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Abstract 

Many proteoforms can be produced from a gene due to genetic mutations, alternative splicing, 
post-translational modifications (PTMs), and other variations. PTMs in proteoforms play critical 
roles in cell signaling, protein degradation, and other biological processes. Mass spectrometry 
(MS) is the primary technique for investigating PTMs in proteoforms, and two alternative MS 
approaches, top-down and bottom-up, have complementary strengths. The combination of the 
two approaches has the potential to increase the sensitivity and accuracy in PTM identification 
and characterization. In addition, protein and PTM knowledgebases, such as UniProt, provide 
valuable information for PTM characterization and validation. Here, we present a software pipeline 
called PTM-TBA (PTM characterization by Top-down, Bottom-up MS and Annotations) for 
identifying and localizing PTMs in proteoforms by integrating top-down and bottom-up MS as well 
as UniProt annotations. We identified 1,662 mass shifts from a top-down MS data set of SW480 
cells, 545 (33%) of which were matched to 12 common PTMs, and 351 of which were localized. 
PTM-TBA validated 346 of the 1,662 mass shifts using UniProt annotations or a bottom-up MS 
data set of SW480 cells. 

Keywords: post-translational modification, top-down mass spectrometry, bottom-up mass 
spectrometry  

1. Introduction 

Post-translational modifications (PTMs) in proteoforms, like methylation, acetylation, and 
phosphorylation, play crucial biological roles in biological systems and diseases [1, 2]. For 
example, kinase phosphorylation is essential for signal transduction in cells and the development 
of cancer cells [3]. PTM characterization, which identifies and localizes PTMs in proteoforms, is 
important for studying protein functions, understanding biological mechanisms, discovering 
disease biomarkers, and designing personalized vaccines [2, 4-7].  

The dominant techniques for identifying PTMs in proteoforms are two complementary mass 
spectrometry (MS) approaches: bottom-up and top-down MS [5, 8, 9]. In bottom-up MS [5], 
proteoforms are proteolytically digested into short peptides, which are separated by liquid 
chromatography (LC) or other methods and then analyzed by MS. Bottom-up MS usually provides 
high fragment ion coverage of identified peptides, which increases the accuracy in determining 
PTM types and locations in peptides. However, bottom-up MS may identify only several peptides 
of a protein and miss many peptides with PTMs in proteome-wide analyses [10]. And PTM 
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combinatorial patterns in proteoforms are lost in digestion, making bottom-up MS inefficient for 
analyzing complex proteoforms with multiple PTMs [11]. Top-down MS analyzes intact proteins 
instead of peptides [12], so it can identify PTM combinatorial patterns in proteoforms and 
characterize proteoforms with multiple PTMs. But top-down MS still suffers from limited sensitivity 
and throughput and often fails to identify low-abundance proteoforms in proteome-wide studies. 
Top-down mass spectra also tend to miss many fragment ions, resulting in ambiguous localization 
sites for PTMs [13]. 

 Continuous efforts have been made to develop computational methods for identifying and 
localizing PTMs using bottom-up MS [14-18]. These methods identify PTMs in peptides by 
database search with pre-specified variable PTMs [14, 16, 17] or open search [10, 15, 18, 19]. 
While database search with variable PTMs reports the types of identified PTMs directly, the open 
search method first identifies unexpected mass shifts, which are then matched common PTMs to 
identify their PTM types. These PTMs are further localized to determine their modification sites 
[20]. Many software tools, such as MaxQuant [14], determine the site of a PTM in an identified 
peptide-spectrum-match (PSM) based on the similarity scores between the spectrum and all 
candidate forms of the peptide with the PTM on different sites. The modified peptide form with the 
best similarity score is reported as the PTM localization result. The confidence scores of PTM 
characterization or localization results are computed using probabilistic or machine learning 
models,  such as AScore [20], SLoMo [21],  PhosphoRS [22]  and Andromeda score [23].  
Similarly, in top-down MS, PTMs are identified by database search with variable PTMs [24, 25], 
the open search strategy [26, 27], or spectral alignment [27]. Confidence scores of PTM 
characterization and localization results are reported using Bayesian or other statistical models 
[26, 28, 29].  

Combining bottom-up and top-down MS is a promising direction for PTM identification and 
characterization because the two approaches have complementary strengths [11, 30]. Bottom-up 
mass spectra provide high fragment ion coverage that top-down mass spectra often lack, while 
top-down mass spectra offer PTM combinatorial pattern information for characterizing complex 
proteoforms. One approach can also validate PTMs identified by the other. Several existing tools, 
like Proteoform Suite [30], adopt this method for PTM characterization.  

