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Directed evolution (DE) is a versatile protein-engineering strategy, successfully applied to a range
of proteins, including enzymes, antibodies, and viral vectors. However, DE can be time-consuming
and costly, as it typically requires many rounds of selection to identify desired mutants. Next-
generation sequencing allows monitoring of millions of variants during DE and can be leveraged
to reduce the number of selection rounds. Unfortunately the noisy nature of the sequencing data
impedes the estimation of the performance of individual variants. Here, we propose ACIDES that
combines statistical inference and in-silico simulations to improve performance estimation in DE by
providing accurate statistical scores. We tested ACIDES first on a novel random-peptide-insertion
experiment and then on several public datasets from DE of viral vectors and phage-display. ACIDES
allows experimentalists to reliably estimate variant performance on the fly and can aid protein
engineering pipelines in a range of applications, including gene therapy.
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INTRODUCTION12

Directed evolution (DE) [1–3] is a versatile protein en-13

gineering strategy to conceive and optimize proteins like14

enzymes [4–6], antibodies [7, 8] or viral vectors for gene15

therapy [9–15], culminating in the Nobel Prize in Chem-16

istry 2018 [16]. DE starts from a massive library of ran-17

dom mutants, screens it against a given task over multiple18

rounds and searches for the variants with the highest per-19

formance. As the iteration continues, the best performing20

variants get enriched and emerge from the bulk, while21

ineffective ones are instead weeded out. Nowadays, we22

can rely on next generation sequencing (NGS) [17, 18] to23

sample millions of variants within the library and monitor24

their concentrations over multiple rounds or time-points.25

In this approach, the enrichment of the screened variants26

is measured to rank the variants depending on their per-27

formance. In a similar flavor, Deep mutational scanning28

(DMS) experiments [19–21] combine extensive mutagene-29

sis with NGS to study the properties of proteins [22–26],30

promotors [27, 28], small nucleolar RNA [29], or other31

amino-acid chains. It uses similar techniques to DE and32

requires similar analysis. The approach presented here33

can be applied to both DE and DMS experiments, and34

focus on their common issues and needs.35

The analysis of NGS data of multiple selection rounds36

presents several difficulties. First, variants need to be ro-37

bustly scored based on their enrichment rates, so-called38
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selectivities [30, 31]. This task is complicated by the39

large noise in the NGS counts introduced by, for exam-40

ple, polymerase chain reaction (PCR) amplification or41

bacterial cloning, during amplicon preparations [32–34].42

This noise needs to be taken into account in the analy-43

sis. Second, in order to rank the variants and to identify44

the best performing ones, the score should come with45

a precise estimation of its statistical error. As a conse-46

quence of the noise in the counts, some irrelevant vari-47

ants might appear to be highly enriched (winner’s curse).48

This would be anticipated if properly estimated credibil-49

ity scores are available. Third, when running DE over50

multiple rounds, it is hard to know when to end the ex-51

periment: performing too few rounds could lead to se-52

lection of weak variants, not representative of their true53

ranking. On the other hand, performing too many rounds54

is costly, time-consuming and even ethically questionable55

when working with in-vivo selections [14, 35]. Similarly,56

it would be useful to understand the best NGS depth for57

a given experiment, as deepening the NGS by increasing58

reads results in better data, but adds an extra expense59

to the experiment.60

In order to account for these issues and needs, we61

present ACIDES, Accurate Confidence Intervals for Di-62

rected Evolution Scores, a computational method to em-63

power the analysis of DE and DMS experiments. We fo-64

cus on screening experiments on highly diverse libraries65

where massive NGS data are collected over multiple66

rounds or multiple time-points (Fig. 1A). Our goal is to67

develop a method to extract maximal information from68

noisy NGS data, and allows for scoring and ranking vari-69

ants with accurate statistical confidence scores. Our ap-70

proach can be applied to different kinds of experiments,71

such as in-vivo DE [13, 14, 36], and DMS of phage-display72
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FIG. 1. ACIDES framework. (A) We consider di-
rected evolution (DE) experiments, where protein variants are
screened over multiple rounds, and massive NGS datasets are
collected. (B) From the obtained count data, we estimate a
score (selectivity) for each variant. The higher the score, the
better the variant for the task. Each score is estimated to-
gether with its 95%-confidence interval (CI). (C) Sorting the
scores of all variants in descending order, we obtain a variant
rank (naive rank). Due to statistical errors in the scores, the
obtained rank is biased in general. To correct for this, using
in-silico simulations based on the CIs of the scores, we re-
estimate the rank with 95%-CI (corrected rank). (D) From
the obtained corrected rank, we compute Rank Robustness
(RR). RR represents the percentage of the top 50 variants
identified in the naive rank that also appear in the top 50 of
the corrected rank. (E,F) Examples of rank graphs for two
synthetic datasets with different depths of NGS (per round)
and numbers of unique variants (respectively, E: 107, 5× 104;
F: 106 and 106). The true rank is shown as red crosses. In
both cases, most red crosses are within the 95%-CI of the cor-
rected rank. (G) RR for the two synthetic datasets. Note that
RR multiplied by 50 (E:∼ 45.3; F: ∼ 24.6) roughly provides
the number of the correct top-50 sequences, which are 46 and
23, respectively. (See Fig.s S3 and S4 for more systematic
comparison).

