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 2 

 10 

Summary 11 

 12 

The glymphatic system that clears out brain wastes, such as amyloid-β (Aβ) and tau, through 13 

cerebrospinal fluid (CSF) flow may play an important role in aging and dementias. However, a 14 

lack of non-invasive tools to assess the glymphatic function in humans hindered the understanding 15 

of the glymphatic changes in healthy aging. The global infra-slow (<0.1 Hz) brain activity 16 

measured by the global mean resting-state fMRI signal (gBOLD) was recently found to be coupled 17 

by large CSF movements. This coupling has been used to measure the glymphatic process and 18 

found to correlate with various pathologies of Alzheimer’s disease (AD), including Aβ pathology. 19 

Using resting-state fMRI data from a large group of 719 healthy aging participants, we examined 20 

the sex-specific changes of the gBOLD-CSF coupling, as a measure of glymphatic function, over 21 

a wide age range between 36-100 years old. We found that this coupling index remains stable 22 

before around age 55 and then starts to decline afterward, particularly in females. Menopause may 23 

contribute to the accelerated decline in females.  24 

 25 
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 3 

Introduction 30 

 31 

Aging is the leading risk factor for cognitive decline and neurodegenerative disorders that are often 32 

associated with excessive accumulation of misfolded proteins, including the amyloid-β and tau, in 33 

the brain (Hou et al., 2019; Mawuenyega et al., 2010; Peng et al., 2016). Recent studies suggested 34 

the aggregation of toxic proteins could be partly attributed to impaired glymphatic clearance at 35 

advancing ages (Benveniste et al., 2019; Boland et al., 2018; Jessen et al., 2015). The glymphatic 36 

system, as “glia-lymphatic system”, constitutes a pathway for brain waste clearance in the central 37 

nervous system (Iliff et al., 2012; Jessen et al., 2015). In this clearance pathway, cerebrospinal 38 

fluid (CSF) moves from the periarterial space, facilitated by aquaporin-4 (AQP4) channels in 39 

astroglial endfeet, into the interstitial space to wash out interstitial solutes, including Aβ and tau, 40 

into the perivenous space surrounding deep-draining veins (Jessen et al., 2015; Tarasoff-Conway 41 

et al., 2015). The paravascular CSF recirculation and interstitial solute efflux have been found to 42 

decrease in aged mice due to widespread loss of perivascular AQP4 polarization and reduced 43 

pulsatility of intracortical arterioles (Kress et al., 2014). In humans, the clearance along the 44 

glymphatic pathway and downstream meningeal lymphatic vessels, measured by contrast-agent 45 

MRI, decreased and delayed in older patients as compared with younger ones (Zhou et al., 2020). 46 

However, the invasive nature of these imaging tools has hindered a large-scale study of glymphatic 47 

function in healthy aging subjects. As a result, it remains unclear how the glymphatic function 48 

changes in aging, which is vital to understanding the mechanisms of age-related neurodegenerative 49 

disorders and cognitive decline.  50 

 51 
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 4 

Global infra-slow (< 0.1 Hz) brain activity measured by resting-state fMRI (rsfMRI) was recently 52 

linked to the glymphatic function (Kiviniemi et al., 2016) and used to quantify its changes in 53 

Alzheimer’s disease (AD) (Han et al., 2021b) and Parkinson’s disease (PD) patients (Han et al., 54 

2021a). Increasing evidence suggested the brain exhibits highly structured, brain-wide infra-slow 55 

(< 0.1 Hz) activity during the resting state (Gu et al., 2021; Liu et al., 2021; Raut et al., 2021; 56 

Thompson et al., 2014). This global brain activity is evident in neural signals of distinct scales, 57 

ranging from single neuron recordings to whole-brain fMRI, and closely related to transient 58 

arousal modulations (Gu et al., 2021; Liu et al., 2021). The fMRI measure of this activity, i.e., the 59 

global mean rsfMRI blood-oxygenation-level-dependent (gBOLD) signal, is coupled by large CSF 60 

movements (Fultz et al., 2019) and astroglial calcium waves (Wang et al., 2018), suggesting its 61 

potential link to the glymphatic function. The gBOLD is greatly enhanced during sleep (Fukunaga 62 

et al., 2006; Larson-Prior et al., 2009; Olbrich et al., 2009), in accordance with the sleep-enhanced 63 

nature of the glymphatic function (Xie et al., 2013). In contrast, arterial and respiratory pulsations, 64 

which had been traditionally regarded as the main glymphatic drivers (Iliff et al., 2013; Yamada 65 

et al., 2013), actually lack of this attribute with the decreased amplitude during sleep (Boudreau et 66 

al., 2013; Douglas et al., 1982; Snyder et al., 1964). For all these reasons, the strength of gBOLD-67 

