
When and why does motor preparation arise in recurrent neural network

models of motor control?

Marine Schimel@1, Ta-Chu Kao2, and Guillaume Hennequin1

1Computational and Biological Learning Lab, Department of Engineering, University of Cambridge, Cambridge, U.K.
2Meta Reality Labs

@ Corresponding author (mmcs3@cam.ac.uk)

Summary

During delayed ballistic reaches, motor areas consistently display movement-specific activity patterns prior to
movement onset. It is unclear why these patterns arise: while they have been proposed to seed an initial neural
state from which the movement unfolds, recent experiments have uncovered the presence and necessity of ongoing
inputs during movement, which may lessen the need for careful initialization. Here, we modelled the motor cortex
as an input-driven dynamical system, and we asked what the optimal way to control this system to perform fast
delayed reaches is. We find that delay-period inputs consistently arise in an optimally controlled model of M1. By
studying a variety of network architectures, we could dissect and predict the situations in which it is beneficial for
a network to prepare. Finally, we show that optimal input-driven control of neural dynamics gives rise to multiple
phases of preparation during reach sequences, providing a novel explanation for experimentally observed features
of monkey M1 activity in double reaching.

During the production of ballistic movements, the mo-1

tor cortex is thought to operate as a dynamical system2

whose state trajectories trace out the appropriate mo-3

tor commands for downstream effectors (Shenoy et al.,4

2013; Miri et al., 2017; Russo et al., 2018). The extent5

to which these cortical dynamics are controlled by ex-6

ogenous inputs before and/or during movement is the7

subject of ongoing study.8

On the one hand, several experimental and modelling9

studies point to a potential role for exogenous inputs10

in motor preparation. First, cortical state trajecto-11

ries are empirically well described by low-dimensional12

dynamics that evolve near-autonomously during move-13

ment (Churchland et al., 2012; Pandarinath et al., 2018;14

Schimel et al., 2022), such that there is a priori no reason15

to suspect that inputs are required for motor produc-16

tion. Rather, inputs would be required during prepa-17

ration to bring the state of the cortical network into18

a suitable initial condition. This input-driven seeding19

process is corroborated by observations of movement-20

specific primary motor cortex (M1) activity arising well21

before movement initiation (Lara et al., 2018; Kaufman22

et al., 2014; Churchland et al., 2012; Meirhaeghe et al.,23

2023; Figure 1A), and associated models demonstrate24

the critical role of preparatory inputs therein (Sussillo25

et al., 2015; Hennequin et al., 2014; Kao et al., 2021).26

On the other hand, recent studies have shown that the27

cortex receives critical input from the thalamus dur-28

ing movement production (Sauerbrei et al., 2020) , and29

that sensory feedback may also contribute significantly30

to the observed dynamics of M1 (Kalidindi et al., 2021).31

Moreover, most published network models of delayed32

reaches are able to perform the task just as well with-33

out preparatory inputs, i.e. with external inputs force-34

fully confined to the movement epoch – an illustratory35

example is shown in Figure 1B. Thus, the relative con-36

tributions of preparatory vs. movement-epoch inputs to37

motor cortex dynamics remain unclear.38

In addition to the specific form that inputs to cortical39

dynamics might take, one may ask more broadly about40

the computational role of motor preparation. Motor41

preparation is known to benefit behaviour (e.g. by short-42

ening reaction times and enabling more accurate execu-43

tion Riehle and Requin, 1989; Churchland and Shenoy,44

2007; Michaels et al., 2015) and may facilitate motor45

learning (Sheahan et al., 2016; Sun et al., 2022). How-46

ever, from the perspective of cortical dynamics, prepa-47

ration also introduces additional constraints. Specif-48

ically, the high density of M1 neurons projecting di-49

rectly to the spinal cord (Dum and Strick, 1991) sug-50

gests that motor cortical outputs control lower-level ef-51

fectors with little intermediate processing. For prepara-52

tory processes to avoid triggering premature movement,53

any pre-movement activity in the motor and dorsal pre-54

motor (PMd) cortices must carefully exclude those pyra-55

midal tract neurons. While this can be achieved by56

constraining neural activity to evolve in a nullspace of57

the motor output (Kaufman et al., 2014), the question58

nevertheless arises: what advantage is there to having59

neural dynamics begin earlier in a constrained manner,60

rather than unfold freely just in time for movement pro-61

duction?62
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Here we sought a normative explanation for motor63

preparation at the level of motor cortex dynamics: we64

asked whether preparation arises in recurrent neural65

networks (RNNs) performing delayed reaching tasks,66

and what factors lead to more or less preparation. Such67

an explanation could not be obtained from previous net-68

work models of delayed reaches, as they typically as-69

sume from the get-go that the cortical network receives70

preparatory inputs during a fixed time window preced-71

ing the go cue (Sussillo et al., 2015; Kao et al., 2021).72

In this case, pre-movement activity is by design a crit-73

ical determinant of the subsequent behaviour (Sussillo74

et al., 2015; Kao et al., 2021; Zimnik and Churchland,75

2021). In this work, we removed this modelling assump-76

tion and studied models in which the correct behaviour77

could in principle be obtained without explicit motor78

preparation.79

To study the role of motor preparation, and that of ex-80

ogenous inputs in this process, we followed an optimal81

control approach (Harris and Wolpert, 1998; Todorov82

and Jordan, 2002; Yeo et al., 2016). We considered the83

dynamics of a recurrent neural network (RNN) model84

of M1 coupled to a model arm (Todorov and Li, 2003),85

and used a standard control cost functional to quantify86

and optimize performance in a delayed-reaching task.87

We used the iLQR algorithm (Li and Todorov, 2004)88

to find the spatiotemporal patterns of network inputs89

that minimize this cost functional, for any given net-90

work connectivity. Critically, these inputs could arise91

both before and during movement; thus, our framework92

allowed for principled selection amongst a continuum of93

motor strategies, going from purely autonomous motor94

generation following preparation, to purely input-driven95

unprepared dynamics.96

We considered an inhibition-stabilized network – which97

was shown previously to capture prominent aspects of98

monkey M1 activity (Hennequin et al., 2014; Kao et al.,99

2021) – and found that optimal control of the model re-100

quires preparation, with optimal inputs arising well be-101

fore movement begins. To understand what features of102

network connectivity lead to optimal preparatory con-103

trol strategies, we first turned to low-dimensional mod-104

els, which could be more easily dissected. We then105

generalized insights from those systems back to high-106

dimensional networks using tools from control theory,107

and found that preparation can be largely explained108

by two quantities summarizing the dynamical response109

properties of the network.110

Finally, we studied the optimal control of movement se-111

quences. Consistent with recent experimental findings112

(Zimnik and Churchland, 2021), we observed that opti-113

mal control of compound reaches leads to input-driven114

preparatory activity in a dedicated activity subspace115

prior to each movement chunk.116

Overall, our results show that preparatory neural ac-117

tivity patterns arise from optimal control of reaching118

movements at the level of motor cortical circuits, thus119

providing a possible explanation for a number of ob-120

served experimental findings.121

Model122

A model of cortical dynamics for reaching123

movements124

We considered a simple reaching task, in which the hand125

must move from a resting location to one of eight radi-126

ally located targets in a 2D plane as fast as possible127

(Figure 1). The target had to be reached within 600 ms128

of a go cue that followed a delay period of varying (but129

known) duration. We modelled the trajectory of the130

hand via a two-jointed model arm (Li and Todorov,131

2004; Kao et al., 2021), driven into motion by a pair132

of torques m(t) (Methods). We further assumed that133

these torques arose as a linear readout of the momentary134

firing rates r(t) of a population of M1 neurons,135

m(t) = Cr(t) (1)

where C was a randomly generated readout matrix. We136

modelled the dynamics of N = 200 M1 neurons using a137

standard rate equation,138

τ
dx(t)

dt
= −x(t) +Wr(t) + h+ u(t) (2)

r(t) = φ [x(t)] , (3)

where the momentary population firing rate vector r(t)139

was obtained by passing a vector of internal neuronal140

activations x(t) through a rectified linear function φ [·],141

element-wise. In Equation 2, h is a constant input142

that establishes a baseline firing rate of 5 Hz on aver-143

age, with a standard deviation of 5 Hz across neurons,144

u(t) is a task-dependent control input (see below), and145

W denotes the matrix of recurrent connection weights.146

Throughout most of this work, we considered inhibition-147

stabilized M1 dynamics (Hennequin et al., 2014; Meth-148

ods), which have previously been shown to produce ac-149

tivity resembling that of M1 during reaching (Kao et al.,150

2021). Thus, our model can be viewed as a two-level151

controller, with the arm being controlled by M1, and152

M1 being controlled by external inputs. Note that each153

instantiation of our model corresponds to a set of W ,154

C, and h, none of which are specifically optimized for155

the task.156

To prepare or not to prepare?157

Previous experimental (Churchland et al., 2012; Shenoy158

et al., 2013) and modelling (Hennequin et al., 2014; Sus-159

sillo et al., 2015; Pandarinath et al., 2018) work sug-160

gests that fast ballistic movements rely on strong, near-161

autonomous internal dynamics in M1. Network-level162

models of ballistic control thus rely critically on a prepa-163

ration phase during which the motor cortex is driven164
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Figure 1: Control is possible under different strategies. (A) Trial-averaged firing rate of two representative monkey
M1 neurons, across 8 different movements, separately aligned to target onset (left) and movement onset (right). Neural activity
starts separating across movements well before the animal starts moving. (B) Top: a RNN model of M1 dynamics receives
external inputs u(t) from a higher-level controller, and outputs control signals for a biophysical two-jointed arm model. Inputs
are optimized for the correct production of eight center-out reaches to targets regularly positioned around a circle. Bottom:
firing rate of a representative neuron in the RNN model for each reach, under two extreme control strategies. In the first strategy
(left, solid lines), the external inputs u(t) are optimized whilst being temporally confined to the preparatory period. In the
second strategy (right, dashed lines), they are optimized whilst confined to the movement period. Although slight differences in
hand kinematics can be seen (compare corresponding solid and dashed hand trajectories), both control policies lead to successful
reaches. These introductory simulations are shown for illustration purposes; the particular choice of network connectivity and
the way the control inputs were found are described in the Results section.