[23, 30, 37], yeast two-hybrid [23] and small nucleolar73

RNA [29] experiments. It is possible to apply ACIDES74

either a posteriori over data collected previously, or along75

the course of the experiment as soon as the NGS data76

become available. The latter strategy allows for moni-77

toring the selection convergence on the fly, and to un-78

derstand when the experiment can be ended. In this79

way, ACIDES can be integrated into protein engineering80

pipelines as well as studies of protein function using mu-81

tagenesis. The tutorial for using ACIDES, along with an82

executable code in Python, will be available in GitHub83

upon publication of this manuscript.84

RESULTS85

The first step of ACIDES estimates the selectivity of86

each individual variant present in the dataset (Fig. 1B)87

and its 95% confidence interval (95%-CI). In this study88

the term selectivity means the rate at which each vari-89

ant increases its concentration with respect to the oth-90

ers. More precisely, we assume an exponential growth as91

ρit+∆t ∼ ρit exp(ai∆t), where ρit is the concentration of92

variant i at time t, and ai is its selectivity. Compared93

with previous methods [19–24, 27–31, 38], our approach94

combines a robust inference framework (maximum likeli-95

hood estimation) with a better quantification of the NGS96

sampling noise [32–34]. For this scope, our approach97

benefits from a negative binomial distribution [39–42]98

(Fig. S1) in which the variance of the noise is overdis-99

persed and grows as λ+ λ2−α/β. Here λ is the expected100

mean count, and α, β are parameters to be inferred (Ma-101

terials and Methods). Using novel data from a plasmid102

library, we observed that our negative binomial model103

realizes a 50- to 70-fold improvement over the Poisson104

model in the predictive ability of the NGS sampling noise105

(Fig. S1). The second step of ACIDES uses the esti-106

mation of the selectivities and their statistical errors to107

rank the variants. The rank obtained by sorting the se-108

lectivities in descending order (naive rank) is biased due109

to statistical fluctuations of the selectivities. We correct110

this bias using in-silico simulations (Fig. 1C). The third111

and last step of ACIDES uses simulations to quantify a112

Rank Robustness (RR), a measure of the quality of the113

selection convergence (Fig. 1D). Specifically, RR is the114

ratio at which the top-50 variants in the naive rank are115

correctly identified (Materials and Methods). RR ranges116

from 0 to 1: a low value points out that the variants have117

not been selected enough, and therefore calls for the ne-118

cessity to perform more rounds, deeper NGS sampling119

or possibly more replicates. Conversely, a large value120

confirms that the selection has properly converged, and121

suggests that the experiment can be ended without per-122

forming additional experimental steps.123

Before focusing on experimental data, we apply124

ACIDES to two synthetic datasets (Materials and Meth-125

ods) describing two opposite scenarios (See Fig.s S3 and126

S4for more systematic comparison): data-rich case (more127

NGS reads with fewer unique variants) and data-poor128

case (less NGS reads with more considered variants).129

In the data-rich case, we first verify that our method130

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 6, 2023. ; https://doi.org/10.1101/2023.01.03.522172doi: bioRxiv preprint 

https://doi.org/10.1101/2023.01.03.522172
http://creativecommons.org/licenses/by-nc-nd/4.0/