CSF coupling has been proposed as a surrogate measure of the glymphatic function and found to 68 

correlate with various AD pathologies and cognitive decline in PD (Han et al., 2021b, 2021a). 69 

Recently, the disengagement of gBOLD from the default mode network (DMN) regions were 70 

found to account for early, preferential Aβ accumulation in these higher-order brain areas in the 71 

early stage of Aβ pathology (Han et al., 2022). In these early studies, the gBOLD-CSF coupling 72 

also was found to correlate significantly with age and sex (Han et al., 2021b, 2021a), but the related 73 

findings were limited by narrow age ranges and complicated by the inclusion of patient data.  74 
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 75 

The fMRI-based glymphatic measurement, together with the widely available rsfMRI data, 76 

provides us a unique opportunity to study the change of the glymphatic function over a wider age 77 

range and in a larger population of healthy aging subjects. In this study, we used rsfMRI data of 78 

719 healthy aging subjects in the Human Connectome Project Aging (HCP-A) (Harms et al., 2018) 79 

to study the age-related changes in glymphatic function in a sex-specific way. We found that the 80 

fMRI-based glymphatic measure remained relatively stable within the range of age 36-54 and then 81 

started to decrease around age mid-50s. Compared with males, females showed a larger and more 82 

abrupt decline of the glymphatic function at this transitioning point. In addition, menopause may 83 

lead to an accelerated glymphatic decline in females.  84 

 85 

Results  86 

 87 

Nonlinear age trajectory of the gBOLD-CSF coupling 88 

 89 

We used rsfMRI data of 719 healthy subjects (403 females) from the HCP-A project with age 90 

ranging from 36 to 100. Following previous procedures (Fultz et al., 2019; Han et al., 2021b, 91 

2021a), we obtained the whole-brain gBOLD signal from the gray matter regions and the bottom-92 

slice CSF signal around the bottom of the cerebellum to measure CSF movements via MR inflow 93 

effects (Fultz et al., 2019; Gao et al., 1996; Gao and Liu, 2012) (Fig. S1A and S1B). Consistent 94 

with the previous studies, the averaged cross-correlation function of the two signals displayed a 95 

biphasic pattern with a negative peak (r = -0.33) at the +3.2 sec lag (Fig. S1C). The gBOLD-CSF 96 

correlation at this +3.2 sec time lag was then computed for individual subjects to quantify their 97 
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 6 

coupling and thus the glymphatic function. The gBOLD-CSF coupling was then averaged within 98 

10 equal-size groups of subjects at different ages, and the resulting age-related trend displayed a 99 

clear non-linear trajectory: it remains relatively stable between ages 36 to 54 and then begins to 100 

decline at around 55 years old (i.e., yrs) (Fig. 1A). We then divided the entire cohort into younger 101 

and older groups according to the age boundary (53.9 yrs) between the fourth and fifth groups, 102 

which had the largest drop among pairs of consecutive groups. The gBOLD-CSF coupling is not 103 

correlated (r = -3.7×10-3, p = 0.95) with age in the younger group whereas this correlation is 104 

significant (r = 0.14, p = 3.9×10-3) in the older group (Fig. 1B).  105 

 106 

We examined potential factors mediating this age-coupling association. Neither the coupling index 107 

nor age was significantly correlated with the total Pittsburgh Sleep Quality Index (PSQI) score, 108 

but they were similarly correlated with a few PSQI items, including sleep medication, trouble 109 

sleeping, and sleep hours. Nevertheless, the age-related changes in the gBOLD-CSF coupling 110 

remain largely unchanged with adjusting for these sleep-related measurements (Fig. 2). Likewise, 111 

the age trajectory of the gBOLD-CSF remained similar with controlling for other non-sleep factors, 112 

including the head motion assessed by mean framewise displacement (FD) (Fig. S2), the brain 113 

volume (Fig. S3), and the CSF volume (mainly from the ventricles) (Fig. S4), even though these 114 

factors showed a significant dependence on age (all p < 3.9×10-7 for linear regression).  115 