into a movement-specific state that seeds its subsequent165

autonomous dynamics (Kao et al., 2021; Sussillo et al.,166

2015). However, somewhat paradoxically, the same re-167

curent neural network models can also solve the task in168

a completely different regime, in which task-related in-169

puts arise during movement only, with no preparatory170

inputs whatsoever. We illustrate this dichotomy in Fig-171

ure 1. The same center-out reach can be produced with172

control inputs to M1 that arise either prior to move-173

ment only (full lines), or during movement only (dashed174

lines). In the latter case, no reach-specific preparatory175

activity is observed, making the model inconsistent with176

experimental findings. But what rationale is there in177

preparing for upcoming movements, then?178

To address this question, we formulated delayed reach-179

ing as an optimal control problem, and asked what ex-180

ternal inputs are required, and at what time, to drive181

the hand into the desired position with minimum con-182

trol effort. Specifically, we sought inputs that were as183

weak as possible yet accurately drove the hand to the184

target within an alloted time window. We also penal-185

ized inputs that caused premature movement before the186

go cue.187

Thus, we solved for spatio-temporal input trajectories188

that minimized a cost functional capturing the various189

task requirements. Our cost was composed of three190

terms: Jtarget penalizes deviations away from the target,191

with an “urgency” weight that increases quadratically192

with time, thus capturing the implicit incentive for ani-193

mals to perform fast reaches in such experiments (which194

are normally conducted in sessions of fixed duration).195

Jnull penalizes premature movement during prepara-196

tion, as measured by any deviation in position, speed197

and acceleration of the hand. Finally, Jeffort penalizes198

control effort in the form of input magnitude through-199

out the whole trial, thus promoting energy-efficient con-200

trol solutions amongst a typically infinite set of possi-201

bilities (Kao et al., 2021; Sterling and Laughlin, 2015).202

Note that Jeffort can be viewed as a standard regulariza-203

tion term, and must be included to ensure the control204

problem is well defined. The total objective thus had205

the following form :206

J [u(t)] =

∫ T

0

‖θ(t)− θ?‖2 t
2

T 2

dt

T︸ ︷︷ ︸
Jtarget

+ αnull

∫ 0

−∆prep

(
‖θ(t)− θ0‖2 + ‖θ̇(t)‖2 + ‖m(t)‖2

) dt
T︸ ︷︷ ︸

Jnull

+ αeffort

∫ T

−∆prep

‖u(t)‖2 dt

NT︸ ︷︷ ︸
Jeffort

, (4)

where θ and θ̇ denote the position and velocity of the207
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Figure 2: Optimal control of the ISN network. (A) Illustration of the different terms in the control cost function,
designed to capture the different requirements of the task. “Tgt” marks the time of target onset, “Go” that of the go cue
(known in advance) and “End” the end of the trial. (B) Time course of the hand velocity (top), optimal control inputs (middle;
10 example neurons), and firing rates (bottom, same neurons) during a delayed reach to one of the 8 targets shown in Figure 1A.
Here, the delay period was set to ∆prep = 300 ms. Note that inputs arise well before the go cue, even though they have no direct
effect on behaviour at that stage. (C) Dependence of the different terms of the cost function on preparation time. All costs are
normalized by the total cost at ∆prep = 0 ms. The inset shows the time course of the hand’s average distance to the relevant
target when no preparation is allowed (blue) and when preparation is allowed (red). Although the target is eventually reached
for all values of ∆prep, the hand gets there faster with longer preparation times, causing a decrease in Jtgt – and therefore also
in Jtot. Another part of the decrease in Jtot is due to a progressively lower input energy cost Jeffort. On the other hand, the
cost of staying still before the Go cue increases slightly with ∆prep. (D) We define the preparation index as the ratio of the
norms of the external inputs during preparation and during movement (see text). The preparation index measures how much
the optimal strategy relies on the preparatory period. As more preparation time is allowed, this is used by the optimal controller
and more inputs are given during preparation. For longer preparation times, this ratio increases sub-linearly, and eventually
settles.

hand in angular space, ∆prep was the duration of the208

delay period and T that of the movement period. As209

Jtarget and Jnull depend on u(t) implicitly through210

Equations 1 and 2, J is a function of u only. Im-211

portantly, we allowed for inputs within a time window212

beginning ∆prep ms before, and ending T ms after the213

go cue (set at t = 0). Therefore, both preparation-only214

and movement-only input strategies (cf. Figure 1) could215

potentially arise, as well as anything in between.216

Here, we solved for the optimal control inputs using the217

iterative linear quadratic regulator algorithm (iLQR; Li218

and Todorov, 2004), an efficient trajectory optimization219

algorithm that is well-suited for handling the nonlinear220

nature of both the arm’s and the network’s dynamics.221

As our primary goal was to assess the role of prepara-222

tion in a normative way, we did not study the putative223

circuit dynamics upstream of M1 that might lead to the224

computation of these optimal inputs.225

We balanced the various components of our cost func-226

tional by choosing αnull and αeffort to qualitatively227

match the behavioural requirements of a typical reach-228

and-hold task. Specifically, we tuned them jointly so as229

to ensure (i) stillness during preparation, and (ii) reach230

duration of approximately ∼ 400 ms, with the hand231

staying within 0.5cm of the target for ∼ 200 ms after232

the end of the reach. We ensured that the main quali-233

tative features of the solution, i.e. the results presented234

below, were robust to the choice of hyperparameter val-235

ues within the fairly large range in which the above soft-236

constraints are satisfied (Supplementary Material S1).237

Results238

Preparation arises as an optimal control239

strategy240

Using the above control framework, we assessed whether241

the optimal way of performing a delayed reach involves242

preparation. More concretely, does the optimal control243

strategy of the model described in Equation 2 involve244

any preparatory inputs during the delay period? For245

any single optimally performed reach, we found that246

network activity began changing well before the go cue247

(Figure 2B, bottom), and that this was driven by in-248

puts that arose early (Figure 2B, middle). Thus, al-249

though preparatory network activity cancels in the read-250

out (such that the hand remains still; Figure 2B, top)251
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and therefore does not contribute directly to movement,252

it still forms an integral part of the optimal reach strat-253

egy. To quantify how much the optimal control strat-254

egy relied on inputs prior to movement, we defined the255

preparation index as the ratio of input magnitude dur-256

ing the delay period to that during the remainder of the257

trial:258

prep. index =

√√√√∫ 0

−∆prep
‖u(t)‖2dt∫ T

0
‖u(t)‖2dt

. (5)