Protein and PTM knowledgebases offer additional evidence for validating PTMs identified by 
MS [31]. Protein annotations in UniProt [32] contain many PTMs reported in the literature. 
Additionally, dbPTM [33], SysPTM [34], and PRISMOID [35] store both structural and functional 
information about PTMs.  

Here, we present PTM-TBA, a software pipeline for proteoform PTM characterization by 
combining top-down MS, bottom-up MS, and UniProt PTM annotations. We performed a 
systematic evaluation of the pipeline using top-down MS, bottom-up MS data of SW480 colorectal 
cancer cells. Using top-down MS, we identified 1,662 mass shifts in proteoforms reported from 
SW480 cells, of which 545 were matched to 12 high frequency PTMs, and 351 were confidently 
localized. We also validated 334 PTM sites using peptides identified by bottom-up MS data and/or 
UniProt annotations.  

2. Methods 

2.1 Data sets 
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A bottom-up MS data set and a top-down MS data set of SW480 colorectal cancer cells were 
used to evaluate the proposed PTM characterization and validating pipeline. The bottom-up MS 
experiment [36] was performed in technical triplicate, and only the first replicate was used in this 
paper. Proteins of SW480 cells were digested using trypsin. The dried peptides were fractionated 
into five fractions using 8%, 15%, 22%, 30%, and 50% ACN in 10nM TEAB (pH 9). A Waters 
NanoAcquity LC system with a BEH C18 column (Waters, 10 cm × 100 mm, 1.7 μm particle size) 
coupled with a Q-Exactive mass spectrometer (Thermo Fisher) was used in the analysis. The 
sample peptides were separated over a 90-min linear gradient (A: 0.1% formic acid in water, B: 
0.1% formic acid in acetonitrile). The gradient was used for the samples with solvent B added 
from 2% to 80% from 0 to 80 min and re-equilibrated at 2% from 80 to 90 min. MS1 scans were 
collected from 350 to 2,000 m/z at a resolution of 70,000 (at 200 m/z) with an AGC target of 1 × 
106 ions, and MS/MS scans were collected from 100 to 1,500 m/z at a resolution of 17,500 (at 
200 m/z) with an AGC target of 5 × 105 ions. The top 12 precursor ions in each MS1 spectrum 
were isolated with a 2 m/z window for MS/MS analyses and the normalized collision energy was 
set to 28.  

The top-down MS data set of SW480 cells was generated using size exclusion 
chromatography (SEC)-capillary zone electrophoresis (CZE)-MS/MS [37]. The sample proteins 
were initially separated into 6 fractions using an SEC column, and each fraction was then injected 
into a fused silica capillary with a linear polyacrylamide (LPA) coating and a background 
electrolyte of 5% acetic acid for a 100-min separation. The electrospray voltage was set to 
between 2.2 and 2.3 kV, and the separation voltage was 30 kV. The CZE system was connected 
to a Q-Exactive HF mass spectrometer (Thermo Fisher) for MS/MS analysis. The resolution of 
the MS1 and MS/MS spectra was 120,000 at 200 m/z. Using higher-energy C-trap dissociation 
(HCD) MS/MS, the top 5 precursor ions in each MS1 spectra were fragmented. Three technical 
replicates with a total of 18 runs (6 fractions × 3 replicates) were obtained for SW480 cells, and 
only the first replicate was used in this paper.  

2.2 Bottom-up MS database search 

All raw files were converted to centroided mzML files using msconvert in ProteoWizard [38]. 
A human proteome database, GENCODE-UniProt (18,417 proteins), was built based on the 
protein sequences shared by the GENCODE basic annotation (version 38, 19,652 proteins) [39] 
and the UniProt human proteome database (version 11/23/2019, 20,350 proteins) [32] using 
TopPG (version 1.0) [40]. It contained a reference protein sequence for each gene that was 
annotated by both UniProt and the GENCODE basic annotation. The centroided bottom-up mass 
spectra were searched against the GENCODE-UniProt database concatenated with a reversed 
decoy database (18,417 entries) using MSFragger [15] (version 3.4) with the open search strategy. 
Methionine oxidation and N-terminal acetylation were chosen as variable PTMs, cysteine 
carbamidomethylation as the fixed modification. Up to 3 variable modifications were allowed in 
each identified peptide, and the default setting [-150 Da, 500 Da] was used for the allowed mass 
shift of precursor masses. Identified PSMs were filtered using a 1% spectrum-level false discovery 
rate (FDR). Then the reported PSMs were grouped to obtain peptide identifications, which were 
filtered using a 1% peptide-level FDR. Finally, identified proteins were filtered with a 1% protein-
level FDR.  