 116 

Sex-specific differences in age-related changes 117 

 118 

The gBOLD–CSF coupling is different between females and males. The mean gBOLD-CSF 119 

strength is significantly (p = 7.9×10-6, two-sample t-test) weaker in females than males (Fig. 3A), 120 
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 7 

consistent with the previous finding in an AD cohort (Han et al., 2021b). The age trajectories of 121 

the coupling index are different for the two groups. The gBOLD–CSF coupling decreases more 122 

evidently and abruptly with aging in the females, particularly around 55 yrs, whereas the males 123 

showed a more gradual and steady age-related changes (Fig. 3B).  124 

 125 

We further tested whether and how the gBOLD-CSF coupling is affected by menopause, which 126 

often occurs before age 55. This analysis was focused on the age range of 36-55, which includes 127 

both post-menopause and other females. The menopause status had no significant effects on the 128 

gBOLD-CSF coupling strength for two subgroups of subjects of similar ages (both p > 0.13; two 129 

sample t-test). However, it showed a marginally significant (p = 0.061) interaction with age on the 130 

coupling strength. Consistent with this result, the gBOLD-CSF coupling in the postmenopausal 131 

females appeared to decline earlier in the age mid-40s (Fig. 3C), making the drop around age 55 132 

less abrupt and significant (p = 0.058). The result suggests the potential effect of the menopause 133 

to accelerate the decline of the fMRI-based glymphatic measure.  134 

 135 

Discussion  136 

 137 

Here we study the sex-specific age-related change in the glymphatic function in a large healthy 138 

aging population based on the gBOLD-CSF coupling measured by rsfMRI. We showed that the 139 

gBOLD-CSF coupling changes with age in a non-linear way: it remains relatively stable from 36 140 

yrs to 54 yrs and then begins to decrease afterwards. Importantly, the decrease at age mid-50s is 141 

larger and more abrupt in females than in males.  142 

 143 
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Converging evidence has suggested a link between the glymphatic function and the resting-state 144 

global brain activity, often measured by the gBOLD signal of rsfMRI. The gBOLD, once regarded 145 

as noise, measured a brain-wide, low-frequency (< 0.1 Hz) activity linked to transient arousal 146 

modulations, which also has been observed in monkey electrocorticography (ECoG) (Liu et al., 147 

2015, 2018) and mice spiking data as highly structured patterns (Liu et al., 2021). The low-148 

frequency rsfMRI signals were first linked to the glymphatic function due to their potential link to 149 

CSF dynamics and vasomotor waves (Kiviniemi et al., 2016). It was found later that it is the global 150 

component of rsfMRI, i.e., gBOLD, that is coupled to CSF movements in a sleep-dependent way 151 

(Fukunaga et al., 2006; Fultz et al., 2019; Helakari et al., 2022; Larson-Prior et al., 2009; Olbrich 152 

et al., 2009). The sleep dependency makes it more suitable for driving the sleep-dependent 153 

glymphatic clearance (Holth et al., 2019; Xie et al., 2013), as compared with the cardiac and 154 

respiratory pulsations that are actually suppressed during sleep (Baust and Bohnert, 1969; 155 

Boudreau et al., 2013; Douglas et al., 1982; Guazzi and Zanchetti, 1965; Snyder et al., 1964). 156 

Nevertheless, the gBOLD is not independent from these physiological drivers but shows strong 157 

correlations with the low-frequency modulation of cardiac and respiratory functions (Birn et al., 158 

2006; Chang et al., 2009; Gu et al., 2020; Özbay et al., 2019, 2018; Power et al., 2018). Consistent 159 

with these human findings of strong low-frequency physiological modulation, a recent mice study 160 

demonstrated very strong arterial constrictions/dilations during sleep in the same frequency range 161 

(<0.1 Hz) (Turner et al., 2020). Such low-frequency vessel modulations were coupled by pupil 162 

size changes suggestive of transient arousal modulations (Turner et al., 2022), similar to the global 163 

brain activity measured by gBOLD (Liu et al., 2021, 2018; Pais-Roldán et al., 2020; Turchi et al., 164 

