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Abstract 

Animals rely on predicting their environment and the consequences of their actions to adapt to a 
constantly changing world. The predictive coding hypothesis proposes that the brain generates 
predictions and continuously compares them with bottom-up sensory inputs to guide behavior. However, 
how the brain reconciles conflicting top-down predictions and bottom-up sensory information during 
behavior remains unclear. To address this question, we simultaneously imaged neuronal populations in 
the mouse somatosensory cortex and the posterior parietal cortex during an auditory-cued texture 
discrimination task. After mice learnt the task with fixed tone-texture matching, mismatched pairing 
caused conflicting tone-based texture predictions and actual texture inputs. When top-down interaction 
was dominant, texture representations in both areas were modified and mice decided based on the 
predicted rather than actual texture, whereas dominant bottom-up interaction corrected the 
representations as well as behavioral choice. Our findings provide evidence for hierarchical predictive 
coding in the mouse neocortex and open new avenues for understanding higher cognitive functions.  

 

Introduction 

Predictive processing has long been an attractive 
theory of the mind. This theory states that the brain is 
organized hierarchically, with predictions being 
generated in high-level areas, such as frontal and 
posterior association areas, and passed down to lower 
areas in a top-down fashion. Mismatched sensory 
inputs that do not fit the predictions in this scheme 
introduce bottom-up flow that represents prediction 
errors1. Despite the computational attractiveness of 
this model, it remains elusive how it is implemented 
in the brain. While reward prediction and reward 
prediction errors have been studied extensively for the 
dopamine system and in frontal cortices2–5, sensory 
prediction in the neocortex is much less understood. 
Sensory prediction often originates from prior 
experience, typically based on learnt associations with 
other sensory cues. It has been observed in many 
sensory modalities including vision, sound, taste and 
touch6–10. Such predictions can increase the encoding 
speed and reduce the neural response to expected 
sensory inputs in primary sensory areas6,8, facilitating 
decisions and behavioral output. Strong sensory 
predictions can also modify perception, in extreme 
cases causing hallucination11–13.  

One challenge to study sensory prediction is to 
simultaneously observe bottom-up and top-down 
information. Studies targeting long-range projection 

axons as a proxy for top-down inputs to local 
populations have demonstrated that such pathways 
can indeed modulate sensory perception and decision 
making6,9,14. However, studies that focus on how 
neuronal populations along the brain hierarchy 
represent and transform information, as well as how 
they communicate with each other, have started only 
recently15–20. These studies discovered, for example, 
that top-down and bottom-up information are 
channeled through separate activity subspaces15,16, 
and that the communication channels are shaped by 
experience or learning, especially the top-down 
subspace18,19,21. Despite these insights, it is still 
unknown how top-down predictions and bottom-up 
sensory inputs interact during behavior and affect 
behavioral outputs, particularly when they are in 
conflict. 

A key area for routing primary sensory information 
during active behaviors is the posterior parietal cortex 
(PPC). PPC is densely interconnected with primary 
sensory areas such as the visual cortex, the 
somatosensory cortex, and the auditory cortex, as well 
as frontal areas such as the orbitofrontal cortex and the 
anterior cingulate cortex, and the associative 
subdivision of thalamus22. PPC is involved in a wide 
range of functions including multisensory integration, 
decision making, working memory, and navigation22. 
In particular, PPC has been shown to integrate tactile, 
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visual and auditory information in rodents23–25, and to 
route relevant sensory information to frontal areas 
during active behaviors26–28. Of particular relevance to 
our study is that different subdivisions of PPC engage 
differentially in the processing of distinct stimulus 
modalities: we recently showed that the rostrolateral 
area (PPC-RL) is activated together with the primary 
somatosensory (S1) area during texture discrimination, 
whereas the anterior area (PPC-A; located medially to 
PPC-RL) activates in conjunction with auditory cortex 
areas in an auditory discrimination task26. These PPC 
areas are critical for further transforming sensory 
information into decisions26,29–31, making them 
attractive candidate high-level areas for studying 
predictive processing. 

Here, we aim to better understand how cortical areas 
along the cortical hierarchy interact when sequential 
stimuli from two modalities (auditory and tactile) 
provide task-relevant information. In this case, 
repeatedly matching specific pairs of auditory-tactile 
stimuli allows the animal to form predictions about the 
second stimulus. It is then especially interesting to 
reveal how regional neural representations and cross-
areal interactions are affected when conflicts between 
predictions and sensory inputs are imposed. For this 
study, we focused on the barrel field in S1 and PPC 
subdivisions as representative areas along the 
hierarchy. We designed a behavioral task with cross-
modal sensory predictions (by training mice on 
matched tone-texture sequence pairs), and then 
introduced prediction errors by occasionally 
presenting mismatched tone-texture pairs. We used 
the behavioral choices of mice as a proxy for their 
perceptual representations. We found that during 
mismatch, predictions could modify sensory encoding 
in both S1 and PPC, and that such representational 
changes were also reflected in the behavioral choice. 
Moreover, these changes only occurred when the top-
down prediction from the relevant subdivision of 
PPC-A was dominant, whereas strong bottom-up 
information from S1 could correct both sensory 
encoding and behavioral outcome. These results 
demonstrate the impact of predictions on sensory 
encoding and suggest that the dynamic interaction 
between top-down and bottom-up information shapes 
sensory information and affects perceptual choice. 

Results 

An auditory-cued texture discrimination task 

To study sensory prediction, we developed an 
auditory-cued texture discrimination task for mice. 
Mice were trained to discriminate two textures (rough 
vs. smooth), and each texture was associated with a 
distinct auditory tone (10 kHz vs. 18 kHz) before 
texture onset. Each tone-texture sequence led to a 
reward from one of the two lick ports (Fig. 1a-b). 

During learning, the tone-texture pairing remained 
fixed to allow mice to gradually associate the tone 
with the upcoming matching texture (“matched 
trials”). Then, in expert mice, we randomly introduced 
10-30% tone-texture mismatch trials (“mismatched 
trials”) to introduce a prediction error (Fig. 1b). In 
these trials, reward was given according to the tone, to 
encourage mice to generate active predictions. Under 
the conflict between tone and texture, mice could 
make two types of choices: when they chose the lick 
port according to the tone (“mismatch-choose-tone” , 
or “MM→Tone” trials), conceptually this situation 
corresponds to the case that the tone-based prediction, 
rather than the actual texture stimulus, dominated the 
decision; when mice chose according to the texture 
(“mismatch-choose-texture”, or “MM→Texture” 
trials), conceptually, the decision was made based on 
the actual texture rather than the tone-based prediction 
(Fig. 1c).  

We trained 16 mice expressing GCaMP6f in L2/3 
neurons (see Methods), all of which could 
successfully learn the task (Fig. 1d; see outliers in 
Supplemental Fig. 1a). We first analyzed the behavior 
of mice across task learning. Compared to naïve 
condition, expert mice showed suppressed licking 
during tone presentation, while the decision time 
shifted to the end of texture presentation 
(Supplemental Fig. 1b-e), indicating that mice 
associated the texture rather than the tone stimulus 
with reward. At the end of the experiment, we tested 
the performance of the mice upon presentation of 
either only tone or only texture while keeping the task 
structure unchanged. With these single-modality 
stimuli, mice could still perform the task above chance 
level, however at a reduced success rate. Furthermore, 
mice performed better for only-texture compared to 
only-tone presentation (Fig. 1e). The tone-only 
condition also resulted in a higher rate of task 
disengagement (miss rate, Fig. 1f), suggesting that 
mice regard the missing texture input as incomplete 
task structure. This also indicates that there was no 
significant re-learning of task rules from the 
mismatched trials, since these single modality 
experiments were done after all mismatched sessions. 
Finally, testing under texture-only condition with 
whiskers removed diminished task performance to 50% 
chance level (Fig. 1e). Together, these results indicate 
that mice rely on both tone and texture stimuli to 
perform the task, with texture being the most relevant 
stimulus, presumably due to its closer temporal link to 
trial outcome. 

In mismatched trials, when an unexpected texture 
followed the tone, mice were less likely to decide 
according to the texture identity compared to matched 
stimuli (Fig. 1g, Correct vs. MM→Texture; in both 
these trial types the decision was made according to 
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the texture identity). Similarly, tone biased the choice 
of mice to a degree that could not be explained by 
mere mistakes (Fig. 1g, Incorrect vs. MM→Tone; in 
both these trial types the decision was made opposite 
of the texture identity). When mice chose according to 
texture under mismatched condition, the lick 
probability during the texture and decision windows 
was slightly reduced (Fig. 1h left, Fig. 1k), indicating 
lower decision confidence. When mice chose 
according to tone, mice licked more decisively (Fig. 
1h right, Fig. 1k), responded faster in general (Fig. 1i), 
and were more likely to lick before texture onset, 
during the tone window (Fig. 1j). It is worth noting 
that in the majority of trials, for all trial types, mice 
started licking after texture onset (Fig. 1h), indicating 

that the texture was the most relevant stimulus for the 
task. While there was no significant difference in the 
face and body movements across trial types 
(Supplemental Fig. 1f-h), the pupil diameter was 
higher across trial time when mice chose according to 
the texture under mismatched condition 
(Supplemental Fig. 1f,i), indicating a higher arousal 
state that could contribute to mice paying more 
attention to the texture input. Overall, these results 
indicate that, despite the prominence of the texture 
stimulus, the preceding auditory tone does bias the 
behavior and choice of mice.  