2.3 Top-down MS data analysis 
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TopFD (version 1.5.2) [41] was employed to deconvolute the centroided top-down mass 
spectra to neutral monoisotopic masses of precursor and fragment ions. The deconvoluted 
MS/MS spectra were searched against the GENCODE-SWISS database concatenated with a 
decoy database with the same size using TopPIC (version 1.5.2) [27]. The parameter settings 
used in database search were set to the following: an error tolerance of 15 ppm for precursor and 
fragment masses, at most one unexpected mass shift in each identified proteoform, and cysteine 
carbamidomethylation as the fixed modification. Identified proteoforms were filtered with a 1% 
proteoform-level FDR.  

2.4 Matching mass shifts identified in proteoforms and peptides  

Mass shifts identified in a peptide/proteoform were matched to those in another 
peptide/proteoform for removing duplicated shifts and validating identifications. A mass shift and 
its possible sites in a peptide/proteoform are represented by a quadruple [m, p, a, b], where m is 
the mass shift, p is the protein containing it, and positions a and b specify a region [a, b] of the 
protein that contains potential modification sites of the mass shift. In top-down MS, the region [a, 
b] of a mass shift reported by TopPIC was slightly extended to correct possible errors in [a, b] 
introduced by randomly matched fragment peaks. Specifically, position a was extended to the left 
until the extended part contained 2 matched fragment ions or the N-terminus was reached, and 
position b was extended to the right similarly. When the PTM type of a mass shift is known, the 
mass shift with its PTM type is represented by a quintuple [m, p, a, b, t], where t is the type of the 
PTM.  

A mass shift [m1, p1, a1, b1] is matched to another mass shift [m2, p2, a2, b2] if (1) p1 and p2 are 
the same, (2) the sequence regions [a1, b1] and [a2, b2] overlap, and (3) the minimum difference 
among the mass pairs (m1, m2), (m1, m2-1.00235), (m1, m2+1.00235) is smaller than an error 
tolerance (0.1 Da in the experiments). The mass difference of 1.00235 Da is allowed in the 
comparison because it is a common error in deconvoluted precursor masses in top-down MS. A 
mass shift with its PTM type [m1, p1, a1, b1, t1] is matched to another mass shift with its PTM type 
[m2, p2, a2, b2, t2] in a proteoform if (1) the mass shift [m1, p1, a1, b1] is matched to [m2, p2, a2, b2], 
(2) t1 and t2 are the same, and (3) the overlapping region of [a1, b1] and [a2, b2] contains at least 
one amino acid residue that can be modified by the PTM.  

2.5 PTMs in UniProt protein annotations 

An annotation file of the UniProt human proteome (version 06/16/2022, 204, 906 entries) was 
downloaded from UniProt [32]. PTMs and their sites in proteins were extracted from the 
annotation file using a Python script in PTM-TBA. A PTM annotation is matched to a mass shift 
[m, p, a, b] in a proteoform if the annotated PTM is in the region [a, b] of protein p and the mass 
shift of the PTM is matched to the mass shift m with an error tolerance (0.1 Da in the experiment). 
The error +/-1.00235 Da is also allowed in the matching of the mass shift.  

2.6 Removing duplicated mass shifts 

      To remove duplicated mass shifts, we first grouped mass shifts reported from top-down or 
bottom-up MS data into clusters and then removed duplicated mass shifts in each cluster. In the 
clustering step, two mass shifts [m1, p1, a1, b1] and [m2, p2, a2, b2] are added to the same cluster 
if p1 and p2 are the same and the difference between m1 and m2 is smaller than an error tolerance 
(0.1 Da in the experiments). To remove duplicated mass shifts in a cluster, the mass shifts in the 
cluster are ranked using the left boundary (a in the quadruple representation [m, p, a, b]) of the 
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range containing possible modification sites. Next, we iteratively check the mass shifts in the 
cluster following their ranks to remove duplicated ones using a greedy algorithm (Fig. S1 in the 
supplemental material).  