We found that the preparation index rose sharply as we259

increased the delay period, and eventually plateaued at260

∼ 1.3 for delay periods longer than 300 ms (Figure 2C).261

Similarly, the total cost of the task was highest in the ab-262

sence of preparation, and decreased until it also reached263

a plateau at ∆prep ∼ 300 ms (Figure 2C, black). This264

appears somewhat counterintuitive, as having a larger265

∆prep means that both Jeffort and Jnull are accumulated266

over a longer period. To resolve this paradox, we exam-267

ined each component of the cost function. We found268

that the overall decrease in cost with increasing prepa-269

ration time was driven by a concurrent decrease in both270

Jtgt and Jeffort. The former effect was due to the model271

producing faster reaches (Figure 2C inset; hand position272

for a reach with (red) and without (blue) preparation)273

while the latter arose from the use of smaller control in-274

puts when preparation was allowed. Together, these re-275

sults suggest that the presence of a delay period changes276

the optimal control strategy for reaching, and increases277

performance in the task.278

The results above show that delaying the reach beyond279

∼ 300 ms brings little benefit; in particular, all compo-280

nents of the cost stabilize past that point (Figure 2C).281

We thus wondered what features the optimally con-282

trolled dynamics would display as ∆prep increased be-283

yond 300 ms. Would the network defer preparation to284

a last minute surge, or prepare more gently over the en-285

tire preparatory window? Would the network produce286

the same neural activity patterns? We found that the287

optimal controller made very little use of any prepara-288

tion time available up to 300 ms before the go cue: with289

longer preparation times, external input continued to290

arise just a couple of hundred milliseconds before move-291

ment initiation, and single neuron firing rates remained292

remarkably similar (Figure 3A). This was also seen in293

PCA projections of the firing rates, which traced out294

similar trajectories irrespective of the delay period (Fig-295

ure 3B). We hypothesized that this behaviour is due to296

the network dynamics having a certain maximum char-297

acteristic timescale, such that inputs that arrive too298

early end up being “forgotten” – they increase Jeffort299

and possibly Jnull without having a chance to influence300

Jtgt. We confirmed this by varying the characteristic301

time constant (τ in Equation 2). For a fixed ∆prep, we302

found that for larger (resp. lower) values of τ , the opti-303

mal control inputs started rising earlier (resp. later) and304

thus occupied more (resp. less) of the alloted prepara-305

tory period (Supplementary Material S3).306

Understanding optimal control in simpli-307

fied models308

Having established that the ISN model of M1 relies on309

preparatory inputs to solve the delayed reaching task,310

we next tried to understand why it does so. To further311

unravel the interplay between the structure of the net-312

work and the optimal control strategy, i.e. what aspects313

of the dynamics of the network warrant preparation,314

we turned to simpler, two-dimensional models of cor-315

tical dynamics. These 2D models are small enough to316

enable detailed analysis (Supplementary Material S3),317

yet rich enough to capture the two dominant dynamical318

phenomena that arise in ISN dynamics: nonnormal am-319

plification (Murphy and Miller, 2009; Goldman, 2009;320

Hennequin et al., 2012) and oscillations (Brunel, 2000;321

Dayan and Abbott, 2001). Specifically, networks of E322

and I neurons have been shown to embed two main mo-323

tifs of effective connectivity which are revealed by ap-324

propriate orthogonal changes of basis: (i) feedforward325

(“nonnormal”) connectivity whereby a “source mode”326

of E-I imbalance feeds into a “sink mode” in which bal-327

ance is restored, and (ii) anti-symmetric connectivity328

that causes the two populations to oscillate.329

To study the impact of each of these prototypical con-330

nectivity motifs on movement preparation, we imple-331

mented them separately, i.e. as two small networks of332

two units each, with an overall connectivity scale pa-333

rameter w which we varied (Figure 4A and D; Methods).334

As both nonnormal and oscillatory dynamics arise from335

linear algebraic properties of the connectivity matrix,336

we considered linear network dynamics for this analy-337

sis (φ(x) = x in Equation 3). Moreover, to preserve338

the existence of an output nullspace in which prepara-339

tion could in principle occur without causing premature340

movement, we reduced the dimensionality of the motor341

readout from 2D (where there would be no room left for342

a nullspace) to 1D (leaving a 1D nullspace), and adapted343

the motor task so that the network now had to move the344

hand position along a single dimension (Figure 4B and345

E, top). Analogous to the previous arm model, we as-346

sumed that the hand’s acceleration along this axis was347

directly given by the 1D network readout.348

We found that optimal control of both dynamical mo-349

tifs generally led to preparatory dynamics, with inputs350

arising before the go cue (Figure 4B and E, bottom). In351

the feedforward motif, the amount of preparatory inputs352

appeared to depend critically on the orientation of the353

readout. When the readout was aligned with the sink354

(brown) mode (Figure 4B, left), the controller prepared355

the network by moving its activity along the source (or-356

ange) mode (Figure 4C, left). This placed the network357

in a position from which it had a natural propensity358

to generate large activity transients along the readout359

dimension (c.f. flow field in Figure 4A); here, these tran-360

sients were exploited to drive the fast upstroke in hand361

acceleration and throw the hand towards the target lo-362

cation. Note that this strategy reduces the amount of363
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Figure 3: Conservation of the optimal control strategy across delays (A) Optimal control inputs to ten randomly
chosen neurons in the model RNN (left) and their corresponding firing rates (right) for different preparation times ∆prep (rang-
ing from 0 to 800 ms; c.f. labels). (B) Projection of the movement-epoch population activity for each of the 8 reaches (panels)
and each value of ∆prep shown in A (darker to lighter colors). These population trajectories are broadly conserved across delay
times, and become more similar for larger delays.

input the controller needs to deliver during the move-364

ment, because the network itself does most of the work.365

Nevertheless, in this case the network’s own impulse re-366

sponse was not rich enough to accommodate the phase367

reversal required to subsequently slow the hand down368

and terminate the movement. Optimal control there-369

fore also involved inputs during the movement epoch,370

leading to a preparatory index of ∼ 0.54 (Figure 4G,371

dark blue).372

When it was instead the source mode that was read373

out (Figure 4B, right), the only dimension along which374

the system could prepare without moving was the sink375

mode. Preparing this way is of no benefit, because the376

flow field along the sink mode has no component along377

the source (readout) mode. Thus, here the optimal378

strategy was to defer control to the movement epoch,379

during which the transient growth of network activity380

along the readout rested entirely on adequate control in-381

puts. This led to a preparation index of ∼ 0 (Figure 4G,382

pale green). Although the network did react with large383

activity excursions along the sink mode (Figure 4C,384

right), these were inconsequential for the movement.385

Importantly, of the two extreme readout configurations386

discussed above, the first one yielded a smaller overall387

optimal control cost (by a factor of ∼ 1.5). Thus, at388

a meta-control level, ideal downstream effectors would389

read out the sink mode, not the source mode. Note that390

while increasing the connectivity strength initially led to391

more preparation (Figure 4H), a plateau was eventually392

reached for w ≥ 4. Indeed, while stronger dynamics ini-393

tially make preparation more beneficial, they also make394

it more difficult for preparatory activity to remain in395

the readout nullspace.396

We obtained similar insights for oscillatory network dy-397

namics (Figure 4D-F). A key difference however was398

that the flow field was rotationally symmetric such399

that no distinction could be made between “source”400

and “sink” units – indeed the optimal control strat-401

egy yielded the same results (up to a rotation of the402

state space) irrespective of which of the two units was403

driving the hand’s acceleration (compare left and right404

panels in Figure 4D-F). Nevertheless, the optimal con-405

troller consistently moved the network’s activity along406

the output-null axis during preparation, in such a way407

as to engage the network’s own rotational flow immedi-408

ately after the go cue (Figure 4F). This rotational flow409

drove a fast rise and decay of activity in the readout410

unit, thus providing the initial segment of the required411

hand acceleration. The hand was subsequently slowed412

down by modest movement-epoch control inputs which413

eventually receded, leading to a preparation index of414

∼ 0.58. Interestingly, the preparation index showed a415

decrease for very large w (Figure 4G), which did not re-416

flect smaller preparatory inputs (Figure 4H) but rather417

reflected the larger inputs that were required during418

movement to cancel the fast oscillations naturally gen-419

erated by the network.420

The above results highlight how the optimal control421

strategy is shaped by the dynamical motifs present in422

the network. Crucially, we found that the optimal423

way to control the movement depends not only on the424

strength and flow of the internal network dynamics, but425

also on their interactions with the readout.426

6

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 3, 2023. ; https://doi.org/10.1101/2023.04.03.535429doi: bioRxiv preprint 

https://doi.org/10.1101/2023.04.03.535429
http://creativecommons.org/licenses/by/4.0/


-800 800

-800

800

-20002000

-2000

2000

-500 500

-500

500

-500 500

0

1
nonnormal

µC = 0
µC = º/8

µC = º/4

µC = 3º/8

µC = º/2

0

1
oscillatory

nonnormal

0 2 4 6 8 10

w

oscillatory

0

20

-500

500

-2000

2000

in
pu

ts
ac

c.
po

si
tio

n

ku
k2 p

re
p

pr
ep

.
in

de
x

A

B

C

D

H

E

F

G

unit 1

un
it 

2

time300

Figure 4: Analysis of the interplay between the optimal control strategy and two canonical motifs of E-I net-
work dynamics: nonnormal transients driven by feedforward connectivity (A–C), and oscillations driven by anti-symmetric
connectivity (D–F). (A) Activity flow field (10 example trajectories) of the nonnormal network, in which a “source” unit
(orange) drives a “sink” unit (brown). We consider two opposite readout configurations, where it is either the sink (left) or
the source (right) that drives the acceleration of the hand. (B) Temporal evolution of the hand position (top; the dashed
horizontal line indicates the reach target), hand acceleration (middle) and optimal control inputs to the two units (bottom;
colours matching panel A), under optimal control given each of the two readout configurations shown in A (left vs. right). The
dashed vertical line marks the go cue, which follows a 300 ms delay period. While the task can be solved successfully in both
cases, preparatory inputs are only useful when the sink is read out. (C) Network activity trajectories under optimal control.
Each trajectory begins at the origin, and the end of the delay period is shown with a black cross. (D-F) Same as (A-C), for
the oscillatory network. (G-H) Preparation index (top) and total amount of preparatory inputs (bottom) as a function of
the scale parameter w of the network connectivity, for various readout configurations (colour-coded as shown in the top inset).
The nonnormal network (top) prepares more when the readout is aligned to the most controllable mode, while the amount of
preparation in the oscillatory network (bottom) is independent of the readout direction. The optimal strategy must balance
the benefits from preparatory inputs which allow to exploit the intrinsic network dynamics, with the constraint to remain still.
This is more difficult when the network dynamics are strong and pushing activity out of the readout-null subspace, explaining
the decrease in preparation index for large values of w in the oscillatory network.