 

Figure 1. Mouse behavior in an auditory-cued texture discrimination task under matched and mismatched conditions. (a) 
Schematic of experiment setup with head-fixed mice with a 4-mm cranial window over S1 and PPC under a two-photon microscope. 
(b) Schematic of behavior paradigm. Mice were trained to discriminate two textures that were matched with two distinct auditory 
tone cues. After reaching expert level, tone-texture mismatch trials (10-30%) were introduced randomly within sessions. The choice 
window lasted maximally 2-s; it was terminated when the mouse licked during this window and the reward was delivered 
immediately. (c) Schematic, nomenclature and color code of different trial types. Trials were categorized based on the contingency 
of tone, texture, and choice. Colored bars on the left indicate the color code of each trial type. (d) Learning curves of all mice 
showing session-wise performance levels. M30, M33 and M40 were unstable performers: they did not reach expert performance 
level for entire sessions as shown here, but for multiple sub-sessions of 100 trials (see Supplemental Fig. 1a). (e) Performance in 
single-modality experiments, in which either only tone or only texture was presented. As a control, texture-only was also presented 
with whiskers trimmed. Markers indicate individual mice. The outlier (star) is M40 in (d). (f) Miss rates for experiments in (e). 
When only the tone was presented, mice were less engaged in the task. (g) Percentage of each trial type for matched and mismatched 
conditions. (h) Lick probability over trial time on the lick ports according to texture identity (left) or the opposite lick port (right), 
calculated as percentage of trials in each session with a lick event at each given time point. (i) Response time for different trial 
types. Mismatch-choose-tone condition shows a shorter response time overall (p = 0.0283). (j) Percentage of trials in each session, 
in which licks on the final choice spout were recorded during tone presentation. (k) Lick rate during texture presentation for different 
trial types. (e-f: n = 10 mice, 1 session per mouse, naïve was the average of first 3 sessions, expert was the average of best 3 sessions; 
g-k: n = 16 mice, total 148 sessions; Wilcoxon Signed-Rank test; here and in subsequent panels: *p < 0.05, **p < 0.01, ***p < 0.001) 
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Simultaneous imaging of population activity in S1 
and PPC areas during the task 

Using a custom-built two-area two-photon 
microscope32, we simultaneously imaged the 
population activity in S1 and PPC when expert mice 
performed the task (Fig. 2a). As previously reported26, 
auditory and tactile stimuli recruit distinct PPC 
subdivisions: PPC-A (anterior) and PPC-RL 
(rostrolateral), respectively. To study interactions of 
cortical areas along the sensory hierarchy, we 
simultaneous recorded in two sets of experiments 
either S1 and PPC-A (9 mice, 40 sessions) or S1 and 
PPC-RL (14 mice, 91 sessions; 9 mice also had S1 and 
PPC-A sessions) (Fig. 2b). The location of S1 and 
PPC areas were determined by sensory mapping as 
well as retinotopic mapping33 (Supplemental Fig. 1a). 
We recorded in layer 2/3 across multiple depths (3-4 
depths, between 100-300 µm), covering ~50-600 
neurons from each population (Supplemental Fig. 1b-
c; Methods). Calcium indicator fluorescence signals 
from individual neurons and deconvolved spike rate 
were extracted using Suite2p34. All following analysis 
was performed on the deconvolved spike rate. 

All the three areas were engaged in the task, showing 
a varying degree of activation across the task windows. 
We identified task-responsive and discriminative 
neurons from matched conditions, using neuronal 

activity in each task window (Fig. 2c; Supplemental 
Fig. 2d; Methods). While S1 and both PPC-A and 
PPC-RL displayed highest task-related activity during 
the texture window, PPC-A had the highest fractions 
of both task-responsive and discriminative neurons in 
the remaining tone, choice, and reward windows (Fig. 
2d-e), indicating its higher level position in the 
hierarchy. PPC-RL was less involved than PPC-A 
during sensory processing, particularly during tone 
presentation, but was also more engaged than S1 after 
reward delivery. Despite PPC-A being active in both 
tone and texture window, neurons that were active for 
both stimuli accounted only for a small percentage. 
Texture and choice, however, shared ~20% of 
overlapping neurons (Fig. 2f). Overall, S1 was most 
tuned to texture processing, PPC-A was engaged 
throughout the trial time, and PPC-RL was involved 
in texture and reward processing. 

Tone-texture mismatch alters texture neuron 
tuning 

We first asked whether tone-based prediction could 
alter the texture-evoked response of single neurons. 
To answer this question, we analyzed the response 
amplitude of tone- and texture-discriminative neurons. 
While tone-discriminative neurons showed 
differential responses to the distinct auditory tones, 
they did not show significant trial type-dependent 

 

Figure 2. Simultaneous two-photon imaging of task-related S1 and PPC activity. (a) Temporal multiplexing-based 
simultaneous two-area two-photon imaging. Laser pulses were split into two copies, one of which was delayed by half of the pulse 
interval. Each copy was directed to an independently positioned field of view (FOV), and the emitted fluorescence was 
demultiplexed online with fast acquisition hardware. (b) Left: locations of S1, PPC-RL and PPC-A on the left hemisphere (top). 
Example widefield sensory mapping response, as well as example FOV locations, are shown in the bottom panel. Right: example 
FOVs of simultaneously imaged S1 and PPC-RL. (c) Example ΔF/F traces (black) and spike rate (red) of task-responsive neurons 
from one area in one imaging session. (d) Percentage of task-responsive neurons for each task window in S1, PPC-RL and PPC-
A. (e) Percentage of discriminative neurons for each task variable in the three areas. (f) Percentage of joint responsive neurons 
(neurons that are responsive in two task windows). The percentage was calculated as Ni⋂Nj/Ni⋃Nj, where Ni and Nj are sets of 
responsive neurons for task phase i and j. (S1: 14 mice, 118 sessions; PPC-RL: 14 mice, 78 sessions; PPC-A: 9 mice, 40 sessions; 
Wilcoxon Rank Sum test). 
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activity during tone and texture presentation 
(Supplemental Fig. 3a-c). In contrast, texture-
discriminative neurons activity could be altered by 
tone. In S1, texture-discriminative neurons showed 
strong texture selectivity only when mice chose 
according to texture under the mismatched condition; 
when mice chose according to tone, the activity of 
these neurons resembled the response to both the 
expected and the actual texture, showing mixed 
preferences (Fig. 3a-c, top panels). We obtained 
similar results in PPC (Fig. 3a-c, middle and bottom 
panels). In PPC-A, even more strikingly, the texture-
tuned neurons showed strong preference to the 
expected rather than the actual texture when mice 
chose according to tone, but not when they chose 
according to texture (Fig. 3a-c, middle panels). This 
could not be explained by the joint choice selectivity 
of texture neurons, because we observed the same 
effect in PPC-A texture neurons that were not choice-
selective (Supplemental Fig. 4a-b). Additionally, this 
inverted texture preference is distinct from the 
response distribution observed for incorrect trials, 
where mice had the same decision pattern (making the 
choice not according to the texture). These results 
provide strong evidence that tone-based prediction 
can shift the texture representation of individual 
neurons in PPC-A to the expected texture, while 
disrupting the texture representation in PPC-RL and 
S1.  

Tone-texture mismatch alters population encoding 

To further investigate the encoding of different task 
variables in the neuronal populations of these three 
areas and the representational changes, we trained 
linear support vector machine (SVM) decoders on the 

population activity patterns to discriminate tone (tone 
1 vs. tone 2), texture (texture 1 vs. texture 2), choice 
(choose left vs. right), and reward (rewarded at left vs. 
right lick port) (Fig.4a-e; Supplemental Fig. 5a-b). 
Each decoder was trained and cross-validated using 
the time-concatenated spike rates of all neurons from 
the corresponding task window (e.g., texture window 
for the texture decoder; Fig. 4a), using trials with 
matched stimuli (excluding mismatched condition). 
Each trained classifier defines a hyperplane that best 
separates the two variables; by projecting the 
population firing rate onto the orthogonal axis of this 
hyperplane, or the “projection axis”, we could 
estimate the encoding strength of the corresponding 
task variable at each time point over trials10 (Fig. 4a; 
see Methods).  