3. Results 

3.1 Overview of the PTM identification and localization pipeline 

Figure 1 illustrates the overall scheme of the PTM-TBA pipeline for PTM identification, 
localization, and validation using top-down MS, bottom-up MS data, and UniProt annotations. 
Top-down MS and bottom-up MS data were generated from SW480 cells separately. MSFragger 
[15] was employed to identify mass shifts in peptides by database search using bottom-up MS 
data. After duplicated shifts were removed, mass shifts in peptides were divided into the four 
classes: Class I: N-terminal acetylation; Class II: high frequency PTMs with localized PTM sites 
(excluding N-terminal acetylation); Class III: high frequency PTMs without PTM localization; and 
Class IV: low frequency mass shifts. TopPIC [27] was used to identified mass shifts from top-
down MS. After duplicated shifts were removed (Methods), the identified mass shifts were also 
divided into four classes. The mass shifts in proteoforms were validated by matching them to 
mass shifts in peptides. Human protein PTM annotations were extracted from the UniProt 
knowledgebase. Mass shifts in proteoforms were further validated by matching these PTM 
annotations to the mass shifts in proteoforms.   

3.2 Mass shift identification by bottom-up MS   

TopPG [40] was employed to generate a human protein database GENCODE-UniProt 
(18,417 proteins), which contained protein sequences shared by the GENCODE basic annotation 
and the UniProt human proteome database (Methods). A total of 99,427 MS/MS spectra were 
obtained from the bottom-up MS experiment of SW480 cells, which were searched against the 
GENCODE-UniProt database for peptide identification using MSFragger [15] (Methods). 
Identified peptide-spectrum-matches (PRMs), peptides, proteins were filtered at a 1% PSM-level, 
peptide-level, and protein-level FDR, respectively. As a result, 72,241 PSMs, 28,141 peptides, 
and 3,825 proteins were reported after filtering at 1% PSM-level, peptide-level, and protein-level 
FDR. Of the 72,241 identified PSMs, 52,845 were from unmodified peptides and the remaining 
19,396 were from modified peptides, which contained a total of 24,341 mass shifts (some 
identified peptides contained more than one mass shift/PTM.  

A mass shift in a peptide may be reported in several identified PSMs (Fig. 2(a)), so duplicated 
mass shifts need to be removed (Methods). After duplicated mass shifts were removed, 14,073 
mass shifts/PTMs sites were reported, including 754 N-terminal acetylation sites and 9567 mass 
shifts that were matched to the shift of a PTM. A total of 12 PTMs (Table S1 in the supplemental 
material) were identified with a high frequency (observed in > 0.15% of all identified PSMs). Fig.3 
shows the frequencies of mass shifts in the range [0, 200] Da, in which high frequency PTMs 
were labeled. Using the 12 high frequency PTMs, the 14,073 mass shifts were divided into the 
four classes: 754 class I, 1,520 class II, 8,047 class III, and 3,752 class IV mass shifts. 

3.3 Mass shifts identified in top-down MS 

The top-down MS data of SW480 cells contained 22,455 MS/MS spectra, which were 
searched against the GENCODE-UniProt database using TopPIC [27] (version 1.5.2) (Methods). 
TopPIC reported 2,153 proteoforms with unexpected mass shifts and/or N-terminal acetylation, 
including 69 histone proteoforms, and 1,494 proteoforms without any mass shifts/PTMs except 
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for cysteine carbamidomethylation from 828 proteins with a 1% proteoform-level FDR. The 69 
histone proteoforms were excluded from downstream analysis because most of them contained 
multiple PTMs.  

Similar to mass shifts in peptides, duplicated mass shifts and PTMs in identified proteoforms 
were removed. After removing duplicated mass shifts, we identified 310 N-terminal acetylation 
sites (Supplemental Table S2) and 1,352 other mass shifts in the 1,613 proteoform, of which 59 
contained both N-terminal acetylation and another mass shift. Fig. 4 shows the distribution of the 
identified mass shifts in [0, 200] Da. The distribution of mass shifts in [-500, 500] Da is given in 
Fig. S2 in the Supplemental Material. Oxidation, methylation, acetylation, and phosphorylation 
are the most frequently observed PTMs, which are consistent with those reported by bottom-up 
MS. Additionally, 134 mass shifts (9.91% of all reported mass shifts) have a shift around -43 Da, 
which can be explained by an incorrect assignment of carbamidomethylation on a cysteine with 
methylation. 