3

reaches high performance in recovering the ground-truth131

values of the selectivities (R2 ' 0.92, Fig.S3) in a teacher-132

student setting. In this first case, selection convergence is133

reached and the different variants can be robustly ranked134

(Fig. 1E). In the data-poor case, instead, CI-bars are135

large and the ranking is uncertain (Fig. 1F). Consistently,136

the estimated RRs are high and low for, respectively, the137

data-rich and -poor examples (Fig. 1G). Note that, once138

multiplied by 50, RR roughly provides the number of the139

correct top-50 variants in both cases (caption of Fig. 1G).140

Furthermore, we observe that most true rank values (red141

crosses) fall within the 95%-CI in both examples. These142

observations show that our approach can quantify statis-143

tical errors even in the data-poor regime (See Fig. S4 for144

more systematic comparison).145

Analysis of directed evolution and deep mutational146

scanning experiments147

In order to showcase ACIDES, we apply it to sev-148

eral screening datasets, where various proteins (and one149

RNA molecule) are screened using different experimen-150

tal techniques (Table I). Specifically, we consider three151

phage-display screening experiments targeting different152

proteins, such as the breast cancer type 1 susceptibil-153

ity protein (BRCA1) for Data-A, human yes-associated154

protein 65 (hYAP65) for Data-F and immunoglobulin155

heavy chain (IgH) for Data-G, two in-vivo DEs of adeno-156

associated virus type 2 (AAV2) vectors targeting canine157

eyes for Data-C and murine lungs for Data-D, a mul-158

tiplexed yeast two-hybrid assay targeting BRCA1 for159

Data-B and a yeast competitive growth screen measur-160

ing the fitness of mutant U3 gene for Data-E. For each161

of these experiments, we rank variants (naive rank) and162

compute the confidence interval of their ranks (corrected163

rank in Fig. 2A-G). The degree of convergence of the164

selection is quantified by RR (2H). When technical repli-165

cates are available (Data-A and Data-B), we compute RR166

over all of them and obtained consistent results (shown167

by the small error-bars in Fig. 2H).168

We classify the observed RRs into three groups de-169

pending on the quality of the selection convergence: high170

(Data-A and Data-B), intermediate (Data-F and Data-171

G), and low (Data-C, Data-D and Data-E) convergence172

groups. The high group seems to behave similarly to the173

data-rich synthetic data in Fig. 1E. Consistently, RR,174

NGS depth and the number of unique variants are indeed175

of the same order (Table I). In these cases, the obtained176

naive rank is robust, as indicated by the value of RR177

(RR > 0.8). In the intermediate group, the value of RR178

ranges between 0.6 and 0.8. The experimental techniques179

used in these datasets are similar to those in the high180

group, but the NGS depths (or the numbers of unique181

variants) are smaller (or larger), which could be the rea-182

son why they result in lower RRs. The low group suffers183

from the noise in the data. In Data-C and Data-D, the184

numbers of unique variants are lower than those of Data-185
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FIG. 2. Rank graph for various experimental datasets.
The panel labels A-G correspond to the experiments listed in
table I. (H) Rank robustness (RR) for each experiment. When
technical replicates are available (Data-A and -B), the mean
and standard deviation are shown.

A and Data-B, which would normally help these datasets186

with having higher RR, given the same NGS depth. As187

this is not the case, we see that some experiments are in-188

trinsically more difficult than the others, i.e., in-vivo DE189

(Data-C and Data-D) and RNA based screening (Data-190

E) will result in lower RRs than the other experiments if191

the NGS depth and number of variants are similar.192

In datasets with low RRs, some variants seem to per-193

form better than the others, but the difference between194

their scores is marginal compared with their statistical195

errors. This means that we cannot distinguish if the ob-196

tained variants are selected because of their ability to per-197
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TABLE I. Next generation sequencing datasets of directed evolution experiments

Label Experiment Target Time-points Reads/round # of variants Replicates Ref
A Phage display BRCA1 T0 → T5 13.6 M 35 k 2 x 3 Starita 2015 [23]
B Yeast two-hybrid BRCA1 T0 → T3 13.5 M 27 k 2 x 3 Starita 2015 [23]
C in-vivo DE (dog eye) AAV2-7mer T1 → T5 17 M 5 k 1 x 1 Byrne 2018 [36]
D in-vivo DE (murine lung) AAV2-7mer T0 → T5 6.2 M 0.5 k 1 x 1 Korbelin 2016 [13]
E Yeast competitive growth U3 snoRNA T0 → T4 8 M 24 k 2 x 1 Puchta 2016 [29]
F Phage display hYAP65 WW T0 → T3 5 M 470 k 2 x 1 Araya 2012 [30]
G Phage display Ab IgH T1 → T3 0.1 M 29 k 1 x 1 Boyer 2016 [37]

List and properties of experiments considered in this study. First column introduces dataset label and corresponds to the panels of Fig.
2. Reads/round corresponds to the average NGS counts per time points. # of variants is the number of unique variants that is detected
in the NGS at least once during whole experiments. In Replicates, x × y means that there are x replicates that do not share the same
initial library, each of which has y technical replicates (that shares the same initial library).