Among the three areas, PPC-A best encoded tone 
information (Fig. 4b, top; Fig. 4c), consistent with the 
observation that PPC-A has the highest fraction of 
tone-tuned neurons and that it receives more input 
from auditory cortex than PPC-RL26. While the tone 
was mainly encoded in the tone window, its identity 
could still be read out after texture onset (Fig. 4d, gray 
bars indicate shuffled data). Interestingly, tone 
encoding strength corresponded to behavioral choice: 
in mismatch trials, when mice chose according to 
texture, PPC-A populations encoded the tone identity 
weaker as compared to correct trials (Fig. 4c); in 
contrast, when mice chose according to tone, tone 
encoding strength was comparable to correct trials. In 
the latter case, the tone identity (and thus the expected 
texture identity) was still decodable during texture 
presentation (Fig. 4d, middle). Similar results were 
observed in S1 and PPC-RL as well, despite weaker 
tone encoding in these two areas. These observations 

Figure 3. Tone-texture mismatch alters neuronal tuning to texture. (a) Average normalized spike rate of texture 2 discriminative 
neurons in S1, PPC-RL and PPC-A, in matched and mismatched trials. The spike rate of each neuron was normalized to be between 
0 and 1 within each session. (b) Plots of texture 2 vs. texture 1 mean response amplitudes in the texture window for all texture 
discriminative neurons. Plots are shown across areas (rows) and trial types (columns). Each dot represents the responses of one 
neuron in one imaging session. (c) Selectivity index of the texture discriminative neurons during texture window, in different trial 
types. Selectivity index was calculated as the difference between the average response to the preferred texture and the average 
response to the non-preferred texture. (S1: 14 mice, 118 sessions, 1486 neurons; PPC-A: 9 mice, 40 sessions, 400 neurons; PPC-
RL: 14 mice, 78 sessions, 618 neurons; Wilcoxon Rank-Sum test) 
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are consistent with the results that the tone could bias 
the behavior and choice of mice. 

All three areas showed strong texture decoding 
performance (Fig. 4b, bottom). Consistent with the 
results in single neurons, in mismatched trials, the 
actual texture was encoded in all observed populations 
only when mice chose texture, although with less 
confidence compared to normal correct trials (Fig. 4e); 
when mice made their choice based on the tone, the 
expected texture instead of the actual texture was 
encoded (Fig. 4e). The timing of texture encoding is 
also worth noting. In correct trials under matched 
stimuli, the actual texture was encoded slightly before 
texture onset, indicating an active ongoing prediction 
(Fig. 4b, bottom left; Supplemental Fig. 5c). However, 
in mismatch-choose-texture trials, although the 
texture was encoded correctly, this early texture 

encoding was absent (Fig. 4b, bottom “Choose tex”; 
Supplemental Fig. 5c). This finding suggests a 
behavioral state of the mouse where it was waiting for 
and paying attention to the texture stimulus before 
texture onset (in agreement with the higher arousal 
state in Supplemental Fig. 1f,i). In addition, PPC-A 
texture encoding lagged behind of S1 and PPC-RL, 
suggesting that texture encoding was influenced by 
the preceding tone, which predicted the opposite 
texture identity, an effect particularly strong in PPC-
A. On the other hand, in mismatch-choose-tone trials, 
the expected texture was encoded slightly before 
texture onset (Fig. 4b, bottom right; Supplemental Fig. 
5c), and texture encoding in PPC-A preceded that of 
S1 and PPC-RL (Supplemental Fig. 5c), indicating 
that the tone facilitated the encoding of the expected 
texture. This effect was not due to choice-related 
activity, as choice could not be decoded during the 

 

Figure 4. Tone-texture mismatch alters texture encoding in S1 and PPC populations. (a) Left: scheme of the decoders. Black 
line represents the decoder hyperplane; yellow and teal dots represent the neuronal population activity at a given time point in the 
trial; each dot was projected onto the orthogonal axis of the decoder hyperplane to represent the decoder confidence. Right: 
example procedure for texture decoder. (b) Neuronal population decoding of tone (top row) and texture (bottom row). Sensory 
encoding is represented by projection strength on the axes of linear decoders trained to discriminate tone and texture, in the tone 
and texture window, respectively. Line colors indicate area identity (magenta: S1; green: PPC-A; blue: PPC-RL); solid and dash 
lines indicate stimulus identity in the trial. (c) Discrimination index (DI) of tone decoder in the tone window. Stars above each box 
indicate significance compared to shuffled data (gray bars), for which neurons identities were shuffled, whereas trial and time 
correspondences were kept the same. Stars across boxes indicate comparison between trial types. (d) DI of tone decoder in texture 
window. (e) DI of texture decoder in texture window. (f) Decoder projection strength of tone (top row) and texture (bottom row) in 
single-modality experiments. (g) DI of tone decoder and texture decoder in single-modality experiments, in tone window and 
texture window, separately. Stars above each box indicate significance with shuffled data, stars across boxes indicate comparison 
between areas. (Wilcoxon Rank Sum test was used for comparison with shuffled data, Wilcoxon signed-rank test for comparison 
between trial types.) 
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tone window in these trials (Supplemental Fig. 5b, 
top). These results suggest that tone information in 
PPC-A led to encoding of the expected texture across 
S1 and PPC. 

We next wondered whether the tone alone was 
sufficient to induce predictive texture encoding. To 
answer this question, we trained linear classifiers on 
trials where only the tone or only the texture was 
presented. Indeed, we found that tone stimulation 
alone resulted in strong texture encoding in PPC-A 
(Fig. 4f-g, left), and choice was only decodable in this 
area. In contrast, texture stimulation alone reduced the 
texture encoding speed and strength of PPC-A (Fig. 
4f-g, right), but choice engaged both S1 and PPC 
(Supplemental Fig. 5d-e). This further suggests that 
PPC-A is able to generate predictive texture 
information based on the preceding tone, and it serves 
as a center for routing and transforming sensory 
information into decisions. 

Inter-areal interaction between S1 and PPC during 
task trials 

We next asked if such predictive information could be 
explained by the top-down and bottom-up interactions 

between S1 and PPC areas during the task. We started 
by characterizing the interaction structure of S1 and 
PPC populations during the task. To measure the 
interaction between neuronal populations, we used 
canonical correlation analysis (CCA) due to its 
symmetric way of treating the two populations. CCA 
has been applied to analyze the inter-areal interactions 
in several recent studies, for both electrophysiology 
and calcium imaging data16,17,19. In the framework of 
CCA, the activity of a neuronal population can be 
represented in a high-dimensional space, where each 
dimension represents the activity of one neuron in this 
population. The population activity at a given time 
point in a given trial is represented as a point in this 
space. With two simultaneously recorded populations, 
CCA finds pairs of dimensions that maximize the 
correlation between the projections of two populations 
(Fig. 5a). These pairs of dimensions (canonical 
dimensions) define the shared interaction axes of the 
two populations at this time point.  

Stable CCA models depend on having sufficient 
amount of data (time points) compared to the number 
of variables (neurons)35. For a typical dataset, we have 
~200 neurons per area, and ~300 trials per session, 

 

Figure 5. Interaction pattern of S1 and PPC areas during the behavioral task. (a) Illustration of canonical correlation analysis 
(CCA). The activity of each neuronal population can be represented as points in a high-dimensional space, where each dimension 
represents the activity of one neuron in this population. At a given time point in the trial, CCA identifies a set of canonical 
dimensions through linear combinations of variables from the two populations that have maximum correlation. (b) Illustration of 
defining separate CCA axes over the trial time. (c) Top canonical correlation between S1 and PPC-A (green), and S1 and PPC-RL 
(blue). Light colors indicate shuffled correlation, where only trial correspondence between the two areas were shuffled, while trial 
structure was kept the same. (d) S1 and PPC-A interaction was consistently higher than S1 and PPC-RL interaction across trial 
time. (e) Number of significant interaction dimensions were determined by generating shuffled correlations and defining a 
threshold (mean + 3 S.D.) using the first correlation values. Canonical dimensions in real data with correlations higher than this 
threshold were considered significant. Example is from one imaging session. (f) Number of significant dimensions in S1 and PPC-
A, and S1 and PPC-RL pairs. (g) The number of significant dimensions for S1 and PPC-A was also higher than S1 and PPC-RL 
across trial time.  (S1↔PPC-A: 9 mice, 40 sessions; S1↔PPC-RL: 13 mice, 71 sessions;  Wilcoxon Rank Sum test) 
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which is rather challenging for forming a stable CCA 
solution. To ensure that the discovered interaction 
dimensions are stable, we first applied principal 
component analysis (PCA) to both populations and 
kept the first 30 components. As we are interested in 
discovering the interaction between the two 
populations, we then subtracted the stimulus-triggered 
average to keep only the residual activity that captures 
trial-to-trial co-variation. Interaction between brain 
areas is not static16,17; to capture such changing 
interaction, we then applied CCA on the residual 
activity of the two populations using a sliding 0.5-s 
window across the trial time (Fig. 5b). For the best-
correlated interaction axis (the first canonical 
dimension), S1 and PPC-A showed consistently 
stronger interaction over trials than S1 and PPC-RL 
(Fig. 5c-d). S1 and PPC-A interaction was the lowest 
during the inter-trial interval, and ramped up during 
tone presentation, while S1 and PPC-RL interaction 
only increased after texture onset. We then wondered 
whether the number of communication subspace 
between S1 and PPC changes during trial time. To 
answer this question, we determined the number of 