2018). Animal research also suggested that the gBOLD is coupled by large calcium signals of 165 

astrocytes (Pais-Roldán et al., 2020), and the AQP4 channels on the endfeet of these cells are a 166 
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key player of the glymphatic system (Iliff et al., 2012; Jessen et al., 2015). To date, the key 167 

evidence linking the gBOLD to the glymphatic function came from a human study showing that 168 

the gBOLD is coupled to large CSF movements (Fultz et al., 2019). Based on this, the gBOLD-169 

CSF coupling was used to quantify glymphatic function and found correlated with various 170 

pathologies of AD and cognitive decline in PD (Han et al., 2021b, 2021a). The preferential 171 

reduction of gBOLD signal in the higher-order default mode network was found to account for 172 

early, preferential β-amyloid accumulations in the same regions at the early stage of AD (Han et 173 

al., 2022). All these findings established the foundation for using the gBOLD-CSF coupling to 174 

measure the glymphatic function. But a direct proof of their relationship would need future 175 

experiments capable of recording brain signals across distinct spatial and temporal scales. It is also 176 

worth noting that the debate is ongoing regarding specific components of glymphatic theory, e.g., 177 

the convective flow in the interstitial space and the involvement of AQP4 channels in the process 178 

(Abbott et al., 2018; Hladky and Barrand, 2022). Nevertheless, a consensus view is reached 179 

regarding the existence of periarterial CSF flow (Mestre et al., 2018) and its role in waste clearance 180 

(van Veluw et al., 2020), which is more related to the gBOLD-CSF coupling in the present study. 181 

 182 

Brain aging affects the glymphatic function. The CSF inflow of larger tracers or macromoleculars 183 

decreased up to 85% in old wild-type mice as compared to young counterpart (Da Mesquita et al., 184 

2018; Nedergaard and Goldman, 2020). The decreased glymphatic flow in aged mice has been 185 

partly attributed to dysregulation of astroglial water transport due to the widespread loss of AQP4 186 

polarization (Kress et al., 2014), the decline of CSF pressure (Fleischman et al., 2012), and the 187 

changes of CSF secretion and protein content (Chen et al., 2009). Arterial wall stiffening and 188 

associated reduction of arterial pulsatility (Zieman et al., 2005) may also account for age-related 189 
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 10 

glymphatic reduction (Iliff et al., 2013). Human studies of glymphatic function remain sparse (Eide 190 

et al., 2018; Zhou et al., 2020). Previous studies using the gBOLD-CSF coupling found a consistent 191 

association between the age and glymphatic function, but only in patients of relatively old ages 192 

(Han et al., 2021a, 2021b). A retrospective study combined contrast-agent MRI data from various 193 

patient groups to study the glymphatic function and its change with age (Zhou et al., 2020). Despite 194 

different methodologies and patient cohorts from the present study, a similar age trajectory was 195 

observed for the glymphatic function: it remains stable before 50 yrs and then begins to decline 196 

since then (Zhou et al., 2020). The age-related glymphatic changes could be critical for the aging-197 

related risk for neurodegenerative diseases (Hou et al., 2019). The glymphatic dysfunction may 198 

result in inadequate clearance and thus accumulation of toxic proteins, such as Aβ and tau, and 199 

thereby increase the vulnerability to developing cognitive impairments and neurodegenerative 200 

diseases (Jessen et al., 2015; Tarasoff-Conway et al., 2015). Epidemiologic research suggested the 201 

late-onset AD, the most common AD variant, starts around the mid-60s with the prevalence 202 

doubled every 5 years afterwards (Qiu et al., 2009). But the pathophysiological process, including 203 

the accumulation of aggregated Aβ, could begin more than a decade before the dementia (Jack et 204 

al., 2013; Sperling et al., 2014). Together, these findings suggested a timeline consistent with our 205 

finding that the glymphatic function begins to decrease at age mid-50s.  206 

 207 

The female sex is another leading risk factor for developing AD (Mielke et al., 2014). It has been 208 

found a significantly weaker glymphatic function, as measured by gBOLD-CSF coupling strength, 209 

in females than in males (Han et al., 2021b). Here we confirmed the finding with a much larger 210 

dataset from healthy populations. Importantly, we further showed that the glymphatic function had 211 

different age trajectories in the two groups with the females displaying a larger and more abrupt 212 
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decline at around 55 yrs. In fact, women indeed show larger and faster cognitive declines than men 213 

with aging (Levine et al., 2021; Nooyens et al., 2022). Together with increasing evidence that links 214 

the glymphatic dysfunction and cognitive impairments (Da Mesquita et al., 2018; Iliff et al., 2014; 215 