form the task (fitness) or just there due to noise. In these198

cases, experimentalists have two possibilities: (i) based199

on the noisy identified variants, perform further tests in200

addition to DE [13, 14], as for example, study infective201

ability of viral vectors using single-cell RNA-seq [43]. Or202

(ii) increase the quality of the datasets, by performing203

further selection rounds, increasing NGS depths, or repli-204

cating the experiments under the same conditions. This205

second possibility is explored in the next section. Over-206

all our rank-analysis of the different experiments shows207

how our approach can provide an overview of the selec-208

tion convergence, informing about the state of the exper-209

iment and eventually pointing out the necessity of more210

experimental efforts.211

Integration into the experimental pipeline212

Noise in experimental data can be reduced by perform-213

ing additional selection rounds involving experiments,214

but in general these are expensive, time-consuming and,215

in case of experiments involving animal use, ethically216

problematic [35]. For these reasons, it is important to217

choose accurately the number of rounds and the NGS218

depth. For this scope, ACIDES can be integrated into219

experimental pipelines to obtain an overview on how RR220

depends on these factors. This is to help experimentalists221

with making informed decisions about additional exper-222

imental efforts.223

ACIDES can estimate RR after each selection round224

(or any time new data become available). This allows225

us to examine the data’s behavior and to quantify the226

degree of convergence in terms of the selection rounds.227

Similarly, for each round, ACIDES can be run on down-228

sampled NGS data to compute RR with smaller NGS229

depth (Materials and Methods). Using these two tech-230

niques, we monitor the need for more selection rounds or231

deeper NGS: a slow increase of RR (or no change in RR)232

upon improving data-quality implies that convergence is233

reached and suggests that the experiment can be ended.234

If, on the other hand, RR increases rapidly when improv-235

ing the rounds and/or NGS depth, it is probably worth236

making further experimental efforts.237

In order to showcase our approach, we study how RR238

depends on the number of screening rounds and NGS239

depth in previous experiments. We start by measuring240

RR in Data-A for different NGS depths. 95%-CI on241

corrected ranks gets larger as the NGS depth becomes242

smaller (Fig.3A). At 1% NGS depth, the variant ordering243

seems largely unreliable: RR is smaller than 0.5 (Fig.3B).244

Importantly, RR does not decrease smoothly as the NGS245

depth decreases, but it remains roughly constant at the246

beginning, and falls only at a very small NGS depth.247

This result suggests that the actual NGS depth of this248

experiment largely exceeds what was necessary (10% of249

the depth would have been sufficient). Next, we quan-250

tify how RR depends on both the number of performed251

rounds and NGS depth (Fig.3C). RR grows from 0.28 (3252

performed rounds with 1% NGS depth) to 0.88 (6 per-253

formed rounds with 100% NGS depth). Saturation of RR254

seems to be observed for RR > 0.7, which corresponds to255

5 performed rounds with the NGS depth larger than 20%,256

or 4 performed rounds with the NGS depth larger than257

40%. This again indicates that the experiment could have258

been stopped earlier (less rounds and/or lower sequence259

coverage) without much affecting the outcome. Note that260

different datasets show different behaviors. For Data-E261

more selection rounds with a higher number of NGS reads262

is expected to improve RR, while for Data-B they seem263

to have just reached the saturation point (Fig.3D).264

Overall these results show how our approach can be265

implemented along experimental pipelines. By estimat-266

ing RR while collecting new data, we can understand if267

we should continue/stop adding more rounds or increas-268

ing NGS depth. This could avoid unnecessary, costly269

and time-consuming experimental efforts. Similar analy-270

ses can be done on the number of replicate experiments271

(Fig.S6).272

Comparison with previous work273

We compare the performance of ACIDES with En-274

rich2, the state of the art for estimating variant scores275

(selectivities) [31]. Enrich2 is based on a weighted lin-276

ear fitting of the log-count change along rounds, and the277

first step of ACIDES should be seen as an upgrade for278

this fitting. In order to compare these two approaches279
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we take advantage of replicate datasets. We first inves-280

tigate if the scores in each method are consistent over281

replicates. For this, we plot the scores obtained from282

one replicate against the scores obtained from the other283

(Fig. 4A, B). The correlation between replicates is esti-284

mated using the coefficient of determination (R2). The285

correlation quantifies the quality of the method, as higher286

(or lower) correlations imply that the estimated scores287

are more (or less) robust and fewer (or more) replicates288

are needed to obtain reliable results. The figure shows289

that ACIDES outperforms Enrich2. Next, we test how290

the comparison depends on the data quality. To this291

goal, we systematically select a set of variants based on292

the magnitude of predicted statistical score-errors (Ma-293

terials and Methods). (Smaller/larger sets include vari-294

ants with smaller/larger predicted statistical errors.) For295

each set, we measure the correlation between two repli-296

cates as in (Fig. 4A, B), and plot it as a function of the set297

size (Fig. 4C). We observe ACIDES’s correlation becomes298

more dominant as the set size decreases, suggesting the299

better quality of both the estimated scores and statistical300

errors. In order to generalize these results, we perform301

the comparison for all possible 12 pairs of technical repli-302

cates in Data-A and Data-B (Table I). In all cases our303

approach outperforms the competitor (Fig. 4D). We also304

perform an additional test to quantify the consistency of305

the predicted statistical errors (Supp. Fig. S7).306

DISCUSSION307

In this work we have presented ACIDES, a method to308

quantify DE and DMS selectivities (fitness), rank vari-309

ants with accurate credibility scores and measure the de-310

gree of experimental convergence. ACIDES can be used311

on the fly to offer an overview of the progress of se-312

lection experiments, which would help experimentalists313

with making informed decisions on whether new experi-314

mental efforts are needed. In this way, ACIDES can save315

significant experimental time and resources. We have ap-316

plied ACIDES to several DE and DMS datasets where a317

number of different target proteins and one set of target318

RNA molecules have been screened using different exper-319

imental protocols. The heterogeneity of these datasets320

shows that ACIDES is a method of general use, applica-321

ble to many different experiments.322

The first step of ACIDES estimates the score (selectiv-323

ity) of each observed variant. This is a necessary step,324

and several alternative methods have been proposed in325

the past. In many applications, such scores are com-326

puted as the variant enrichment that is defined as the327

logarithmic ratio between the variant frequencies in the328

last and second to last round [13] or between the last329
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against the selectivities in the other replicate. The coefficient
of determination (R2), which quantifies the consistency be-
tween two replicates, is also shown. (C) We next examine
how the comparison in the panels A and B depend on data
quality. We consider a set of variants in which the estimated
statistical errors (Materials and Methods) are smaller than a
given threshold. Varying this threshold, sets of variants are
systematical selected, where larger/smaller sets include vari-
ants with larger/smaller estimated statistical errors. For each
set, we estimate R2 between two replicates, and plot it as a
function of the set size. The panel A and B correspond to
the stars ? in C (data size 0.11). (D) In order to test both
methods more systematically, we perform the same analysis
(as those in the panels A-C) for all possible 12 combinations
of technical replicates in Data-A and Data-B. We define the
area under curve of R2 (in the panel C) and plot it for these
combinations (D) . Our method systematically outperforms
the weighted linear fitting method. The replicate combina-
tion used for the panels A-C is indicated by the arrow in the
panel D.