significant canonical dimensions, defined as the 
dimensions with canonical correlation exceeding the 
highest shuffled correlation, where the trial 
correspondence between the two populations was 
randomized (Fig. 5e). Consistent with previous 
reports15,16, S1 and PPC interacted in low-dimensional 
space (1-2 dimensions), with texture and choice 
involving higher interaction dimensions in both pairs 
of areas (Fig. 5f). During tone and texture window, S1 
and PPC-A interacted in higher-dimensional 
subspaces than S1 and PPC-RL (Fig. 5g), indicating 
PPC-A was more involved in sensory processing 
during the task. In the following analysis, we focused 
on the first interaction dimension with the highest 
correlation.  

Top-down and bottom-up interactions govern 
behavioral choice 

In behavioral tasks, sensory information flows 
through the cortical hierarchy to generate decisions. 
For our task, a particularly interesting question is 
whether the behavioral choice of mice under 
mismatch condition could be explained by the net 

 

Figure 6. Top-down and bottom-up interactions between S1 and PPC areas during prediction mismatches. (a) Top-down 
interaction strength (PPC-A/RL to S1) was calculated by the average canonical correlation with a negative lag for PPC, and 
bottom-up interaction strength was calculated by the average correlation with a negative lag for S1 (left and middle panels). The 
direction and strength of S1-PPC interaction was characterized by the information flow index (IFI), defined as ratio of the 
difference between the two interactions to their sum (right panel). In this example dataset, the population interaction was first top-
down dominant, then switched to bottom-up dominant before top-down took over again. (b) Lagged canonical correlation between 
S1 and PPC-A, averaged across all sessions, for different trial types. (c) Information flow index quantified from (b). (d) 
Quantification of information flow index between S1 and PPC-A. (e) Lagged canonical correlation between S1 and PPC-RL, 
averaged across all sessions, for different trial types.  (f) Information flow index quantified from (e).  (g) Quantification of 
information flow index between S1 and PPC-RL. (Mice and session numbers are the same as Fig. 5; one-sided Wilcoxon Signed-
Rank test) 
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output of top-down (prediction) and bottom-up 
(sensory) information. Conceptually, choosing texture 
could be explained by stronger bottom-up texture 
information in S1 than top-down tone-based 
prediction in PPC, while choosing tone could be 
explained by stronger top-down prediction than 
bottom-up sensory information. To test this 
hypothesis, we measured the strength of bottom-up 
and top-down information flow by introducing a 
temporal lag in the CCA models (Fig. 6a). We defined 
bottom-up strength by moving S1 activity window 
ahead of PPC and averaging the top canonical 
correlation across lags (averaged over 0.3 s), and top-
down strength by moving PPC activity ahead of S1. 
The information flow is represented as the net effect 
(the difference between bottom-up and top-down 
strength) normalized by the total interaction strength 
(the sum of bottom-up and top-down strength) (Fig. 
6a). 

In matched trials, S1 and PPC-A interaction showed 
strong bottom-up dominance during texture 
presentation (Fig. 6b-c, correct). In mismatched trials, 
when mice chose texture, both tone and texture 
windows were dominated by bottom-up information 
(Fig. 6b-d), with weaker tone information and stronger 
texture information. This indicates that mice could be 
in an internal state that attended more to texture input. 
Since mice mostly relied on texture for solving the 
task (Fig. 1e-f, MM→Texture; Supplemental Fig. 1b-
e), this result is in agreement with the higher arousal 
state observed in these trials (Supplemental Fig. 1f,i). 
In contrast, when mice chose tone, tone presentation 
induced strong top-down dominance from PPC-A to 
S1, and during texture presentation, such top-down 
influence persisted (Fig. 6b-d, MM→Tone). This top-
down influence was also observed from PPC-RL to S1 
during tone presentation (Fig. 6e-g), indicating an 
internal state that emphasized top-down inputs.  

The task-related information flow between S1 and 
PPC was in agreement with the results from single-
modality experiments. When mice were presented 
only with the tone, the population interaction 
resembled that observed for the mismatch-choose-
tone condition: During the tone, a strong top-down 
information flow occurred from PPC-A to S1 and 
from PPC-RL to S1 (Supplemental Fig. 6a-f, tone-
only condition), and such top-down flow persisted 
throughout the texture window (where no texture was 
presented) between PPC-A and S1, consistent with 
role of PPC-A in tone-based predictions. When only 
the texture was presented, bottom-up flow from S1 to 
PPC-A during the texture stimulation was observed 
instead (Supplemental Fig. 6a-f, texture-only 
condition), resembling the interaction observed for the 
mismatch-choose-texture condition.  

To exclude the possibility that these observations were 

specific to the CCA method we used, we additionally 
computed population interaction strength with 
Pearson correlation as an alternative approach 
(Supplemental Fig. 7a). Overall, Pearson correlation 
reproduced all the results, even though Pearson 
correlation does not capture the optimal interaction 
between populations: we again observed higher 
interaction strengths between S1 and PPC-A, 
particularly during the texture window (Supplemental 
Fig. 7b-c), and strong top-down influence from PPC-
A to S1 in mismatch-choose-tone trials, in both tone 
and texture window (Supplemental Fig. 7d-e). A top-
down dominance during tone was also observed in 
PPC-RL and S1 (Supplemental Fig. 7f-g). When only 
the tone was presented, both pairs of areas showed 
similar interaction patterns as mismatch-choose-tone 
trials, whereas the texture-only condition featured 
stronger bottom-up inputs (Supplemental Fig. 7h-k). 
Together, these results demonstrate how the dynamic 
top-down and bottom-up interactions between S1 and 
PPC, particularly PPC-A, govern the behavioral 
choices of mice during the task (Fig. 7a-c). 

Discussion 

In this study, we utilized a two-area two-photon 
microscope to study the interaction between the 
sensory S1 area and the next-higher association area 
PPC during an auditory-cued texture discrimination 
task. We focused on cortico-cortical interactions 
related to the predictive processing theory, by 
introducing tone and texture mismatches to induce 
conflicts between tone-based top-down texture 
predictions and bottom-up tactile input. We 
demonstrated that when predictions dominated 
sensory inputs, as in trials in which mice made their 
decisions based on tone instead of actual texture 
identity, both single-cell and population encoding of 
texture were disrupted in S1, while PPC-A encoded 
the expected texture. This situation also corresponded 
to a stronger top-down information flow from PPC-A 
to S1. When sensory input overrode predictions and 
mice decided based on the actual texture identity 
instead of the predicted one, texture encoding in S1 
and PPC remained unchanged, and bottom-up 
information flow from S1 to PPC-A was stronger 
(summarized in Fig. 7a-c). Overall, our results provide 
strong evidence for a cortical implementation of 
predictive processing in the context of sensory-driven 
decision making. 

Although predictive processing provides an attractive 
framework for understanding a wide range of brain 
functions, the specific neural circuits involved and the 
neuronal population mechanisms are still poorly 
understood. It has been shown that primary sensory 
cortices can develop experience-dependent 
predictions that impact stimulus response: expected 
stimuli are suppressed, and unexpected stimuli are 
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amplified6,7,36,37. This occurs for both unimodal 
stimulation where repetitive stimuli are presented to 
the animals7,36,37, and multi-modal stimulation where 
animals associate two stimuli (e.g., auditory and 
visual)6,13. In addition, expected stimuli are encoded 
faster in the gustatory cortex when predicted by a 
leading auditory tone8, providing another benefit of 
predictive processing in sensory cortices. Such 
predictions can be conveyed directly between primary 
sensory cortices6, but also depend on long-range 
projections from higher areas7,14,38. While frontal areas 
such as the anterior cingulate cortex have been more 
extensively studied in predictive processing, the role 
of posterior association areas in this process is not well 
understood. Here, we provided evidence for a missing 
step in this pathway: the association area PPC-A 
carried sufficient predictive information based on a 
tone to encode the expected texture and choice even in 
the absence of texture. Thus, PPC-A, together with S1, 
forms part of the hierarchical cortical circuit for 
sensory-based predictive processing for this cross-
modal behavioral task. 