The 1,352 mass shifts were further matched to high frequency PTMs identified from bottom-
up MS to determine their PTM types. Because the mass shift (0.98 Da) of deamidation is similar 
to +1 Dalton errors in deconvoluted precursor masses, which are commonly observed, 
deamidation was excluded and only the remaining 11 high frequency PTMs in Supplemental 
Table 1 were matched to the mass shifts reported by top-down MS. The PTM type of a mass shift 
was determined if (1) the mass shift matched the shift of a high frequency PTM with an error 
tolerance of 0.1 Da (The error +/-1.00235 Da was also allowed in the matching of the mass shift) 
and (2) the possible site of the mass shift contained at least one amino acid that can be modified 
by the PTM. Using the method, a total of 235 mass shifts were identified as high frequency PTMs 
(Supplemental Table S2), including 194 oxidations. For these 235 high frequency PTMs, MIScore 
[29] was used to localize their PTM sites, and 41 PTMs were confidently localized with a 
confidence score ≥ 0.6 (Supplemental Table S2).  

As a result, all the identified N-terminal acetylation sites and unexpected mass shifts were 
divided into 4 classes: (I) 310 N-terminal acetylation sites, (II) 41 high frequency PTMs with 
localized sites (excluding N-terminal acetylation), (III) 194 high frequency PTMs without 
localization, and (IV) 1,117 low frequency mass shifts.    

3.4 Mass shift and PTM validation by bottom-up MS identification 

The 1,117 Class IV mass shifts identified by top-down MS were compared with all mass shifts 
(14,073 entries) reported from bottom-up MS by MSFragger, resulting in 35 matched mass shifts 
between identified proteoforms and peptides. Of the 35 matched mass shifts, 27 were matched 
to a PTM in the UNIMOD database (version 10-17-2019) [42] and the others were not matched 
any PTMs in UNIMOD. The N-terminal acetylation sites in Class I and other high frequency PTMs 
in Class II and III reported by top-down MS were then compared with the high frequency PTMs in 
peptides reported by MSFragger (Methods), and 169 Class I, 7 Class II, 41 Class III PTMs were 
matched to those in peptides (Fig. 1).  

3.5 PTM validation using UniProt annotations   

The Class I, II, III mass shifts in proteoforms were compared with all PTM annotations 
extracted from the UniProt database (Methods) and 220 Class I, 8 Class II, and 33 Class III mass 
shifts were validated by matching them to UniProt annotations. The 42 validated mass shifts in 
Classes II and III included 8 methylation, 1 oxidation, 6 di-methylation, 3 acetylation, and 24 
phosphorylation sites. Fig. 5(a) shows the numbers of mass shifts for the 4 classes validated by 
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bottom-up MS only, UniProt annotations only, or both. Bottom-up MS and UniProt annotations 
provide complementary information for PTM validation. Of the 346 PTMs validated by bottom-up 
MS or UniProt annotations, 94 PTMs (27.1%) were validated by UniProt annotations only and 85 
(24.6%) by bottom-up MS only. 

3.6 Variable PTMs in bottom-up MS database search 

The sensitivity of PTM identification can be improved by setting common PTMs as variable 
PTMs in database search. Methionine oxidation was chosen as a variable PTM in the previous 
analysis to increase the number of oxidation identifications in database search of the bottom-up 
MS data. To evaluate PTM identification without variable PTMs, we reanalyzed the bottom-up MS 
data using MSFragger by setting only N-terminal acetylation as the variable PTM. All other 
parameters were the same as the previous analysis.  

The second round of bottom-up MS database search identified 72,199 PSMs, 28,169 peptides, 
and 3,841 proteins with a 1% FDR, which were similar to the numbers of identifications in the first 
round. We extracted 23,080 mass shifts from 19,264 identified PSMs with mass shifts or PTMs 
and finally obtained 13,602 mass shifts after removing duplicated ones. These mass shifts can 
be divided into the four classes: Class I: 764, Class II: 1,588, Class III 8,117, and Class IV: 3,133 
(Fig. S2). When methionine oxidation was not set as a variable PTM, MSFragger identified only 
274 oxidation sites, about 40.9% of the methionine oxidation sites (670) reported in the previous 
analysis, showing that setting a common PTM as a variable PTM can significantly increase the 
number of PTM sites identified by MSFragger. Besides of methionine oxidation, MSFragger 
reported similar numbers of modified sites for other mass shifts with the two different settings of 
variable PTMs. (Fig. 5(b)).   