Control-theoretic properties predict the427

amount of preparation428

Our investigation of preparation in a low-dimensional429

system allowed us to isolate the impact of core dynami-430

cal motifs, and highlighted how preparation depends on431

the geometry of the flow field, and its alignment to the432

readout. However, these intuitions remain somewhat433

qualitative, making them difficult to generalize to our434

high-dimensional ISN model.435

To quantify the key criteria that appear important for436

preparation, we turned to tools from control theory.437

We reasoned that, for a network to be able to benefit438

from preparation and thus exhibit a large preparation439

index, there must be some advantage to using early in-440

puts that do not immediately cause movement, relative441
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Figure 5: Predicting the preparation index from the observability of the output nullspace (α) and the con-
trollability of the readout (β, see details in text). (A) Illustration of the observability of the output nullspace in a
synthetic 2-dimensional system. The observability of a direction is characterized by how much activity (integrated squared
norm) is generated along the readout by a unit-norm initial condition aligned with that direction. The top and bottom panels
show the choices of readout directions (dotted black) for which the corresponding nullspace (dotted orange) is most (maximum
α) and least (minimum α) observable, respectively. Trajectories initialized along the null direction are shown in solid orange,
and their projections onto the readout are shown in the inset. (B) Illustration of the controllability of the readout in the
same 2D system as in (A). To compute controllability, the distribution of activity patterns collected along randomly initialized
trajectories is estimated (heatmap); the controllability of a given direction then corresponds to how much variance it captures
in this distribution. Here, the network has a natural propensity to generate activity patterns aligned with the dashed white line
(‘most controllable’ direction). The readout directions are repeated from panel A (dotted black). The largest (resp. smallest)
value of β would by definition be obtained when the readout is most (resp. least) controllable. Note the tradeoff in this example:
the choice of readout that maximizes α (top) does not lead to the smallest β. (C) The values of α and β accurately predict the
preparation index (R2 = 0.93) for a range of high-dimensional ISNs (maroon dots) with different connectivity strengths and
characteristic timescales (Methods). The best fit (after z-scoring) is given by f(α, β) = (16.94± 0.02)α− (15.97± 0.02)β (mean
± sem were evaluated by boostrapping). This confirms our hypothesis that optimal control relies more on preparation when α
is large and β is small. Note that α and β alone only account for 34.8% and 30.4% of the variance in the preparation index,
respectively (inset). Thus, α and β provide largely complementary information about the networks’ ability to use inputs, and
can be combined into a very good predictor of the preparation index. Importantly, even though this fit was obtained using ISNs
only, it still captures 69% of preparation index variance across networks from other families (blue dots; Methods).

to using later inputs that do. We hypothesized that442

this advantage could be broken down into two crite-443

ria. First, there must exist activity patterns that are444

momentarily output-null (i.e. do not immediately cause445

movement) yet seed output-potent dynamics that sub-446

sequently move the arm. The necessity of this crite-447

rion was obvious in the 2D nonnormal network, which448

did not display any preparation when its nullspace was449

aligned with its “sink” mode. In the language of con-450

trol theory, this criterion implies that the nullspace of451

the readout must be sufficiently “observable” – we cap-452

tured this in a scalar quantity α (Methods; Kao and453

Hennequin, 2019; Skogestad and Postlethwaite, 2007).454

Second, there must be a sizeable cost to performing the455

movement in an entirely input-driven manner without456

relying on preparation. In other words, the network457

should be hard to steer along the readout direction, i.e.458

the readout must be of limited “controllability” – we459

captured this in another scalar quantity β (Methods).460

We illustrate the meaning of these two metrics in Fig-461

ure 5A and B for a 2-dimensional example network that462

combines nonnormality and oscillations. We show two463

extreme choices of readout direction (Figure 5A, dashed464

black): the one that maximizes α (top) and the one that465

minimizes it (bottom). In the first case, the readout466

nullspace (dashed orange) is very observable, i.e. trajec-467

tories that begin in the nullspace evolve to produce large468

transients along the readout (solid orange & inset). In469

the second case, the opposite is true. For each case, we470

also assessed the controllability of the readout (β). The471

controllability of a direction corresponds to how much472

variance activity trajectories exhibit along that direc-473

tion, when they are randomly and isotropically initial-474

ized (Figure 5B). In other words, a very controllable475

direction is one along which network trajectories have a476

natural tendency to evolve.477

We then assessed how well α and β could predict the478

preparation index of individual networks. In 2D net-479

works, we found that a simple function that grows480

with α and decreases with β could accurately predict481
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preparation across thousands of networks (Supplemen-482

tary Material S3.2). To assess whether these insights483

carried over to high-dimensional networks, we gener-484

ated a range of large ISNs with parameterically var-485

ied connectivity strengths and decay timescales (Meth-486

ods). We then regressed the preparation index against487

the values of α and β computed for each of these net-488

works (as controllability and observability are only de-489

fined for linear networks, we set φ(x) = x for this in-490

vestigation). We found that a simple linear mapping,491

prep. index = k0 + kαα + kββ, with parameters fitted492

to one half of the ISN networks, accurately predicted493

the preparation indices of the other half (Figure 5C;494

R2 = 0.93, 5-fold cross-validated). Interestingly, we ob-495

served that although α and β (which are both func-496

tions of the network connectivity) were highly corre-497

lated across different networks, discarding either vari-498

able in our linear regression led to a significant drop in499

R2 (Figure 5C, inset). Importantly, it was their differ-500

ence that best predicted the preparation index (kα > 0501

and kβ < 0), consistent with our hypothesis that the502

preparation index is a relative quantity which increases503

as the nullspace becomes more observable, but decreases504

as readout dimensions become more controllable.505

We were able to confirm the generality of this predictive506

model by generating networks with other types of con-507

nectivity (oscillatory networks, and networks with un-508

structured random weights), which displayed dynamics509

very different from the ISNs (see Supplementary Mate-510

rial S4). Interestingly, despite the different distribution511

of α and β parameters in those networks, we could still512

capture a large fraction of the variance in their prepa-513

ration index (R2 = 0.69) using the linear fit obtained514

from the ISNs alone. This confirms that α and β can515

capture information about the networks’ dynamics in a516

universal manner.517

Note that we do not make any claims about the specific518

functional form of the relationship between α, β and the519

preparation index. Rather, we claim that there should520

be a broad trend for the preparation index to increase521

with α and decrease with β, and we acknowledge that522

this relationship could in general be nonlinear. Indeed,523

in 2D networks, we found that the preparation index524

was in fact better predicted by the ratio of α over β525

than by their difference (Supplementary Material S3.2).526

Modelling movement sequences527

Having gained a better understanding of what features528

lead a network to prepare, we next set out to assess529

whether optimal control could also explain the neu-530

ral preparatory processes underlying the generation of531

movement sequences. We revisited the experimental532

studies of Zimnik and Churchland (2021), where mon-533

keys were trained to perform two consecutive reaches.534

Each trial started with the display of both targets, fol-535

lowed by an explicitly enforced delay period before the536

onset of the first reach. A distinction was made between537

“double” reaches in which a pause was enforced between538

reaches, and “compound” reaches in which no pause539

was required. This study concluded that, rather than540

the whole movement sequence unrolling from a single541

preparatory period, each reach was instead successively542

seeded by its own preparatory activity.543

Here, we asked whether such an independent, successive544

preparation strategy would arise as an optimal control545

solution, in the same way that single-reach preparation546

did. Importantly, we could not answer this question547

by directly examining network inputs as we did for sin-548

gle reaches. Indeed, any network input observed be-549

fore the second reach could be contributing either to550

the end of the first movement, or to the preparation of551

the next. In fact, the issue of teasing apart preparatory552

vs. movement-related activity patterns also arose in the553

analysis of the monkey data. To address this, Zimnik554

and Churchland (2021) exploited the fact that mon-555

key M1 activity just before and during single reaches556

is segregated into two distinct subspaces. Thus, mo-557

mentary activity patterns (during either single or dou-558

ble reaches) can be unambiguously labelled as prepara-559

tory or movement-related depending on which of the560

two subspaces they occupied. We performed a similar561

analysis (Methods) and verified that preparatory and562

movement activity patterns in the model were also well563

segregated in their respective subspaces in the single-564

reach task (Figure 6A-B). We then assessed the occu-565

pancy of the preparatory subspace during double reach-566

ing in the model, and took this measure as a signature567

of preparation.568

To model optimal control of a double reach, we modi-569

fied our cost functional to account for the presence of570

two consecutive targets (see Methods). We considered571

the same set of eight targets as in our single-reach task,572

and modelled all possible combinations of two targets573

(one example shown in Figure 6). We set the hyper-574

parameters of the cost function such that both targets575

could be reached by the resulting optimal controller, in576

a way that matched important qualitative aspects of577

the monkeys’ behaviour (in particular, such that both578

reaches were performed at similar velocities, with the579

second reach lasting slightly longer on average; Fig-580

ure 6B-C; top).581

We projected the network activity onto preparatory and582

movement subspaces identified using single and double583

reaches activity (Methods). For double reaches with a584

long (600ms) pause, the preparatory subspace was tran-585

siently occupied twice, with the two peaks occurring just586

before the onset of each movement in the sequence (Fig-587

ure 6B; bottom).588

Notably, the occupancy during the “compound” reach589

(without pause; Figure 6C) also started rising prior to590

the first movement before decaying very slightly and591

peaking again before the second reach, indicating two592

independent preparatory events. This is somewhat sur-593

prising, given that a movement sequence can also be594
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Figure 6: The model executes a sequence of two reaches using an independent preparation strategy. (A) Hand
velocity during one of the reaches, with the corresponding hand trajectory shown in the inset. (B-C) We identified two
6-dimensional orthogonal subspaces, capturing 79% and 85% of total activity variance during single-reach preparation and
movement respectively. (B) First principal component of the model activity for the 8 different reaches projected into the
subspaces identified using preparatory (top) and movement-epoch (bottom) activity. (C) Occupancy (total variance captured
across movements) of the orthogonalized preparatory and movement subspaces, in the model (top) and in monkey motor cortical
activity (bottom; reproduced from Lara et al., 2018 for monkey Ax). We report mean ± s.e.m., where the error is computed
by bootstrapping from the neural population as in Lara et al. (2018). We normalize each curve separately to have a maximum
mean value of 1. To align the model and monkey temporally, we re-defined the model’s ‘movement onset’ time to be 120 ms
after the model’s hand velocity crossed a threshold – this accounts for cortico-spinal delays and muscle inertia in the monkey.
Consistent with Lara et al. (2018)’s monkey M1 recordings, preparatory subspace occupancy in the model peaks shortly before
movement onset, rapidly dropping thereafter to give way to pronounced occupancy of the movement subspace. Conversely,
there is little movement subspace occupancy during preparation. (D) Behavioural (top) and neural (middle) correlates of the
delayed reach for one example of a double reach with an enforced pause of 0.6 s. The optimal strategy relies on preparatory
inputs preceding each movement. (E) Same as (C), for double reaches. The onsets of the monkey’s two reaches are separately
aligned to the model’s using the same convention as in (C). The preparatory subspace displays two clear peaks of occupancy.
This double occupancy peak is also observed in monkey neural activity (bottom; reproduced from Zimnik and Churchland,
2021, with the first occupancy peak aligned to that of the model). (F) Same as (D), for compound reaches with no enforced
pause in between. Even though the sequence could be viewed as a single long movement, the control strategy relies on two
periods of preparation. Here, inputs before the second reach are used to reinject energy into the system after slowing down
at the end of the first reach. (G) Even though no explicit delay period is enforced in-between reaches during the compound
movement, the preparatory occupancy rises twice, before the first reach and once again before the second reach. This is similar
to observations in neural data (bottom; reproduced from Zimnik and Churchland, 2021).