How cortical areas communicate with each other and 
what information is exchanged between them during 
active behavior, are still open questions. It has been 
shown that the direct projections from higher cortical 
areas to primary sensory areas carry specific task-
related information such as expected stimulus and 
reward7,9,14, providing one mechanism for how top-
down predictions affect the response of primary 
sensory areas. However, due to the technical 
challenges of simultaneously recording from 
sufficient numbers of neurons in multiple areas, 
studies concerning the interactions between neuronal 
populations across cortical areas are still scarce. 
Recent studies have demonstrated that interactions 
between primary and higher areas usually occur in 
low-dimensional communication subspaces that do 
not necessarily align with the stimulus-encoding 
subspace in each area15,39. In addition, interactions 
between areas are dynamic and vary throughout 
stimulus presentation and behavioral tasks16–19. Our 
study adds to these findings by providing a detailed 
analysis of the dynamic population interactions that 
occur during a cross-modal sensory discrimination 

 

Figure 7. A model of S1, PPC-A, and PPC-RL interactions during the behavioral task. (a) In the correct trials, tone 
information is encoded in PPC-A, potentially through inputs from auditory cortex (A1). PPC-A further generates predictions 
about the upcoming texture and communicates with S1. During the texture presentation, S1 sends texture information back to 
PPC-A, while all three areas are involved in the processing and transformation of texture information. The decision is formed 
through coordinated efforts from S1 and PPC. (b) In mismatch-choose-texture trials, mice are in a state that attends more to S1 
inputs. During texture presentation, strong texture information in S1 is sent bottom-up to PPC-A that eventually leads to the 
behavioral choice. (c) In mismatch-choose-tone trials, tone presentation generates stronger tone encoding and texture prediction in 
PPC-A, which is sent to S1 during the tone and texture windows, overwriting the bottom-up texture input from S1. Thus, the 
choice is made according to the predicted texture. Solid arrows represent directional interactions between recorded areas, dashed 
arrows represent putative interactions between pairs of areas that were not recorded simultaneously in this study. 
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task. Our results suggest that the task-relevant 
variables are encoded in low-dimensional latent 
spaces in S1 and PPC and that the dominance of either 
top-down or bottom-up processing corresponds to 
perceptual choices during the task, putting more 
weight on either predictions or actual sensory inputs. 
These findings are consistent with the predictive 
processing theory and contribute to our understanding 
of the mechanisms underlying cortical information 
transformation and communication. 

Specifically, we observed a disrupted texture 
encoding in S1 accompanied by stronger top-down 
information flow, indicating that top-down 
predictions are able to change primary sensory cortex 
responses. The specific multi-modal task design in 
this study contributed to the sensory prediction, 
because PPC is involved in multisensory 
processing22,23,25,40 and therefore is well-positioned to 
develop cross-modal predictions. In PPC as well as 
primary areas, inhibitory interneurons play a key role 
in suppressing expected stimuli and augmenting 
unexpected stimuli23,41,42. Specifically, disinhibition 
through top-down projection from PPC to S1 provides 
a possible local mechanism for our observation of 
altered sensory encoding in S1. Furthermore, other 
brain areas such as the thalamus are likely to be 
involved in the relaying of prediction as well: higher-
order thalamic nuclei are interconnected with many 
cortical areas20,43, providing another information 
routing station for processing of sensory conflicts by 
comparing top-down and bottom-up information. 

The composition and exact locations of rodent PPC 
and its subregions are still a topic of debate22,26,44. 

Historically, rodent PPC has been described as a part 
of higher visual areas, with PPC-RL largely 
overlapping with VISrl, and PPC-A overlapping with 
VISam33,44. However, PPC not only receives visual 
input, but also extensive inputs from somatosensory, 
auditory and olfactory cortices, as well as higher 
cortical areas22,45. Most PPC studies so far have 
defined PPC as a single area with varying coordinates, 
leading to contradictory results in some cases23,46–48. In 
our study, the two subregions of PPC, PPC-A and 
PPC-RL, exhibited different task relevance. While 
PPC-A was involved in all stages of the trial, PPC-RL 
was only involved in texture and choice processing. 
This is consistent with the reports that PPC can be 
divided into modality-specific subregions: the medial 
PPC-A more auditory, while the lateral PPC-RL is 
more tactile26,45. The inputs from the auditory cortex 
and the somatosensory cortex to PPC seem to form a 
gradient along the medial-lateral axis, suggesting a 
functional continuity of PPC45. In addition, these 
inputs presumably interact with and integrate inputs 
from primary visual cortex, which can be relevant in 
other cross-modal behavioral tasks. PPC is not only a 
center for multisensory processing, but also 
participates in decision making 29,46,49,50, via its dense 
connectivity with frontal areas22. Therefore, 
subregions in PPC likely serve as a continuum of 
intermediate routing stations of weighted sensory 
information flow towards frontal areas, and top-down 
information back to sensory cortices. Further work is 
required to characterize the specific roles of PPC 
subregions and their interactions in more details.  

 

 

 

Online Methods 

All procedures of animal experimentation were carried out 
according to the guidelines of the Veterinary Office of Switzerland 
and following approval by the Cantonal Veterinary Office in 
Zurich (licenses 234/2018, 211/2018).  

Mice and dataset 

16 mice were included in this study. Mice were one of the 
following strains: RasGRF2a-dCre;CamK2a-tTA;TITL-
GCaMP6f (M10, M11, M12, M25, M26, M28, M29, M33, M34, 
M35), GP5.17(C57BL/6J-Tg(Thy1-GCaMP6f)GP5.17Dkim/J, 
Jackson Laboratory 025393) (M14, M15), Snap25-IRES2-Cre-
D;CamK2a-tTA;TITL-GCaMP6f (M17), RasGRF2a-dCre;tTA2-
GCaMP6f (M30, M38, M40). All transgenic strains express 
GCaMP6f in layer 2/3 pyramidal neurons of the neocortex. Both 
sexes were included in this study (male: M10, M14, M15, M25, 
M26, M30, M33, M34, M35; female: M11, M12, M13, M17, M28, 
M29, M38, M40). All mice were adults (12-16 weeks old) when 
experiment started. Out of the 16 mice, S1-PPCA imaging was 
performed on 9 mice (M25, M26, M28, M29, M30, M33, M34, 
M35, M40); S1-PPCRL imaging was performed on 14 mice (M10, 
M11, M12, M14, M17, M25, M26, M28, M29, M30, M33, M34, 
M35, M40). Two mice (M15, M38) were only included in 

behavioral studies but not in the neuronal data analysis due to the 
decayed cranial window quality. One mouse (M17) was removed 
from cross-area analysis due to decayed S1 imaging quality from 
lateral skull bone growth under the cranial window.  

Surgical procedures 

A craniotomy was performed on all mice over S1 and PPC in the 
left hemisphere. Mice were anesthetized with 2% isoflurane mixed 
with oxygen, and body temperature was maintained at 37℃. After 
analgesia treatment (Metacam, 5 mg/kg, s.c.; lidocaine gel over 
the skull skin) and locally, the skull was exposed, a 4 mm round 
cranial window was made with dental drill, and covered with glass 
coverslip using dental cement (Tetric EvoFlow). A light-weighted 
head-bar was fixed on the skull using dental cement. After the 
surgery, animals were continually monitored for three days, and 
treated with analgesics (Metacam, 5 mg/kg, s.c.). For strains 
that expressed destabilized Cre (dCre), we induced stable 
GCaMP6f expression by administering trimethoprim (TMP, 
Sigma T7883). TMP was reconstituted in Dimethyl sulfoxide 
(DMSO, Sigma 34869) at a saturation level of 100 mg/ml, and 
intraperitoneally injected (150 mg TMP/g body weight; 29 g 
needle) at least one week before imaging commenced.  

Behavior training 
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All mice were kept under a reversed dark-light cycle. Mice were 
allowed to recover for at least 1 week before behavior training 
started. Before behavior training, mice were first accustomed to 
the hands of the experimenter at the home cage for several days 
until showing no sign of stress, then accustomed to head 
fixation. Then, mice were put under water scheduling, and were 
introduced to the behavior setup. During the first 2-3 sessions, 
mice were given sugar water reward from one of the two lick ports 
after the choice tone (2 beeps at 3 kHz of 50-ms duration with 50-
ms interval). Once they learned to lick after the choice tone to 
obtain the water reward, we introduced the textures. Textures were 
followed by reward delivery on the corresponding lick port upon 
licking, and licks on the wrong port did not result in punishment 
or trial abort. This stage lasted for 1-2 sessions. Once mice were 
accustomed to the trial structure, we started formal training.  

