (B and D) C57BL6/J mice (11-13-weeks-old) in presence of PGRN (600ng/mL/1h) with or without EphrinA2 antagonist (ALW-II-4127, 5μM) (A and B) or Sortilin1 inhibitor (AF38469, 40μM) (C and D). Smooth muscle cell (αSMA) and endothelial cell markers (CD31 and eNOS) in freshly isolated endothelial cells and flow through from mesenteric bed measured by RT-PCR (E). EphrinA2 and Sortilin1 gene expression in freshly isolated endothelial cells from male and female mice. Data are presented as Mean ± Standard Error of the Mean (SEM). N=4-6. *P<0.05 vs arteries treated with rPGRN.
Figure 7. PGRN incubation attenuates vascular contractility dependent on nitric oxide.

Concentration responses curves (CRC) to noradrenaline in mesenteric arteries (2nd order) from male (A-C) and female (D-F) C57BL6/J mice (11-13-weeks-old) in presence of PGRN (600ng/mL/1h) with or without NOS inhibitor (L-NAME, 100µM) (A and D), cyclooxygenase inhibitor (indomethacin, 10µM) (B and D), or L-NAME+ indomethacin (C and F). Data are presented as Mean ± Standard Error of the Mean (SEM). N=4-6. *P<0.05 vs arteries treated with rPGRN; #P<0.05 vs L-NAME.
Figure 8. PGRN activates eNOS in mesenteric endothelial cells via EphrinA2 and Sortilin1.

Expression of EphrinA2 and Sortilin1 in mouse mesenteric endothelial cells (mMEC) and human mesenteric endothelial cells (hMEC) (A). Effects of rPGRN (600ng/mL for 30 and 60 minutes) on eNOS phosphorylation (Ser^{1177}) in mMEC (B). Effects of rPGRN on nitric oxide formation measured by DAF-AM (C). Bradykinin (10µM) was used as a positive control. Experiments were performed in presence or absence of EphrinA2 antagonist (ALW-II-4127, 5µM) or Sortilin1 inhibitor (AF38469, 40µM). Data are presented as Mean ± Standard Error of the Mean (SEM). N=3-8.

*P<0.05 vs arteries treated with rPGRN; #P<0.05 vs L-NAME.