and first round [14, 19, 20, 22, 27, 38]. These approaches330

thus make use of data from only two rounds and dis-331

regard all the others. For this reason, this strategy is332

suboptimal and may lead to noisy score estimations. A333

more sophisticated approach that uses all the data con-334

sists in inferring the slope of a linear line fitted to the log-335

frequencies of variants over all the screening rounds/time336

points [23, 24, 28, 30]. This method gives the same im-337

portance to log-frequencies in all the rounds. Yet as vari-338

ant counts in the first rounds are typically small and339

noisy, assuming the same weight on them could result340

in an overfitting. To fix this effect, Enrich2 [31] uses341

the variance of the count data - estimated via a Pois-342

son distribution assumption - as the weights in a linear343

least squares fitting. ACIDES’ first step comes with a344

three-fold improvement over this last approach. First, in-345

stead of relying on the linear least squares fitting, we esti-346

mate the score by log-likelihood maximization. A major347

improvement happens for variants whose log-frequencies348

do not grow linearly with the rounds, and a simple lin-349

ear weighted fit may struggle in identifying the correct350

slope. This is particularly visible in the bulk variants351

with intermediate scores (Fig.4 A, B). Secondly, instead352

of a simple exponential growth of the counts, we included353

a softmax non-linear function (Materials and Methods),354

where the denominator is inferred from data [44]. This355

change improves the score estimation when the wildtype356

(if any) and/or few variants have a large fraction of the357

total counts and bend the exponential growth of the log-358

frequencies. Lastly, ACIDES uses a negative binomial359

distribution to model the count variability [39–42]. This360

distribution accounts for the large dispersion of next gen-361

eration sequencing data [32–34] far better than the Pois-362

son distribution (Fig. S1). Additionally, the negative bi-363

nomial loss in the likelihood maximization allows us to364

better estimate statistical errors for the inferred scores.365

Thanks to all these improvements, our approach real-366

izes a more robust and accurate estimation of the variant367

scores and outperforms the previous method (Fig. 4).368

In case of noisy data, the estimated scores of variants369

come with statistical errors. This means that the rank370

obtained from the scores (naive rank in our figures) is371

in general biased: top ranked variants are overvalued,372

and vice-versa. This simple statistical effect was not373

taken into account in previous analyses related to DE374

and DMS experiments. The second step of ACIDES uses375

a bootstrap method to account for the bias and recover376

both the corrected rank and its 95%-CI. The deviation377

between this 95%-CI and the naive rank shows us how378

much we can trust the naive rank. To quantify it, as a379

third step of ACIDES, we introduce RR that describes380

how many of the top-50 variants in the naive rank are cor-381

rect. RR measures how stable and robust are the ranks of382

the variant selectivities. As such, it quantifies the degree383

of convergence of the experimental selection, providing384

an insightful overview of the state of the experiment.385

Although ACIDES demonstrates advantages over the386

other methods, it has several limitations that may be387

addressed in the future. First of all, ACIDES does388

not account for changes in the selection pressure over389

rounds. This can potentially be included, but has not390

been done here, as the selection pressure is constant391

in most datasets we analyzed in this article. Second,392

ACIDES uses a negative binomial model to describe the393

dispersion of count data by assuming that the count vari-394

ance depends only on the frequency of the variant. Al-395

though this assumption proves useful to describe NGS396

count errors (Fig. S1) and is used elsewhere [42], it is pos-397

sible that dispersions induced by a sequence-dependent398

procedure, such as error-prone PCR [14, 36, 45], may not399

be taken into account by our method (Note that Data-C400

includes an error-prone PCR after the third round of se-401

lections, indicating that the estimated results for Data-C402

may contain biases). We would need to analyze more403
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data from DE experiments using error-prone libraries to404

address this question. Third, statistical errors due to the405

replicates that do not share the same initial library can-406

not be described by ACIDES, provided that the model407

is only trained on a single series of screening rounds. To408

account for this, we would need a framework that gener-409

alizes ACIDES for different sources of variability.410

Finally, using machine learning techniques, several411

studies have aimed at estimating selectivities from the412

amino-acid sequences of variants. Most of these meth-413

ods rely on supervised algorithms, which are trained to414

predict the selectivity (output) from the sequence of a415

variant (input) [45–53]. Because the performance of these416

methods depends on how the selectivity is estimated from417

data, ACIDES can potentially be incorporated in their418

pipelines to improve the overall performance. We leave419

such analysis for future developments. Other methods420

use instead unsupervised approaches to predict selectiv-421

ities from the sequences of variants [44, 54–57]. Even if422

these methods do not use any sequence scores for their423

training, they often use it to validate and/or test the424

model. Our approach would therefore be useful also in425

these cases.426

METHOD427

Library preparation for Fig.S1428

To demonstrate that our negative binomial likelihood429

approach outperforms the Poisson counterpart, we con-430

ducted the following experiment: We inserted random 21431

nucleotide oligomers into a RepCap plasmid containing432

adenoassociated virus 2 (AAV2) cap gene using previ-433

ously described methods [58]. The plasmid library ob-434

tained was deep sequenced following generation of ampli-435

cons corresponding to the 7mer insertion region. Since436

the 21 nucleotides are randomly and independently gen-437

erated, we can use a position weight matrix model to pre-438

dict the frequency of each variant in the sample. Based439

on this property, the performance of the two models are440

examined as shown in Fig.S1.441

Model442

We propose ACIDES for analyzing selection data in443

DE and DMS. Here the mathematical model is described444

in detail. For a given series of samples over screening445

rounds, we perform NGS and denote by nit the obtained446

count of the i-th variant (i = 1, 2, ...,M) at round (time-447

point) t ∈ T . We denote by Nt the total count Nt =448 ∑
i n

i
t at t. For each sample, we define ρit as the expected449

value of frequency of the i-th variant at t. (Note that450

“expected” means that ρit itself does not fluctuate due to451

the noise in the experiment.) For each variant, an initial452

frequency ρi0 and a growth rate ai are assigned, by which453

the expected frequency is computed as454

ρit+∆t = Ctρ
i
t exp(ai∆t), (1)