Zou et al., 2019), the sex-specific glymphatic change with aging may provide a possible 216 

explanation for the sex differences in age-related cognitive decline. The menopause and associated 217 

hormone loss have been suggested to contribute to cognitive decline in females (Brown and 218 

Gervais, 2020; Hachul et al., 2015). Our result is not inconsistent with this notion by showing a 219 

marginally significant (p = 0.061) interaction between age and menopause on the coupling metrics. 220 

Among the females of age 36-55, the post-menopausal group appeared to show a decline of 221 

gBOLD-CSF coupling with age, which is absent in the non-menopause group. A limited sample 222 

size and information related to menopause could partially account for statistical non-significance. 223 

But the finding should warrant future studies looking into the menopause effects on the glymphatic 224 

function with a refined design and/or augmented dataset.  225 

 226 

Sleep quality appeared not to be a major contributor to the age-related glymphatic changes. The 227 

gBOLD-CSF coupling and age are similarly correlated with a few sleep measures, including the 228 

frequency of using sleep medication and the sleep troubles in the month prior to the experiments. 229 

However, the age-related changes in the gBOLD-CSF coupling remained largely unchanged after 230 

adjusting for these sleep measures. Nevertheless, the change in sleep architecture might be related 231 

to the sex difference seen in the age-related glymphatic changes. The age and sex are known to 232 

have a strong interaction effect on the composition of sleep stages. Aging in males is associated 233 

with a significant increase of light sleep (stages 1&2) but decrease in slow wave sleep (SWS: sleep 234 

stages 3&4), whereas this age-related change is absent in women (Mander et al., 2017; Redline et 235 
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al., 2004). It is known that the glymphatic function increases during sleep and anesthesia featuring 236 

strong slow wave activity (SWA) (Hablitz et al., 2019; Ju et al., 2017; Xie et al., 2013), and one 237 

would thus expect an improved glymphatic clearance with a higher percentage of SWS. The 238 

empirical evidence, however, suggested an opposite by showing higher SWS is associated with 239 

lower CSF Aβ42 level (Varga et al., 2016), which is an early indicator of preclinical AD and often 240 

accompanied by cortical Aβ accumulation (Jack et al., 2013; Palmqvist et al., 2017). The paradox 241 

might be explained by an observation about the gBOLD and its coupling with CSF flow. They 242 

were more specifically related to ultra-slow (0.6-1 Hz) component of SWA (often related to K-243 

complexes) (Özbay et al., 2019) and phasic changes of SWA power (Fultz et al., 2019; Gu et al., 244 

2022), which could be stronger during the light sleep than SWS. Indeed, the SWA was found to 245 

decrease in subjects with more cortical Aβ and poorer memory consolidation (Mander et al., 2015; 246 

Winer et al., 2020), as well as AD patients (De Gennaro et al., 2017), but the reduction was specific 247 

to its ultra-slow component (0.6-1 Hz) with the delta-band (1-4 Hz) power showing opposite 248 

changes. Based on all these findings, it is possible that the age-related increase in the percentage 249 

of light sleep in males may help to offset some age-related decline in glymphatic function and thus 250 

lead to its slow deterioration as compared with females. However, the test of this hypothesis would 251 

have to be left for future studies, particularly those with assessment of subjects’ sleep architecture.  252 

   253 

STAR Methods 254 

 255 

Participants and study data 256 

This study included 719 healthy human subjects (36~100 yrs; 403 females) who have participated 257 

in all 4 sessions of rsfMRI scanning in the HCP-A project 258 
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(https://www.humanconnectome.org/study/hcp-lifespan-aging). For these subjects, we also used 259 

their T1-weighted structural MRI imaging and demographic data, such as the age, sex, and the 260 

menstrual cycle of females. These “typical aging” subjects were healthy for their age without 261 

identified pathological causes of cognitive declines, such as stroke or clinical dementia 262 