Behavior training was carried out using a custom written LabView 
software. Each trial started with one of two distinct auditory tones 
(10 kHz or 18 kHz, 6 repetitions, 50-ms duration and 50-ms 
intervals). One second after tone onset, the presentation of one of 
two distinct textures followed (sandpaper, P100 vs. P1200 for 
M10-17, P280 vs. P800 for M25-40).  A rotary motor “swung” the 
texture onto the whisker pad from the top. The texture was 
presented for 1 s and then moved away from the mouse with a 
linear motor stage. At the end of the texture window, choice 
window started, indicated by the choice tone described above. The 
choice window lasted for up to 2 s. As soon as mice licked during 
the choice window, it was terminated and the reward window 
started. If mice chose the correct lick port, a small water reward 
was delivered (~4 µl sugar water); wrong choices were not 
punished. The inter-trial interval was randomly distributed 
between 4-8 seconds. 

During training, when a mouse made incorrect choices, the same 
tone-texture stimulus pair was presented again in the following 
trial until the mouse chose correctly. This “repeat incorrect” 
strategy facilitates learning and prevents the mice from forming a 
bias towards one of the two lick ports. If the mouse disengages 
from licking, in 10% of these miss trials the reward was delivered 
after the choice window to motivate the mouse. Each day, the 
training lasted as long as the mouse was actively engaged in the 
task, typically 200-400 trials. Training was done once per day, 5-
6 days per week. Weight, health, and water intake were monitored 
daily. All training was performed in the dark and monitored 
through a behavior camera with a small infrared light source. Mice 
were considered experts when they reached 75% correct 
performance for three sessions. Among all mice, three mice 
showed an unstable behavior, with relatively high fluctuations of 
the within-session performance (Supplemental Fig. 1a); however, 
they all showed clear signs of learning, reaching sub-session 
performance peaks above expert level for consecutive days. We 
attributed the unstable behavior to environmental stress; in 
particular, the training of M40 coincided with construction work 
in the animal facility, resulting in longer training duration.  

Mismatched trial design 

After mice became stable experts, we started introducing 
mismatched trials. In these sessions, the first 20-30 trials were with 
matched stimuli (without mismatch), and only afterwards 
mismatch trials were randomly presented in 10%-30% of the trials. 
To avoid confusion for mice and prevent re-learning of new rules, 
we kept the repeat incorrect strategy throughout these sessions for 
matched trials, reinforcing the learnt rules. Because the task is 
mostly a texture-dependent task (see Results section, Fig. 1, and 
Supplemental Fig. 1), we rewarded according to the tone in 
mismatched trials, in order to encourage mice to pay attention to 
the tone and generate more mismatch-choose-tone response.  

Single sensory modality experiments 

Tone-only and texture-only sessions were done at the end of the 
experiment, after mice completed all mismatched sessions (7-12 
sessions). In tone-only sessions, trials started with a 1-s auditory 
tone, as for the matched pairing condition. Afterwards, the rotary 
motor carrying the texture swung in, generating the same motor 
noise, but stopped above the whisker pad of mice. Therefore, 
texture was “presented” above the mice, out of reach for their 
whiskers. Choice window, reward window and inter-trial interval 
were the same as in matched condition. In texture-only sessions, 
the tone before the texture presentation was omitted. Trial started 
with a 1-s window with no sensory stimulus, followed by normal 
texture presentation, and then choice and reward windows. These 
single modality sessions typically were restricted to 100-150 trials 
to prevent re-learning. 

After the single-modality experiments, we trimmed the whiskers 
of the mice, and conducted another texture-only session. This 
session served as a control experiment to exclude the possibility 
that mice relied on other environmental cues (visual, olfactory, etc.) 
to perform the task.  

Behavior monitoring 

Face and body movements as well as the pupil diameter of the 
mice were monitored and recorded using a CMOS infrared-
sensitive camera (Basler acA1440-220um). A small 940-nm 
infrared LED was positioned in front of the mice to illuminate 
their face and body. Since mice were in complete darkness, their 
pupils were dilated by default. To monitor the pupil diameter with 
a larger dynamic range, we restrained the pupil by carefully 
positioning a small UV LED (385 nm, Thorlabs LED385L) close 
to the eye contralateral to the texture presentation. Trial-related 
behavior was recorded at 50 Hz, simultaneously with calcium 
imaging, triggered by each trial start. Licking was recorded 
throughout tone, texture, and choice windows, and was estimated 
based on the event rate from the capacitive lick sensor sampled at 
100 Hz.  

To extract body and face movements, we manually selected two 
regions of interest (ROIs), one on the whisker pad, the other on the 
forelimb and chest region. Movement was calculated as frame-to-
frame variation by computing (1-corr(ft, ft+1)), where corr(ft, ft+1) 
denotes the frame-to-frame correlation of the ROI. We tracked the 
pupil diameter using a custom MATLAB script: we first manually 
selected an ROI over the eye region, then binarized the pupil (pupil 
was bright due to two-photon illumination of the cortex at 920 nm). 
Then, pupil diameter was estimated by fitting the binary region to 
an ellipse. Body and face movements, as well as pupil diameter, 
were smoothed with a median filter of 200-ms width.  

Sensory mapping 

To determine the exact locations of S1 and PPC, we performed 
widefield sensory mapping on all the mice before the two-photon 
imaging sessions started, following a previously described 
procedure26. Mice were lightly anesthetized under 1% isoflurane 
and kept at 37℃. Three types of sensory stimuli were delivered: 
visual, whisker, and hindlimb. For visual stimulation, a small blue 
LED was positioned close to the eye contralateral to the cranial 
window, and a brief 200-ms flash was presented, followed by 10-
s recovery time. For whisker and hindlimb stimulation, a loud 
speaker-coupled vibrating bar was used to induce a vibrating 
touches of the whiskers and hindlimb paw (20 Hz for 2 s) on the 
side contralateral to the cranial window. Each stimulus modality 
was repeated 30 times.  

Widefield imaging was simultaneously performed through the 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted April 3, 2023. ; https://doi.org/10.1101/2023.04.03.535389doi: bioRxiv preprint 

https://doi.org/10.1101/2023.04.03.535389


13 
 

cranial window. A blue LED light source (Thorlabs; M470L3) was 
used for excitation of GCaMP6f, together with an excitation filter 
(480/40 nm BrightLine HC). The excitation light was directed to 
the cranial window through a tube lens (Thorlabs TTL100-A) 
followed by a 4x objective (Thorlabs TL4X-SAP, NA 0.2). A 
dichroic mirror (510 nm; AHF; Beamsplitter T510LPXRXT) was 
positioned between the two objectives to separate excitation and 
emission light. Emission light was filtered (emission filter 470/10 
nm, Edmund Optics) and recorded with a sensitive CMOS camera 
(Hamamatsu Orca Flash 4.0). 

To obtain a more precise location of PPC-RL and PPC-A, we 
further generated a retinotopic map through visual field sign 
mapping, following a previously described procedure33. Briefly, a 
drifting spherically-corrected checkerboard visual stimulus was 
presented on an LED screen (Adafruit Qualia 9.7" DisplayPort 
Monitor, 2048x1536 Resolution) across the visual field of the 
mice at 0.043–0.048 Hz. The stimulus sequence consisted of four 
cardinal directions, each presented with 10 repetitions. The screen 
was positioned in front of the eye contralateral to the cranial 
window, such that the stimulus covered retinotopic locations from 
approximately -20 to +30 degrees in altitude and -10 to +90 
degrees in azimuth. The retinotopic map was calculated using 
previously reported analysis pipeline33. The final location of S1, 
PPC-A and PPC-RL was determined by optimally aligning the 
sensory map and retinotopic map together to the Allen Mouse 
Common Coordinate43. 

Two-area two-photon imaging 

Two-area two-photon imaging was performed using a custom-
built microscope that has been previously reported32. The 
simultaneous two-area imaging was implemented through a 
temporal multiplexing technique, where the laser pulse train from 
a Ti:sapphire laser (Mai Tai HP DeepSee, Spectra-Physics) was 
split in two temporally interleaved copies, each directed through 
an independently movable unit to a separate field of view. Each 
beam path was equipped with an electrically tunable lens 
(Optotune EL-10-30-C) to enable rapid focal changes for imaging 
multiple depths. Imaging was done at 920-nm excitation with a 
green emission filter (510/42 nm bandpass). A 16x objective was 
used (N16XLWD, Nikon, NA 0.8). The microscope was 
controlled by a custom-written software Scope 
(http://sourceforge.net). Calcium imaging was acquired at 3 
different depths in layer 2/3, separated by 40-50 µm. The FOV 
size was ~450×500 µm, at a resolution of ~370×256 pixels. The 
volume rate was typically ~9.32 Hz for two areas and three 
imaging depths per area. Laser power was adjusted for each plane, 
at 40-70 mW under the objective. For each mouse, the FOV 
positions and/or depths were slightly adjusted for each imaging 
session to cover different neuronal populations in S1 and PPC. 
Imaging was triggered by the start of each trial, and the image 
acquisition finished 0.5 s before the end of the inter-trial interval 
(i.e., the start of the next trial). During the duration of the 
experiment, most mice maintained a clear window with good 
imaging quality. The number of imaging sessions for each mouse 
is as following: For S1-PPCA imaging, the number of sessions was 
3, 4, 5, 5, 4, 4, 7, 4, 4, for M25, M26, M28, M29, M30, M33, M34, 
M35, M40, respectively. For S1-PPCRL imaging, the number of 
sessions was 10, 9, 10, 2, 1, 8, 5, 4, 8, 5, 3, 4, 4, 3, for M10, M11, 
M12, M14, M17, M25, M26, M28, M29, M30, M33, M34, M35, 
M40, respectively. Note that the number of PPC-RL sessions was 
higher for M10, M11 and M12 due to a lower percentage of 
mismatch trials (~10% mismatch trials).  