viewed as a single “compound” movement, for which595

we have shown previously a unique preparatory phase596

is sufficient (Figure 2). In our model, this behaviour597

can be understood to arise from the requirement that598

the hand stop briefly at the first target. To produce the599

second reach, the hand needs to accelerate again, which600

requires transient re-growth of activity in the network.601

Given that the network’s dynamical repertoire exhibits602

limited timescales, this is most easily achieved by rein-603

jecting inputs into the system.604

In summary, our results suggest that the “indepen-605

dent” preparation strategy observed in monkeys is con-606
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sistent with the optimal control of a two-reach se-607

quence. While Zimnik and Churchland (2021) showed608

that RNNs trained on this task used this “independent”609

strategy, this was by design as the network was only610

cued for the second reach after the first one had started.611

In addition to replicating this proof of concept that it is612

possible to prepare whilst moving, our model also shows613

how and why independent preparation might arise as an614

optimal control solution.615

Discussion616

In this work, we proposed a model for the dynamics617

of motor cortex during a delayed reaching task in non-618

human primates. Unlike previous work, we treated M1619

as an input-driven nonlinear dynamical system, with620

generic connectivity not specifically optimized for the621

task, but with external inputs assumed to be optimal for622

each reach. Motivated by a large body of evidence sug-623

gesting that preparation is useful before delayed reaches624

(Churchland et al., 2010; Lara et al., 2018; Afshar et al.,625

2011; Shenoy et al., 2013), but also evidence for thala-626

mic inputs being necessary for accurate movement ex-627

ecution (Sauerbrei et al., 2020), we used this model to628

investigate whether and why neural circuits might rely629

on motor preparation during delayed reaching tasks.630

Interestingly, preparation arose as an optimal control631

strategy in our model, with the optimal solution to632

the task relying strongly on inputs prior to movement633

onset. Moreover, the benefits of preparation were de-634

pendent on the network connectivity, with preparation635

being more prevalent in networks whose rich internal636

dynamics can be advantageously seeded by early ex-637

ternal inputs. We were able to quantify this intuition638

with a predictive model relating the dynamical response639

properties of a network to the amount of preparation it640

exhibits when controlled optimally. Finally, we found641

that prominent features of the monkeys’ neural activity642

during sequential reaches arose naturally from optimal643

control assumptions. Specifically, optimally controlled644

networks relied on two phases of preparation when ex-645

ecuting sequences of two reaches, corroborating recent646

experimental observations in monkey M1 (Zimnik and647

Churchland, 2021). Together, our results provide a nor-648

mative explanation for the emergence of preparatory ac-649

tivity in both single and sequential reaching movements.650

In recent years, task-optimized recurrent neural net-651

works have become a very popular tool to model neu-652

ral circuit dynamics. Classically, those models incorpo-653

rate only those inputs that directly reflect task-related654

stimuli (e.g. motor target, go cue, etc). This requires655

assumptions about the form of the inputs, such as mod-656

elling them as simple step functions active during spe-657

cific task epochs. However, as local neural circuits are658

part of a wider network of brain areas, a large portion of659

their inputs come from other brain areas at intermedi-660

ate stages of the computation and may therefore not be661

directly tied to task stimuli. Thus, it is not always ob-662

vious what assumptions can reasonably be made about663

the inputs that drive the circuit’s dynamics. Our opti-664

mization framework, which does not require us to make665

any specific assumptions about when and how inputs en-666

ter the network (although it does allow to incorporate667

prior information in the form of constraints), allows to668

bypass this problem and to implicitly model unobserved669

inputs from other areas. Importantly, our framework670

allows to ask questions – such as “why prepare” – that671

are difficult to phrase in standard input-driven RNN672

models. We note, however, that in the investigation we673

have presented here, the lack of imposed structure for674

the inputs also implied that the model could not make675

use of mechanisms known to contribute certain aspects676

of preparatory neural activity. For example, our model677

did not exhibit the usual visually-driven response to the678

target input, nor did it have to use the delay epoch to679

keep such a transient sensory input in memory (Guo680

et al., 2014; Li et al., 2015). Moreover, while we did not681

introduce any strong assumptions about the temporal682

structure of inputs, we did assume for simplicity that683

the optimal controller was aware of the duration of the684

delay period. While this made solving for the optimal685

control inputs easier, it made our task more akin to a686

self-initiated reach (Lara et al., 2018) than to a typi-687

cal delayed reach with unpredictable, stochastic delay688

durations. We note that our current framework could689

be generalized to the stochastic setting by using model690

predictive control to optimize the control inputs (Rawl-691

ings et al., 2017). Although this would be considerably692

more expensive computationally, we hypothesize that693

explicitly modelling such uncertainty over the delay pe-694

riod would not only yield a better model of the typical695

delayed reaching task, but may also lead to preparatory696

activity patterns arising immediately after target onset697

and persisting until the go cue.698

Dynamical systems have a longstanding history as mod-699

els of neural populations (Dayan and Abbott, 2001).700

However, understanding how neural circuits can per-701

form various computations remains a challenging ques-702

tion. Recently, there has been increased interest in try-703

ing to understand the role of inputs in shaping corti-704

cal dynamics. This question has been approached both705

from a data-driven perspective (Malonis et al., 2021;706

Soldado-Magraner et al., 2023), and in modelling work707

with e.g Driscoll et al. (2022) showing how a single net-708

work can perform different tasks by reorganizing its dy-709

namics under the effect of external inputs and Dubreuil710

et al. (2021) relating network structure to the ability to711

process contextual inputs. To better understand how712

our motor system can generate flexible behaviours (Lo-713

giaco et al., 2021; Stroud et al., 2018), and to character-714

ize learning on short timescales (Sohn et al., 2020; Heald715

et al., 2023), it is important to study how network dy-716

namics can be modulated by external signals that allow717

rapid adaptation to new contexts without requiring ex-718

tensive modifications of the network’s connectivity. The719

optimal control approach we proposed here offers a way720
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to systematically perform such evaluations, in a vari-721

ety of tasks and under different assumptions regarding722

how inputs are allowed to impact the dynamics of the723

local circuit of interest. While our model’s predictions724

will depend on e.g. the choice of connectivity or the de-725

sign of the cost function, an exciting direction for future726

work will be to obtain those parameters in a data-driven727

manner, for instance using recently developed methods728

to infer dynamics from data (Pandarinath et al., 2018;729

Schimel et al., 2022), and advances in inverse reinforce-730

ment learning and differentiable control (Amos et al.,731

2018) to infer the cost function that behaviour opti-732

mizes.733

Methods

Experimental model and subject details

In Figure 1, we showed data from two primate datasets that were made available to us by Mark Churchland, Matthew
Kaufman and Krishna Shenoy. Details of animal care, surgery, electrophysiological recordings, and behavioral task have
been reported previously in Churchland et al. (2012); Kaufman et al. (2014) (see in particular the details associated
with the J and N “array” datasets). The subjects of this study, J and N, were two adult male macaque monkeys
(Macaca mulatta). The animal protocols were approved by the Stanford University Institutional Animal Care and
Use Committee. Both monkeys were trained to perform a delayed reaching task on a fronto-parallel screen. At the
beginning of each trial, they fixated on the center of the screen for some time, after which a target appeared on the
screen. After a variable delay period (0–1000 ms), a go cue appeared instructing the monkeys to reach toward the
target. Recordings were made in the dorsal premotor cortex and in the primary motor cortex using a pair of implanted
96-electrode arrays. In Figure 6, we also reproduced data from Lara et al. (2018) and Zimnik and Churchland (2021).
Details of animal care, surgery, electrophysiological recordings, and behavioral task for those data can be found in the
Methods section of the respective papers.

Arm model

To simulate reaching movements, we used the planar two-link arm model described in Li and Todorov (2004). The
two links have lengths L1 and L2, masses M1 and M2, and moments of inertia I1 and I2 respectively. The lower arm’s
center of mass is located a distance D2 from the elbow. By considering the geometry of the upper and lower limb, the
position of the hand and elbow can be written as vectors yh(t) and ye given by

yh =

(
L1 cos θ1 + L2 cos(θ1 + θ2)
L1 sin θ1 + L2 sin(θ1 + θ2)

)
and

ye =

(
L1 cos θ1

L1 sin θ1

)
.