(Bookheimer et al., 2019). All participants provided written informed consent, and investigators 263 

at each HCP-A participating site obtained ethical approval from the corresponding institutional 264 

review board (IRB).  265 

 266 

The use of de-identified data from the HCP-A and the sharing of analysis results have been 267 

reviewed and approved by the Pennsylvania State University IRB (IRB#: STUDY00008766) and 268 

also strictly followed the National Institute of Mental Health (NIMH) Data Archive-data use 269 

certification (DUC). 270 

 271 

 272 

Image acquisition and preprocessing 273 

The rsfMRI data were acquired at 3T MR scanners (Siemens Medical Solutions; Siemens, 274 

Erlangen, Germany) with a matched protocol (Harms et al., 2018) across four acquisition sites 275 

including Washington University St. Louis, University of Minnesota, Massachusetts General 276 

Hospital, and University of California, Los Angeles (researchers in Oxford University dedicating 277 

to the data analysis). For each subject, 4 sessions of rsfMRI (including the anterior to posterior 278 

phase encoding (PE) from Day1, i.e., AP1, as well as PA1, AP2, and PA2) were followed by one 279 

T1-weighted structural MRI session (MPRAGE sequence, echo time (TE)= 1.8/3.6/5.4/7.2 ms 280 

[multi-echo], repetition time (TR) = 2,500 ms, field of view (FOV) = 256 × 256 mm2, 320 × 300 281 
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matrix, number of slices = 208, voxel size = 0.8 × 0.8 × 0.8 mm3, flip angle = 8°) (Harms et al., 282 

2018). The T1-weighted MRI served to provide the whole brain and CSF volume information and 283 

was used for the anatomical segmentation and registration. For rsfMRI acquisition, 488 fMRI 284 

volumes were collected with a multiband gradient-recalled (GRE) echo-planar image (EPI) 285 

sequence (TR/TE=800/37 ms, flip angle=52°, FOV = 208 mm, 104 × 90 matrices, 72 oblique axial 286 

slices, 2 mm isotropic voxels, multiband acceleration factor of 8). 287 

 288 

We referred to the previous study (Han et al., 2021b) in preprocessing the rsfMRI data using the 289 

FSL (version 5.0.9; https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FSL) (Smith et al., 2004) and AFNI 290 

(version 16.3.05; https://afni.nimh.nih.gov/) (Cox, 1996). The general fMRI preprocessing 291 

procedures included motion correction, skull stripping, spatial smoothing (full width at half 292 

maximum (FWHM) = 4mm), temporal filtering (bandpass, approximately 0.01 to 0.1 Hz), and the 293 

co-registration of each fMRI volume to corresponding T1-weighted structural MRI and then to the 294 

152-brain Montreal Neurological Institute (MNI-152) space. The motion parameters were not 295 

regressed out to avoid attenuating the gBOLD signal (Gu et al., 2020; Han et al., 2021b). The 296 

preprocessing of structural images was performed using FSL. Processing steps included spatial 297 

normalization and skull stripping.  298 

 299 

Extract gBOLD and the CSF inflow signals and compute their coupling 300 

 301 

We followed the previous studies (Han et al., 2021b, 2021a) to extract the gBOLD signal and CSF 302 

inflow signal. We defined the mask of the gray matter regions based on the Harvard-Oxford 303 

cortical and subcortical structural atlases (https://neurovault.org/collections/262/). We then 304 
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transformed the gray-matter mask from the MNI-152 space back to the original space of each 305 

session to avoid spatial blurring from the registration process (Fultz et al., 2019), and spatially 306 

averaged the Z-normalized gray-matter rsfMRI signals to obtain the gBOLD signal. Following the 307 

previous study (Han et al., 2021b), the CSF inflow signal was extracted from the CSF region at 308 

the bottom edge of fMRI, with a similar voxel number of CSF ROI for all subjects/sessions (see 309 

an example in Fig. S1A). We extracted the CSF ROI from the preprocessed fMRI signal at the 310 

original individual space referring to the corresponding CSF region below the bottom of the 311 

cerebellum from the high-resolution T1-weighted MRI (see an exemplary time-series of gBOLD 312 

and bottom CSF fMRI in Fig. S1B). 313 

 314 

The cross-correlation function was calculated on the extracted gBOLD signal and the CSF inflow 315 

signal for each fMRI session from each individual subject. The cross-correlation function 316 

quantified the Pearson’s correlation at different time lags. We first averaged all the cross-317 

correlation functions from the 4 individual fMRI sessions (AP1, PA1, AP2, and PA2) for each 318 