where ∆t is the round- (or time-) difference between two455

consecutive NGSs. Ct is a normalization constant, de-456

fined as Ct = 1/
∑
i[ρ

i
t exp(ai∆t)]. We call this model457

((1)) an exponential model.458

We use a negative binomial distribution NB(nit|λ, r)459

with two parameters λ and r to model the noise distri-460

bution of counts nit. Here λ is the expected value of count461

nit given as Ntρ
i
t, while r is the dispersion parameter that462

describes the deviation of the negative binomial distribu-463

tion from the Poisson distribution. (The negative bino-464

mial distribution is a generalization of the Poisson distri-465

bution with a variance equal to λ(1 + λ/r): the Poisson466

distribution is recovered in the large r limit.) Here, based467

on Fig. S1 and [42], we assume r is a power-law function468

of λ: r(λ) = βλα (with α, β > 0), where α and β are469

parameters that are common for all the variants in the470

experiment. (The variance is thus λ + λ2−α/β.) Model471

parameters α, β as well as ρi0, a
i (i = 1, 2, ...,M) are in-472

ferred from the count data nit (i = 1, 2, ...,M , t ∈ T ) by473

maximizing the following likelihood function:474

L
(
α, β, (ρi0)Mi=1, (a

i)Mi=1

)
=
∏
i,t

NB
(
nit|ρitNt, β

(
ρitNt

)α)
.

(2)
The 95%-CIs of the estimated parameters are computed475

from the curvature of the log-likelihood function at the476

maximum.477

Synthetic data478

Synthetic count data nit (i = 1, 2, ...,M , t ∈ T ) are479

generated from the model ((2)) for a given parame-480

ter set α, β, ρi0, a
i (i = 1, 2, ...,M). For Fig.1, we use481

α, β = 0.69, 0.8 with (ai, log ρi0) generated from the nor-482

mal distribution with the expected values (−1, 1) and the483

standard deviations (0.25, 1). (M,Nt) are (5 × 104, 107)484

for the data-rich case (Fig.1E) and (106, 106) for the data-485

poor one (Fig.1F).486

Model inference487

To maximize the likelihood function, we develop a two-488

step algorithm. The first step infers (ρi0, a
i), while the489

second (α, β) and then we iterate the two steps until490

convergence is reached. All inferences are done with a491

gradient descent algorithm, and to reach convergence 10-492

30 iterations are usually sufficient. The first step is itself493

iterative, and loops between the inference of (ρi0, a
i) and494

Ct by treating Ct as a parameter. Here we also introduce495

a gauge choice because of the redundancy between ρi0, ai496

and Ct (the caption of Fig. S2 for more details). In the497

second step, the inference of (α, β) with a straightforward498
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gradient method produces a bias (Fig. S2E). In order499