Processing of two-photon imaging data 

We used Suite2p to extract neuronal traces34. This pipeline 

includes a rigid motion correction on the raw data, a model-based 
background subtraction, a neuron-identification algorithm, 
fluorescence extraction, and a neuron classifier. Raw fluorescence 
and neuropil traces were extracted from identified neurons, and 
neuropil-corrected traces were obtained. A deconvolution 
algorithm was applied to the corrected fluorescence traces to 
estimate the spike rate of neurons (in arbitrary units). Spike rate 
was further normalized by the baseline F0 estimated by Suite2p. 
We tuned the neuron classifier in the above pipeline to identify 
potential neurons, and we further manually curated each dataset to 
discard non-neuronal structures or low-quality ROIs. All analysis 
was performed using deconvolved spike rates.  

To exclude redundant neurons due to fluorescence signal bleed-
through between two areas or between two neighboring depths, we 
removed neurons that were highly correlated neighboring neurons, 
using similar criteria as previously described51. We defined 
potential duplicated neuron pairs as: (1) spike rate correlation 
above 0.5; (2) lateral distance between centroids below 5 µm 
regardless of depths; (3) appeared in adjacent imaging depths in 
the same imaging area (signal bleed-through in the same area from 
adjacent imaging planes), or appeared in the same imaging depths 
in different imaging areas (signal bleed-through across areas from 
the same imaging plane). In these duplicated neuron pairs, we kept 
the neuron with highest average fluorescence level, and discarded 
the one with less fluorescence.  

Due to the variable length of the choice window, we defined 
choice window as the 0.5-s time period before the lick that 
triggered reward window (equivalent to the 0.5-s period before the 
reward window). We resampled all behavior data to match the 
calcium imaging rate. Due to slight differences in imaging rate 
(caused by slightly different pixel numbers), when combining 
datasets together, we resampled all dataset to a standard 10 Hz rate. 
These procedures were applied before all the analysis below. 

Responsive neuron analysis 

To identify neurons that are responsive to different task phases, 
we tested the activity level of individual neurons across task 
windows, for Ttone, Ttexture, Tchoice, and Treward. We first denoised the 
deconvolved traces by a small Gaussian window (3 frames, 
sigma=1); then, for each neuron Ni and each task window Tj, we 
compared its average activity within the window, and generated a 
baseline distribution by randomly sampling the same number of 
frames outside of window Tj and computing average activity, for 
100 times. If the activity of neuron Ni in Tj was significantly higher 
than outside of Tj, determined by a one-tailed Wilcoxon Rank Sum 
test (p<0.05), then we define neuron Ni as responsive in task 
window Tj. 

To identify neurons that are discriminative for a specific task 
variable (tone, texture, choice, and reward), we compared the 
activity of responsive neurons as defined above for the different 
values of the task variables. For each task variable (for example 
texture), there are two potential values s1 and s2 (for example, 
texture 1 and texture 2). We compared the average activity of each 
neuron within the corresponding task window (texture window in 
this example) between s1 trials and s2 trials, using Wilcoxon Rank 
Sum test. If the neuronal activity was significantly higher (p<0.05) 
in s1 trials, then the neuron was defined as a discriminative neuron 
with preference for s1. We performed this procedure for all the four 
task variables.  

Decoder analysis 

We trained four types of linear support vector machine (SVM) 
decoders: tone, texture, choice, and reward decoders, respectively. 
Similar to the responsive neuron analysis, each type of decoder 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted April 3, 2023. ; https://doi.org/10.1101/2023.04.03.535389doi: bioRxiv preprint 

https://doi.org/10.1101/2023.04.03.535389


14 
 

was trained with two class labels (texture 1 vs. texture 2, for 
example), using frame-concatenated spike rate data from the 
corresponding task window (texture window, for example). A 
separate decoder was trained for each imaging session and each 
area (S1, PPC-A, PPC-RL), due to different imaging populations. 
Only matched pairing trials were used for training decoders.  

For each imaging session, we randomly divided all the matched 
pairing trials into 10 subsets. We trained 10 decoders by excluding 
one subset at one time, therefore each decoder was trained on 90% 
of the training set. To avoid overfitting, we regularized the SVM 
coefficients with ridge (L2) penalty. The regularization term was 
cross-validated in a log space of 10 parameters from 10-5 to 101. 
The projection strength of each trial was calculated using the 
decoder that was not trained using this trial. The projection 
strength at time t of a trial was defined as the dot product between 
the decoder coefficient (without the constant term) and the 
population spike rate vector at t. Shuffled controls were generated 
by randomizing the neuron identities in the dataset and applying 
the decoders to shuffled data. To evaluate the decoder 
performance, the ROC (receiver operating characteristic) curve 
and the AUC (area under curve) were calculated using standard 
approaches, and discrimination index (DI) was defined as (AUC-
0.5)×2. DI=0 represents chance level; DI=1 represents perfect 
classification performance.  

CCA analysis 

To measure the optimal population correlation between cortical 
areas, we applied a previously reported method, the canonical 
correlation analysis (CCA)16,19. CCA identifies pairs of 
dimensions from the imaged neuronal populations in the two 
cortical areas, such that the correlation between the projected 
activities onto the dimension is maximized. Given the activity of 
two neuronal populations, a nx × t matrix X from area 1, and a ny 
× t matrix Y, where t is the number of time points, and nx and ny 
are the number of neurons in each area, CCA identifies in total 
min(nx,ny) pairs of dimensions, and the projection correlation of 
these dimensions decreases from the first to last. Similar to 
principal component analysis (PCA), CCA finds a set of projection 
axes for each area; the difference is that PCA aims at maximizing 
the variance explained by top axes from X and Y, independently, 
while CCA aims at maximizing the projection correlation between 
the activity matrices X and Y. 

CCA requires a sufficient amount of samples to generate stable 
solutions35. In our experiments, we typically imaged 200-300 
neurons in each area, and we recorded 200-400 trials per session. 
A previous study using simulated datasets has shown that ~50 
samples per variable is required to generate a stable solution35. To 
ensure such condition is met, we first performed PCA to reduce 
the dimensionality (number of variables) per area, keeping the first 
30 principal components (PCs). Overall, the top 30 PCs captured 
a substantial part of the variance in the dataset (variance explained 
by 30 PCs: S1 55.0±1.2, PPC-A 59.9±1.4, PPC-RL 53.7±1.5 
[mean±SEM]). We aimed at generating a separate CCA model at 
each time point over the trial time; to further increased the sample 
number, and to avoid outliers as well as to introduce certain 
temporal smoothness, we took a sliding time window of 0.5 s (5 
frames) for training. Using a smaller time window (0.2 s) yielded 
more noisy but overall similar results (data not shown). For each 
time window, we randomly divided the data into 10 subsets, and 
generated 10 models by leaving one subset out each time. The final 
correlation is computed as the average from the 10 models. 

The stimuli in the task result in co-activation of neurons caused by 
common inputs. As we were interested in the intrinsic interaction 
between cortical areas, we analyzed the residual activity by 

subtracting stimulus-triggered averages of PCs, from eight types 
of stimulus combination (2 tones, 2 textures, 2 choices). 
Additionally, we observed performance variability within 
individual sessions, and to ensure that we were analyzing trials 
during which mice were engaged in the task, we divided each 
session into sub-sessions of 20 trials, and used only the sub-
sessions with performance rate above 75% for analysis. For tone-
only and texture-only conditions, we kept the last 50 trials (out of 
100-150 trials) when performance had stabilized. This resulted in 
40-400 trials for each session.  