subject, and further averaged the functions across all subjects (Fig. S1C). Referring to the previous 319 

studies (Han et al., 2021b, 2021a), we quantified the gBOLD–CSF coupling with the session-mean 320 

cross-correlation at the lag of +3.2 seconds, where the negative peak of the subject-mean cross-321 

correlation located, for each subject. 322 

 323 

The relationship between the gBOLD–CSF coupling and age 324 

 325 

To access the association between the gBOLD–CSF coupling and age, we first divided all the 326 

subjects into 10 sub-groups with different ages (based on the deciles), and further calculated and 327 
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compared the mean gBOLD–CSF coupling for each sub-group. Moreover, all the subjects were 328 

separated into the younger (age < 53.9 yrs) and older (age ≥ 53.9 yrs) groups. The linear regression 329 

was used to evaluate the association between the ages and the coupling measures for the subjects 330 

in each sub-group.  331 

 332 

Several sensitivity analyses were then performed to test whether the age-coupling association 333 

would be driven by the various sleep quality measures (i.e., PSQI measures), the brain volume, as 334 

well as the CSF volume. We included the total PSQI score, as well as 4 different PSQI items, 335 

which were selected due to their strong dependence (p < 0.05 for linear regression or ordinal 336 

regression) with the coupling measures or age, covering the components/aspects of sleep 337 

medication, trouble sleeping, and sleep hours in the sensitivity test. In the test, each of these PSQI 338 

measures was first linked to the coupling measures and age, and then regressed out from the 339 

coupling measures to further examine the age-coupling associations studied in Fig. 1. Similar age-340 

coupling association tests were applied on the whole brain volume and CSF volume, respectively. 341 

The whole brain volume was accessed by the volume number of all brain regions excluding the 342 

CSF area from the T1-weight MRI, where the CSF regions mainly from all the ventricles were 343 

extracted to quantify the CSF volume. To test whether the head motion would drive the age-344 

coupling association, we adjusted the gBOLD-CSF coupling for the head motion from each 345 

rsfMRI acquisition, which was quantified by the session-mean framewise displacement (FD), 346 

following the previous study (Han et al., 2021b) and replicated the analysis in Fig. 1. The FD was 347 

calculated as the sum of the absolute value of all 6 translational and rotational realignment 348 

parameters derived from the preprocessing (Power et al., 2012). We did not use motion-censoring 349 
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methods (Power et al., 2014, 2012) to avoid the influence from the cross-correlation of the 350 

concatenated timeseries of gBOLD and CSF fMRI signals. 351 

 352 

Sex-specific coupling changes with aging 353 

 354 

We further compared the gBOLD–CSF coupling strength between the male and female subjects, 355 

as well as the respective trajectory of coupling changing with aging. First, we compared the 356 

coupling measures between sexes with a two-sample t-test. Second, we divided the males or 357 

females into 7 sub-groups (one group per 10 years; starting from 36~45 yrs, i.e., 36 ≤ age < 46), 358 

respectively, and compared the coupling measures across these sub-groups.  359 

 360 

To examine whether the menopause would affect the tendency of the coupling measure changing 361 

with aging, we separated all the females into the “post-menopause” and “other females” groups 362 

(based on the measure of “whether having no period for 12 months” in the “menstrual cycle” data), 363 

divided the “other females” into two stages of the “36~45 yrs” and “46~55 yrs”, and compared the 364 

coupling measures between the two stages. Similarly, we also selected the same age range/sub-365 

groups for the post-menopausal subjects and contrasted the corresponding coupling measures 366 

between the two sub-groups, as well as compared the coupling across the “post-menopause” and 367 

“other females” subjects for each age-stage. Furthermore, we applied the same grouping metric on 368 

the “post-menopause” subjects as the entire group of females above, i.e., 7 groups with an age 369 

duration of 10 years (from 36~45 yrs), and then replicated the analyses for whole females to 370 

observe the trajectory of the coupling changing with aging. 371 

 372 
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Statistical analysis 373 