(6)

The joint angles θ = (θ1; θ2)T evolve dynamically according to the differential equation

m(t) =M(θ)θ̈ + X (θ, θ̇) + Bθ̇, (7)

where m(t) is the momentary torque vector, M is the matrix of inertia, X accounts for the centripetal and Coriolis
forces, and B is a damping matrix representing joint friction. These parameters are given by

M(θ) =

(
a1 + 2a2 cos θ2 a3 + a2 cos θ2

a3 + a2 cos θ2 a3

)
(8)

X (θ, θ̇) = a2 sin θ2

(
−θ̇2(2θ̇1 + θ̇2)

θ̇1
2

)
(9)

B =

(
0.05 0.025
0.025 0.05

)
(10)

with a1 = I1 + I2 +M2L
2
1, a2 = M2L1D2, and a3 = I2.

12

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 3, 2023. ; https://doi.org/10.1101/2023.04.03.535429doi: bioRxiv preprint 

https://doi.org/10.1101/2023.04.03.535429
http://creativecommons.org/licenses/by/4.0/


iLQR algorithm

Throughout this work, we used the iLQR algorithm (Li and Todorov, 2004) to find the locally optimal inputs that
minimize our cost function. iLQR is a trajectory optimization algorithm that can handle nonlinear dynamics and
non-quadratic costs. iLQR works in an iterative manner, by linearizing the dynamics and performing a quadratic
approximation of the cost at each iteration, thus turning the control problem into a local linear-quadratic problem
whose unique solution is found using LQR (Kalman et al., 1960). The LQR solver uses a highly efficient dynamic
programming approach that exploits the sequential structure of the problem. Our implementation of iLQR followed
from Li and Todorov (2004), with the difference that we performed regularization of the local curvature matrix as
recommended by Tassa (2011).

Generation of the high-dimensional readouts and networks

Generation of inhibitory-stabilized networks Simulations in Figures 1, 3, 5 and 6 were conducted using
inhibition-stabilized networks (ISN). Those were generated according to the procedure described in Hennequin et al.
(2014) with minor adjustments. In brief, we initialized strongly connected chaotic networks with sparse and log-
normally distributed excitatory weights, and stabilized them through progressive H2-optimal adjustments of the
inhibitory weights until the spectral abscissa of the connectivity matrix fell below 0.8. This yielded strongly connected
but stable networks with a strong degree of non-normality. When considering a larger range of ISNs (Figure 5), we
independently varied both the variance of the distribution of initial excitatory weights and the spectral abscissa below
which we stopped optimizing the inhibitory weights.

Generation of additional networks in Figure 5 To assess the generality of our findings in Figure 5, we
additionally generated randomly connected networks by sampling each weight from a Gaussian distribution with
σ = R/

√
N , where the spectral radius R was varied between 0 and 0.99. We also sampled skew-symmetric networks

by drawing a random network S as above, and setting W = (S − ST )/2. We varied the radius R of the S matrices
between 0 and 5. Moreover, we considered diagonally shifted skew-symmetric networks W = (S −ST )/2 + λI where
λ denotes the real part of all the eigenvalues and was varied between 0 and 0.8.

The elements of the readout matrix C mapping neural activity onto torques were drawn from a normal distribution
with zero mean and standard deviation σC = 0.05/

√
N . This was chosen to ensure that firing rates of standard

deviation on the order of 30Hz would be decoded into torques of standard deviation ∼ 2 N/m, which is the natural
variation required for the production of the reaches we considered.

Details of Figure 4

To more easily dissect the phenomena leading to the presence or absence of preparation, we turned to 2D linear

networks in Figure 4. We modelled nonnormal networks with a connectivity W =

[
0 0
w 0

]
and oscillatory networks

with connectivity W =

[
0 −w
w 0

]
. The activity of the two units evolved as

τ ẋ(t) = −x(t) +Wx(t) + u(t) (11)

and directly influenced the acceleration of a one-dimensional output y(t) according to

ÿ(t) = Cix(t) (12)

whereCi =
[
cos θC sin θC

]
was a row matrix reading the activity of the network along an angle θC from the horizontal

(first unit). Our setup aimed to mirror the reaching task studied in this work. We thus optimized inputs to minimize

13

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 3, 2023. ; https://doi.org/10.1101/2023.04.03.535429doi: bioRxiv preprint 

https://github.com/tachukao/dilqr
https://doi.org/10.1101/2023.04.03.535429
http://creativecommons.org/licenses/by/4.0/


the following cost function :

J [u] =:

∫ T

0

‖y(t)− y?‖2 t
2

T 2

dt

T︸ ︷︷ ︸
Jtarget

+ αnull

∫ 0

−∆prep

(
‖y(t)‖2 + ‖ẏ(t)‖2 + ‖ÿ‖2

) dt
T︸ ︷︷ ︸

Jnull

+ αeffort

∫ T

−∆prep

‖u(t)‖2 dt
2T︸ ︷︷ ︸

Jeffort

. (13)

where y? = 20 was the target position.

Computing networks’ controllability and observability to predict preparation in Figure 5

As part of our attempt to predict how much a network will prepare given its intrinsic properties only, we computed
the prospective potency of the nullspace α, and the controllability of the readout β. For a stable linear dynamical
system described by

dx

dt
= Ax(t) +Bu(t) (14)

y(t) = Cx(t), (15)

the system’s observability Gramian Q can be computed as the unique positive-definite solution of the Lyapunov
equation

ATQ+QA+CTC = 0. (16)

The prospective potency of the nullspace C⊥ is then defined as

α ,
Tr(C⊥QC⊥

T
)

N − 2
(17)

Note that this measure α is invariant to the specific choice of basis for the nullspace C⊥. Similarly, to assess the
controllability of the readout, we first computed the controllability Gramian of the system P , which is the solution of

AP + PAT +BBT = 0, (18)

with B = I in our system. We then defined the controllability of the readout as

β ,
Tr(CPCT )

2
. (19)
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Details of Figure 6

Cost function We modelled sequences of reaches by modifying our cost functional to account for the presence of
two targets, as

J [u] =

∫ ∆(1)
move+τ

0

‖θ(t)− θ?1‖2
t2

T 2
dt︸ ︷︷ ︸

J (1)
target

+ αpause

∫ ∆(1)
move+τ

∆
(1)
move

‖θ̇(t)‖2dt︸ ︷︷ ︸
Jpause

(20)

+

∫ T

∆
(1)
move+τ

‖θ(t)− θ?2‖2
(t−∆

(1)
move − τ)2

T 2
dt︸ ︷︷ ︸

J (2)
target

+ αnull

∫ 0

−∆prep

‖θ(t)− θ0‖2 + ‖θ̇(t)‖2 + ‖m(t)‖2dt︸ ︷︷ ︸
Jnull

+ αeffort

∫ T

−∆prep

‖u(t)‖2dt︸ ︷︷ ︸
Jeffort

(21)

where τ describes how long the monkey’s hands had to stay on the intermediate target before performing its second
reach. We used τ = 600 ms and αpause = 100 for the double reaches in which a pause was explicitely enforced during
the experiment. For compound reaches, the experiment did not require monkeys to stop for any specific duration.
However, to ensure that the hand stopped on the target in the model (as it does in experiments when monkeys touch
the screen) rather than fly through it, we set τ = 6 ms and αpause = 100 when modelling compound reaches.

Preparatory subspace analysis Lara et al. (2018) proposed an analysis to identify preparatory and movement-
related subspaces. This analysis allows to assess when the neural activity enters those subspaces, independently of
whether it is delay-period or post-go-cue activity.

The method identifies a set of preparatory dimensions and a set of movement dimensions, constrained to be orthogonal
to one another, as in Elsayed et al. (2016). These are found in the following manner: the trial-averaged neural activity is
split between preparatory and movement-related epochs, yielding two matrices of size N×MT where N is the number
of neurons, T is the number of time bins and M is the number of reaches. One then optimizes the Wprep ∈ RN×dprep

and Wmov ∈ RN×dmov (where dprep and dmov are the predefined dimensions of the two subspaces) such that the
subspaces respectively capture most variance in the preparatory and movement activities, while being orthogonal to
one another. This is achieved by maximizing the following objective :

C(Wprep,Wmov) =
1

2

(
Tr(WT

prepCprepWprep)

Zprep(dprep)
+

Tr(WT
movCmovWmov)

Zmov(dmov)

)
(22)

where Cprep/mov are the covariance matrices of the neural activity during the preparatory and movement epochs,
respectively. The normalizing constant Zprep(dprep) denotes the maximum amount of variance in preparatory activity
that can be captured by any subspace of dimension dprep (this is found via SVD), and similarly for Zmov(dmov). The
objective is maximized under the constraints WT

prepWmov = 0, WT
prepWprep = I and WT

movWmov = I. We set subspace
dimensions dprep = dmov = 6, although our results were robust to this choice.

The occupancy of the preparatory subspace was defined as

occupancyprep(t) =

dprep∑
k=1

varθ(x
prep
k (t, θ))

and that of the movement subspace was defined as

occupancymov(t) =

dmov∑
k=1

varθ(x
mov
k (t, θ)).
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For single reaches, we defined preparatory epoch responses as the activity in a 300ms window before the end of the
delay period, and movement epoch responses as the activity in a 300ms window starting 50ms after the go cue. We
normalized all neural activity traces using the same procedure as Churchland et al. (2012); Elsayed et al. (2016). For
double reaches, we followed Zimnik and Churchland (2021) and used neural activity traces from both single reaches
and the first reach of double-reach sequences. Note that we did not include any activity from the second reaches in
the sequence, or from compound reaches, when defining the subspaces.