     Similarly, the 13,602 mass shifts reported by the second-round database search of MSFragger 
validated 36 Class IV mass shifts in proteoforms reported by top-down MS data, of which 24 were 
matched to UNIMOD PTMs and 8 were not. Additionally, the 167, 7, 33 Class I, II, III mass shifts 
in proteoforms can be validated by mass shifts in peptides, respectively.  Of the 252 mass shifts 
(including N-terminal acetylation) in proteoforms identified by top-down MS and validated by 
bottom-up MS in round one, 240 (95.2%) were also validated in round 2 (Fig. 5). The number of 
validated oxidation sites were reduced from 18 to 11 in the second round, showing that choosing 
appropriate variable PTMs is important for identifying PTMs in bottom-up MS (Fig. 5).   

4. Conclusions  

      We developed and evaluated PTM-TBA, a software pipeline for proteoform PTM identification, 
localization, and validation using top-down MS, bottom-up MS, and UniProt annotations. The 
pipeline successfully identified 545 (32.4% of all reported mass shifts) high frequency PTMs and 
localized 351 sites in proteoforms from SW480 cells by top-down MS.  Besides, we validated 311 
PTMs in proteoforms using peptides identified by bottom-up mass spectra and UniProt 
annotations. In addition, 35 uncommon mass shifts were identified by both top-down and bottom-
up MS.  

PTM-TBA facilitates the discovery of novel PTMs and identification of known PTMs and their 
combinations. Nevertheless, there are still many challenging problems in proteoform PTM 
identification and localization. First, proteoforms may have multiple PTMs with complex 
combinatorial patterns, which complicate PTM identification and localization. Second, it is difficult 
to identify PTMs in low abundance proteoforms. PTM-specified enrichment techniques can 
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contribute to detecting PTMs in low abundance proteoforms/peptides. For example, TiO2 columns 
[43] or antibodies [44] can be used to enrich phosphopeptides for MS/MS analysis.  
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Figures 

Figure 1. The overall scheme of the pipeline for proteoform PTM identification, localization, and 
validation using top-down MS, bottom-up MS and UniProt annotations. 
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Figure 2. An illustration of the extraction and duplication removal of mass shifts in 
proteoforms.  (a) Proteoform identifications A and B are from the same protein. Proteoform 
A contains the whole protein sequence with two mass shifts (green and brown) and 
proteoform B is a truncated one with one mass shift (yellow). The colored parts show protein 
regions containing possible modification sites of the mass shift. (b) Three single mass shifts 
are extracted from the two proteoform identifications. (c) The brown and yellow mass shifts 
have similar shifts and their possible modification site regions overlap, so they are treated as 
duplicated ones and only one is kept.   
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Figure 3. A histogram of mass shifts reported by MSFragger from the bottom-up MS data in 
the range [0, 200] Da.   

 

 

Figure 4. A histogram of mass shifts reported by TopPIC from the top-down MS data in the 
range [0, 200] Da. 
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Figure 5. (a) Comparison of mass shifts in to-down proteoform identifications validated by 
bottom-up MS and UniProt annotations in the four classes. (b) Comparison of mass shifts 
(total and oxidation) validated in two rounds of MSFragger database search. In round 1, N-
terminus acetylation and methionine oxidation were set as variable PTMs. In round 2, only N-
terminus acetylation was set as the variable PTM.   
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Table 1. PTMs identified by matching mass shifts reported in top-down proteoforms 
identifications to 11 PTMs with high frequency observed in bottom-up MS data.  

UNIMOD 
ID 

PTM name Monoisotopi
c mass (Da) 

Modified residues  # 
Proteoforms 

1 Acetylation 42.010565 CKST 7 
5 Carbamylation 43.005814 CKMRSTY 4 
21 Phosphorylation 79.966331 STY 29 
30 Cation: Na 21.981943 DE 10 
34 Methylation  14.015650 CHKNQRILDEST 19 
35 Oxidation 15.994915 CPKDNRY 116 
36 Di-methylation 28.0313 KNR 17 
276 Aminoethylbenzenesulfonylation 183.035399 HKSY 1 
530 Cation: K 37.95582 DE 26 
952 Cation: Fe [II] 53.919289 DE 4 
1870 Cation: Fe [III] 52.911464 DE 2 
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