to correct this, at each iteration the algorithm adopts500

a teacher-student framework, runs a simulation of the501

count data with the current parameters to obtain an es-502

timation of the bias, which is then used to correct the503

real inference and update the parameters.504

In order to reduce computational time and to increase505

the stability of the algorithm, we first run the inference506

algorithm on a subset of variants to estimate α, β. We507

then compute (ρi0, a
i) of the excluded variants using the508

estimated α, β. For this subset, we use the variants that509

satisfy the following two criterions: (i) their counts are510

larger than 0 more than twice in the selection rounds511

and (ii) whose total NGS count (as summed over all the512

rounds) is above a threshold. We set this threshold to 100513

for all the datasets except for Data-C -D, where 10000514

is used. This is because the noise in these experiments515

is larger than the others. Results are stable by changing516

the threshold value (Fig. S2F).517

Simulated rank and rank robustness (RR)518

Using the standard deviations δai (i = 1, ...,M) of es-519

timated scores ai, we discard the variants with higher520

estimated errors. We keep 5000 variants for further anal-521

ysis and denote by A their indices. We then rearrange522

the variant index in A in descending order of ai to de-523

fine a naive rank (the x-axis of Fig 2A-G). To obtain a524

corrected rank (the y-axis of Fig 2A-G), we first gener-525

ate synthetic scores using the normal distribution with526

the expected value (ai)i∈A and the standard deviation527

(δai)i∈A. Based on the generated scores, we rearrange528

the variant index in descending order and define a syn-529

thetic naive rank. Repeating this estimation 3000 times,530

we then compute the median and 95%-CI of the obtained531

synthetic naive ranks. This 95%-CI is defined as the cor-532

rected rank.533

To estimate RR, we compare the top-50 variants in534

the naive rank and each synthetic naive rank. We count535

the number of overlaps between them and average it over536

the 3000 estimations. RR is computed by dividing the537

obtained overlap by 50.538

NGS-Downsampling for Fig.3539

To obtain downsampled count data ñit (i = 1, 2, ...,M ,540

t ∈ T ) by a factor ε, we sample synthetic data from the541

likelihood function ((2)) with a reduced number of the to-542

tal counts εNt (t ∈ T ) and with the estimated parameters543

ρi0, ai, α, β (i = 1, 2, ...,M). To obtain a downsampled544

RR in Fig. 3, we first re-estimate ai (i = 1, 2, ...,M) from545

ñit (i = 1, 2, ...,M , t ∈ T ) using the values of (α, β) that546

are already known, and then perform the estimation of547

RR described above. Using the synthetic data, we show548

that this downsampling method captures well the RR of549

actual NGS-read-reduced data (Fig. S5).550

Pre-processing of Data-C and Data-D551

In their original datasets, Data-C and -D contain a552

large number of variants whose total counts are very low553

(but not zero). In order to speed up the analysis and554

make the analysis more robust we removed the variants555

whose total counts are smaller than 1000 (Data-C) and556

than 100 (Data-D). The NGS depth and the number of557

unique variants shown in Table I are after this prepro-558

cessing.559

DATA AVAILABILTIY560

All data analyzed in this article (Table I) are publicly561

available except for the random-peptide inserted library562

used for Fig. S1. This library will be deposited in a public563

database upon publication of this article.564

CODE AVAILABILITY565

A Python implementation of ACIDES will be available566

on GitHub upon publication of this article.567
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FIG. S1. Negative binomial model accounts for NGS count noise better than Poisson model. (A) The poisson
distribution (orange) and the negative binomial distribution (tableau blue) with the expected value λ = 15. The dispersion
parameter r for the negative binomial distribution is set to 1, 2, ..., 500. The negative binomial distribution generalizes the
Poisson distribution, allowing for large variances by decreasing r. It converges to the Poisson distribution in the large r limit.
(B) In order to test the predictive ability of the negative binomial distribution, we performed the following experiment. Using a
random peptide (of size 21 corresponding to a 7mer) as a barcode, we first barcoded a plasmid extracted from adeno-associated
virus 2 (AAV2) wild type. The obtained 7-mer inserted library was then sent to NGS facility and the corresponding barcoded
region was sequenced. Since these 21 nucleotides of barcode are randomly and independently generated, we can use a position
weight matrix model to predict the frequency of each variant in the sample. Comparing the predicted frequency with the
actual NGS reads, we investigate the noise distribution of NGS counts. (C) The graph showing the obtained counts (n) against
the predicted frequencies multiplied by the total NGS reads (λ), where each point corresponds to a variant. We observe that
the counts are largely dispersed. (D) The probability distribution of counts for a fixed value of λ together with the model
predictions by Poisson distribution (left) and by the negative binomial distribution (right). The probability distribution is
estimated in the following way: (i) picking up all the variants within 5 different colored rectangles in the panel (C). (ii) Using
the variants corresponding to each rectangle, we then make a histogram of counts, which is plotted in the panel (D) as dots.
For the Poisson prediction, we simply use the Poisson distribution with the mean λ = 0.28, 0.7, 1.8, 7.1, 28. For the negative
binomial prediction, for each value of λ, we infer the dispersion parameter r via a maximum likelihood inference and fitted a
power-law function r = βλα to the obtained estimations. The result is r = 0.21λ0.744. Using this relation, the negative binomial
distribution is then plotted for each λ = 0.28, 0.7, 1.8, 7.1, 28. (E) Comparison of predictive abilities between the poisson model
and the negative binomial model. To quantify the predictive ability of each model, we use Kullback-Leibler divergence (KL)
defined as KL =

∑
n Pdata(n) log(Pdata(n)/Pmodel(n)). The ratio between KL for the poisson model and KL for the negative

binomial model is plotted for each value of λ. KLPoisson itself is 0.37, 0.59, 0.87, 1.59, 3.29 for λ = 0.28, 0.7, 1.8, 7.1, 28, while
KLNB is 0.0053, 0.0099, 0.017, 0.032, 0.047.
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FIG. S2. Inference algorithm and synthetic teacher-student examples. (A) graphical illustration of the inference
algorithm with its double loop structure. The internal loop accounts for the parameters of the exponential model (see Materials
and Methods) and iterates between the inference of (ai, ρi0)Mi=1 and C, while the external loop iterates between this internal loop
and the inference of the negative binomial parameters (α, β). For the internal loop, we first infer (ai, ρi0)Mi=1 for a fixed C,α, β
by maximizing the likelihood function (2). C∗ is then calculated from the obtained (ai, ρi0)Mi=1 via C∗ = 1/

∑
i ρ
i
0 exp(ait).

The linearly increasing part of logC∗ is next subtracted as logC∗ − (x∗t+ y∗), where x∗, y∗ = argmaxx,y
∑
t[logC − xt− y]2

(fixing a gauge). The obtained quantity is logC for the next iteration. For the external loop, to obtain (α, β), we first infer the
dispersion parameter r for a list of different values of λ. To do so, for a fixed value of λ, we select a set of index i and the time
t by the condition λ < ρitNt < λ + ε (with a small parameter ε). Only using these i and t, we then maximize the likelihood
function (2) and determine the value of r(λ). After obtaining the function r(λ) for several values of λ, we fit a linear function
r(λ) = αλβ to it and determine α and β. (B,C,D) Ground truth comparisons for the synthetic data-rich dataset (Fig. 1E) after
30th iterations demonstrates that the algorithm can recover the generating parameters. In the panel B, we plot the estimated
parameters (ai)Mi=1 (left) and (log ρi0)Mi=1 (right) against their ground truths. The coefficient of determination R2 is also shown.
In the panel C, the normalization coefficient (θ̄(t) ≡ logC) is plotted together with its ground truth. In the panel D, the
estimated r(λ) with a fitted line βλα and its ground truth are shown. (E) While estimating r(λ) for a fixed λ, maximizing
the likelihood function (2) results in a biased estimation as shown in the panel E. For fixing this, we generate a synthetic data
probe using the current estimation of α0 and β0 with (ρit)i,t and use it to unbias the r estimation. More precisely, denoting
the biased estimation by rbias(λ) (panel E) and the estimation of the r in the probe by r1(λ), the unbiased estimator plotted
in the panel D is obtained as r(λ) = rbias(λ)β0λ