Parameter table

symbol fig. 1 fig. 2 fig. 3 fig. 5 fig. 4 fig. 6 unit description

L1 30 - 30 cm length of the upper arm in model
L2 30 - 30 cm length of the forearm in model
I1 0.025 - 0.025 kg.m−2 inertia of upper arm
I2 0.045 - 0.045 kg.m−2 inertia of foream
M1 1.4 - 1.4 kg mass of upper arm
M2 1.0 - 1.0 kg mass of forearm
D2 16 - 16 cm elbow to lower arm center of mass distance
r 12 20 12 cm radius of the target reach
µh 20 0 - mV mean baseline firing rate
σh 5 0 - mV s.t.d of the baseline firing rate

αeffort 5E-7 1E-5 5E-7 - coef. of input cost
αnull 1 1 10 - coef. of cost of moving during the delay
αpause - 100 - coef. of cost of moving between reaches
τ 150 ms single-neuron time constant

∆
(1)
move - 300 ms duration of the first reach

∆prep 500 300 - 300 500 ms delay period time
T 1100 900 - 900 2000 — 1406 ms total movement duration
N 200 - 200 - number of neurons
pcon 0.2 - 0.2 - connection probability (E neurons)
pE 80 - 80 - percentage of E neurons
pI 20 - 20 - percentage of I neurons

Table 1: Parameters used for the various simulations.
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S1 Choice of the hyperparameters of the model1

Our cost function for the delayed single-reaching task was composed of 3 components. The2

relative weighings of the different terms in our cost, which are hyperparameters of the model,3

affect the way in which the task is solved. To ensure robustness of our results to hyperparameter4

changes, we scanned the space of αnull and αeffort (as the solution is invariant to scaling of5

the cost, only those relative weighings matter), and evaluated the solutions found across this6

hyperparameter space for a delayed reach of 300 ms.7

Our evaluation was based on multiple criteria. We considered the target to have been successfully8

reached if the mean distance to the target in the last 200 ms of the movement was lower9

than 5 mm (for a reach radius of 12 cm). We considered that the requirement to stay still10

during the delay period was satisfied if the mean torques during preparation were smaller than11

0.02 N/m. We computed the preparation index and total cost as described in Equation (5) and12

Equation (4). We moreover computed the total input energy per neuron as 1
N

∫ T
−∆prep

‖u‖2dt,13

and the maximum velocity as maxt
√
ẋ(t)2 + ẏ(t)2. These various quantities are shown for a14

range of hyperparameters in Figure S1, with the choice of hyperparameters used throughout our15

simulations marked with a red star. This shows that the behaviour of the model is consistent16

across a range of hyperparameter settings around the one we used.17

In Figure S2, we illustrate the output of the model for several hyperparameter settings. One18

can notice that for very small values of αeffort the reach is successful, but executed with larger19
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Figure S1: Correlates of the behaviour and control strategy across a wide range of hyperparam-
eters. The “reach success” and “holding success” are set to 1 if the success criterion (see text)
is satisfied and 0 otherwise. The task is executed successfully over a wide range of hyperparam-
eters. The red star denotes the set of hyperparameters used in the main text simulations. This
configuration was chosen to lie in a region in which the task can be successfully solved, with the
performance being robust to small changes in the hyperparameters.

torques and velocity than is necessary – e.g the red and yellow reaches are equally successful20

but the red one is much faster – which comes at the cost of larger inputs. We chose the set of21

hyperparameters for our simulations such as to lie in an intermediate regime in which the task22

is solved successfully, but without requiring more inputs than necessary.23
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Figure S2: Illustration of the behaviour for several hyperparameter settings. (Left) Hand posi-
tion along the horizontal axis, with the dotted line denoting the position of the target. (Middle)
Temporal profile of the hand velocity. (Right) Temporal profile of the torques driving the hand.

S2 Investigation of the effect of the network decay timescale24

Figure 3 highlighted that preparatory inputs tend to consistently arise late during the delay25

period. We hypothesized that this may be a reflection of the intrinsic tendency of the network26

dynamics to decay, such that inputs given too early may be “lost”. To test this, we changed27

the characteristic timescale of the dynamics during preparation only, leading to the following28

2
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dynamics:29

τt
dx(t)

dt
= −x(t) + Wφ [x(t)] + h +

τt
τmov

u(t) where

{
τt = τprep if t ≤ 0

τt = τmov if t ≥ 0
(S1)

with τmov = 150ms. This allowed us to evaluate whether having dynamics decaying more slowly30

during preparation led to inputs starting earlier. Note that we also rescaled the inputs during31

preparation by
τprep
τmov

, to ensure that the effective cost of the inputs was not affected by the32

timescale change.33

As shown in Figure S3, inputs started rising earlier when the network’s decay timescale was34

longer. This was consistent with the hypothesis that the length of the window of preparation35

that the optimal controller uses depends on the network’s intrinsic timescale.36

−∆prep 0 300

time (ms)

0

100

||u
||

τp = 50ms
τp = 150ms
τp = 300ms Figure S3: Illustration of the effect of the

characteristic neuronal timescale on the
temporal distribution of the inputs. We
modified the characteristic neuronal timescale of
the ISN during preparation only, and assessed
how that changed the temporal distribution of
inputs for 3 different timescales (τprep = 50ms,
τprep = 150ms, τprep = 300ms, top to bottom).
As hypothesized, inputs started rising earlier
during the preparation window when the decay
timescale of the network was longer.

S3 Additional results in the 2D system37

Our visualization of the behaviour of 2D networks in Figure 4 allowed us to identify features38

of the dynamics that were well-suited to predicting preparation. Below, we compute α and β39

numerically and analytically in 2D oscillatory and nonnormal networks, to gain insights into40

how these quantities vary with the networks’ dynamics. We then show how preparation can be41

predicted highly accurately across a large number of 2D systems, using only those quantities to42

summarize the network dynamics.43

S3.1 Controllability and observability computations44

In Figure S4, we computed α and β numerically, as a function of the connectivity strength and45

the choice of readout, for the nonnormal and the oscillatory motifs shown in Figure 4. This46

highlights the very different behaviours of the two networks, which are to some extent also47

reflected in higher-dimensional models. In particular, we find a strong effect of the alignment48

between the readout and the network dynamics in nonnormal networks, while α and β are49

independent of θC in oscillatory networks. Interestingly, we see that β is constant across all50

oscillatory networks, while α increases with w.51

As the reduced 2D model is more amenable to mathematical analysis than its high-dimensional52

counterpart, we can gain further insights into the origin of these differences by computing53

α(w, θC) and β(w, θC) analytically.54
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Figure S4: Illus-
tration of α and β
as a function of θC
and w in the 2D
networks.

Recall that the observability Gramian Q of a linear input-driven dynamical system satisfies55

ATQ + QA + CTC = 0 (S2)

and the controllability Gramian satisfies56

AP + PAT + BBT = 0, (S3)

and that we defined Tr(C⊥QC⊥
T

) and β = Tr(CPCT ) where C⊥ denotes the nullspace of57

the readout matrix. Below, we compute these quantities for the 2D oscillatory and nonnormal58

networks, with B = I and C a unit-norm vector whose direction we parametrize via a quantity59

θC . Note that we ignore the effect of dt and τ in the mathematical analysis, as those quantities60

can straightforwardly be included in the final result via a rescaling of w and B.61

Oscillatory network In the case of A = −I + S where S is a skew-symmetric network62

(i.e ST = −S), Equation (S3) is solved by P = I/2 independently of the value of S. This63

explains why β = Tr(CPCT ) = 1
2‖C‖

2 is independent of both the connectivity strength w and64

the orientation of the readout θC for skew-symmetric networks (see Figure S4; bottom right).65

Practically, this means that skew-symmetric networks are equally controllable in all directions:66

when driven by random inputs, these networks display isotropic activity of equal variance along67

all directions. Moreover, as w controls the oscillation frequency of the network, but does not68

change the decay timescale of the eigenmodes, the amount of variance generated by a random69

stimulation is independent of w. Interestingly, we can see in Figure S4 (top right) that α displays70

a different behaviour, and increases with w. As highlighted above, skew-symmetric systems are71

rotationally symmetric. Without loss of generality, we can thus define our 1D vector to read out72

the first unit, i.e C =
[
1 0

]
.73

The observability Gramian must satisfy74

ATQ + QA + CTC = 0 =⇒
[
−1 w
−w −1

]
Q + Q

[
−1 −w
w −1

]
=

[
−1 0
0 0

]
. (S4)

This can be found in closed-form by solving the 2D system of equations, yielding75

Q =

[
1
4 + 1

4(1+w2)
− w

4(1+w2)

− w
4(1+w2)

w2

4(1+w2)

]
. (S5)
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From there, we obtain α = Tr(C⊥QC⊥
T

) = w2

4(1+w2)
. As found empirically, this quantity will76

initially increase before plateauing towards 1/4 as w becomes large.77

One might wonder why observability displays such a dependence on the oscillatory frequency of78

the network, even though the network is rotationally symmetric, and w does not affect the decay79

timescale. As highlighted in Equation (S2), controllability and observability Gramian would be80

identical for a skew-symmetric system if C = I. However, a feature of the systems we consider81

is the existence of a nullspace, i.e the fact that the readout C only targets a subset of dimensions82

across the whole space (implying that CTC is a low-rank matrix). Intuitively, the reason why α83

increases with w while β is constant in skew-symmetric networks can be understood as follows:84

α is computing how much readout activity a vector initialized in the nullspace of C will generate,85

while β is computing the amount of energy that will be generated across all directions by a vector86

initialized in the readout space. Thus, assuming once again C =
[
1 0

]
and C⊥ =

[
0 1

]
, the87

activity of vectors initialized along C and C⊥ respectively and evolving autonomously from88

there is given by vC(t) =
[
e−t cos(wt) e−t sin(wt)

]
and vC⊥(t) =

[
e−t sin(wt) −e−t cos(wt).