Since we reduced the dimensionality of each population to its top 
30 PCs, the CCA model generated 30 dimensions with descending 
inter-areal correlation. To determine the number of significant 
dimensions, we shuffled the trial correspondence between the two 
areas 100 times and computed the CCA correlations in the same 
way as above. Significance threshold was defined as mean + 3 S.D. 
(standard deviation) of the highest shuffled correlation. CCA 
dimensions with correlations exceeding the significance threshold 
were regarded as significant dimensions. Overall, we observed 1-
2 significant dimensions across datasets and time points, therefore 
we focused on the first CCA dimension for analysis. 

To analyze top-down and bottom-up interactions, we introduced a 
negative lag of up to 0.5 s with 0.1-s increment to each area, 
separately. For top-down interaction, we introduced a negative lag 
to the PPC data (PPC-A or PPC-RL); for bottom-up interaction, 
we introduced a negative lag to the S1 data. At each lag, we 
generated a CCA model, consisting of two separate loading 
matrices corresponding to the two areas. Then, for each trial type 
(correct, mismatch-choose-texture, and mismatch-choose-tone), 
we computed the projection correlation of all trials in this trial type. 
This approach avoided the potential instability of training the CCA 
model for each trial type, which does not guarantee enough sample 
numbers. From here, the lagged correlation map was slightly 
smoothed with a small Gaussian kernel (3 frames, sigma=1) to 
reduce noise between temporally consecutive models, and top-
down and bottom-up interaction strengths were computed as the 
average CCA correlations across 0.3 s lags. Using different lags 
(0.1 s, 0.5 s) gave similar results as shown in Fig. 6. The direction 
and strength of information was quantified as information flow 
index (IFI), defined as (bottom-up – top-down)/(bottom-up + top-
down). IFI is bounded between -1 and 1; values close to -1 
represent top-down dominant information, values close to 1 
represent bottom-up dominant information, whereas values close 
to 0 represent simultaneous or no information transfer. 

Pearson correlation analysis 

To verify our results of CCA, we also calculated population 
correlations using Pearson correlation instead of CCA. The 
imaging data were processed in the same way as for CCA analysis 
but population correlation was computed as the Pearson 
correlation between the flattened residual matrices of the two areas. 
Shuffled correlation was computed from trial-shuffled residual 
matrices. Unlike CCA, which found positive correlation in all 
cases, Pearson correlation resulted in negative values in some 
cases. For the calculation of IFI, we first normalized the lagged 
correlation map to be between 0 and 1, then calculated IFI for each 
trial type. 

Statistical analysis 

All statistical analysis was done in MATLAB. In general, 
Wilcoxon signed-rank test was used for paired samples, and 
Wilcoxon Rank Sum test was used for non-paired samples. All 
tests were performed with two-sided hypothesis unless otherwise 
indicated. Error bars represent mean±SEM. Boxplots indicate the 
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median (center line), 25% and 75% quartiles (box limits), and 1.5 
× interquartile range (whiskers).  

Code availability 

All data processing and analysis code is available from the 
corresponding author upon reasonable request. 

Data availability 

The data that support the findings of this study are available from 
the corresponding author upon reasonable request. 
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Supplemental information 

 

Supplemental Figure 1. Behavior outliers and movement analysis. (a) Each day, all the trials were split 
into 2-5 subsessions of 100-150 trials. Three unstable performer mice that did not reach expert threshold in 
daily average all showed expert performance in individual subsessions. (b) Lick rate over time for naïve and 
expert mice. (c) Response time of naive (performance<55%, 16 mice, 80 sessions) and expert mice 
(performance>75%, 13 mice, 74 sessions). (d) Percentage of trials with lick during tone on the lick port of 
final choice for naïve and expert mice. (e) Lick rate during texture for naïve and expert mice. (f) z-scored 
pupil diameter in different trial types. (g) Body movement (normalized between 0 and 1 within each day) 
across trial types. (h) Face movement (normalized between 0 and 1 within each day) across trial types. (i) 
Statistics of pupil diameter across trial time. (***p<0.001, **p<0.01, *p<0.05, same for all following figures; 
b-e: Wilcoxon Rank Sum test, i: Wilcoxon signed-rank test; mice and session numbers are the same as Fig. 1). 
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Supplemental Figure 2. Example traces and additional control experiment statistics. (a) The locations of 
S1, PPC-A and PPC-RL were determined by widefield sensory mapping using whisker, visual and hindlimb 
stimulation (top) under light anesthesia, as well as visual field sign mapping (bottom). (b) Example ΔF/F 
(black) and deconvolved spike rate (red) of two simultaneously imaged S1 and PPC-A populations. Due to 
space limitation, only 50 neurons are shown for each area. Colored stripes in the background indicate task 
windows. Some neurons were silent in the example time period shown in the plot. (c) Number of imaged 
neurons for each area are not significantly different. (d) Example single trial activities of texture 
discriminative neurons. Three example neurons from the same imaging session are shown for each texture 
preference; choice window was resampled to be the 0.5-s window before the reward window. Trial structure 
color code is the same as in (b).  
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Supplemental Figure 3. Response amplitude of tone-discriminative neurons. (a) Averaged normalized 
spike rate of tone 1 discriminative neurons in S1, PPC-RL and PPC-A, in matched and mismatched trials. The 
spike rate of each neuron was normalized to be between 0 and 1 within each session. (b) Response amplitude 
to tone 1 and 2 of all tone discriminative neurons, during tone window, across areas and trial types. (c) 
Selectivity index of texture discriminative neurons during texture window, in different trial types. Significance 
level was determined from shuffled data where the trial labels were shuffled.  (Wilcoxon Rank Sum test; S1: 
130 neurons; PPC-A: 179 neurons; PPC-RL: 105 neurons) 
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Supplemental Figure 4. Response amplitude of texture-discriminative neurons that were not choice-
responsive. (a) Response amplitude to texture 1 and 2 of all texture discriminative neurons that were not 
choice-responsive, during texture window, across areas and trial types. Each dot represents the response of 
one neuron in one imaging session. (b) Selectivity index of texture discriminative neurons during texture 
window, in different trial types. Selectivity index was calculated as the difference between the average 
response to the preferred texture and the average response to the nonpreferred texture. (Wilcoxon Rank Sum 
test; S1: 1275 neurons; PPC-A: 248 neurons; PPC-RL: 514 neurons) 
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Supplemental Figure 5. Choice and reward encoding in S1 and PPC. (a) Neuronal population encoding of 
choice (top panels) and reward (bottom panels). Line colors indicate area identity; solid and dash lines 
indicate texture identity of the trial. (b) Discrimination index (DI) of the choice decoder and reward decoder, 
in the tone window and texture window, separately. Stars above each box indicate the significance with 
shuffled data (gray bars) where neurons identities were shuffled, while trial and time correspondence were 
kept the same. Stars across boxes indicate comparison between trial types. (c) DI of texture decoder before 
texture onset (last 0.3 s of tone window, top panel) and after texture onset (first 0.3 s of texture window, 
bottom panel). (d) Neuronal population encoding strength of choice (top panels) and reward (bottom panels) 
in single modality experiments. (e) DI of choice decoder and reward decoder in single modality experiments, 
in tone window and texture window, separately.  
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Supplemental Figure 6. Interaction between S1 and PPC in single modality trials. (a) Lagged canonical 
correlation between S1 and PPC-A averaged across all sessions, for matched stimuli (tone-texture), tone only, 
and texture only conditions. Note the stronger top-down (A to S1) interaction in tone only condition, and 
stronger bottom-up (S1 to A) interaction in texture only condition. (b) Information flow index quantified from 
(a). (c) Quantification of information flow index between S1 and PPC-A. (d) Averaged lagged canonical 
correlation between S1 and PPC-RL. Note the slightly stronger top-down (RL to S1) interaction during tone 
window in tone only condition. (e) Information flow index quantified from (d). (f) Quantification of 
information flow index between S1 and PPC-RL. (One-sided Wilcoxon Rank Sum test) 
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Supplemental Figure 7. Top-down and bottom-up interaction analysis with Pearson correlation. (a) 
Top-down and bottom-up interaction strength were evaluated in the same way as Fig. 6a, except that the 
correlation was calculated using Pearson correlation instead of CCA. (b) Population correlation between S1 
and PPC-A (green), and S1 and PPC-RL (blue). (c) S1-PPCA showed slightly stronger interaction than S1-
PPCRL. (d) Information flow index (IFI) of S1-PPCA interaction using Pearson correlation. (e) Quantification 
of (d). (f) Information flow index of S1-PPCRL interaction using Pearson correlation. (g) Quantification of (f). 
(h) Information flow index of S1-PPCA interaction in single modality conditions. (i) Quantification of (h). 
Consistent with CCA analysis, tone only condition led to stronger top-down information flow during tone and 
texture windows. (j) Information flow index of S1-PPCRL interaction in single modality conditions. (k) 
Quantification of (j). Consistent with CCA analysis, tone only condition led to stronger top-down information 
flow during tone. (One-sided Wilcoxon signed-rank test) 
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