α0/r1(λ). (F) To determine α and β, we use only representative variants, as
described in Materials and Methods. For the representative variants, we select the variants whose total counts are larger than
a threshold value mb. In (F), by using the synthetic data, we show that the inference results (α and β) are robust against the
change of this parameter mb.
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FIG. S3. RR offers a proxy for the accuracy of the estimated scores. Here we use synthetic datasets, ranging from
data-poor to data-rich regimes, to show that the empirical quantity RR correlates with our ability to recover the true values
of scores ai and initial frequencies ρi0. For this, we generate synthetic datasets with different values of total NGS reads N and
number of variants M : (N,M) = (107, 5×105); (8×106, 5×105); (6×106, 5×105); (4×106, 5×105); (2×106, 5×105); (106, 5×
105); (107, 106); (8 × 106, 106); (4 × 106, 106); (2 × 106, 106); (106, 106). In these datasets, the parameters (α, β) are the same as
those used in Fig.1E, F. (A) Coefficients of determination R2 between inferred and true values for ai (left) and ρi0 (right) are
plotted against RR. This demonstrates the correlation between R2 and RR. (B) The inference of r(λ) and C∗ is robust across
all synthetic datasets.
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FIG. S4. Ranking CI and rank robustness are accurately estimated also in the data-poor regime. A) For all the
synthetic datasets introduced in Fig. S3. hit rates of the confidence interval of ranking graphs are plotted against their RR,
where the hit rate is defined as the number of true ranking (red crosses in Fig.1E, F for example) that are within the 95%-
confidence intervals (green lines in Fig.1E, F), divided by 50. The hit rates fluctuate around 0.95 as expected, demonstrating
the quality of our estimation of ranking CI. B) Rank robustness (RR) estimated from inferred parameters is plotted against
the true value (ground truth) for the synthetic datasets. The obtained high coefficient of determination shows that ACIDES
can estimate RR also in the data-poor regime.
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FIG. S5. Downsampling NGS counts. (A) For a given dataset of a DE experiment, we downsample the data, i.e., create
a synthetic dataset that corresponds to the dataset of the same DE experiments but with smaller values of the total NGS
reads. For this, we first estimate the parameters of ACIDES from the dataset. We then generate synthetic NGS data using the
likelihood function (2) with smaller numbers of the total NGS reads. For example, if we downsample the data to 40%, we set
Nt to be 0.4Nt. We then estimate RR using ACIDES for this downsampled dataset without reinferring α, β. (B) We show the
validity of this down sampling method on the synthetic data. The parameters for the synthetic data are (Nt,M) = (107, 5×105),
(α, β) = (0.69, 0.8) and (ai, log ρi0)Mi=1 generated from the normal distribution with the expected values (-1,1) and the standard
deviation (0.25, 1). We plot RRs obtained from this downsampling method (blue circles) and from a standard sampling method
(orange crosses) as a function of the total number of NGS (where 100% means the original data). Here the standard sampling
method means using ACIDES directly on the dataset with the total number of NGS 0.01xNt, where x is the percentage of the
total NGS reads (x-axis in the panel B). We observe that our downsampling method estimates well the RR.
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FIG. S6. Multiple replicates can be combined to increase RR. We use the first 4 rounds of Data-A (so that RR is
relatively small for a single replicate), and perform ACIDES for each replicate. (A) Ranking graphs for one (left), two (middle),
three (right) replicates. To combine variant scores of two replicates (denoted by a1, a2 with standard deviation δa1, δa2), we

use (a1δa
2
2 + a2δa

2
1)/(δa21 + δa22) for the combined score and

√
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2
2/(δa

2
1 + δa22) for the combined standard deviation. (B)

RR for the three cases.
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FIG. S7. ACIDES outperforms previous methods in the estimation of score’s statistical errors. Using replicates
in Data-A and Data-B (Table 1), we study the consistency of error bars in ACIDES and in Enrich2. Denoting by a1, a2 the
scores of a variant in replicate 1 and 2 (similarly by δa1, δa2 the standard deviations of the scores), we study the following

quantity z = (a1 − a2)/
√
δa21 + δa22 and compute the histogram of this quantity over different variants. Under the assumption

that both scores are distributed following the normal distribution, this obtained histogram is approximated by the standard
normal distribution. (A,B) Cumulative distributions of the histograms for Enrich2 (A) and ACIDES (B) together with the
cumulative standard normal distribution. We use 1− Kolmogorov–Smirnov (KS) statistics (the maximum distance between two
distributions measured in the y-direction) to quantify the distance between the histogram and the normal distribution. (C) To
study 1 − KS more systematically, we introduce a threshold for the score statistical errors (Materials and Methods) by which
we reduce the amount of data. For each fraction of the data, we estimate 1−KS and plot them in the panel C. The stars in the
panel correspond to panels A and B. (D) Finally, using all possible combinations of technical replicates in Data-A and Data-B,
we compare ACIDES and Enrich2. We compute the area under curve (AUC) of 1 − KS (the panel C) for all combinations.
ACIDES always shows better performance than Enrich2. The arrow in the panel D indicates the replicate combination used
in the panels A-C.
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