]
89

From there, we can compute β =
∫∞

0 ‖vC(t)‖2dt =
∫∞

0 e−2tdt = 1
2 . Thus, as found above, only90

the decay timescale of the envelope (fixed to 1 here) affects the value of β.91

Importantly, α will instead have a dependence on w arising from the fact that it depends on the92

size of the activity projected into the readout, as93

β =

∫ ∞
0
‖vC⊥(t)TC‖2dt =

∫ ∞
0

e−2t sin2(wt)dt (S6)

=
1

2

∫ ∞
0

e−2t(1− cos(2wt))dt (S7)

=
1

2

∫ ∞
0

e−2t −<e−2(1−iw)tdt (S8)

=
1

4
− 1

4(1 + w2)
(S9)

=
w2

4(1 + w2)
. (S10)

The dependence of this quantity on w can be understood by the fact that activity patterns94

initialized in the readout nullspace benefit from the existence of rotational dynamics, which95

allows them to be read-out before the activity decays completely.96

Nonnormal network In the nonnormal network, we have A = −I + W =

[
−1 0
w −1

]
.97

The nonnormal 2D system, unlike its oscillatory counterpart, does not have rotational sym-98

metry. Thus, to remain general, we will consider C(θC) =
[
cos θC sin θC

]
, and C⊥(θC) =99 [

− sin θC cos θC
]
. Solving Equation (S2) for B = I leads to an expression for the controllabil-100

ity Gramian of the nonnormal system as101

P (w) =

[ 1
2

w
4

w
4

1
2 + w2

4

]
. (S11)

Similarly, computation of the observability Gramian leads to102

Q(w, θC) =

[
w2 sin2 θC

4 + cos θC sin θCw
2 + cos2 θC

2
w sin2 θC

4 + cos θC sin θC
2

w sin2 θC
4 + cos θC sin θC

2
sin2 θC

2

]
. (S12)

We can then compute103

α(θC , w) = C⊥TQC⊥ =
w2

4
sin4 θC (S13)
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and104

β(θC , w) = CTPC⊥ =
(w sin θC + cos θC)2 − cos2 θC + 2

4
. (S14)

This highlights the dependence of α and β on θC , which can also be seen in Figure S4 (left).105

Interestingly, these expressions also make evident the supralinear scaling of α and β with w106

in nonnormal networks. Note however that we never investigate preparation in the very large107

w regime, as the simulation of such networks with discretized dynamics is prone to numerical108

issues.109

S3.2 Predicting preparation in 2D networks110

To assess how well preparation could be predicted from the control-theoretic properties α and111

β (c.f. main text) of 2D networks, we generated 20000 networks with weight matrix112

W (a, ω, wff) =

 a 1
2(wff +

√
w2

ff + 4ω2)

1
2(wff −

√
w2

ff + 4ω2) a

 (S15)

where a ∼ U(0, 0.8), ω ∼ U(0, 4), and wff ∼ U(0, 4). Equation (S15) implies that W has113

a pair of complex-conjugate eigenvalues a ± iω, and also embeds a feedforward coupling of114

strength wff from the second to the first dimension. For each network configuration, we computed115

the corresponding values of α and β. To confirm our intuition that the preparation index116

should increase with α and decrease with β, we first attempted to fit prep. index = c0 + c1
α
β .117

Interestingly, we found that while this quantity was positively correlated with the preparation118

index across networks, a substantial fraction of variance remained unexplained (test R2 = 0.16).119

Labelling the preparation index by the rotational frequency of the network highlighted that120

a substantial fraction of the variance across networks came from this timescale of oscillations121

(Figure S5, left). Indeed, a regression model of the for prep. index = c0 + c1ω
α
β captured 80%122

of the variance in preparation index, yielding an accurate fit across networks with only two free123

parameters (Figure S5, right).124

We stress that the predictive power of these simple fits is remarkable given that the preparation125

index comes out of a complex process of optimization over control inputs. Thus, the control-126

theoretic quantities α and β appear to appropriately summarize the benefits of preparation for127

individual networks.128

The fact that the preparation index also grows with ω can be understood by considering the129

alignment between the activity trajectories which the network can autonomously generate and130

those that are required for solving the motor task. Indeed, a network that is intrinsically unable131

to generate outputs with the right oscillatory timescale would have to rely on movement-related132

inputs, i.e. would have a low preparation index. As observed here, the network’s characteristic133

frequency has a big impact in 2D networks, consistent with ω determining the only oscillatory134

pattern that the network can generate on its own. For high-dimensional networks, however,135

we did not have to incorporate such a measure of compatibility between task requirements and136

network dynamics (c.f. Figure 5). We speculate that this is due to averaging effects. Indeed,137

larger networks possess a wide range of intrinsic oscillatory timescales, and the readout matrix138

- which here was not aligned to the network’s dynamics in any specific way - is expected to read139

out a little bit of all frequencies, including task-appropriate ones.140
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Figure S5: Predicting the preparation index from characteristic network quantities.
We evaluated how well the preparation index could be predicted as a linear function of α

β (left).
A substantial amount of residual variance appeared to arise from variability in the oscillation
frequency ω (color). Accounting for this frequency by regressing the preparation index against
ωαβ gave a better fit (right).

S4 Comparison across networks141

Our main investigation was largely focused on on behaviour of inhibition-stabilized networks,142

which are believed to constitute good models of M1. We however found that the expression we143

derived to obtain a network’s preparation index from its control-theoretic properties generalized144

across to other types of networks. Below, we detail the other network families we considered,145

and show how their dynamics qualitatively differ from the ISN, although their preparation can146

be predicted using the same quantities.147

We modelled three additional classes of networks: randomly connected networks with either148

(i) unstructured or (ii) skew-symmetric connectivities, (iii) a surrogate network obtained by149

applying a similarity transformation to the ISN that preserved its eigenvalue spectrum but150

eliminated any “nonnormality” (i.e, we found T such that Ã = T −1AT where Ã was a diagonal151

matrix with the same eigenvalues as A). Note that we did not apply the transformation to152

the readout or input matrices, such that the transfer function of the system was changed by153

our transformation. This was voluntary, as we were interested in the effect that transforming154

the dynamics would have on the input-output response. These networks were chosen for the155

diversity of dynamical motifs they exhibit: combinations of rapidly and slowly decaying modes,156

oscillations, and transient dynamics. Moreover, each of these network families could be sampled157

from in a straightforward manner, allowing to compute results across many instantiations of158

each network type. We again used random readout matrices not specifically adjusted to the159

dynamics of the network nor to the motor task. To get an intuition for how different networks160

solve the task, we generated one network from each family and qualitatively compared their161

inputs and internal activations when performing the same delayed reach (Figure S6A). We162

first considered an unconnected network, i.e. a network whose recurrent weights were all 0.163

Unsurprisingly, this network had no use for a preparation phase. Indeed, there is no benefit164

to giving early inputs as the network is unable to amplify them. More surprisingly, a random165

network with a much stronger connectivity – as can be seen in its eigenvalue spectrum forming166

a small ball of radius close to 1 (Figure S6A(top)) – also displayed very little preparation.167

The strong, visually apparent similarity between the inputs to the random and unconnected168
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Figure S6: Preparation arises across a range of network architectures : neural correlates
of the reach are shown for 5 different networks (A), alongside the loss and prep. index as a function
of ∆prep. (A) Eigenvalue spectrum (top), internal network activations (middle) and inputs (bottom)
for different network types. The unconnected network does not rely on preparatory inputs at all. The
random network with weights draw from N (0, 0.95/

√
N) uses very little delay period inputs while the

skew-symmetric network with N (0, 4/
√
N) shows a substantial amount of inputs during the delay period.

The inhibition-stabilized network can be seen to rely most on preparation, more so than the similarity
transformed ISN. (B) Loss (top) and preparation index (bottom) as a function of delay period length
for the different networks. The unconnected and random networks can be seen to benefit very little from
longer preparation times. Indeed, even as ∆prep increases, their amount of preparatory inputs remains
very close to 0. On the other hand, the skew-symmetric network and the ISN use preparatory inputs
(bottom), which allow them to have a lower loss for larger values of ∆prep. Interestingly, the surrogate
ISN prepares considerably less than the full ISN.

networks suggests that the optimal way of controlling the random network relies largely on169

ignoring its internal dynamics and solving the task almost entirely in an input-driven regime.170

The example skew-symmetric network, which had imaginary eigenvalues only (ranging between171

-5.5 and 5.5), displayed considerably more preparation, but still relied on strong inputs during172

the movement phase that resembled those of the unconnected and random networks. Finally,173

the ISN relied much more on preparation; the small inputs it receives are strongly amplified174

into large activity patterns owing to its strong, nonnormal recurrent connectivity. Interestingly175

however, the similarity transformed ISN lost much of that ability to amplify inputs, instead176

displaying dynamics resembling that of the skew-symmetric network. This highlights the effect177

of the ISN’s nonnormal dynamics in shaping the network’s activity and optimal inputs.178

Next, we assessed more directly how beneficial preparation was for the different networks. We179

evaluated how the total loss and preparation index evolved as a function of the delay period180

length (Figure S6B). As expected, the control of networks that relied on preparation (skew-181

symmetric and ISN) benefitted more from longer delays. The ISN has markedly lower control182

cost and higher preparation index than other networks, reflecting the fact that even weak (thus183

energetically cheap) inputs were sufficient to produce internal activity and thus output torques184

of the desired magnitude (c.f. Figure S6A, right).185

The above results give a sense of the range of possible dynamics that different types of networks186

display. Interestingly, despite these differences, we showed in Figure 5 that the preparation index187

could be predicted with a simple formula across all networks.188
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