 374 

The present study used the two-sample t-test for the group comparison of continuous variables, 375 

including the coupling difference of neighboring groups and that between males and females. The 376 

linear regression was applied to estimate the association between age and gBOLD–CSF coupling 377 

for the younger group and older group, respectively. The ordinal regression was used for responses 378 

with natural ordering among categories (i.e., the association between the coupling measure or age 379 

and these PSQI measures). The cross-correlation function was used to evaluate the relationship 380 

between the gBOLD signal and CSF inflow signal at different time lags. We also tested the 381 

interaction effects of age and menopause on the coupling measure. In the study, Pearson’s 382 

correlation was employed to access the inter-subject associations between different variables. A 383 

p-value less than 0.05 was considered statistical significance. 384 

 385 
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 430 

Fig. 1 The change of gBOLD–CSF coupling with age. (A) The gBOLD–CSF coupling remains 431 

relatively stable before age mid-50s and then begins to decrease since then. The entire cohort was 432 

grouped into 10 subgroups of equal size. Each error bar represents one standard error of the mean. 433 

(B) The gBOLD-CSF coupling was significantly correlated with age for the group of subjects over 434 

53.9 yrs (r = 0.14, p = 3.9×10-3; gray dots at the right), but not so (r = -3.7×10-3, p = 0.95; black 435 

dots at the left) for the younger group. Each dot represents one subject. 436 
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 437 

 438 

Fig. 2 The age-related changes in gBOLD-CSF coupling remain similar with controlling for 439 

sleep measures. The gBOLD-CSF coupling (left) and age (middle) are similarly correlated with 440 

a few sleep-related measurements in PSQI, including the sleep medication frequency (2nd row), 441 

the frequency of bathroom-use during sleep-time (3rd row), the frequency of having pain during 442 

sleep-time (4th row), and sleep hours (5th row), but not the total PSQI score (1st row). However, the 443 
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age-related changes in gBOLD-CSF coupling remain similar with adjusting for these PSQI 444 

measures (right). Each dot represents one subject, and error bars represent the standard error of the 445 

mean. 446 

  447 
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 448 

 449 

Fig. 3 The age-coupling association showed distinct patterns between males and females. (A) 450 

The gBOLD-CSF coupling is significantly weaker in females (red) than in males (blue) (p = 451 

7.9×10-6, two-sample t-test).  (B) The age-related changes of the gBOLD-CSF coupling were 452 

summarized separately for the females and males and showed different patterns of trajectory:  453 

gBOLD–CSF coupling in the females showed a steep decline around 55 yrs (p = 1.1×10-3 for two 454 

consecutive subgroups around that age), in contrast to the slow and gradual decreases in the males. 455 

(C) The gBOLD-CSF coupling trends in the “Post-menopause” and “Other females” groups. All 456 

females above age 55 are post-menopause. Within the age range of 36-55, the menopause status 457 

and age showed a marginally significant (p = 0.061) interaction effect on the gBOLD-CSF 458 

coupling. The coupling index started to decrease early at age mid-40s and thus its reduction around 459 

age mid-50s is less significant (p = 0.058) as compared with the entire female group.  460 

  461 
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Supplementary Materials 764 

Fig. S1 to S4 for multiple supplementary figures  765 
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Fig. S1 gBOLD is coupled with CSF changes in HCP-Aging data. (A) Top: CSF region at 769 

bottom fMRI slice shown in an example subject; Bottom: location of bottom rsfMRI slice marked 770 

in corresponding structural MRI (dashed line). (B) gBOLD (blue) and CSF (red) rsfMRI signals 771 

showed a coupled change (black arrows) from a representative example. (C) Averaged cross-772 

correlation function between gBOLD and CSF across 719 subjects. The red dashed line marks the 773 

time lag (+3.2-sec) where the negative peak of the mean cross-correlation occurs. The shaded 774 

regions represent the area within one standard error of the mean. 775 
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 778 

Fig. S2 The age-coupling association was not affected by head motion during fMRI 779 

acquisition. Similar results as Fig.1 were found when the mean FD was regressed out from the 780 

gBOLD-CSF coupling for each rsfMRI session.  781 
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 784 

Fig. S3 The age-coupling association was not dominant by the whole brain volume. Consistent 785 

results as Fig.1 were found when we regressed out the whole brain volume (ventricles excluded) 786 

from the gBOLD-CSF coupling for each rsfMRI session.  787 
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 790 

Fig. S4 The age-coupling association was not affected by the whole CSF volume. Similar 791 

results as Fig.1 were found when the volume of the whole CSF area was regressed out from the 792 

gBOLD-CSF coupling for each rsfMRI session.  793 
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